
Perl Programmers Reference Guide
Version 5.005_02

18−Oct−1998

"There’s more than one way to do it."
−− Larry Wall, Author of the Perl Programming Language

Author: Perl5−Porters

blank

INSTALL Perl Programmers Reference Guide INSTALL

ation

scribed
rked by

your

ecific

nals. If
 to use
ee the

e current

pleting
llation
NAME
Install − Build and Installation guide for perl5.

SYNOPSIS
The basic steps to build and install perl5 on a Unix system are:

rm −f config.sh Policy.sh
sh Configure
make
make test
make install

You may also wish to add these:
(cd /usr/include && h2ph *.h sys/*.h)
(installhtml −−help)
(cd pod && make tex && <process the latex files>)

Each of these is explained in further detail below.

For information on non−Unix systems, see the section on "Porting information" below.

For information on what‘s new in this release, see the pod/perldelta.pod file. For more detailed inform
about specific changes, see the Changes file.

DESCRIPTION
This document is written in pod format as an easy way to indicate its structure. The pod format is de
in pod/perlpod.pod, but you can read it as is with any pager or editor. Headings and items are ma
lines beginning with ‘=’. The other mark−up used is

 B<text> embolden text, used for switches, programs or commands
 C<code> literal code
 L<name> A link (cross reference) to name

You should probably at least skim through this entire document before proceeding.

If you‘re building Perl on a non−Unix system, you should also read the README file specific to
operating system, since this may provide additional or different instructions for building Perl.

If there is a hint file for your system (in the hints/ directory) you should also read that hint file for sp
information for your system. (Unixware users should use the svr4.sh hint file.)

WARNING: This version is not binary compatible with Perl 5.004.
Starting with Perl 5.004_50 there were many deep and far−reaching changes to the language inter
you have dynamically loaded extensions that you built under perl 5.003 or 5.004, you can continue
them with 5.004, but you will need to rebuild and reinstall those extensions to use them 5.005. S
discussions below on "Coexistence with earlier versions of perl5" and "Upgrading from 5.004 to 5.005" for
more details.

The standard extensions supplied with Perl will be handled automatically.

In a related issue, old extensions may possibly be affected by the changes in the Perl language in th
release. Please see pod/perldelta.pod for a description of what‘s changed.

Space Requirements
The complete perl5 source tree takes up about 10 MB of disk space. The complete tree after com
make takes roughly 20 MB, though the actual total is likely to be quite system−dependent. The insta
directories need something on the order of 10 MB, though again that value is system−dependent.
18−Oct−1998 Version 5.005_02 3

INSTALL Perl Programmers Reference Guide INSTALL

licy.sh

from a
 if you
mply

ecific
odules

Yes,
ed a

, while
e.

 than

u can

tself,
lways

end.

y

an set

eed to

rent
ure
Start with a Fresh Distribution
If you have built perl before, you should clean out the build directory with the command

make distclean

or

make realclean

The only difference between the two is that make distclean also removes your old config.sh and Po
files.

The results of a Configure run are stored in the config.sh and Policy.sh files. If you are upgrading
previous version of perl, or if you change systems or compilers or make other significant changes, or
are experiencing difficulties building perl, you should probably not re−use your old config.sh. Si
remove it or rename it, e.g.

mv config.sh config.sh.old

If you wish to use your old config.sh, be especially attentive to the version and architecture−sp
questions and answers. For example, the default directory for architecture−dependent library m
includes the version name. By default, Configure will reuse your old name (e.g.
/opt/perl/lib/i86pc−solaris/5.003) even if you‘re running Configure for a different version, e.g. 5.004.
Configure should probably check and correct for this, but it doesn‘t, presently. Similarly, if you us
shared libperl.so (see below) with version numbers, you will probably want to adjust them as well.

Also, be careful to check your architecture name. Some Linux systems (such as Debian) use i386
others may use i486, i586, or i686. If you pick up a precompiled binary, it might not use the same nam

In short, if you wish to use your old config.sh, I recommend running Configure interactively rather
blindly accepting the defaults.

If your reason to reuse your old config.sh is to save your particular installation choices, then yo
probably achieve the same effect by using the new Policy.sh file. See the section on
"Site−wide Policy settings" below.

Run Configure
Configure will figure out various things about your system. Some things Configure will figure out for i
other things it will ask you about. To accept the default, just press RETURN. The default is almost a
okay. At any Configure prompt, you can type &−d and Configure will use the defaults from then on.

After it runs, Configure will perform variable substitution on all the *.SH files and offer to run make dep

Configure supports a number of useful options. Run Configure −h to get a listing. See the Porting/Glossar
file for a complete list of Configure variables you can set and their definitions.

To compile with gcc, for example, you should run

sh Configure −Dcc=gcc

This is the preferred way to specify gcc (or another alternative compiler) so that the hints files c
appropriate defaults.

If you want to use your old config.sh but override some of the items with command line options, you n
use Configure −O.

By default, for most systems, perl will be installed in /usr/local/{bin, lib, man}. You can specify a diffe
‘prefix’ for the default installation directory, when Configure prompts you or by using the Config
command line option −Dprefix=‘/some/directory‘, e.g.

sh Configure −Dprefix=/opt/perl
4 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

 use

u do,

idea to
reful,
rs are

rectory

nt to
an use

e.gnu

 files

mple,
w.)
est for
et the
, the

riable

al .pm

d just
If your prefix contains the string "perl", then the directories are simplified. For example, if you
prefix=/opt/perl, then Configure will suggest /opt/perl/lib instead of /opt/perl/lib/perl5/.

NOTE: You must not specify an installation directory that is below your perl source directory. If yo
installperl will attempt infinite recursion.

It may seem obvious to say, but Perl is useful only when users can easily find it. It‘s often a good
have both /usr/bin/perl and /usr/local/bin/perl be symlinks to the actual binary. Be especially ca
however, of overwriting a version of perl supplied by your vendor. In any case, system administrato
strongly encouraged to put (symlinks to) perl and its accompanying utilities, such as perldoc, into a di
typically found along a user‘s PATH, or in another obvious and convenient place.

By default, Configure will compile perl to use dynamic loading if your system supports it. If you wa
force perl to be compiled statically, you can either choose this when Configure prompts you or you c
the Configure command line option −Uusedl.

If you are willing to accept all the defaults, and you want terse output, you can run

sh Configure −des

For my Solaris system, I usually use

sh Configure −Dprefix=/opt/perl −Doptimize=’−xpentium −xO4’ −des

GNU−style configure
If you prefer the GNU−style configure command line interface, you can use the supplied configur
command, e.g.

CC=gcc ./configure.gnu

The configure.gnu script emulates a few of the more common configure options. Try

./configure.gnu −−help

for a listing.

Cross compiling is not supported.

(The file is called configure.gnu to avoid problems on systems that would not distinguish the
"Configure" and "configure".)

Extensions
By default, Configure will offer to build every extension which appears to be supported. For exa
Configure will offer to build GDBM_File only if it is able to find the gdbm library. (See examples belo
B, DynaLoader, Fcntl, IO, and attrs are always built by default. Configure does not contain code to t
POSIX compliance, so POSIX is always built by default as well. If you wish to skip POSIX, you can s
Configure variable useposix=false either in a hint file or from the Configure command line. Similarly
Opcode extension is always built by default, but you can skip it by setting the Configure va
useopcode=false either in a hint file for from the command line.

You can learn more about each of these extensions by consulting the documentation in the individu
modules, located under the ext/ subdirectory.

Even if you do not have dynamic loading, you must still build the DynaLoader extension; you shoul
build the stub dl_none.xs version. (Configure will suggest this as the default.)

In summary, here are the Configure command−line variables you can set to turn off each extension:

 B (Always included by default)
 DB_File i_db
 DynaLoader (Must always be included as a static extension)
 Fcntl (Always included by default)
 GDBM_File i_gdbm
 IO (Always included by default)
18−Oct−1998 Version 5.005_02 5

INSTALL Perl Programmers Reference Guide INSTALL

n 2.

offer

 do not
as well

erkeley
tically
ntation

r, then
your
n you
 the

 This
lled in

ude

mic

s and

nu,
 NDBM_File i_ndbm
 ODBM_File i_dbm
 POSIX useposix
 SDBM_File (Always included by default)
 Opcode useopcode
 Socket d_socket
 Threads usethreads
 attrs (Always included by default)

Thus to skip the NDBM_File extension, you can use

sh Configure −Ui_ndbm

Again, this is taken care of automatically if you don‘t have the ndbm library.

Of course, you may always run Configure interactively and select only the extensions you want.

Note: The DB_File module will only work with version 1.x of Berkeley DB or newer releases of versio
Configure will automatically detect this for you and refuse to try to build DB_File with version 2.

If you re−use your old config.sh but change your system (e.g. by adding libgdbm) Configure will still
your old choices of extensions for the default answer, but it will also point out the discrepancy to you.

Finally, if you have dynamic loading (most modern Unix systems do) remember that these extensions
increase the size of your perl executable, nor do they impact start−up time, so you probably might
build all the ones that will work on your system.

Including locally−installed libraries
Perl5 comes with interfaces to number of database extensions, including dbm, ndbm, gdbm, and B
db. For each extension, if Configure can find the appropriate header files and libraries, it will automa
include that extension. The gdbm and db libraries are not included with perl. See the library docume
for how to obtain the libraries.

Note: If your database header (.h) files are not in a directory normally searched by your C compile
you will need to include the appropriate −I/your/directory option when prompted by Configure. If
database library (.a) files are not in a directory normally searched by your C compiler and linker, the
will need to include the appropriate −L/your/directory option when prompted by Configure. See
examples below.

Examples

gdbm in /usr/local
Suppose you have gdbm and want Configure to find it and build the GDBM_File extension.
examples assumes you have gdbm.h installed in /usr/local/include/gdbm.h and libgdbm.a insta
/usr/local/lib/libgdbm.a. Configure should figure all the necessary steps out automatically.

Specifically, when Configure prompts you for flags for your C compiler, you should incl
−I/usr/local/include.

When Configure prompts you for linker flags, you should include −L/usr/local/lib.

If you are using dynamic loading, then when Configure prompts you for linker flags for dyna
loading, you should again include −L/usr/local/lib.

Again, this should all happen automatically. If you want to accept the defaults for all the question
have Configure print out only terse messages, then you can just run

sh Configure −des

and Configure should include the GDBM_File extension automatically.

This should actually work if you have gdbm installed in any of (/usr/local, /opt/local, /usr/g
/opt/gnu, /usr/GNU, or /opt/GNU).
6 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

ure to
u still
e find
add

y add

d the
, then

e. For

t any

 like

s

d uses

stored in
ms,
default

om the
gdbm in /usr/you
Suppose you have gdbm installed in some place other than /usr/local/, but you still want Config
find it. To be specific, assume you have /usr/you/include/gdbm.h and /usr/you/lib/libgdbm.a. Yo
have to add −I/usr/you/include to cc flags, but you have to take an extra step to help Configur
libgdbm.a. Specifically, when Configure prompts you for library directories, you have to
/usr/you/lib to the list.

It is possible to specify this from the command line too (all on one line):

sh Configure −des \
−Dlocincpth="/usr/you/include" \
−Dloclibpth="/usr/you/lib"

locincpth is a space−separated list of include directories to search. Configure will automaticall
the appropriate −I directives.

loclibpth is a space−separated list of library directories to search. Configure will automatically ad
appropriate −L directives. If you have some libraries under /usr/local/ and others under /usr/you
you have to include both, namely

sh Configure −des \
−Dlocincpth="/usr/you/include /usr/local/include" \
−Dloclibpth="/usr/you/lib /usr/local/lib"

Installation Directories
The installation directories can all be changed by answering the appropriate questions in Configur
convenience, all the installation questions are near the beginning of Configure.

I highly recommend running Configure interactively to be sure it puts everything where you want it. A
point during the Configure process, you can answer a question with &−d and Configure will use the
defaults from then on.

By default, Configure will use the following directories for library files for 5.005 (archname is a string
sun4−sunos, determined by Configure).

 Configure variable Default value
$archlib /usr/local/lib/perl5/5.005/archname
$privlib /usr/local/lib/perl5/5.005
$sitearch /usr/local/lib/perl5/site_perl/5.005/archname
$sitelib /usr/local/lib/perl5/site_perl/5.005

Some users prefer to append a "/share" to $privlib and $sitelib to emphasize that those directorie
can be shared among different architectures.

By default, Configure will use the following directories for manual pages:

 Configure variable Default value
$man1dir /usr/local/man/man1
$man3dir /usr/local/lib/perl5/man/man3

(Actually, Configure recognizes the SVR3−style /usr/local/man/l_man/man1 directories, if present, an
those instead.)

The module man pages are stuck in that strange spot so that they don‘t collide with other man pages
/usr/local/man/man3, and so that Perl‘s man pages don‘t hide system man pages. On some systeman
less would end up calling up Perl‘s less.pm module man page, rather than the less program. (This
location will likely change to /usr/local/man/man3 in a future release of perl.)

Note: Many users prefer to store the module man pages in /usr/local/man/man3. You can do this fr
command line with
18−Oct−1998 Version 5.005_02 7

INSTALL Perl Programmers Reference Guide INSTALL

mple,

−wide

ased,

d about

ed and
e AFS,
oftware
o move
ort an

 all the
ess by
ctory
sh Configure −Dman3dir=/usr/local/man/man3

Some users also prefer to use a .3pm suffix. You can do that with

sh Configure −Dman3ext=3pm

If you specify a prefix that contains the string "perl", then the directory structure is simplified. For exa
if you Configure with −Dprefix=/opt/perl, then the defaults for 5.005 are

 Configure variable Default value
$archlib /opt/perl/lib/5.005/archname
$privlib /opt/perl/lib/5.005
$sitearch /opt/perl/lib/site_perl/5.005/archname
$sitelib /opt/perl/lib/site_perl/5.005

$man1dir /opt/perl/man/man1
$man3dir /opt/perl/man/man3

The perl executable will search the libraries in the order given above.

The directories under site_perl are empty, but are intended to be used for installing local or site
extensions. Perl will automatically look in these directories.

In order to support using things like #!/usr/local/bin/perl5.005 after a later version is rele
architecture−dependent libraries are stored in a version−specific directory, such as
/usr/local/lib/perl5/archname/5.005/.

Further details about the installation directories, maintenance and development subversions, an
supporting multiple versions are discussed in "Coexistence with earlier versions of perl5" below.

Again, these are just the defaults, and can be changed as you run Configure.

Changing the installation directory
Configure distinguishes between the directory in which perl (and its associated files) should be install
the directory in which it will eventually reside. For most sites, these two are the same; for sites that us
this distinction is handled automatically. However, sites that use software such as depot to manage s
packages may also wish to install perl into a different directory and use that management software t
perl to its final destination. This section describes how to do this. Someday, Configure may supp
option −Dinstallprefix=/foo to simplify this.

Suppose you want to install perl under the /tmp/perl5 directory. You can edit config.sh and change
install* variables to point to /tmp/perl5 instead of /usr/local/wherever. Or, you can automate this proc
placing the following lines in a file config.over before you run Configure (replace /tmp/perl5 by a dire
of your choice):

 installprefix=/tmp/perl5
 test −d $installprefix || mkdir $installprefix
 test −d $installprefix/bin || mkdir $installprefix/bin
 installarchlib=‘echo $installarchlib | sed "s!$prefix!$installprefix!"‘
 installbin=‘echo $installbin | sed "s!$prefix!$installprefix!"‘
 installman1dir=‘echo $installman1dir | sed "s!$prefix!$installprefix!"‘
 installman3dir=‘echo $installman3dir | sed "s!$prefix!$installprefix!"‘
 installprivlib=‘echo $installprivlib | sed "s!$prefix!$installprefix!"‘
 installscript=‘echo $installscript | sed "s!$prefix!$installprefix!"‘
 installsitelib=‘echo $installsitelib | sed "s!$prefix!$installprefix!"‘
 installsitearch=‘echo $installsitearch | sed "s!$prefix!$installprefix!"‘

Then, you can Configure and install in the usual way:

 sh Configure −des
 make
 make test
8 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

under

archive

lation
other
re will

ults are
 of the

e file

n make

_02 and
till the
 make install

Beware, though, that if you go to try to install new add−on extensions, they too will get installed in
‘/tmp/perl5’ if you follow this example. The next section shows one way of dealing with that problem.

Creating an installable tar archive
If you need to install perl on many identical systems, it is convenient to compile it once and create an
that can be installed on multiple systems. Here‘s one way to do that:

 # Set up config.over to install perl into a different directory,
 # e.g. /tmp/perl5 (see previous part).
 sh Configure −des
 make
 make test
 make install
 cd /tmp/perl5
 # Edit $archlib/Config.pm to change all the
 # install* variables back to reflect where everything will
 # really be installed.
 # Edit any of the scripts in $scriptdir to have the correct
 # #!/wherever/perl line.
 tar cvf ../perl5−archive.tar .
 # Then, on each machine where you want to install perl,
 cd /usr/local # Or wherever you specified as $prefix
 tar xvf perl5−archive.tar

Site−wide Policy settings
After Configure runs, it stores a number of common site−wide "policy" answers (such as instal
directories and the local perl contact person) in the Policy.sh file. If you want to build perl on an
system using the same policy defaults, simply copy the Policy.sh file to the new system and Configu
use it along with the appropriate hint file for your system.

Alternatively, if you wish to change some or all of those policy answers, you should

rm −f Policy.sh

to ensure that Configure doesn‘t re−use them.

Further information is in the Policy_sh.SH file itself.

Configure−time Options
There are several different ways to Configure and build perl for your system. For most users, the defa
sensible and will work. Some users, however, may wish to further customize perl. Here are some
main things you can change.

Threads
On some platforms, perl5.005 can be compiled to use threads. To enable this, read th
README.threads, and then try

sh Configure −Dusethreads

Currently, you need to specify −Dusethreads on the Configure command line so that the hint files ca
appropriate adjustments.

The default is to compile without thread support.

Selecting File IO mechanisms
Previous versions of perl used the standard IO mechanisms as defined in stdio.h. Versions 5.003
later of perl allow alternate IO mechanisms via a "PerlIO" abstraction, but the stdio mechanism is s
default and is the only supported mechanism.
18−Oct−1998 Version 5.005_02 9

INSTALL Perl Programmers Reference Guide INSTALL

erlying
to work

e use
orts.
xternal

fio is

ill be

ction

some
)

texit.

tion
e PerlIO

e the
This PerlIO abstraction can be enabled either on the Configure command line with

sh Configure −Duseperlio

or interactively at the appropriate Configure prompt.

If you choose to use the PerlIO abstraction layer, there are two (experimental) possibilities for the und
IO calls. These have been tested to some extent on some platforms, but are not guaranteed
everywhere.

1. AT&T‘s "sfio". This has superior performance to stdio.h in many cases, and is extensible by th
of "discipline" modules. Sfio currently only builds on a subset of the UNIX platforms perl supp
Because the data structures are completely different from stdio, perl extension modules or e
libraries may not work. This configuration exists to allow these issues to be worked on.

This option requires the ‘sfio’ package to have been built and installed. A (fairly old) version of s
in CPAN.

You select this option by

sh Configure −Duseperlio −Dusesfio

If you have already selected −Duseperlio, and if Configure detects that you have sfio, then sfio w
the default suggested by Configure.

Note: On some systems, sfio‘s iffe configuration script fails to detect that you have an atexit fun
(or equivalent). Apparently, this is a problem at least for some versions of Linux and SunOS 4.

You can test if you have this problem by trying the following shell script. (You may have to add
extra cflags and libraries. A portable version of this may eventually make its way into Configure.

 #!/bin/sh
 cat > try.c <<’EOCP’
 #include <stdio.h>
 main() { printf("42\n"); }
 EOCP
 cc −o try try.c −lsfio
 val=‘./try‘
 if test X$val = X42; then

echo "Your sfio looks ok"
 else

echo "Your sfio has the exit problem."
 fi

If you have this problem, the fix is to go back to your sfio sources and correct iffe‘s guess about a

There also might be a more recent release of Sfio that fixes your problem.

2. Normal stdio IO, but with all IO going through calls to the PerlIO abstraction layer. This configura
can be used to check that perl and extension modules have been correctly converted to use th
abstraction.

This configuration should work on all platforms (but might not).

You select this option via:

sh Configure −Duseperlio −Uusesfio

If you have already selected −Duseperlio, and if Configure does not detect sfio, then this will b
default suggested by Configure.
10 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

with
.

shared
erent
l.so so

 shared
 and

nger to
s.

2) or
your C
ry, the

, and

TH

must

or" of
d and
 with

w can
lled
e perl

laris,
ide
ory.

ndent
s in
ndent

ticeably

 On the
, as of
Building a shared libperl.so Perl library
Currently, for most systems, the main perl executable is built by linking the "perl library" libperl.a
perlmain.o, your static extensions (usually just DynaLoader.a) and various extra libraries, such as −lm

On some systems that support dynamic loading, it may be possible to replace libperl.a with a
libperl.so. If you anticipate building several different perl binaries (e.g. by embedding libperl into diff
programs, or by using the optional compiler extension), then you might wish to build a shared libper
that all your binaries can share the same library.

The disadvantages are that there may be a significant performance penalty associated with the
libperl.so, and that the overall mechanism is still rather fragile with respect to different versions
upgrades.

In terms of performance, on my test system (Solaris 2.5_x86) the perl test suite took roughly 15% lo
run with the shared libperl.so. Your system and typical applications may well give quite different result

The default name for the shared library is typically something like libperl.so.3.2 (for Perl 5.003_0
libperl.so.302 or simply libperl.so. Configure tries to guess a sensible naming convention based on
library name. Since the library gets installed in a version−specific architecture−dependent directo
exact name isn‘t very important anyway, as long as your linker is happy.

For some systems (mostly SVR4), building a shared libperl is required for dynamic loading to work
hence is already the default.

You can elect to build a shared libperl by

sh Configure −Duseshrplib

To actually build perl, you must add the current working directory to your LD_LIBRARY_PA
environment variable before running make. You can do this with

 LD_LIBRARY_PATH=‘pwd‘:$LD_LIBRARY_PATH; export LD_LIBRARY_PATH

for Bourne−style shells, or

 setenv LD_LIBRARY_PATH ‘pwd‘

for Csh−style shells. You *MUST* do this before running make. Folks running NeXT OPENSTEP
substitute DYLD_LIBRARY_PATH for LD_LIBRARY_PATH above.

There is also an potential problem with the shared perl library if you want to have more than one "flav
the same version of perl (e.g. with and without −DDEBUGGING). For example, suppose you buil
install a standard Perl 5.004 with a shared library. Then, suppose you try to build Perl 5.004
−DDEBUGGING enabled, but everything else the same, including all the installation directories. Ho
you ensure that your newly built perl will link with your newly built libperl.so.4 rather with the insta
libperl.so.4? The answer is that you might not be able to. The installation directory is encoded in th
binary with the LD_RUN_PATH environment variable (or equivalent ld command−line option). On So
you can override that with LD_LIBRARY_PATH; on Linux you can‘t. On Digital Unix, you can overr
LD_LIBRARY_PATH by setting the _RLD_ROOT environment variable to point to the perl build direct

The only reliable answer is that you should specify a different directory for the architecture−depe
library for your −DDEBUGGING version of perl. You can do this by changing all the *archlib* variable
config.sh, namely archlib, archlib_exp, and installarchlib, to point to your new architecture−depe
library.

Malloc Issues
Perl relies heavily on malloc(3) to grow data structures as needed, so perl‘s performance can be no
affected by the performance of the malloc function on your system.

The perl source is shipped with a version of malloc that is very fast but somewhat wasteful of space.
other hand, your system‘s malloc function may be a bit slower but also a bit more frugal. However
18−Oct−1998 Version 5.005_02 11

INSTALL Perl Programmers Reference Guide INSTALL

t it may

r most
tions

ulties
tem‘s

fig.sh
ng the

ion

 your
c −g2.

 add

.sh.
cflags

th.

s in the

m

5.004_68, perl‘s malloc has been optimized for the typical requests from perl, so there‘s a chance tha
be both faster and use less memory.

For many uses, speed is probably the most important consideration, so the default behavior (fo
systems) is to use the malloc supplied with perl. However, if you will be running very large applica
(e.g. Tk or PDL) or if your system already has an excellent malloc, or if you are experiencing diffic
with extensions that use third−party libraries that call malloc, then you might wish to use your sys
malloc. (Or, you might wish to explore the malloc flags discussed below.)

To build without perl‘s malloc, you can use the Configure command

sh Configure −Uusemymalloc

or you can answer ‘n’ at the appropriate interactive Configure prompt.

Malloc Performance Flags
If you are using Perl‘s malloc, you may add one or more of the following items to your ccflags con
variable to change its behavior. You can find out more about these and other flags by readi
commentary near the top of the malloc.c source. The defaults should be fine for nearly everyone.

−DNO_FANCY_MALLOC
Undefined by default. Defining it returns malloc to the version used in Perl 5.004.

−DPLAIN_MALLOC
Undefined by default. Defining it in addition to NO_FANCY_MALLOC returns malloc to the vers
used in Perl version 5.000.

Building a debugging perl
You can run perl scripts under the perl debugger at any time with perl −d your_script. If, however, you
want to debug perl itself, you probably want to do

sh Configure −Doptimize=’−g’

This will do two independent things: First, it will force compilation to use cc −g so that you can use
system‘s debugger on the executable. (Note: Your system may actually require something like c
Check your man pages for cc(1) and also any hint file for your system.) Second, it will
−DDEBUGGING to your ccflags variable in config.sh so that you can use perl −D to access perl‘s internal
state. (Note: Configure will only add −DDEBUGGING by default if you are not reusing your old config
If you want to reuse your old config.sh, then you can just edit it and change the optimize and c
variables by hand and then propagate your changes as shown in "Propagating your changes to config.sh"
below.)

You can actually specify −g and −DDEBUGGING independently, but usually it‘s convenient to have bo

If you are using a shared libperl, see the warnings about multiple versions of perl under
Building a shared libperl.so Perl library.

Other Compiler Flags
For most users, all of the Configure defaults are fine. However, you can change a number of factor
way perl is built by adding appropriate −D directives to your ccflags variable in config.sh.

For example, you can replace the rand() and srand() functions in the perl source by any other rando
number generator by a trick such as the following (this should all be on one line):

sh Configure −Dccflags=’−Dmy_rand=random −Dmy_srand=srandom’ \
−Drandbits=31

or you can use the drand48 family of functions with

sh Configure −Dccflags=’−Dmy_rand=lrand48 −Dmy_srand=srand48’ \
−Drandbits=31
12 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

ow this

your

t you

 Once

 you

ne of

 is a
nsive

rrectly
u will

the hint

ded".
ing on

 perl to
ries.

 have

ur old
 with

lways
or by adding the −D flags to your ccflags at the appropriate Configure prompt. (Read pp.c to see h
works.)

You should also run Configure interactively to verify that a hint file doesn‘t inadvertently override
ccflags setting. (Hints files shouldn‘t do that, but some might.)

What if it doesn‘t work?

Running Configure Interactively
If Configure runs into trouble, remember that you can always run Configure interactively so tha
can check (and correct) its guesses.

All the installation questions have been moved to the top, so you don‘t have to wait for them.
you‘ve handled them (and your C compiler and flags) you can type &−d at the next Configure prompt
and Configure will use the defaults from then on.

If you find yourself trying obscure command line incantations and config.over tricks, I recommend
run Configure interactively instead. You‘ll probably save yourself time in the long run.

Hint files
The perl distribution includes a number of system−specific hints files in the hints/ directory. If o
them matches your system, Configure will offer to use that hint file.

Several of the hint files contain additional important information. If you have any problems, it
good idea to read the relevant hint file for further information. See hints/solaris_2.sh for an exte
example. More information about writing good hints is in the hints/README.hints file.

** WHOA THERE!!! ***
Occasionally, Configure makes a wrong guess. For example, on SunOS 4.1.3, Configure inco
concludes that tzname[] is in the standard C library. The hint file is set up to correct for this. Yo
see a message:

 *** WHOA THERE!!! ***
The recommended value for $d_tzname on this machine was "undef"!
Keep the recommended value? [y]

You should always keep the recommended value unless, after reading the relevant section of
file, you are sure you want to try overriding it.

If you are re−using an old config.sh, the word "previous" will be used instead of "recommen
Again, you will almost always want to keep the previous value, unless you have changed someth
your system.

For example, suppose you have added libgdbm.a to your system and you decide to reconfigure
use GDBM_File. When you run Configure again, you will need to add −lgdbm to the list of libra
Now, Configure will find your gdbm include file and library and will issue a message:

 *** WHOA THERE!!! ***
The previous value for $i_gdbm on this machine was "undef"!
Keep the previous value? [y]

In this case, you do not want to keep the previous value, so you should answer ‘n’. (You‘ll also
to manually add GDBM_File to the list of dynamic extensions to build.)

Changing Compilers
If you change compilers or make other significant changes, you should probably not re−use yo
config.sh. Simply remove it or rename it, e.g. mv config.sh config.sh.old. Then rerun Configure
the options you want to use.

This is a common source of problems. If you change from cc to gcc, you should almost a
remove your old config.sh.
18−Oct−1998 Version 5.005_02 13

INSTALL Perl Programmers Reference Guide INSTALL

ed up
er, as

ng the

u run

ade in
e for
eware

nts.

 the
 the

ME
bles,

/ports

efile
 should
s, the
Propagating your changes to config.sh
If you make any changes to config.sh, you should propagate them to all the .SH files by running

sh Configure −S

You will then have to rebuild by running

make depend
make

config.over
You can also supply a shell script config.over to over−ride Configure‘s guesses. It will get load
at the very end, just before config.sh is created. You have to be careful with this, howev
Configure does no checking that your changes make sense. See the section on
"Changing the installation directory" for an example.

config.h
Many of the system dependencies are contained in config.h. Configure builds config.h by runni
config_h.SH script. The values for the variables are taken from config.sh.

If there are any problems, you can edit config.h directly. Beware, though, that the next time yo
Configure, your changes will be lost.

cflags
If you have any additional changes to make to the C compiler command line, they can be m
cflags.SH. For instance, to turn off the optimizer on toke.c, find the line in the switch structur
toke.c and put the command optimize=‘−g’ before the ;; . You can also edit cflags directly, but b
that your changes will be lost the next time you run Configure.

To explore various ways of changing ccflags from within a hint file, see the file hints/README.hi

To change the C flags for all the files, edit config.sh and change either $ccflags or $optimize,
and then re−run

sh Configure −S
make depend

No sh
If you don‘t have sh, you‘ll have to copy the sample file Porting/config_H to config.h and edit
config.h to reflect your system‘s peculiarities. You‘ll probably also have to extensively modify
extension building mechanism.

Porting information
Specific information for the OS/2, Plan9, VMS and Win32 ports is in the corresponding READ
files and subdirectories. Additional information, including a glossary of all those config.sh varia
is in the Porting subdirectory.

Ports for other systems may also be available. You should check out http://www.perl.com/CPAN
for current information on ports to various other operating systems.

make depend
This will look for all the includes. The output is stored in makefile. The only difference between Mak
and makefile is the dependencies at the bottom of makefile. If you have to make any changes, you
edit makefile, not Makefile since the Unix make command reads makefile first. (On non−Unix system
output may be stored in a different file. Check the value of $firstmakefile in your config.sh if in
doubt.)

Configure will offer to do this step for you, so it isn‘t listed explicitly above.
14 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

ading
essage to
f your

s, you

rts that
.

gs

assing

 you

 vary in

NU as
your
ed.
make
This will attempt to make perl in the current directory.

If you can‘t compile successfully, try some of the following ideas. If none of them help, and careful re
of the error message and the relevant manual pages on your system doesn‘t help, you can send a m
either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description o
problem. See "Reporting Problems" below.

hints
If you used a hint file, try reading the comments in the hint file for further tips and information.

extensions
If you can successfully build miniperl, but the process crashes during the building of extension
should run

make minitest

to test your version of miniperl.

locale
If you have any locale−related environment variables set, try unsetting them. I have some repo
some versions of IRIX hang while running ./miniperl configpm with locales other than the C locale
See the discussion under "make test" below about locales and the whole "Locale problems" section in
the file pod/perllocale.pod. The latter is especially useful if you see something like this

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
 LC_ALL = "En_US",
 LANG = (unset)
 are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

at Perl startup.

malloc duplicates
If you get duplicates upon linking for malloc et al, add −DEMBEDMYMALLOC to your ccfla
variable in config.sh.

varargs
If you get varargs problems with gcc, be sure that gcc is installed correctly and that you are not p
−I/usr/include to gcc. When using gcc, you should probably have i_stdarg=‘define’ and
i_varargs=‘undef’ in config.sh. The problem is usually solved by running fixincludes correctly. If
do change config.sh, don‘t forget to propagate your changes (see
"Propagating your changes to config.sh" below). See also the "vsprintf" item below.

util.c
If you get error messages such as the following (the exact line numbers and function name may
different versions of perl):

 util.c: In function ‘Perl_form’:
 util.c:1107: number of arguments doesn’t match prototype
 proto.h:125: prototype declaration

it might well be a symptom of the gcc "varargs problem". See the previous "varargs" item.

Solaris and SunOS dynamic loading
If you have problems with dynamic loading using gcc on SunOS or Solaris, and you are using G
and GNU ld, you may need to add −B/bin/ (for SunOS) or −B/usr/ccs/bin/ (for Solaris) to
$ccflags, $ldflags, and $lddlflags so that the system‘s versions of as and ld are us
18−Oct−1998 Version 5.005_02 15

INSTALL Perl Programmers Reference Guide INSTALL

ent
further

r GNU

H
ould
p.

ATH

tains
s to
 Tim

You

, you

e’.
ts

iled

our

mon

figure
n

Note that the trailing ‘/’ is required. Alternatively, you can use the GCC_EXEC_PREFIX environm
variable to ensure that Sun‘s as and ld are used. Consult your gcc documentation for
information on the −B option and the GCC_EXEC_PREFIX variable.

One convenient way to ensure you are not using GNU as and ld is to invoke Configure with

 sh Configure −Dcc=’gcc −B/usr/ccs/bin/’

for Solaris systems. For a SunOS system, you must use −B/bin/ instead.

Alternatively, recent versions of GNU ld reportedly work if you include −Wl,−export−dynamic
in the ccdlflags variable in config.sh.

ld.so.1: ./perl: fatal: relocation error:
If you get this message on SunOS or Solaris, and you‘re using gcc, it‘s probably the GNU as o
ld problem in the previous item "Solaris and SunOS dynamic loading".

LD_LIBRARY_PATH
If you run into dynamic loading problems, check your setting of the LD_LIBRARY_PAT
environment variable. If you‘re creating a static Perl library (libperl.a rather than libperl.so) it sh
build fine with LD_LIBRARY_PATH unset, though that may depend on details of your local set−u

dlopen: stub interception failed
The primary cause of the ‘dlopen: stub interception failed’ message is that the LD_LIBRARY_P
environment variable includes a directory which is a symlink to /usr/lib (such as /lib).

The reason this causes a problem is quite subtle. The file libdl.so.1.0 actually *only* con
functions which generate ‘stub interception failed’ errors! The runtime linker intercepts link
"/usr/lib/libdl.so.1.0" and links in internal implementation of those functions instead. [Thanks to
Bunce for this explanation.]

nm extraction
If Configure seems to be having trouble finding library functions, try not using nm extraction.
can do this from the command line with

sh Configure −Uusenm

or by answering the nm extraction question interactively. If you have previously run Configure
should not reuse your old config.sh.

umask not found
If the build processes encounters errors relating to umask() , the problem is probably that Configure
couldn‘t find your umask() system call. Check your config.sh. You should have d_umask=‘defin
If you don‘t, this is probably the "nm extraction" problem discussed above. Also, try reading the hin
file for your system for further information.

vsprintf
If you run into problems with vsprintf in compiling util.c, the problem is probably that Configure fa
to detect your system‘s version of vsprintf() . Check whether your system has vprintf() .
(Virtually all modern Unix systems do.) Then, check the variable d_vprintf in config.sh. If y
system has vprintf, it should be:

d_vprintf=’define’

If Configure guessed wrong, it is likely that Configure guessed wrong on a number of other com
functions too. This is probably the "nm extraction" problem discussed above.

do_aspawn
If you run into problems relating to do_aspawn or do_spawn, the problem is probably that Con
failed to detect your system‘s fork() function. Follow the procedure in the previous item o
"nm extraction".
16 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

bols,
rs to

d the
 with
 the

nge

et no
pilers

define
nfig.h

e the

extra
itches

only

s

 anyway
.PL
ssible

th, so
tended

 how

nsion
__inet_* errors
If you receive unresolved symbol errors during Perl build and/or test referring to __inet_* sym
check to see whether BIND 8.1 is installed. It installs a /usr/local/include/arpa/inet.h that refe
these symbols. Versions of BIND later than 8.1 do not install inet.h in that location and avoi
errors. You should probably update to a newer version of BIND. If you can‘t, you can either link
the updated resolver library provided with BIND 8.1 or rename /usr/local/bin/arpa/inet.h during
Perl build and test process to avoid the problem.

Optimizer
If you can‘t compile successfully, try turning off your compiler‘s optimizer. Edit config.sh and cha
the line

optimize=’−O’

to

optimize=’ ’

then propagate your changes with sh Configure −S and rebuild with make depend; make.

CRIPPLED_CC
If you still can‘t compile successfully, try adding a −DCRIPPLED_CC flag. (Just because you g
errors doesn‘t mean it compiled right!) This simplifies some complicated expressions for com
that get indigestion easily.

Missing functions
If you have missing routines, you probably need to add some library or other, or you need to un
some feature that Configure thought was there but is defective or incomplete. Look through co
for likely suspects. If Configure guessed wrong on a number of functions, you might hav
"nm extraction" problem discussed above.

toke.c
Some compilers will not compile or optimize the larger files (such as toke.c) without some
switches to use larger jump offsets or allocate larger internal tables. You can customize the sw
for each file in cflags. It‘s okay to insert rules for specific files into makefile since a default rule
takes effect in the absence of a specific rule.

Missing dbmclose
SCO prior to 3.2.4 may be missing dbmclose() . An upgrade to 3.2.4 that includes libdbm.nf
(which includes dbmclose()) may be available.

Note (probably harmless): No library found for −lsomething
If you see such a message during the building of an extension, but the extension passes its tests
(see "make test" below), then don‘t worry about the warning message. The extension Makefile
goes looking for various libraries needed on various systems; few systems will need all the po
libraries listed. For example, a system may have −lcposix or −lposix, but it‘s unlikely to have bo
most users will see warnings for the one they don‘t have. The phrase ‘probably harmless’ is in
to reassure you that nothing unusual is happening, and the build process is continuing.

On the other hand, if you are building GDBM_File and you get the message

 Note (probably harmless): No library found for −lgdbm

then it‘s likely you‘re going to run into trouble somewhere along the line, since it‘s hard to see
you can use the GDBM_File extension without the −lgdbm library.

It is true that, in principle, Configure could have figured all of this out, but Configure and the exte
building process are not quite that tightly coordinated.
18−Oct−1998 Version 5.005_02 17

INSTALL Perl Programmers Reference Guide INSTALL

 check
and.

ken

e XX
uring

st the
r system
your

ries to

e test’
ething

‘make

nce. If

 the t

stem.

 to the
y

sh: ar: not found
This is a message from your shell telling you that the command ‘ar’ was not found. You need to
your PATH environment variable to make sure that it includes the directory with the ‘ar’ comm
This is a common problem on Solaris, where ‘ar’ is in the /usr/ccs/bin directory.

db−recno failure on tests 51, 53 and 55
Old versions of the DB library (including the DB library which comes with FreeBSD 2.1) had bro
handling of recno databases with modified bval settings. Upgrade your DB library or OS.

Bad arg length for semctl, is XX, should be ZZZ
If you get this error message from the lib/ipc_sysv test, your System V IPC may be broken. Th
typically is 20, and that is what ZZZ also should be. Consider upgrading your OS, or reconfig
your OS to include the System V semaphores.

lib/ipc_sysv........semget: No space left on device
Either your account or the whole system has run out of semaphores. Or both. Either li
semaphores with "ipcs" and remove the unneeded ones (which ones these are depends on you
and applications) with "ipcrm −s SEMAPHORE_ID_HERE" or configure more semaphores to
system.

Miscellaneous
Some additional things that have been reported for either perl4 or perl5:

Genix may need to use libc rather than libc_s, or #undef VARARGS.

NCR Tower 32 (OS 2.01.01) may need −W2,−Sl,2000 and #undef MKDIR.

UTS may need one or more of −DCRIPPLED_CC, −K or −g, and undef LSTAT.

FreeBSD can fail the lib/ipc_sysv.t test if SysV IPC has not been configured to the kernel. Perl t
detect this, though, and you will get a message telling what to do.

If you get syntax errors on ‘(‘, try −DCRIPPLED_CC.

Machines with half−implemented dbm routines will need to #undef I_ODBM

make test
This will run the regression tests on the perl you just made (you should run plain ‘make’ before ‘mak
otherwise you won‘t have a complete build). If ‘make test’ doesn‘t say "All tests successful" then som
went wrong. See the file t/README in the t subdirectory.

Note that you can‘t run the tests in background if this disables opening of /dev/tty. You can use
test−notty’ in that case but a few tty tests will be skipped.

What if make test doesn‘t work?
If make test bombs out, just cd to the t directory and run ./TEST by hand to see if it makes any differe
individual tests bomb, you can run them by hand, e.g.,

./perl op/groups.t

Another way to get more detailed information about failed tests and individual subtests is to cd to
directory and run

./perl harness

(this assumes that most basic tests succeed, since harness uses complicated constructs).

You should also read the individual tests to see if there are any helpful comments that apply to your sy

locale
Note: One possible reason for errors is that some external programs may be broken due
combination of your environment and the way make test exercises them. For example, this ma
18 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

YPE
use

cceed,
by hand
quoted
ternal

.t may
 been
f the

 have
nd may

will
ay need
ould

ecial
happen if you have one or more of these environment variables set: LC_ALL LC_CT
LC_COLLATE LANG. In some versions of UNIX, the non−English locales are known to ca
programs to exhibit mysterious errors.

If you have any of the above environment variables set, please try

setenv LC_ALL C

(for C shell) or

LC_ALL=C;export LC_ALL

for Bourne or Korn shell) from the command line and then retry make test. If the tests then su
you may have a broken program that is confusing the testing. Please run the troublesome test
as shown above and see whether you can locate the program. Look for things like: exec, ‘back
command‘, system, open("|...") or open("...|"). All these mean that Perl is trying to run some ex
program.

Out of memory
On some systems, particularly those with smaller amounts of RAM, some of the tests in t/op/pat
fail with an "Out of memory" message. Specifically, in perl5.004_64, tests 74 and 78 have
reported to fail on some systems. On my SparcStation IPC with 8 MB of RAM, test 78 will fail i
system is running any other significant tasks at the same time.

Try stopping other jobs on the system and then running the test by itself:

cd t; ./perl op/pat.t

to see if you have any better luck. If your perl still fails this test, it does not necessarily mean you
a broken perl. This test tries to exercise the regular expression subsystem quite thoroughly, a
well be far more demanding than your normal usage.

make install
This will put perl into the public directory you specified to Configure; by default this is /usr/local/bin. It
also try to put the man pages in a reasonable place. It will not nroff the man pages, however. You m
to be root to run make install. If you are not root, you must own the directories in question and you sh
ignore any messages about chown not working.

Installing perl under different names
If you want to install perl under a name other than "perl" (for example, when installing perl with sp
features enabled, such as debugging), indicate the alternate name on the "make install" line, such as:

 make install PERLNAME=myperl

Installed files
If you want to see exactly what will happen without installing anything, you can run

./perl installperl −n

./perl installman −n

make install will install the following:

perl,
 perl5.nnn where nnn is the current release number. This

will be a link to perl.
suidperl,
 sperl5.nnn If you requested setuid emulation.
a2p awk−to−perl translator
cppstdin This is used by perl −P, if your cc −E can’t

read from stdin.
c2ph, pstruct Scripts for handling C structures in header files.
s2p sed−to−perl translator
18−Oct−1998 Version 5.005_02 19

INSTALL Perl Programmers Reference Guide INSTALL

s.

m even

version
e old

ant to be
e top

 how it
find2perl find−to−perl translator
h2ph Extract constants and simple macros from C headers
h2xs Converts C .h header files to Perl extensions.
perlbug Tool to report bugs in Perl.
perldoc Tool to read perl’s pod documentation.
pl2pm Convert Perl 4 .pl files to Perl 5 .pm modules
pod2html, Converters from perl’s pod documentation format
pod2latex, to other useful formats.
pod2man, and
pod2text
splain Describe Perl warnings and errors

library files in $privlib and $archlib specified to
Configure, usually under /usr/local/lib/perl5/.

man pages in the location specified to Configure, usually
something like /usr/local/man/man1.

module in the location specified to Configure, usually
man pages under /usr/local/lib/perl5/man/man3.
pod/*.pod in $privlib/pod/.

Installperl will also create the library directories $siteperl and $sitearch listed in config.sh. Usually,
these are something like

/usr/local/lib/perl5/site_perl/5.005
/usr/local/lib/perl5/site_perl/5.005/archname

where archname is something like sun4−sunos. These directories will be used for installing extension

Perl‘s *.h header files and the libperl.a library are also installed under $archlib so that any user may later
build new extensions, run the optional Perl compiler, or embed the perl interpreter into another progra
if the Perl source is no longer available.

Coexistence with earlier versions of perl5
WARNING: The upgrade from 5.004_0x to 5.005 is going to be a bit tricky. See
"Upgrading from 5.004 to 5.005" below.

In general, you can usually safely upgrade from one version of Perl (e.g. 5.004_04) to another similar
(e.g. 5.004_05) without re−compiling all of your add−on extensions. You can also safely leave th
version around in case the new version causes you problems for some reason. For example, if you w
sure that your script continues to run with 5.004_04, simply replace the ‘#!/usr/local/bin/perl’ line at th
of the script with the particular version you want to run, e.g. #!/usr/local/bin/perl5.00404.

Most extensions will probably not need to be recompiled to use with a newer version of perl. Here is
is supposed to work. (These examples assume you accept all the Configure defaults.)

The directories searched by version 5.005 will be

 Configure variable Default value
$archlib /usr/local/lib/perl5/5.005/archname
$privlib /usr/local/lib/perl5/5.005
$sitearch /usr/local/lib/perl5/site_perl/5.005/archname
$sitelib /usr/local/lib/perl5/site_perl/5.005

while the directories searched by version 5.005_01 will be

$archlib /usr/local/lib/perl5/5.00501/archname
$privlib /usr/local/lib/perl5/5.00501
$sitearch /usr/local/lib/perl5/site_perl/5.005/archname
$sitelib /usr/local/lib/perl5/site_perl/5.005
20 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

o that
ckwards

 with

 Tk

 the

 can

y to do

lic link

rsions),

parate

 used
5.005.
n the

s in

by the
e any
36 (or
 scripts

nd will
y perl.

t. You
ample,
When you install an add−on extension, it gets installed into $sitelib (or $sitearch if it is
architecture−specific). This directory deliberately does NOT include the sub−version number (01) s
both 5.005 and 5.005_01 can use the extension. Only when a perl version changes to break ba
compatibility will the default suggestions for the $sitearch and $sitelib version numbers be
increased.

However, if you do run into problems, and you want to continue to use the old version of perl along
your extension, move those extension files to the appropriate version directory, such as $privlib (or
$archlib). (The extension‘s .packlist file lists the files installed with that extension. For the
extension, for example, the list of files installed is in $sitearch/auto/Tk/.packlist.) Then use
your newer version of perl to rebuild and re−install the extension into $sitelib. This way, Perl 5.005
will find your files in the 5.005 directory, and newer versions of perl will find your newer extension in
$sitelib directory. (This is also why perl searches the site−specific libraries last.)

Alternatively, if you are willing to reinstall all your extensions every time you upgrade perl, then you
include the subversion number in $sitearch and $sitelib when you run Configure.

Maintaining completely separate versions
Many users prefer to keep all versions of perl in completely separate directories. One convenient wa
this is by using a separate prefix for each version, such as

sh Configure −Dprefix=/opt/perl5.004

and adding /opt/perl5.004/bin to the shell PATH variable. Such users may also wish to add a symbo
/usr/local/bin/perl so that scripts can still start with #!/usr/local/bin/perl.

Others might share a common directory for maintenance sub−versions (e.g. 5.004 for all 5.004_0x ve
but change directory with each major version.

If you are installing a development subversion, you probably ought to seriously consider using a se
directory, since development subversions may not have all the compatibility wrinkles ironed out yet.

Upgrading from 5.004 to 5.005
Extensions built and installed with versions of perl prior to 5.004_50 will need to be recompiled to be
with 5.004_50 and later. You will, however, be able to continue using 5.004 even after you install
The 5.004 binary will still be able to find the extensions built under 5.004; the 5.005 binary will look i
new $sitearch and $sitelib directories, and will not find them.

Coexistence with perl4
You can safely install perl5 even if you want to keep perl4 around.

By default, the perl5 libraries go into /usr/local/lib/perl5/, so they don‘t override the perl4 librarie
/usr/local/lib/perl/.

In your /usr/local/bin directory, you should have a binary named perl4.036. That will not be touched
perl5 installation process. Most perl4 scripts should run just fine under perl5. However, if you hav
scripts that require perl4, you can replace the #! line at the top of them by #!/usr/local/bin/perl4.0
whatever the appropriate pathname is). See pod/perltrap.pod for possible problems running perl4
under perl5.

cd /usr/include; h2ph *.h sys/*.h
Some perl scripts need to be able to obtain information from the system header files. This comma
convert the most commonly used header files in /usr/include into files that can be easily interpreted b
These files will be placed in the architecture−dependent library ($archlib) directory you specified to
Configure.

Note: Due to differences in the C and perl languages, the conversion of the header files is not perfec
will probably have to hand−edit some of the converted files to get them to parse correctly. For ex
h2ph breaks spectacularly on type casting and certain structures.
18−Oct−1998 Version 5.005_02 21

INSTALL Perl Programmers Reference Guide INSTALL

n be

 large
annot
 them).

lve"

ype

 error
 message
f your

, you
 before

 should
e
rary

ts, by

and

collects
installhtml —help
Some sites may wish to make perl documentation available in HTML format. The installhtml utility ca
used to convert pod documentation into linked HTML files and install them.

The following command−line is an example of one used to convert perl documentation:

 ./installhtml \
 −−podroot=. \
 −−podpath=lib:ext:pod:vms \
 −−recurse \
 −−htmldir=/perl/nmanual \
 −−htmlroot=/perl/nmanual \
 −−splithead=pod/perlipc \
 −−splititem=pod/perlfunc \
 −−libpods=perlfunc:perlguts:perlvar:perlrun:perlop \
 −−verbose

See the documentation in installhtml for more details. It can take many minutes to execute a
installation and you should expect to see warnings like "no title", "unexpected directive" and "c
resolve" as the files are processed. We are aware of these problems (and would welcome patches for

You may find it helpful to run installhtml twice. That should reduce the number of "cannot reso
warnings.

cd pod && make tex && (process the latex files)
Some sites may also wish to make the documentation in the pod/ directory available in TeX format. T

(cd pod && make tex && <process the latex files>)

Reporting Problems
If you have difficulty building perl, and none of the advice in this file helps, and careful reading of the
message and the relevant manual pages on your system doesn‘t help either, then you should send a
to either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description o
problem.

Please include the output of the ./myconfig shell script that comes with the distribution. Alternatively
can use the perlbug program that comes with the perl distribution, but you need to have perl compiled
you can use it. (If you have not installed it yet, you need to run ./perl −Ilib utils/perlbug
instead of a plain perlbug .)

You might also find helpful information in the Porting directory of the perl distribution.

DOCUMENTATION
Read the manual entries before running perl. The main documentation is in the pod/ subdirectory and
have been installed during the build process. Type man perl to get started. Alternatively, you can typ
perldoc perl to use the supplied perldoc script. This is sometimes useful for finding things in the lib
modules.

Under UNIX, you can produce a documentation book in postscript form, along with its table of conten
going to the pod/ subdirectory and running (either):

./roffitall −groff # If you have GNU groff installed

./roffitall −psroff # If you have psroff

This will leave you with two postscript files ready to be printed. (You may need to fix the roffitall comm
to use your local troff set−up.)

Note that you must have performed the installation already before running the above, since the script
the installed files to generate the documentation.
22 Version 5.005_02 18−Oct−1998

INSTALL Perl Programmers Reference Guide INSTALL

ginal
lks.

y these
AUTHOR
Original author: Andy Dougherty doughera@lafayette.edu , borrowing very heavily from the ori
README by Larry Wall, with lots of helpful feedback and additions from the perl5−porters@perl.org fo

If you have problems, corrections, or questions, please see "Reporting Problems" above.

REDISTRIBUTION
This document is part of the Perl package and may be distributed under the same terms as perl itself.

If you are distributing a modified version of perl (perhaps as part of a larger package) please do modif
installation instructions and the contact information to match your distribution.

LAST MODIFIED
$Id: INSTALL,v 1.42 1998/07/15 18:04:44 doughera Released $
18−Oct−1998 Version 5.005_02 23

perlfaq Perl Programmers Reference Guide perlfaq

inting

s. It is
b at

 should

AQ, in

c is the
pt and

ndred
ve been
NAME
perlfaq − frequently asked questions about Perl ($Date: 1998/08/05 12:09:32 $)

DESCRIPTION
This document is structured into the following sections:

perlfaq: Structural overview of the FAQ.
This document.

perlfaq1: General Questions About Perl
Very general, high−level information about Perl.

perlfaq2: Obtaining and Learning about Perl
Where to find source and documentation to Perl, support, and related matters.

perlfaq3: Programming Tools
Programmer tools and programming support.

perlfaq4: Data Manipulation
Manipulating numbers, dates, strings, arrays, hashes, and miscellaneous data issues.

perlfaq5: Files and Formats
I/O and the "f" issues: filehandles, flushing, formats and footers.

perlfaq6: Regexps
Pattern matching and regular expressions.

perlfaq7: General Perl Language Issues
General Perl language issues that don‘t clearly fit into any of the other sections.

perlfaq8: System Interaction
Interprocess communication (IPC), control over the user−interface (keyboard, screen and po
devices).

perlfaq9: Networking
Networking, the Internet, and a few on the web.

Where to get this document
This document is posted regularly to comp.lang.perl.announce and several other related newsgroup
available in a variety of formats from CPAN in the /CPAN/doc/FAQs/FAQ/ directory, or on the we
http://www.perl.com/perl/faq/ .

How to contribute to this document
You may mail corrections, additions, and suggestions to perlfaq−suggestions@perl.com . This alias
not be used to ask FAQs. It‘s for fixing the current FAQ.

What will happen if you mail your Perl programming problems to the authors
Your questions will probably go unread, unless they‘re suggestions of new questions to add to the F
which case they should have gone to the perlfaq−suggestions@perl.com instead.

You should have read section 2 of this faq. There you would have learned that comp.lang.perl.mis
appropriate place to go for free advice. If your question is really important and you require a prom
correct answer, you should hire a consultant.

Credits
When I first began the Perl FAQ in the late 80s, I never realized it would have grown to over a hu
pages, nor that Perl would ever become so popular and widespread. This document could not ha
written without the tremendous help provided by Larry Wall and the rest of the Perl Porters.
24 Version 5.005_02 18−Oct−1998

perlfaq Perl Programmers Reference Guide perlfaq

hether
 Any
 be

main.
see fit.

 to be
ility in

from a

native

d

estion,

ince its
Author and Copyright Information
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

Bundled Distributions
When included as part of the Standard Version of Perl, or as part of its complete documentation w
printed or otherwise, this work may be distributed only under the terms of Perl‘s Artistic License.
distribution of this file or derivatives thereof outside of that package require that special arrangements
made with copyright holder.

Irrespective of its distribution, all code examples in these files are hereby placed into the public do
You are permitted and encouraged to use this code in your own programs for fun or for profit as you
A simple comment in the code giving credit would be courteous but is not required.

Disclaimer
This information is offered in good faith and in the hope that it may be of use, but is not guaranteed
correct, up to date, or suitable for any particular purpose whatsoever. The authors accept no liab
respect of this information or its use.

Changes

22/June/98
Significant changes throughout in preparation for the 5.005 release.

24/April/97
Style and whitespace changes from Chip, new question on reading one character at a time
terminal using POSIX from Tom.

23/April/97
Added http://www.oasis.leo.org/perl/ to perlfaq2. Style fix to perlfaq3. Added floating point
precision, fixed complex number arithmetic, cross−references, caveat for Text::Wrap, alter
answer for initial capitalizing, fixed incorrect regexp, added example of Tie::IxHash to perlfaq4.
Added example of passing and storing filehandles, added commify to perlfaq5. Restored variable
suicide, and added mass commenting to perlfaq7. Added Net::Telnet, fixed backticks, adde
reader/writer pair to telnet question, added FindBin, grouped module questions together in perlfaq8.
Expanded caveats for the simple URL extractor, gave LWP example, added CGI security qu
expanded on the mail address answer in perlfaq9.

25/March/97
Added more info to the binary distribution section of perlfaq2. Added Net::Telnet to perlfaq6. Fixed
typos in perlfaq8. Added mail sending example to perlfaq9. Added Merlyn‘s columns to perlfaq2.

18/March/97
Added the DATE to the NAME section, indicating which sections have changed.

Mentioned SIGPIPE and perlipc in the forking open answer in perlfaq8.

Fixed description of a regular expression in perlfaq4.

17/March/97 Version
Various typos fixed throughout.

Added new question on Perl BNF on perlfaq7.

Initial Release: 11/March/97
This is the initial release of version 3 of the FAQ; consequently there have been no changes s
initial release.
18−Oct−1998 Version 5.005_02 25

perlfaq1 Perl Programmers Reference Guide perlfaq1

ast of
wk, the

acilities
ols,

ide web
uthors,

o.

Wall,
re, the
ten by
 more

ltruistic
oney.

s not
en than

 more
.

patch
he Perl
 one or

ersions

sier to
 mean

 major
erl1 (in

as been
e old
.

to the
NAME
perlfaq1 − General Questions About Perl ($Revision: 1.15 $, $Date: 1998/08/05 11:52:24 $)

DESCRIPTION
This section of the FAQ answers very general, high−level questions about Perl.

What is Perl?
Perl is a high−level programming language with an eclectic heritage written by Larry Wall and a c
thousands. It derives from the ubiquitous C programming language and to a lesser extent from sed, a
Unix shell, and at least a dozen other tools and languages. Perl‘s process, file, and text manipulation f
make it particularly well−suited for tasks involving quick prototyping, system utilities, software to
system management tasks, database access, graphical programming, networking, and world w
programming. These strengths make it especially popular with system administrators and CGI script a
but mathematicians, geneticists, journalists, and even managers also use Perl. Maybe you should, to

Who supports Perl? Who develops it? Why is it free?
The original culture of the pre−populist Internet and the deeply−held beliefs of Perl‘s author, Larry
gave rise to the free and open distribution policy of perl. Perl is supported by its users. The co
standard Perl library, the optional modules, and the documentation you‘re reading now were all writ
volunteers. See the personal note at the end of the README file in the perl source distribution for
details. See perlhist (new as of 5.005) for Perl‘s milestone releases.

In particular, the core development team (known as the Perl Porters) are a rag−tag band of highly a
individuals committed to producing better software for free than you could hope to purchase for m
You may snoop on pending developments via news://genetics.upenn.edu/perl.porters−gw/ and
http://www.frii.com/~gnat/perl/porters/summary.html.

While the GNU project includes Perl in its distributions, there‘s no such thing as "GNU Perl". Perl i
produced nor maintained by the Free Software Foundation. Perl‘s licensing terms are also more op
GNU software‘s tend to be.

You can get commercial support of Perl if you wish, although for most users the informal support will
than suffice. See the answer to "Where can I buy a commercial version of perl?" for more information

Which version of Perl should I use?
You should definitely use version 5. Version 4 is old, limited, and no longer maintained; its last
(4.036) was in 1992. The most recent production release is 5.005_01. Further references to t
language in this document refer to this production release unless otherwise specified. There may be
more official bug fixes for 5.005_01 by the time you read this, and also perhaps some experimental v
on the way to the next release.

What are perl4 and perl5?
Perl4 and perl5 are informal names for different versions of the Perl programming language. It‘s ea
say "perl5" than it is to say "the 5(.004) release of Perl", but some people have interpreted this to
there‘s a language called "perl5", which isn‘t the case. Perl5 is merely the popular name for the fifth
release (October 1994), while perl4 was the fourth major release (March 1991). There was also a p
January 1988), a perl2 (June 1988), and a perl3 (October 1989).

The 5.0 release is, essentially, a complete rewrite of the perl source code from the ground up. It h
modularized, object−oriented, tweaked, trimmed, and optimized until it almost doesn‘t look like th
code. However, the interface is mostly the same, and compatibility with previous releases is very high

To avoid the "what language is perl5?" confusion, some people prefer to simply use "perl" to refer
latest version of perl and avoid using "perl5" altogether. It‘s not really that big a deal, though.

See perlhist for a history of Perl revisions.
26 Version 5.005_02 18−Oct−1998

perlfaq1 Perl Programmers Reference Guide perlfaq1

elease.

, but all
essly
of perl

guages
ipt, or

opment
rning

nd test
y and

ce, an
mething
r free.

PAN,

personal

ve their

g tasks
thers, it
es like
r and

er Perl
 perl
link in

roblem
to all
 prolog

guage
in task
How stable is Perl?
Production releases, which incorporate bug fixes and new functionality, are widely tested before r
Since the 5.000 release, we have averaged only about one production release per year.

Larry and the Perl development team occasionally make changes to the internal core of the language
possible efforts are made toward backward compatibility. While not quite all perl4 scripts run flawl
under perl5, an update to perl should nearly never invalidate a program written for an earlier version
(barring accidental bug fixes and the rare new keyword).

Is Perl difficult to learn?
No, Perl is easy to start learning — and easy to keep learning. It looks like most programming lan
you‘re likely to have experience with, so if you‘ve ever written an C program, an awk script, a shell scr
even BASIC program, you‘re already part way there.

Most tasks only require a small subset of the Perl language. One of the guiding mottos for Perl devel
is "there‘s more than one way to do it" (TMTOWTDI, sometimes pronounced "tim toady"). Perl‘s lea
curve is therefore shallow (easy to learn) and long (there‘s a whole lot you can do if you really want).

Finally, Perl is (frequently) an interpreted language. This means that you can write your programs a
them without an intermediate compilation step, allowing you to experiment and test/debug quickl
easily. This ease of experimentation flattens the learning curve even more.

Things that make Perl easier to learn: Unix experience, almost any kind of programming experien
understanding of regular expressions, and the ability to understand other people‘s code. If there‘s so
you need to do, then it‘s probably already been done, and a working example is usually available fo
Don‘t forget the new perl modules, either. They‘re discussed in Part 3 of this FAQ, along with the C
which is discussed in Part 2.

How does Perl compare with other languages like Java, Python, REXX, Scheme, or Tcl?
Favorably in some areas, unfavorably in others. Precisely which areas are good and bad is often a
choice, so asking this question on Usenet runs a strong risk of starting an unproductive Holy War.

Probably the best thing to do is try to write equivalent code to do a set of tasks. These languages ha
own newsgroups in which you can learn about (but hopefully not argue about) them.

Can I do [task] in Perl?
Perl is flexible and extensible enough for you to use on almost any task, from one−line file−processin
to complex systems. For many people, Perl serves as a great replacement for shell scripting. For o
serves as a convenient, high−level replacement for most of what they‘d program in low−level languag
C or C++. It‘s ultimately up to you (and possibly your management ...) which tasks you‘ll use Perl fo
which you won‘t.

If you have a library that provides an API, you can make any component of it available as just anoth
function or variable using a Perl extension written in C or C++ and dynamically linked into your main
interpreter. You can also go the other direction, and write your main program in C or C++, and then
some Perl code on the fly, to create a powerful application.

That said, there will always be small, focused, special−purpose languages dedicated to a specific p
domain that are simply more convenient for certain kinds of problems. Perl tries to be all things
people, but nothing special to anyone. Examples of specialized languages that come to mind include
and matlab.

When shouldn‘t I program in Perl?
When your manager forbids it — but do consider replacing them :−).

Actually, one good reason is when you already have an existing application written in another lan
that‘s all done (and done well), or you have an application language specifically designed for a certa
(e.g. prolog, make).
18−Oct−1998 Version 5.005_02 27

perlfaq1 Perl Programmers Reference Guide perlfaq1

erating
aded
en in

 some
tatically
oring

perl"
parse
rl" and

be be
ms,
 code
mbly

se−tree
ere.

t 100 of

 ship
 more
pical

etimes

lmost
d not
t many
rs now
in the

tterly
 large
ention

d C++.
nable

ported
ear and
ugh, so
For various reasons, Perl is probably not well−suited for real−time embedded systems, low−level op
systems development work like device drivers or context−switching code, complex multithre
shared−memory applications, or extremely large applications. You‘ll notice that perl is not itself writt
Perl.

The new native−code compiler for Perl may reduce the limitations given in the previous statement to
degree, but understand that Perl remains fundamentally a dynamically typed language, and not a s
typed one. You certainly won‘t be chastized if you don‘t trust nuclear−plant or brain−surgery monit
code to it. And Larry will sleep easier, too — Wall Street programs not withstanding. :−)

What‘s the difference between "perl" and "Perl"?
One bit. Oh, you weren‘t talking ASCII? :−) Larry now uses "Perl" to signify the language proper and "
the implementation of it, i.e. the current interpreter. Hence Tom‘s quip that "Nothing but perl can
Perl." You may or may not choose to follow this usage. For example, parallelism means "awk and pe
"Python and Perl" look ok, while "awk and Perl" and "Python and perl" do not.

Is it a Perl program or a Perl script?
It doesn‘t matter.

In "standard terminology" a program has been compiled to physical machine code once, and can then
run multiple times, whereas a script must be translated by a program each time it‘s used. Perl progra
however, are usually neither strictly compiled nor strictly interpreted. They can be compiled to a byte
form (something of a Perl virtual machine) or to completely different languages, like C or asse
language. You can‘t tell just by looking whether the source is destined for a pure interpreter, a par
interpreter, a byte code interpreter, or a native−code compiler, so it‘s hard to give a definitive answer h

What is a JAPH?
These are the "just another perl hacker" signatures that some people sign their postings with. Abou
the of the earlier ones are available from http://www.perl.com/CPAN/misc/japh .

Where can I get a list of Larry Wall witticisms?
Over a hundred quips by Larry, from postings of his or source code, can be found at
http://www.perl.com/CPAN/misc/lwall−quotes .

How can I convince my sysadmin/supervisor/employees to use version (5/5.005/Perl instead of
some other language)?
If your manager or employees are wary of unsupported software, or software which doesn‘t officially
with your Operating System, you might try to appeal to their self−interest. If programmers can be
productive using and utilizing Perl constructs, functionality, simplicity, and power, then the ty
manager/supervisor/employee may be persuaded. Regarding using Perl in general, it‘s also som
helpful to point out that delivery times may be reduced using Perl, as compared to other languages.

If you have a project which has a bottleneck, especially in terms of translation or testing, Perl a
certainly will provide a viable, and quick solution. In conjunction with any persuasion effort, you shoul
fail to point out that Perl is used, quite extensively, and with extremely reliable and valuable results, a
large computer software and/or hardware companies throughout the world. In fact, many Unix vendo
ship Perl by default, and support is usually just a news−posting away, if you can‘t find the answer
comprehensive documentation, including this FAQ.

If you face reluctance to upgrading from an older version of perl, then point out that version 4 is u
unmaintained and unsupported by the Perl Development Team. Another big sell for Perl5 is the
number of modules and extensions which greatly reduce development time for any given task. Also m
that the difference between version 4 and version 5 of Perl is like the difference between awk an
(Well, ok, maybe not quite that distinct, but you get the idea.) If you want support and a reaso
guarantee that what you‘re developing will continue to work in the future, then you have to run the sup
version. That probably means running the 5.005 release, although 5.004 isn‘t that bad (it‘s just one y
one release behind). Several important bugs were fixed from the 5.000 through 5.003 versions, tho
try upgrading past them if possible.
28 Version 5.005_02 18−Oct−1998

perlfaq1 Perl Programmers Reference Guide perlfaq1

e. All
ssible.

ted or
art of

uraged
fit. A
Of particular note is the massive bughunt for buffer overflow problems that went into the 5.004 releas
releases prior to that, including perl4, are considered insecure and should be upgraded as soon as po

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as an integrated part of the Standard Distribution of Perl or of its documentation (prin
otherwise), this works is covered under Perl‘s Artistic Licence. For separate distributions of all or p
this FAQ outside of that, see perlfaq.

Irrespective of its distribution, all code examples here are public domain. You are permitted and enco
to use this code and any derivatives thereof in your own programs for fun or for profit as you see
simple comment in the code giving credit to the FAQ would be courteous but is not required.
18−Oct−1998 Version 5.005_02 29

perlfaq2 Perl Programmers Reference Guide perlfaq2

upport,

 source
ernet

tives
QNX,

, they
ective
sions for

ve (e.g.

h your
rl with.
s.

e. A
and

 gods.

r your

hole

 perl is

e the

ost
NAME
perlfaq2 − Obtaining and Learning about Perl ($Revision: 1.25 $, $Date: 1998/08/05 11:47:25 $)

DESCRIPTION
This section of the FAQ answers questions about where to find source and documentation for Perl, s
and related matters.

What machines support Perl? Where do I get it?
The standard release of Perl (the one maintained by the perl development team) is distributed only in
code form. You can find this at http://www.perl.com/CPAN/src/latest.tar.gz, which in standard Int
format (a gzipped archive in POSIX tar format).

Perl builds and runs on a bewildering number of platforms. Virtually all known and current Unix deriva
are supported (Perl‘s native platform), as are proprietary systems like VMS, DOS, OS/2, Windows,
BeOS, and the Amiga. There are also the beginnings of support for MPE/iX.

Binary distributions for some proprietary platforms, including Apple systems can be found
http://www.perl.com/CPAN/ports/ directory. Because these are not part of the standard distribution
may and in fact do differ from the base Perl port in a variety of ways. You‘ll have to check their resp
release notes to see just what the differences are. These differences can be either positive (e.g. exten
the features of the particular platform that are not supported in the source release of perl) or negati
might be based upon a less current source release of perl).

A useful FAQ for Win32 Perl users is
http://www.endcontsw.com/people/evangelo/Perl_for_Win32_FAQ.html

How can I get a binary version of Perl?
If you don‘t have a C compiler because for whatever reasons your vendor did not include one wit
system, the best thing to do is grab a binary version of gcc from the net and use that to compile pe
CPAN only has binaries for systems that are terribly hard to get free compilers for, not for Unix system

Your first stop should be http://www.perl.com/CPAN/ports to see what information is already availabl
simple installation guide for MS−DOS is available at http://www.cs.ruu.nl/~piet/perl5dos.html ,
similarly for Windows 3.1 at http://www.cs.ruu.nl/~piet/perlwin3.html .

I don‘t have a C compiler on my system. How can I compile perl?
Since you don‘t have a C compiler, you‘re doomed and your vendor should be sacrificed to the Sun
But that doesn‘t help you.

What you need to do is get a binary version of gcc for your system first. Consult the Usenet FAQs fo
operating system for information on where to get such a binary version.

I copied the Perl binary from one machine to another, but scripts don‘t work.
That‘s probably because you forgot libraries, or library paths differ. You really should build the w
distribution on the machine it will eventually live on, and then type make install . Most other
approaches are doomed to failure.

One simple way to check that things are in the right place is to print out the hard−coded @INC which
looking for.

perl −e ’print join("\n",@INC)’

If this command lists any paths which don‘t exist on your system, then you may need to mov
appropriate libraries to these locations, or create symlinks, aliases, or shortcuts appropriately.

You might also want to check out How do I keep my own module/library directory? in perlfaq8.

I grabbed the sources and tried to compile but gdbm/dynamic loading/malloc/linking/... failed.
How do I make it work?
Read the INSTALL file, which is part of the source distribution. It describes in detail how to cope with m
30 Version 5.005_02 18−Oct−1998

perlfaq2 Perl Programmers Reference Guide perlfaq2

ines all
many

ces to

ectory
ou‘re
 is

 nearly
dules;
ication;
systems,
lities;
 I/O;

cally,

TML

been

rious

orters)
idiosyncracies that the Configure script can‘t work around for any given system or architecture.

What modules and extensions are available for Perl? What is CPAN? What does CPAN/src/...
mean?
CPAN stands for Comprehensive Perl Archive Network, a huge archive replicated on dozens of mach
over the world. CPAN contains source code, non−native ports, documentation, scripts, and
third−party modules and extensions, designed for everything from commercial database interfa
keyboard/screen control to web walking and CGI scripts. The master machine for CPAN is
ftp://ftp.funet.fi/pub/languages/perl/CPAN/, but you can use the address
http://www.perl.com/CPAN/CPAN.html to fetch a copy from a "site near you". See
http://www.perl.com/CPAN (without a slash at the end) for how this process works.

CPAN/path/... is a naming convention for files available on CPAN sites. CPAN indicates the base dir
of a CPAN mirror, and the rest of the path is the path from that directory to the file. For instance, if y
using ftp://ftp.funet.fi/pub/languages/perl/CPAN as your CPAN site, the file CPAN/misc/japh file
downloadable as ftp://ftp.funet.fi/pub/languages/perl/CPAN/misc/japh .

Considering that there are hundreds of existing modules in the archive, one probably exists to do
anything you can think of. Current categories under CPAN/modules/by−category/ include perl core mo
development support; operating system interfaces; networking, devices, and interprocess commun
data type utilities; database interfaces; user interfaces; interfaces to other languages; filenames, file
and file locking; internationalization and locale; world wide web support; server and daemon uti
archiving and compression; image manipulation; mail and news; control flow utilities; filehandle and
Microsoft Windows modules; and miscellaneous modules.

Is there an ISO or ANSI certified version of Perl?
Certainly not. Larry expects that he‘ll be certified before Perl is.

Where can I get information on Perl?
The complete Perl documentation is available with the perl distribution. If you have perl installed lo
you probably have the documentation installed as well: type man perl if you‘re on a system resembling
Unix. This will lead you to other important man pages, including how to set your $MANPATH. If you‘re not
on a Unix system, access to the documentation will be different; for example, it might be only in H
format. But all proper perl installations have fully−accessible documentation.

You might also try perldoc perl in case your system doesn‘t have a proper man command, or it‘s
misinstalled. If that doesn‘t work, try looking in /usr/local/lib/perl5/pod for documentation.

If all else fails, consult the CPAN/doc directory, which contains the complete documentation in va
formats, including native pod, troff, html, and plain text. There‘s also a web page at
http://www.perl.com/perl/info/documentation.html that might help.

Many good books have been written about Perl — see the section below for more details.

What are the Perl newsgroups on USENET? Where do I post questions?
The now defunct comp.lang.perl newsgroup has been superseded by the following groups:

 comp.lang.perl.announce Moderated announcement group
 comp.lang.perl.misc Very busy group about Perl in general
 comp.lang.perl.moderated Moderated discussion group
 comp.lang.perl.modules Use and development of Perl modules
 comp.lang.perl.tk Using Tk (and X) from Perl

 comp.infosystems.www.authoring.cgi Writing CGI scripts for the Web.

Actually, the moderated group hasn‘t passed yet, but we‘re keeping our fingers crossed.

There is also USENET gateway to the mailing list used by the crack Perl development team (perl5−p
at news://news.perl.com/perl.porters−gw/ .
18−Oct−1998 Version 5.005_02 31

perlfaq2 Perl Programmers Reference Guide perlfaq2

ost to
osting
Q for

r and

are ok,
ensive

econd

, and

rn Perl

and is

cientist
Gecko,

 is
. See

ut, we

 from
Where should I post source code?
You should post source code to whichever group is most appropriate, but feel free to cross−p
comp.lang.perl.misc. If you want to cross−post to alt.sources, please make sure it follows their p
standards, including setting the Followup−To header line to NOT include alt.sources; see their FA
details.

If you‘re just looking for software, first use Alta Vista, Deja News, and search CPAN. This is faste
more productive than just posting a request.

Perl Books
A number of books on Perl and/or CGI programming are available. A few of these are good, some
but many aren‘t worth your money. Tom Christiansen maintains a list of these books, some with ext
reviews, at http://www.perl.com/perl/critiques/index.html.

The incontestably definitive reference book on Perl, written by the creator of Perl, is now in its s
edition:

 Programming Perl (the "Camel Book"):
Authors: Larry Wall, Tom Christiansen, and Randal Schwartz

 ISBN 1−56592−149−6 (English)
 ISBN 4−89052−384−7 (Japanese)

URL: http://www.oreilly.com/catalog/pperl2/
 (French, German, Italian, and Hungarian translations also
 available)

The companion volume to the Camel containing thousands of real−world examples, mini−tutorials
complete programs (first premiering at the 1998 Perl Conference), is:

 The Perl Cookbook (the "Ram Book"):
Authors: Tom Christiansen and Nathan Torkington,

 with Foreword by Larry Wall
ISBN: 1−56592−243−3
URL: http://perl.oreilly.com/cookbook/

If you‘re already a hard−core systems programmer, then the Camel Book might suffice for you to lea
from. But if you‘re not, check out:

 Learning Perl (the "Llama Book"):
Authors: Randal Schwartz and Tom Christiansen

 with Foreword by Larry Wall
ISBN: 1−56592−284−0
URL: http://www.oreilly.com/catalog/lperl2/

Despite the picture at the URL above, the second edition of "Llama Book" really has a blue cover,
updated for the 5.004 release of Perl. Various foreign language editions are available, including Learning
Perl on Win32 Systems (the Gecko Book).

If you‘re not an accidental programmer, but a more serious and possibly even degreed computer s
who doesn‘t need as much hand−holding as we try to provide in the Llama or its defurred cousin the
please check out the delightful book, Perl: The Programmer‘s Companion, written by Nigel Chapman.

You can order O‘Reilly books directly from O‘Reilly & Associates, 1−800−998−9938. Local/overseas
1−707−829−0515. If you can locate an O‘Reilly order form, you can also fax to 1−707−829−0104
http://www.ora.com/ on the Web.

What follows is a list of the books that the FAQ authors found personally useful. Your mileage may (b
hope, probably won‘t) vary.

Recommended books on (or muchly on) Perl follow; those marked with a star may be ordered
O‘Reilly.
32 Version 5.005_02 18−Oct−1998

perlfaq2 Perl Programmers Reference Guide perlfaq2

,
atabases,

ted Perl
j.com/

d
‘s
References
 *Programming Perl

by Larry Wall, Tom Christiansen, and Randal L. Schwartz

 *Perl 5 Desktop Reference
 By Johan Vromans

Tutorials
 *Learning Perl [2nd edition]

by Randal L. Schwartz and Tom Christiansen
 with foreword by Larry Wall

 *Learning Perl on Win32 Systems
by Randal L. Schwartz, Erik Olson, and Tom Christiansen,
 with foreword by Larry Wall

 Perl: The Programmer’s Companion
by Nigel Chapman

 Cross−Platform Perl
by Eric F. Johnson

 MacPerl: Power and Ease
by Vicki Brown and Chris Nandor, foreword by Matthias Neeracher

Task−Oriented
 *The Perl Cookbook

by Tom Christiansen and Nathan Torkington
 with foreword by Larry Wall

 Perl5 Interactive Course [2nd edition]
by Jon Orwant

 *Advanced Perl Programming
by Sriram Srinivasan

 Effective Perl Programming
by Joseph Hall

Special Topics
 *Mastering Regular Expressions

by Jeffrey Friedl

 How to Set up and Maintain a World Wide Web Site [2nd edition]
by Lincoln Stein

Perl in Magazines
The first and only periodical devoted to All Things Perl, The Perl Journal contains tutorials, demonstrations
case studies, announcements, contests, and much more. TPJ has columns on web development, d
Win32 Perl, graphical programming, regular expressions, and networking, and sponsors the Obfusca
Contest. It is published quarterly under the gentle hand of its editor, Jon Orwant. See http://www.tp
or send mail to subscriptions@tpj.com.

Beyond this, magazines that frequently carry high−quality articles on Perl are Web Techniques (see
http://www.webtechniques.com/), Performance Computing (http://www.performance−computing.com/), an
Usenix‘s newsletter/magazine to its members, login:, at http://www.usenix.org/. Randal‘s Web Technique
columns are available on the web at http://www.stonehenge.com/merlyn/WebTechniques/.
18−Oct−1998 Version 5.005_02 33

perlfaq2 Perl Programmers Reference Guide perlfaq2

rab the
ng list

ation
d to

to the

".

, and

. Send
n on

e by

e you
so:

.

hive

e you
e same

12/89
Perl on the Net: FTP and WWW Access
To get the best (and possibly cheapest) performance, pick a site from the list below and use it to g
complete list of mirror sites. From there you can find the quickest site for you. Remember, the followi
is not the complete list of CPAN mirrors.

 http://www.perl.com/CPAN (redirects to another mirror)
 http://www.perl.org/CPAN
 ftp://ftp.funet.fi/pub/languages/perl/CPAN/
 http://www.cs.ruu.nl/pub/PERL/CPAN/
 ftp://ftp.cs.colorado.edu/pub/perl/CPAN/

What mailing lists are there for perl?
Most of the major modules (tk, CGI, libwww−perl) have their own mailing lists. Consult the document
that came with the module for subscription information. The following are a list of mailing lists relate
perl itself.

If you subscribe to a mailing list, it behooves you to know how to unsubscribe from it. Strident pleas
list itself to get you off will not be favorably received.

MacPerl
There is a mailing list for discussing Macintosh Perl. Contact "mac−perl−request@iis.ee.ethz.ch

Also see Matthias Neeracher‘s (the creator and maintainer of MacPerl) webpage at
http://www.iis.ee.ethz.ch/~neeri/macintosh/perl.html for many links to interesting MacPerl sites
the applications/MPW tools, precompiled.

Perl5−Porters
The core development team have a mailing list for discussing fixes and changes to the language
mail to "perl5−porters−request@perl.org" with help in the body of the message for informatio
subscribing.

NTPerl
This list is used to discuss issues involving Win32 Perl 5 (Windows NT and Win95). Subscrib
mailing ListManager@ActiveWare.com with the message body:

 subscribe Perl−Win32−Users

The list software, also written in perl, will automatically determine your address, and subscrib
automatically. To unsubscribe, mail the following in the message body to the same address like

 unsubscribe Perl−Win32−Users

You can also check http://www.activeware.com/ and select "Mailing Lists" to join or leave this list

Perl−Packrats
Discussion related to archiving of perl materials, particularly the Comprehensive Perl Arc
Network (CPAN). Subscribe by emailing majordomo@cis.ufl.edu:

 subscribe perl−packrats

The list software, also written in perl, will automatically determine your address, and subscrib
automatically. To unsubscribe, simple prepend the same command with an "un", and mail to th
address like so:

 unsubscribe perl−packrats

Archives of comp.lang.perl.misc
Have you tried Deja News or Alta Vista?

ftp.cis.ufl.edu:/pub/perl/comp.lang.perl.*/monthly has an almost complete collection dating back to
(missing 08/91 through 12/93). They are kept as one large file for each month.
34 Version 5.005_02 18−Oct−1998

perlfaq2 Perl Programmers Reference Guide perlfaq2

ly one
t, thread
and,

erl.com

 your
e user
g lists
 Larry,
create a

y whom
tractual
.

ey no
gh The

efined

 of the
 Perl at
as the
e Perl
acle is
ill be

 for?"),
entation

before
use for
 java

ourtesy
You‘ll probably want more a sophisticated query and retrieval mechanism than a file listing, preferab
that allows you to retrieve articles using a fast−access indices, keyed on at least author, date, subjec
(as in "trn") and probably keywords. The best solution the FAQ authors know of is the MH pick comm
but it is very slow to select on 18000 articles.

If you have, or know where can be found, the missing sections, please let perlfaq−suggestions@p
know.

Where can I buy a commercial version of Perl?
In a sense, Perl already is commercial software: It has a licence that you can grab and carefully read to
manager. It is distributed in releases and comes in well−defined packages. There is a very larg
community and an extensive literature. The comp.lang.perl.* newsgroups and several of the mailin
provide free answers to your questions in near real−time. Perl has traditionally been supported by
dozens of software designers and developers, and thousands of programmers, all working for free to
useful thing to make life better for everyone.

However, these answers may not suffice for managers who require a purchase order from a compan
they can sue should anything go wrong. Or maybe they need very serious hand−holding and con
obligations. Shrink−wrapped CDs with perl on them are available from several sources if that will help

Or you can purchase a real support contract. Although Cygnus historically provided this service, th
longer sell support contracts for Perl. Instead, the Paul Ingram Group will be taking up the slack throu
Perl Clinic. The following is a commercial from them:

"Do you need professional support for Perl and/or Oraperl? Do you need a support contract with d
levels of service? Do you want to pay only for what you need?

"The Paul Ingram Group has provided quality software development and support services to some
world‘s largest corporations for ten years. We are now offering the same quality support services for
The Perl Clinic. This service is led by Tim Bunce, an active perl porter since 1994 and well known
author and maintainer of the DBI, DBD::Oracle, and Oraperl modules and author/co−maintainer of Th
5 Module List. We also offer Oracle users support for Perl5 Oraperl and related modules (which Or
planning to ship as part of Oracle Web Server 3). 20% of the profit from our Perl support work w
donated to The Perl Institute."

For more information, contact the The Perl Clinic:

 Tel: +44 1483 424424
 Fax: +44 1483 419419
 Web: http://www.perl.co.uk/
 Email: perl−support−info@perl.co.uk or Tim.Bunce@ig.co.uk

See also www.perl.com for updates on training and support.

Where do I send bug reports?
If you are reporting a bug in the perl interpreter or the modules shipped with perl, use the perlbug program in
the perl distribution or mail your report to perlbug@perl.com.

If you are posting a bug with a non−standard port (see the answer to "What platforms is Perl available
a binary distribution, or a non−standard module (such as Tk, CGI, etc), then please see the docum
that came with it to determine the correct place to post bugs.

Read the perlbug(1) man page (perl5.004 or later) for more information.

What is perl.com? perl.org? The Perl Institute?
The perl.com domain is managed by Tom Christiansen, who created it as a public service long
perl.org came about. Despite the name, it‘s a pretty non−commercial site meant to be a clearingho
information about all things Perlian, accepting no paid advertisements, bouncy happy gifs, or silly
applets on its pages. The Perl Home Page at http://www.perl.com/ is currently hosted on a T3 line c
of Songline Systems, a software−oriented subsidiary of O‘Reilly and Associates.
18−Oct−1998 Version 5.005_02 35

perlfaq2 Perl Programmers Reference Guide perlfaq2

help
n, and

ted or
art of

uraged
fit. A
perl.org is the official vehicle for The Perl Institute. The motto of TPI is "helping people help Perl
people" (or something like that). It‘s a non−profit organization supporting development, documentatio
dissemination of perl.

How do I learn about object−oriented Perl programming?
perltoot (distributed with 5.004 or later) is a good place to start. Also, perlobj, perlref, and perlmod are
useful references, while perlbot has some excellent tips and tricks.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as an integrated part of the Standard Distribution of Perl or of its documentation (prin
otherwise), this works is covered under Perl‘s Artistic Licence. For separate distributions of all or p
this FAQ outside of that, see perlfaq.

Irrespective of its distribution, all code examples here are public domain. You are permitted and enco
to use this code and any derivatives thereof in your own programs for fun or for profit as you see
simple comment in the code giving credit to the FAQ would be courteous but is not required.
36 Version 5.005_02 18−Oct−1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

 that

empty‘’

e the
typically

art of
ing, but

 any
e your

ells you

s for

hat
NAME
perlfaq3 − Programming Tools ($Revision: 1.29 $, $Date: 1998/08/05 11:57:04 $)

DESCRIPTION
This section of the FAQ answers questions related to programmer tools and programming support.

How do I do (anything)?
Have you looked at CPAN (see perlfaq2)? The chances are that someone has already written a module
can solve your problem. Have you read the appropriate man pages? Here‘s a brief index:

Basics perldata, perlvar, perlsyn, perlop, perlsub
Execution perlrun, perldebug
Functions perlfunc
Objects perlref, perlmod, perlobj, perltie
Data Structures perlref, perllol, perldsc
Modules perlmod, perlmodlib, perlsub
Regexps perlre, perlfunc, perlop, perllocale
Moving to perl5 perltrap, perl
Linking w/C perlxstut, perlxs, perlcall, perlguts, perlembed
Various http://www.perl.com/CPAN/doc/FMTEYEWTK/index.html

(not a man−page but still useful)

perltoc provides a crude table of contents for the perl man page set.

How can I use Perl interactively?
The typical approach uses the Perl debugger, described in the perldebug(1) man page, on an ‘‘
program, like this:

 perl −de 42

Now just type in any legal Perl code, and it will be immediately evaluated. You can also examin
symbol table, get stack backtraces, check variable values, set breakpoints, and other operations
found in symbolic debuggers.

Is there a Perl shell?
In general, no. The Shell.pm module (distributed with perl) makes perl try commands which aren‘t p
the Perl language as shell commands. perlsh from the source distribution is simplistic and uninterest
may still be what you want.

How do I debug my Perl programs?
Have you used −w? It enables warnings for dubious practices.

Have you tried use strict ? It prevents you from using symbolic references, makes you predeclare
subroutines that you call as bare words, and (probably most importantly) forces you to predeclar
variables with my or use vars .

Did you check the returns of each and every system call? The operating system (and thus Perl) t
whether they worked or not, and if not why.

 open(FH, "> /etc/cantwrite")
 or die "Couldn’t write to /etc/cantwrite: $!\n";

Did you read perltrap? It‘s full of gotchas for old and new Perl programmers, and even has section
those of you who are upgrading from languages like awk and C.

Have you tried the Perl debugger, described in perldebug? You can step through your program and see w
it‘s doing and thus work out why what it‘s doing isn‘t what it should be doing.
18−Oct−1998 Version 5.005_02 37

perlfaq3 Perl Programmers Reference Guide perlfaq3

ndard
ailed

ystem,

rior to

etween
akes it

f
 this.
d even

b at
larly

o the

 for vi
 built
How do I profile my Perl programs?
You should get the Devel::DProf module from CPAN, and also use Benchmark.pm from the sta
distribution. Benchmark lets you time specific portions of your code, while Devel::DProf gives det
breakdowns of where your code spends its time.

Here‘s a sample use of Benchmark:

 use Benchmark;

 @junk = ‘cat /etc/motd‘;
 $count = 10_000;

 timethese($count, {
 ’map’ => sub { my @a = @junk;

 map { s/a/b/ } @a;
 return @a
 },

 ’for’ => sub { my @a = @junk;
 local $_;
 for (@a) { s/a/b/ };
 return @a },

 });

This is what it prints (on one machine—your results will be dependent on your hardware, operating s
and the load on your machine):

 Benchmark: timing 10000 iterations of for, map...
 for: 4 secs (3.97 usr 0.01 sys = 3.98 cpu)
 map: 6 secs (4.97 usr 0.00 sys = 4.97 cpu)

How do I cross−reference my Perl programs?
The B::Xref module, shipped with the new, alpha−release Perl compiler (not the general distribution p
the 5.005 release), can be used to generate cross−reference reports for Perl programs.

 perl −MO=Xref[,OPTIONS] scriptname.plx

Is there a pretty−printer (formatter) for Perl?
There is no program that will reformat Perl as much as indent(1) does for C. The complex feedback b
the scanner and the parser (this feedback is what confuses the vgrind and emacs programs) m
challenging at best to write a stand−alone Perl parser.

Of course, if you simply follow the guidelines in perlstyle, you shouldn‘t need to reformat. The habit o
formatting your code as you write it will help prevent bugs. Your editor can and should help you with
The perl−mode for emacs can provide a remarkable amount of help with most (but not all) code, an
less programmable editors can provide significant assistance.

If you are used to using vgrind program for printing out nice code to a laser printer, you can take a sta
this using http://www.perl.com/CPAN/doc/misc/tips/working.vgrind.entry, but the results are not particu
satisfying for sophisticated code.

Is there a ctags for Perl?
There‘s a simple one at http://www.perl.com/CPAN/authors/id/TOMC/scripts/ptags.gz which may d
trick.

Where can I get Perl macros for vi?
For a complete version of Tom Christiansen‘s vi configuration file, see
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/toms.exrc, the standard benchmark file
emulators. This runs best with nvi, the current version of vi out of Berkeley, which incidentally can be
with an embedded Perl interpreter — see http://www.perl.com/CPAN/src/misc.
38 Version 5.005_02 18−Oct−1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

 the perl

 that

e
‘t

library.

d and

se Tcl
ee the

ased,

rence.
book
e on
k for
faster

ules in
part in
in C is

pilation
t not
r—the

perl

tensive
O

Where can I get perl−mode for emacs?
Since Emacs version 19 patchlevel 22 or so, there have been both a perl−mode.el and support for
debugger built in. These should come with the standard Emacs 19 distribution.

In the perl source directory, you‘ll find a directory called "emacs", which contains a cperl−mode
color−codes keywords, provides context−sensitive help, and other nifty things.

Note that the perl−mode of emacs will have fits with "main‘foo" (single quote), and mess up th
indentation and hilighting. You should be using "main::foo" in new Perl code anyway, so this shouldn
be an issue.

How can I use curses with Perl?
The Curses module from CPAN provides a dynamically loadable object module interface to a curses
A small demo can be found at the directory
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/rep; this program repeats a comman
updates the screen as needed, rendering rep ps axu similar to top.

How can I use X or Tk with Perl?
Tk is a completely Perl−based, object−oriented interface to the Tk toolkit that doesn‘t force you to u
just to get at Tk. Sx is an interface to the Athena Widget set. Both are available from CPAN. S
directory http://www.perl.com/CPAN/modules/by−category/08_User_Interfaces/

Invaluable for Perl/Tk programming are: the Perl/Tk FAQ at
http://w4.lns.cornell.edu/~pvhp/ptk/ptkTOC.html , the Perl/Tk Reference Guide available at
http://www.perl.com/CPAN−local/authors/Stephen_O_Lidie/ , and the online manpages at
http://www−users.cs.umn.edu/~amundson/perl/perltk/toc.html .

How can I generate simple menus without using CGI or Tk?
The http://www.perl.com/CPAN/authors/id/SKUNZ/perlmenu.v4.0.tar.gz module, which is curses−b
can help with this.

What is undump?
See the next questions.

How can I make my Perl program run faster?
The best way to do this is to come up with a better algorithm. This can often make a dramatic diffe
Chapter 8 in the Camel has some efficiency tips in it you might want to look at. Jon Bentley‘s
‘‘Programming Pearls‘’ (that‘s not a misspelling!) has some good tips on optimization, too. Advic
benchmarking boils down to: benchmark and profile to make sure you‘re optimizing the right part, loo
better algorithms instead of microtuning your code, and when all else fails consider just buying
hardware.

A different approach is to autoload seldom−used Perl code. See the AutoSplit and AutoLoader mod
the standard distribution for that. Or you could locate the bottleneck and think about writing just that
C, the way we used to take bottlenecks in C code and write them in assembler. Similar to rewriting
the use of modules that have critical sections written in C (for instance, the PDL module from CPAN).

In some cases, it may be worth it to use the backend compiler to produce byte code (saving com
time) or compile into C, which will certainly save compilation time and sometimes a small amount (bu
much) execution time. See the question about compiling your Perl programs for more on the compile
wins aren‘t as obvious as you‘d hope.

If you‘re currently linking your perl executable to a shared libc.so, you can often gain a 10−25%
performance benefit by rebuilding it to link with a static libc.a instead. This will make a bigger
executable, but your Perl programs (and programmers) may thank you for it. See the INSTALL file in the
source distribution for more information.

Unsubstantiated reports allege that Perl interpreters that use sfio outperform those that don‘t (for IO in
applications). To try this, see the INSTALL file in the source distribution, especially the ‘‘Selecting File I
18−Oct−1998 Version 5.005_02 39

perlfaq3 Perl Programmers Reference Guide perlfaq3

mpiled
 good

alars in
ere‘s still
licate hash

an
25−byte
elp for

tance)

uiltin
mation
ing

 system.
otably,

happen
ry to

Perl
oes out

can or
orks.

ram has
d to be
piling

 server
mechanisms‘’ section.

The undump program was an old attempt to speed up your Perl program by storing the already−co
form to disk. This is no longer a viable option, as it only worked on a few architectures, and wasn‘t a
solution anyway.

How can I make my Perl program take less memory?
When it comes to time−space tradeoffs, Perl nearly always prefers to throw memory at a problem. Sc
Perl use more memory than strings in C, arrays take more that, and hashes use even more. While th
a lot to be done, recent releases have been addressing these issues. For example, as of 5.004, dup
keys are shared amongst all hashes using them, so require no reallocation.

In some cases, using substr() or vec() to simulate arrays can be highly beneficial. For example,
array of a thousand booleans will take at least 20,000 bytes of space, but it can be turned into one 1
bit vector for a considerable memory savings. The standard Tie::SubstrHash module can also h
certain types of data structure. If you‘re working with specialist data structures (matrices, for ins
modules that implement these in C may use less memory than equivalent Perl modules.

Another thing to try is learning whether your Perl was compiled with the system malloc or with Perl‘s b
malloc. Whichever one it is, try using the other one and see whether this makes a difference. Infor
about malloc is in the INSTALL file in the source distribution. You can find out whether you are us
perl‘s malloc by typing perl −V:usemymalloc .

Is it unsafe to return a pointer to local data?
No, Perl‘s garbage collection system takes care of this.

 sub makeone {
my @a = (1 .. 10);
return \@a;

 }

 for $i (1 .. 10) {
 push @many, makeone();
 }

 print $many[4][5], "\n";

 print "@many\n";

How can I free an array or hash so my program shrinks?
You can‘t. On most operating systems, memory allocated to a program can never be returned to the
That‘s why long−running programs sometimes re−exec themselves. Some operating systems (n
FreeBSD) allegedly reclaim large chunks of memory that is no longer used, but it doesn‘t appear to
with Perl (yet). The Mac appears to be the only platform that will reliably (albeit, slowly) return memo
the OS.

However, judicious use of my() on your variables will help make sure that they go out of scope so that
can free up their storage for use in other parts of your program. A global variable, of course, never g
of scope, so you can‘t get its space automatically reclaimed, although undef() ing and/or delete() ing it
will achieve the same effect. In general, memory allocation and de−allocation isn‘t something you
should be worrying about much in Perl, but even this capability (preallocation of data types) is in the w

How can I make my CGI script more efficient?
Beyond the normal measures described to make general Perl programs faster or smaller, a CGI prog
additional issues. It may be run several times per second. Given that each time it runs it will nee
re−compiled and will often allocate a megabyte or more of system memory, this can be a killer. Com
into C isn‘t going to help you because the process start−up overhead is where the bottleneck is.

There are two popular ways to avoid this overhead. One solution involves running the Apache HTTP
(available from http://www.apache.org/) with either of the mod_perl or mod_fastcgi plugin modules.
40 Version 5.005_02 18−Oct−1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

 an
ddress
odules

l, see

cripts

ur CGI

or
the
t perl

onal

ls of

ble in
ople on
s at the

 people
ermine
me for

crypt
able to
able to
ne can

but a
ning

e you
u want

 these
to play

hat‘s
un time
grams
grams

orm of
cause as
With mod_perl and the Apache::Registry module (distributed with mod_perl), httpd will run with
embedded Perl interpreter which pre−compiles your script and then executes it within the same a
space without forking. The Apache extension also gives Perl access to the internal server API, so m
written in Perl can do just about anything a module written in C can. For more on mod_per
http://perl.apache.org/

With the FCGI module (from CPAN), a Perl executable compiled with sfio (see the INSTALL file in the
distribution) and the mod_fastcgi module (available from http://www.fastcgi.com/) each of your perl s
becomes a permanent CGI daemon process.

Both of these solutions can have far−reaching effects on your system and on the way you write yo
scripts, so investigate them with care.

See http://www.perl.com/CPAN/modules/by−category/15_World_Wide_Web_HTML_HTTP_CGI/ .

A non−free, commerical product, ‘‘The Velocity Engine for Perl‘’, (http://www.binevolve.com/
http://www.binevolve.com/bine/vep) might also be worth looking at. It will allow you to increase
performance of your perl scripts, upto 25 times faster than normal CGI perl by running in persisten
mode, or 4 to 5 times faster without any modification to your existing CGI scripts. Fully functi
evaluation copies are available from the web site.

How can I hide the source for my Perl program?
Delete it. :−) Seriously, there are a number of (mostly unsatisfactory) solutions with varying leve
‘‘security‘’.

First of all, however, you can‘t take away read permission, because the source code has to be reada
order to be compiled and interpreted. (That doesn‘t mean that a CGI script‘s source is readable by pe
the web, though, only by people with access to the filesystem) So you have to leave the permission
socially friendly 0755 level.

Some people regard this as a security problem. If your program does insecure things, and relies on
not knowing how to exploit those insecurities, it is not secure. It is often possible for someone to det
the insecure things and exploit them without viewing the source. Security through obscurity, the na
hiding your bugs instead of fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN), but crackers might be able to de
it. You can try using the byte code compiler and interpreter described below, but crackers might be
de−compile it. You can try using the native−code compiler described below, but crackers might be
disassemble it. These pose varying degrees of difficulty to people wanting to get at your code, but no
definitively conceal it (this is true of every language, not just Perl).

If you‘re concerned about people profiting from your code, then the bottom line is that nothing
restrictive licence will give you legal security. License your software and pepper it with threate
statements like ‘‘This is unpublished proprietary software of XYZ Corp. Your access to it does not giv
permission to use it blah blah blah.‘’ We are not lawyers, of course, so you should see a lawyer if yo
to be sure your licence‘s wording will stand up in court.

How can I compile my Perl program into byte code or C?
Malcolm Beattie has written a multifunction backend compiler, available from CPAN, that can do both
things. It is included in the perl5.005 release, but is still considered experimental. This means it‘s fun
with if you‘re a programmer but not really for people looking for turn−key solutions.

Merely compiling into C does not in and of itself guarantee that your code will run very much faster. T
because except for lucky cases where a lot of native type inferencing is possible, the normal Perl r
system is still present and so your program will take just as long to run and be just as big. Most pro
save little more than compilation time, leaving execution no more than 10−30% faster. A few rare pro
actually benefit significantly (like several times faster), but this takes some tweaking of your code.

You‘ll probably be astonished to learn that the current version of the compiler generates a compiled f
your script whose executable is just as big as the original perl executable, and then some. That‘s be
18−Oct−1998 Version 5.005_02 41

perlfaq3 Perl Programmers Reference Guide perlfaq3

is

For

 more
 take
ftware

erely

irst

te the
 the

ou‘ll

 will

your
 big

shell

s about
have to
o

currently written, all programs are prepared for a full eval() statement. You can tremendously reduce th
cost by building a shared libperl.so library and linking against that. See the INSTALL podfile in the perl
source distribution for details. If you link your main perl binary with this, it will make it miniscule.
example, on one author‘s system, /usr/bin/perl is only 11k in size!

In general, the compiler will do nothing to make a Perl program smaller, faster, more portable, or
secure. In fact, it will usually hurt all of those. The executable will be bigger, your VM system may
longer to load the whole thing, the binary is fragile and hard to fix, and compilation never stopped so
piracy in the form of crackers, viruses, or bootleggers. The real advantage of the compiler is m
packaging, and once you see the size of what it makes (well, unless you use a shared libperl.so), you‘ll
probably want a complete Perl install anyway.

How can I get #!perl to work on [MS−DOS,NT,...]?
For OS/2 just use

 extproc perl −S −your_switches

as the first line in *.cmd file (−S due to a bug in cmd.exe‘s ‘extproc’ handling). For DOS one should f
invent a corresponding batch file, and codify it in ALTERNATIVE_SHEBANG (see the INSTALL file in the
source distribution for more information).

The Win95/NT installation, when using the ActiveState port of Perl, will modify the Registry to associa
.pl extension with the perl interpreter. If you install another port (Gurusaramy Sarathy‘s is
recommended Win95/NT port), or (eventually) build your own Win95/NT Perl using WinGCC, then y
have to modify the Registry yourself.

Macintosh perl scripts will have the the appropriate Creator and Type, so that double−clicking them
invoke the perl application.

IMPORTANT!: Whatever you do, PLEASE don‘t get frustrated, and just throw the perl interpreter into
cgi−bin directory, in order to get your scripts working for a web server. This is an EXTREMELY
security risk. Take the time to figure out how to do it correctly.

Can I write useful perl programs on the command line?
Yes. Read perlrun for more information. Some examples follow. (These assume standard Unix
quoting rules.)

 # sum first and last fields
 perl −lane ’print $F[0] + $F[−1]’ *

 # identify text files
 perl −le ’for(@ARGV) {print if −f && −T _}’ *

 # remove (most) comments from C program
 perl −0777 −pe ’s{/*.*?*/}{}gs’ foo.c

 # make file a month younger than today, defeating reaper daemons
 perl −e ’$X=24*60*60; utime(time(),time() + 30 * $X,@ARGV)’ *

 # find first unused uid
 perl −le ’$i++ while getpwuid($i); print $i’

 # display reasonable manpath
 echo $PATH | perl −nl −072 −e ’

s![^/+]*$!man!&&−d&&!$s{$_}++&&push@m,$_;END{print"@m"}’

Ok, the last one was actually an obfuscated perl entry. :−)

Why don‘t perl one−liners work on my DOS/Mac/VMS system?
The problem is usually that the command interpreters on those systems have rather different idea
quoting than the Unix shells under which the one−liners were created. On some systems, you may
change single−quotes to double ones, which you must NOT do on Unix or Plan9 systems. You might als
42 Version 5.005_02 18−Oct−1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

rst two
ou‘d

h like
ASCII

, huh?

ated to
et 500
ese

t

have to change a single % to a %%.

For example:

 # Unix
 perl −e ’print "Hello world\n"’

 # DOS, etc.
 perl −e "print \"Hello world\n\""

 # Mac
 print "Hello world\n"
 (then Run "Myscript" or Shift−Command−R)

 # VMS
 perl −e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command interpreter. Under Unix, the fi
often work. Under DOS, it‘s entirely possible neither works. If 4DOS was the command shell, y
probably have better luck like this:

 perl −e "print <Ctrl−x>"Hello world\n<Ctrl−x>""

Under the Mac, it depends which environment you are using. The MacPerl shell, or MPW, is muc
Unix shells in its support for several quoting variants, except that it makes free use of the Mac‘s non−
characters as control characters.

There is no general solution to all of this. It is a mess, pure and simple. Sucks to be away from Unix
:−)

[Some of this answer was contributed by Kenneth Albanowski.]

Where can I learn about CGI or Web programming in Perl?
For modules, get the CGI or LWP modules from CPAN. For textbooks, see the two especially dedic
web stuff in the question on books. For problems and questions related to the web, like ‘‘Why do I g
Errors‘’ or ‘‘Why doesn‘t it run from the browser right when it runs fine on the command line‘’, see th
sources:

 WWW Security FAQ
 http://www.w3.org/Security/Faq/

 Web FAQ
 http://www.boutell.com/faq/

 CGI FAQ
 http://www.webthing.com/page.cgi/cgifaq

 HTTP Spec
 http://www.w3.org/pub/WWW/Protocols/HTTP/

 HTML Spec
 http://www.w3.org/TR/REC−html40/
 http://www.w3.org/pub/WWW/MarkUp/

 CGI Spec
 http://www.w3.org/CGI/

 CGI Security FAQ
 http://www.go2net.com/people/paulp/cgi−security/safe−cgi.txt

Where can I learn about object−oriented Perl programming?
perltoot is a good place to start, and you can use perlobj and perlbot for reference. Perltoot didn‘t come ou
until the 5.004 release, but you can get a copy (in pod, html, or postscript) from
http://www.perl.com/CPAN/doc/FMTEYEWTK/ .
18−Oct−1998 Version 5.005_02 43

perlfaq3 Perl Programmers Reference Guide perlfaq3

 again

lso use

odule

ted or
art of

uraged
fit. A
Where can I learn about linking C with Perl? [h2xs, xsubpp]
If you want to call C from Perl, start with perlxstut, moving on to perlxs, xsubpp, and perlguts. If you want
to call Perl from C, then read perlembed, perlcall, and perlguts. Don‘t forget that you can learn a lot from
looking at how the authors of existing extension modules wrote their code and solved their problems.

I‘ve read perlembed, perlguts, etc., but I can‘t embed perl in
my C program, what am I doing wrong?

Download the ExtUtils::Embed kit from CPAN and run ‘make test’. If the tests pass, read the pods
and again and again. If they fail, see perlbug and send a bugreport with the output of make test
TEST_VERBOSE=1 along with perl −V .

When I tried to run my script, I got this message. What does it
mean?

perldiag has a complete list of perl‘s error messages and warnings, with explanatory text. You can a
the splain program (distributed with perl) to explain the error messages:

 perl program 2>diag.out
 splain [−v] [−p] diag.out

or change your program to explain the messages for you:

 use diagnostics;

or

 use diagnostics −verbose;

What‘s MakeMaker?
This module (part of the standard perl distribution) is designed to write a Makefile for an extension m
from a Makefile.PL. For more information, see ExtUtils::MakeMaker.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as an integrated part of the Standard Distribution of Perl or of its documentation (prin
otherwise), this works is covered under Perl‘s Artistic Licence. For separate distributions of all or p
this FAQ outside of that, see perlfaq.

Irrespective of its distribution, all code examples here are public domain. You are permitted and enco
to use this code and any derivatives thereof in your own programs for fun or for profit as you see
simple comment in the code giving credit to the FAQ would be courteous but is not required.
44 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

 strings,

mputer,

 from
tation

n‘t be
 19.95,

ack to

 Perl.
d Perl

they are

es
r

::Trig
NAME
perlfaq4 − Data Manipulation ($Revision: 1.26 $, $Date: 1998/08/05 12:04:00 $)

DESCRIPTION
The section of the FAQ answers question related to the manipulation of data as numbers, dates,
arrays, hashes, and miscellaneous data issues.

Data: Numbers

Why am I getting long decimals (eg, 19.9499999999999) instead of the numbers I should be getting
(eg, 19.95)?
The infinite set that a mathematician thinks of as the real numbers can only be approximate on a co
since the computer only has a finite number of bits to store an infinite number of, um, numbers.

Internally, your computer represents floating−point numbers in binary. Floating−point numbers read in
a file or appearing as literals in your program are converted from their decimal floating−point represen
(eg, 19.95) to the internal binary representation.

However, 19.95 can‘t be precisely represented as a binary floating−point number, just like 1/3 ca
exactly represented as a decimal floating−point number. The computer‘s binary representation of
therefore, isn‘t exactly 19.95.

When a floating−point number gets printed, the binary floating−point representation is converted b
decimal. These decimal numbers are displayed in either the format you specify with printf() , or the
current output format for numbers (see $# in perlvar if you use print. $# has a different default value
in Perl5 than it did in Perl4. Changing $# yourself is deprecated.

This affects all computer languages that represent decimal floating−point numbers in binary, not just
Perl provides arbitrary−precision decimal numbers with the Math::BigFloat module (part of the standar
distribution), but mathematical operations are consequently slower.

To get rid of the superfluous digits, just use a format (eg, printf("%.2f", 19.95)) to get the required
precision. See Floating−point Arithmetic in perlop.

Why isn‘t my octal data interpreted correctly?
Perl only understands octal and hex numbers as such when they occur as literals in your program. If
read in from somewhere and assigned, no automatic conversion takes place. You must explicitly useoct()
or hex() if you want the values converted. oct() interprets both hex ("0x350") numbers and octal on
("0350" or even without the leading "0", like "377"), while hex() only converts hexadecimal ones, with o
without a leading "0x", like "0x255", "3A", "ff", or "deadbeef".

This problem shows up most often when people try using chmod() , mkdir() , umask() , or
sysopen() , which all want permissions in octal.

 chmod(644, $file); # WRONG −− perl −w catches this
 chmod(0644, $file); # right

Does perl have a round function? What about ceil() and floor() ? Trig functions?
Remember that int() merely truncates toward 0. For rounding to a certain number of digits, sprintf()
or printf() is usually the easiest route.

 printf("%.3f", 3.1415926535); # prints 3.142

The POSIX module (part of the standard perl distribution) implements ceil() , floor() , and a number of
other mathematical and trigonometric functions.

 use POSIX;
 $ceil = ceil(3.5); # 4
 $floor = floor(3.5); # 3

In 5.000 to 5.003 Perls, trigonometry was done in the Math::Complex module. With 5.004, the Math
18−Oct−1998 Version 5.005_02 45

perlfaq4 Perl Programmers Reference Guide perlfaq4

s the
e, for

uld be
used by

also

 a lot

mputers
 programs
tesy
ers by

 your
random
module (part of the standard perl distribution) implements the trigonometric functions. Internally it use
Math::Complex module and some functions can break out from the real axis into the complex plan
example the inverse sine of 2.

Rounding in financial applications can have serious implications, and the rounding method used sho
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being
Perl, but to instead implement the rounding function you need yourself.

How do I convert bits into ints?
To turn a string of 1s and 0s like 10110110 into a scalar containing its binary value, use the pack()
function (documented in pack in perlfunc):

 $decimal = pack(’B8’, ’10110110’);

Here‘s an example of going the other way:

 $binary_string = join(’’, unpack(’B*’, "\x29"));

How do I multiply matrices?
Use the Math::Matrix or Math::MatrixReal modules (available from CPAN) or the PDL extension (
available from CPAN).

How do I perform an operation on a series of integers?
To call a function on each element in an array, and collect the results, use:

 @results = map { my_func($_) } @array;

For example:

 @triple = map { 3 * $_ } @single;

To call a function on each element of an array, but ignore the results:

 foreach $iterator (@array) {
 &my_func($iterator);
 }

To call a function on each integer in a (small) range, you can use:

 @results = map { &my_func($_) } (5 .. 25);

but you should be aware that the .. operator creates an array of all integers in the range. This can take
of memory for large ranges. Instead use:

 @results = ();
 for ($i=5; $i < 500_005; $i++) {
 push(@results, &my_func($i));
 }

How can I output Roman numerals?
Get the http://www.perl.com/CPAN/modules/by−module/Roman module.

Why aren‘t my random numbers random?
The short explanation is that you‘re getting pseudorandom numbers, not random ones, because co
are good at being predictable and bad at being random (despite appearances caused by bugs in your
:−). A longer explanation is available on http://www.perl.com/CPAN/doc/FMTEYEWTK/random, cour
of Tom Phoenix. John von Neumann said, ‘‘Anyone who attempts to generate random numb
deterministic means is, of course, living in a state of sin.‘’

You should also check out the Math::TrulyRandom module from CPAN. It uses the imperfections in
system‘s timer to generate random numbers, but this takes quite a while. If you want a better pseudo
generator than comes with your operating system, look at ‘‘Numerical Recipes in C‘’ at
http://nr.harvard.edu/nr/bookc.html .
46 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

f date
siness
with a
ith a

 got a
nip and

arts to
 and

n date

mmers

d time
r well
s when

ber. It

that

n your
reak

 more
Data: Dates

How do I find the week−of−the−year/day−of−the−year?
The day of the year is in the array returned by localtime() (see localtime in perlfunc):

 $day_of_year = (localtime(time()))[7];

or more legibly (in 5.004 or higher):

 use Time::localtime;
 $day_of_year = localtime(time())−>yday;

You can find the week of the year by dividing this by 7:

 $week_of_year = int($day_of_year / 7);

Of course, this believes that weeks start at zero. The Date::Calc module from CPAN has a lot o
calculation functions, including day of the year, week of the year, and so on. Note that not all bu
consider ‘‘week 1‘’ to be the same; for example, American business often consider the first week
Monday in it to be Work Week #1, despite ISO 8601, which consider WW1 to be the frist week w
Thursday in it.

How can I compare two dates and find the difference?
If you‘re storing your dates as epoch seconds then simply subtract one from the other. If you‘ve
structured date (distinct year, day, month, hour, minute, seconds values) then use one of the Date::Ma
Date::Calc modules from CPAN.

How can I take a string and turn it into epoch seconds?
If it‘s a regular enough string that it always has the same format, you can split it up and pass the p
timelocal in the standard Time::Local module. Otherwise, you should look into the Date::Calc
Date::Manip modules from CPAN.

How can I find the Julian Day?
Neither Date::Manip nor Date::Calc deal with Julian days. Instead, there is an example of Julia
calculation that should help you in
http://www.perl.com/CPAN/authors/David_Muir_Sharnoff/modules/Time/JulianDay.pm.gz .

Does Perl have a year 2000 problem? Is Perl Y2K compliant?
Short answer: No, Perl does not have a Year 2000 problem. Yes, Perl is Y2K compliant. The progra
you‘re hired to use it, however, probably are not.

Long answer: Perl is just as Y2K compliant as your pencil—no more, and no less. The date an
functions supplied with perl (gmtime and localtime) supply adequate information to determine the yea
beyond 2000 (2038 is when trouble strikes for 32−bit machines). The year returned by these function
used in an array context is the year minus 1900. For years between 1910 and 1999 this happens to be a
2−digit decimal number. To avoid the year 2000 problem simply do not treat the year as a 2−digit num
isn‘t.

When gmtime() and localtime() are used in scalar context they return a timestamp string
contains a fully−expanded year. For example, $timestamp = gmtime(1005613200) sets
$timestamp to "Tue Nov 13 01:00:00 2001". There‘s no year 2000 problem here.

That doesn‘t mean that Perl can‘t be used to create non−Y2K compliant programs. It can. But so ca
pencil. It‘s the fault of the user, not the language. At the risk of inflaming the NRA: ‘‘Perl doesn‘t b
Y2K, people do.‘’ See http://language.perl.com/news/y2k.html for a longer exposition.

Data: Strings

How do I validate input?
The answer to this question is usually a regular expression, perhaps with auxiliary logic. See the
specific questions (numbers, mail addresses, etc.) for details.
18−Oct−1998 Version 5.005_02 47

perlfaq4 Perl Programmers Reference Guide perlfaq4

t is

o find

e

r life a
e byacc

 one at
How do I unescape a string?
It depends just what you mean by ‘‘escape‘’. URL escapes are dealt with in perlfaq9. Shell escapes with the
backslash (\) character are removed with:

 s/\\(.)/$1/g;

This won‘t expand "\n" or "\t" or any other special escapes.

How do I remove consecutive pairs of characters?
To turn "abbcccd" into "abccd" :

 s/(.)\1/$1/g;

How do I expand function calls in a string?
This is documented in perlref. In general, this is fraught with quoting and readability problems, but i
possible. To interpolate a subroutine call (in list context) into a string:

 print "My sub returned @{[mysub(1,2,3)]} that time.\n";

If you prefer scalar context, similar chicanery is also useful for arbitrary expressions:

 print "That yields ${\($n + 5)} widgets\n";

Version 5.004 of Perl had a bug that gave list context to the expression in ${...}, but this is fixed in
version 5.005.

See also ‘‘How can I expand variables in text strings?‘’ in this section of the FAQ.

How do I find matching/nesting anything?
This isn‘t something that can be done in one regular expression, no matter how complicated. T
something between two single characters, a pattern like /x([^x]*)x/ will get the intervening bits in $1.
For multiple ones, then something more like /alpha(.*?)omega/ would be needed. But none of thes
deals with nested patterns, nor can they. For that you‘ll have to write a parser.

If you are serious about writing a parser, there are a number of modules or oddities that will make you
lot easier. There is the CPAN module Parse::RecDescent, the standard module Text::Balanced, th
program, and Mark−Jason Dominus‘s excellent py tool at http://www.plover.com/~mjd/perl/py/ .

One simple destructive, inside−out approach that you might try is to pull out the smallest nesting parts
a time:

 while (s//BEGIN((?:(?!BEGIN)(?!END).)*)END/gs) {
do something with $1

 }

How do I reverse a string?
Use reverse() in scalar context, as documented in reverse.

 $reversed = reverse $string;

How do I expand tabs in a string?
You can do it yourself:

 1 while $string =~ s/\t+/’ ’ x (length($&) * 8 − length($‘) % 8)/e;

Or you can just use the Text::Tabs module (part of the standard perl distribution).

 use Text::Tabs;
 @expanded_lines = expand(@lines_with_tabs);

How do I reformat a paragraph?
Use Text::Wrap (part of the standard perl distribution):
48 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

 justify

nce of

d

er (X)

ltiple
 use Text::Wrap;
 print wrap("\t", ’ ’, @paragraphs);

The paragraphs you give to Text::Wrap should not contain embedded newlines. Text::Wrap doesn‘t
the lines (flush−right).

How can I access/change the first N letters of a string?
There are many ways. If you just want to grab a copy, use substr() :

 $first_byte = substr($a, 0, 1);

If you want to modify part of a string, the simplest way is often to use substr() as an lvalue:

 substr($a, 0, 3) = "Tom";

Although those with a pattern matching kind of thought process will likely prefer:

 $a =~ s/^.../Tom/;

How do I change the Nth occurrence of something?
You have to keep track of N yourself. For example, let‘s say you want to change the fifth occurre
"whoever" or "whomever" into "whosoever" or "whomsoever" , case insensitively.

 $count = 0;
 s{((whom?)ever)}{

++$count == 5 # is it the 5th?
 ? "${2}soever" # yes, swap
 : $1 # renege and leave it there

 }igex;

In the more general case, you can use the /g modifier in a while loop, keeping count of matches.

 $WANT = 3;
 $count = 0;
 while (/(\w+)\s+fish\b/gi) {
 if (++$count == $WANT) {
 print "The third fish is a $1 one.\n";
 # Warning: don’t ‘last’ out of this loop
 }
 }

That prints out: "The third fish is a red one." You can also use a repetition count an
repeated pattern like this:

 /(?:\w+\s+fish\s+){2}(\w+)\s+fish/i;

How can I count the number of occurrences of a substring within a string?
There are a number of ways, with varying efficiency: If you want a count of a certain single charact
within a string, you can use the tr/// function like so:

 $string = "ThisXlineXhasXsomeXx’sXinXit":
 $count = ($string =~ tr/X//);
 print "There are $count X charcters in the string";

This is fine if you are just looking for a single character. However, if you are trying to count mu
character substrings within a larger string, tr/// won‘t work. What you can do is wrap a while() loop
around a global pattern match. For example, let‘s count negative integers:

 $string = "−9 55 48 −2 23 −76 4 14 −44";
 while ($string =~ /−\d+/g) { $count++ }
 print "There are $count negative numbers in the string";
18−Oct−1998 Version 5.005_02 49

perlfaq4 Perl Programmers Reference Guide perlfaq4

(We‘ll
at you

For

riedl,
ssuming

 with
How do I capitalize all the words on one line?
To make the first letter of each word upper case:

 $line =~ s/\b(\w)/\U$1/g;

This has the strange effect of turning "don‘t do it " into "Don‘T Do It ". Sometimes you might want
this, instead (Suggested by Brian Foy):

 $string =~ s/ (
 (^\w) #at the beginning of the line
 | # or
 (\s\w) #preceded by whitespace
)
 /\U$1/xg;
 $string =~ /([\w’]+)/\u\L$1/g;

To make the whole line upper case:

 $line = uc($line);

To force each word to be lower case, with the first letter upper case:

 $line =~ s/(\w+)/\u\L$1/g;

You can (and probably should) enable locale awareness of those characters by placing a use locale
pragma in your program. See perllocale for endless details on locales.

How can I split a [character] delimited string except when inside
[character]? (Comma−separated files)

Take the example case of trying to split a string that is comma−separated into its different fields.
pretend you said comma−separated, not comma−delimited, which is different and almost never wh
mean.) You can‘t use split(/,/) because you shouldn‘t split if the comma is inside quotes.
example, take a data line like this:

 SAR001,"","Cimetrix, Inc","Bob Smith","CAM",N,8,1,0,7,"Error, Core Dumped"

Due to the restriction of the quotes, this is a fairly complex problem. Thankfully, we have Jeffrey F
author of a highly recommended book on regular expressions, to handle these for us. He suggests (a
your string is contained in $text):

 @new = ();
 push(@new, $+) while $text =~ m{
 "([^\"\\]*(?:\\.[^\"\\]*)*)",? # groups the phrase inside the quotes
 | ([^,]+),?
 | ,
 }gx;
 push(@new, undef) if substr($text,−1,1) eq ’,’;

If you want to represent quotation marks inside a quotation−mark−delimited field, escape them
backslashes (eg, "like \"this\"" . Unescaping them is a task addressed earlier in this section.

Alternatively, the Text::ParseWords module (part of the standard perl distribution) lets you say:

 use Text::ParseWords;
 @new = quotewords(",", 0, $text);

How do I strip blank space from the beginning/end of a string?
Although the simplest approach would seem to be:

 $string =~ s/^\s*(.*?)\s*$/$1/;
50 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

do this

an

ample:
This is unneccesarily slow, destructive, and fails with embedded newlines. It is much better faster to
in two steps:

 $string =~ s/^\s+//;
 $string =~ s/\s+$//;

Or more nicely written as:

 for ($string) {
s/^\s+//;
s/\s+$//;

 }

This idiom takes advantage of the foreach loop‘s aliasing behavior to factor out common code. You c
do this on several strings at once, or arrays, or even the values of a hash if you use a slide:

 # trim whitespace in the scalar, the array,
 # and all the values in the hash
 foreach ($scalar, @array, @hash{keys %hash}) {
 s/^\s+//;
 s/\s+$//;
 }

How do I extract selected columns from a string?
Use substr() or unpack() , both documented in perlfunc. If you prefer thinking in terms of columns
instead of widths, you can use this kind of thing:

 # determine the unpack format needed to split Linux ps output
 # arguments are cut columns
 my $fmt = cut2fmt(8, 14, 20, 26, 30, 34, 41, 47, 59, 63, 67, 72);

 sub cut2fmt {
my(@positions) = @_;
my $template = ’’;
my $lastpos = 1;
for my $place (@positions) {
 $template .= "A" . ($place − $lastpos) . " ";
 $lastpos = $place;
}
$template .= "A*";
return $template;

 }

How do I find the soundex value of a string?
Use the standard Text::Soundex module distributed with perl.

How can I expand variables in text strings?
Let‘s assume that you have a string like:

 $text = ’this has a $foo in it and a $bar’;

If those were both global variables, then this would suffice:

 $text =~ s/\$(\w+)/${$1}/g;

But since they are probably lexicals, or at least, they could be, you‘d have to do this:

 $text =~ s/(\$\w+)/$1/eeg;
 die if $@; # needed on /ee, not /e

It‘s probably better in the general case to treat those variables as entries in some special hash. For ex
18−Oct−1998 Version 5.005_02 51

perlfaq4 Perl Programmers Reference Guide perlfaq4

strings,

ctually

out the

ve to
 %user_defs = (
foo => 23,
bar => 19,

);
 $text =~ s/\$(\w+)/$user_defs{$1}/g;

See also ‘‘How do I expand function calls in a string?‘’ in this section of the FAQ.

What‘s wrong with always quoting " $vars"?
The problem is that those double−quotes force stringification, coercing numbers and references into
even when you don‘t want them to be.

If you get used to writing odd things like these:

 print "$var"; # BAD
 $new = "$old"; # BAD
 somefunc("$var"); # BAD

You‘ll be in trouble. Those should (in 99.8% of the cases) be the simpler and more direct:

 print $var;
 $new = $old;
 somefunc($var);

Otherwise, besides slowing you down, you‘re going to break code when the thing in the scalar is a
neither a string nor a number, but a reference:

 func(\@array);
 sub func {

my $aref = shift;
my $oref = "$aref"; # WRONG

 }

You can also get into subtle problems on those few operations in Perl that actually do care ab
difference between a string and a number, such as the magical ++ autoincrement operator or the
syscall() function.

Stringification also destroys arrays.

 @lines = ‘command‘;
 print "@lines"; # WRONG − extra blanks
 print @lines; # right

Why don‘t my <<HERE documents work?
Check for these three things:

1. There must be no space after the << part.
2. There (probably) should be a semicolon at the end.
3. You can‘t (easily) have any space in front of the tag.

If you want to indent the text in the here document, you can do this:

 # all in one
 ($VAR = <<HERE_TARGET) =~ s/^\s+//gm;
 your text
 goes here
 HERE_TARGET

But the HERE_TARGET must still be flush against the margin. If you want that indented also, you‘ll ha
quote in the indentation.

 ($quote = <<’ FINIS’) =~ s/^\s+//gm;
52 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

 called
ing, and
e and

. You
scalar
 ...we will have peace, when you and all your works have
 perished−−and the works of your dark master to whom you
 would deliver us. You are a liar, Saruman, and a corrupter
 of men’s hearts. −−Theoden in /usr/src/perl/taint.c
 FINIS
 $quote =~ s/\s*−−/\n−−/;

A nice general−purpose fixer−upper function for indented here documents follows. It expects to be
with a here document as its argument. It looks to see whether each line begins with a common substr
if so, strips that off. Otherwise, it takes the amount of leading white space found on the first lin
removes that much off each subsequent line.

 sub fix {
 local $_ = shift;
 my ($white, $leader); # common white space and common leading string
 if (/^\s*(?:([^\w\s]+)(\s*).*\n)(?:\s*\1\2?.*\n)+$/) {
 ($white, $leader) = ($2, quotemeta($1));
 } else {
 ($white, $leader) = (/^(\s+)/, ’’);
 }
 s/^\s*?$leader(?:$white)?//gm;
 return $_;
 }

This works with leading special strings, dynamically determined:

 $remember_the_main = fix<<’ MAIN_INTERPRETER_LOOP’;
@@@ int
@@@ runops() {
@@@ SAVEI32(runlevel);
@@@ runlevel++;
@@@ while (op = (*op−>op_ppaddr)()) ;
@@@ TAINT_NOT;
@@@ return 0;
@@@ }

 MAIN_INTERPRETER_LOOP

Or with a fixed amount of leading white space, with remaining indentation correctly preserved:

 $poem = fix<<EVER_ON_AND_ON;
 Now far ahead the Road has gone,

 And I must follow, if I can,
 Pursuing it with eager feet,

 Until it joins some larger way
 Where many paths and errands meet.

 And whither then? I cannot say.
−−Bilbo in /usr/src/perl/pp_ctl.c

 EVER_ON_AND_ON

Data: Arrays

What is the difference between $array[1] and @array[1]?
The former is a scalar value, the latter an array slice, which makes it a list with one (scalar) value
should use $ when you want a scalar value (most of the time) and @ when you want a list with one
value in it (very, very rarely; nearly never, in fact).

Sometimes it doesn‘t make a difference, but sometimes it does. For example, compare:

 $good[0] = ‘some program that outputs several lines‘;
18−Oct−1998 Version 5.005_02 53

perlfaq4 Perl Programmers Reference Guide perlfaq4

wish to

 only
 but

store

y times
ciative

e

ke up

t strings
with

 @bad[0] = ‘same program that outputs several lines‘;

The −w flag will warn you about these matters.

How can I extract just the unique elements of an array?
There are several possible ways, depending on whether the array is ordered and whether you
preserve the ordering.

a) If @in is sorted, and you want @out to be sorted:
(this assumes all true values in the array)

 $prev = ’nonesuch’;
 @out = grep($_ ne $prev && ($prev = $_), @in);

This is nice in that it doesn‘t use much extra memory, simulating uniq(1)‘s behavior of removing
adjacent duplicates. It‘s less nice in that it won‘t work with false values like undef, 0, or ""; "0
true" is ok, though.

b) If you don‘t know whether @in is sorted:
 undef %saw;
 @out = grep(!$saw{$_}++, @in);

c) Like (b), but @in contains only small integers:
 @out = grep(!$saw[$_]++, @in);

d) A way to do (b) without any loops or greps:
 undef %saw;
 @saw{@in} = ();
 @out = sort keys %saw; # remove sort if undesired

e) Like (d), but @in contains only small positive integers:
 undef @ary;
 @ary[@in] = @in;
 @out = @ary;

How can I tell whether a list or array contains a certain element?
Hearing the word "in" is an indication that you probably should have used a hash, not a list or array, to
your data. Hashes are designed to answer this question quickly and efficiently. Arrays aren‘t.

That being said, there are several ways to approach this. If you are going to make this query man
over arbitrary string values, the fastest way is probably to invert the original array and keep an asso
array lying about whose keys are the first array‘s values.

 @blues = qw/azure cerulean teal turquoise lapis−lazuli/;
 undef %is_blue;
 for (@blues) { $is_blue{$_} = 1 }

Now you can check whether $is_blue{$some_color}. It might have been a good idea to keep th
blues all in a hash in the first place.

If the values are all small integers, you could use a simple indexed array. This kind of an array will ta
less space:

 @primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31);
 undef @is_tiny_prime;
 for (@primes) { $is_tiny_prime[$_] = 1; }

Now you check whether $is_tiny_prime[$some_number].

If the values in question are integers instead of strings, you can save quite a lot of space by using bi
54 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

tentially

y:

pop or
ents at
nce of

need to

g like
instead:

 @articles = (1..10, 150..2000, 2017);
 undef $read;
 for (@articles) { vec($read,$_,1) = 1 }

Now check whether vec($read,$n,1) is true for some $n.

Please do not use

 $is_there = grep $_ eq $whatever, @array;

or worse yet

 $is_there = grep /$whatever/, @array;

These are slow (checks every element even if the first matches), inefficient (same reason), and po
buggy (what if there are regexp characters in $whatever?).

How do I compute the difference of two arrays? How do I compute the intersection of two arrays?

Use a hash. Here‘s code to do both and more. It assumes that each element is unique in a given arra

 @union = @intersection = @difference = ();
 %count = ();
 foreach $element (@array1, @array2) { $count{$element}++ }
 foreach $element (keys %count) {

push @union, $element;
push @{ $count{$element} > 1 ? \@intersection : \@difference }, $element;

 }

How do I find the first array element for which a condition is true?
You can use this if you care about the index:

 for ($i=0; $i < @array; $i++) {
 if ($array[$i] eq "Waldo") {

 $found_index = $i;
 last;
 }
 }

Now $found_index has what you want.

How do I handle linked lists?
In general, you usually don‘t need a linked list in Perl, since with regular arrays, you can push and
shift and unshift at either end, or you can use splice to add and/or remove arbitrary number of elem
arbitrary points. Both pop and shift are both O(1) operations on perl‘s dynamic arrays. In the abse
shifts and pops, push in general needs to reallocate on the order every log(N) times, and unshift will
copy pointers each time.

If you really, really wanted, you could use structures as described in perldsc or perltoot and do just what the
algorithm book tells you to do.

How do I handle circular lists?
Circular lists could be handled in the traditional fashion with linked lists, or you could just do somethin
this with an array:

 unshift(@array, pop(@array)); # the last shall be first
 push(@array, shift(@array)); # and vice versa
18−Oct−1998 Version 5.005_02 55

perlfaq4 Perl Programmers Reference Guide perlfaq4

nt to

adratic
otice
How do I shuffle an array randomly?
Use this:

 # fisher_yates_shuffle(\@array) :
 # generate a random permutation of @array in place
 sub fisher_yates_shuffle {
 my $array = shift;
 my $i;
 for ($i = @$array; −−$i;) {
 my $j = int rand ($i+1);
 next if $i == $j;
 @$array[$i,$j] = @$array[$j,$i];
 }
 }

 fisher_yates_shuffle(\@array); # permutes @array in place

You‘ve probably seen shuffling algorithms that works using splice, randomly picking another eleme
swap the current element with:

 srand;
 @new = ();
 @old = 1 .. 10; # just a demo
 while (@old) {

push(@new, splice(@old, rand @old, 1));
 }

This is bad because splice is already O(N), and since you do it N times, you just invented a qu
algorithm; that is, O(N**2). This does not scale, although Perl is so efficient that you probably won‘t n
this until you have rather largish arrays.

How do I process/modify each element of an array?
Use for /foreach :

 for (@lines) {
s/foo/bar/; # change that word
y/XZ/ZX/; # swap those letters

 }

Here‘s another; let‘s compute spherical volumes:

 for (@volumes = @radii) { # @volumes has changed parts
$_ **= 3;
$_ *= (4/3) * 3.14159; # this will be constant folded

 }

If you want to do the same thing to modify the values of the hash, you may not use the values function,
oddly enough. You need a slice:

 for $orbit (@orbits{keys %orbits}) {
($orbit **= 3) *= (4/3) * 3.14159;

 }

How do I select a random element from an array?
Use the rand() function (see rand):

 # at the top of the program:
 srand; # not needed for 5.004 and later

 # then later on
56 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

re

orithm

de the
ment.

t those

orm:
 $index = rand @array;
 $element = $array[$index];

Make sure you only call srand once per program, if then. If you are calling it more than once (such as befo
each call to rand), you‘re almost certainly doing something wrong.

How do I permute N elements of a list?
Here‘s a little program that generates all permutations of all the words on each line of input. The alg
embodied in the permute() function should work on any list:

 #!/usr/bin/perl −n
 # tsc−permute: permute each word of input
 permute([split], []);
 sub permute {
 my @items = @{ $_[0] };
 my @perms = @{ $_[1] };
 unless (@items) {
 print "@perms\n";

} else {
 my(@newitems,@newperms,$i);
 foreach $i (0 .. $#items) {
 @newitems = @items;
 @newperms = @perms;
 unshift(@newperms, splice(@newitems, $i, 1));
 permute([@newitems], [@newperms]);

 }
}

 }

How do I sort an array by (anything)?
Supply a comparison function to sort() (described in sort):

 @list = sort { $a <=> $b } @list;

The default sort function is cmp, string comparison, which would sort (1, 2, 10) into (1, 10, 2) .
<=>, used above, is the numerical comparison operator.

If you have a complicated function needed to pull out the part you want to sort on, then don‘t do it insi
sort function. Pull it out first, because the sort BLOCK can be called many times for the same ele
Here‘s an example of how to pull out the first word after the first number on each item, and then sor
words case−insensitively.

 @idx = ();
 for (@data) {

($item) = /\d+\s*(\S+)/;
push @idx, uc($item);

 }
 @sorted = @data[sort { $idx[$a] cmp $idx[$b] } 0 .. $#idx];

Which could also be written this way, using a trick that‘s come to be known as the Schwartzian Transf

 @sorted = map { $_−>[0] }
 sort { $a−>[1] cmp $b−>[1] }
 map { [$_, uc((/\d+\s*(\S+)/)[0]] } @data;

If you need to sort on several fields, the following paradigm is useful.

 @sorted = sort { field1($a) <=> field1($b) ||
 field2($a) cmp field2($b) ||
 field3($a) cmp field3($b)
18−Oct−1998 Version 5.005_02 57

perlfaq4 Perl Programmers Reference Guide perlfaq4

.)
 } @data;

This can be conveniently combined with precalculation of keys as given above.

See http://www.perl.com/CPAN/doc/FMTEYEWTK/sort.html for more about this approach.

See also the question below on sorting hashes.

How do I manipulate arrays of bits?
Use pack() and unpack() , or else vec() and the bitwise operations.

For example, this sets $vec to have bit N set if $ints[N] was set:

 $vec = ’’;
 foreach(@ints) { vec($vec,$_,1) = 1 }

And here‘s how, given a vector in $vec, you can get those bits into your @ints array:

 sub bitvec_to_list {
my $vec = shift;
my @ints;
Find null−byte density then select best algorithm
if ($vec =~ tr/\0// / length $vec > 0.95) {
 use integer;
 my $i;
 # This method is faster with mostly null−bytes
 while($vec =~ /[^\0]/g) {

$i = −9 + 8 * pos $vec;
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);

 }
} else {
 # This method is a fast general algorithm
 use integer;
 my $bits = unpack "b*", $vec;
 push @ints, 0 if $bits =~ s/^(\d)// && $1;
 push @ints, pos $bits while($bits =~ /1/g);
}
return \@ints;

 }

This method gets faster the more sparse the bit vector is. (Courtesy of Tim Bunce and Winfried Koenig

Why does defined() return true on empty arrays and hashes?
See defined in the 5.004 release or later of Perl.

Data: Hashes (Associative Arrays)

How do I process an entire hash?
Use the each() function (see each) if you don‘t care whether it‘s sorted:

 while (($key, $value) = each %hash) {
print "$key = $value\n";

 }
58 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

lier

. This

Instead,

 if that

e

a string,
If you want it sorted, you‘ll have to use foreach() on the result of sorting the keys as shown in an ear
question.

What happens if I add or remove keys from a hash while iterating over it?
Don‘t do that.

How do I look up a hash element by value?
Create a reverse hash:

 %by_value = reverse %by_key;
 $key = $by_value{$value};

That‘s not particularly efficient. It would be more space−efficient to use:

 while (($key, $value) = each %by_key) {
$by_value{$value} = $key;

 }

If your hash could have repeated values, the methods above will only find one of the associated keys
may or may not worry you.

How can I know how many entries are in a hash?
If you mean how many keys, then all you have to do is take the scalar sense of the keys() function:

 $num_keys = scalar keys %hash;

In void context it just resets the iterator, which is faster for tied hashes.

How do I sort a hash (optionally by value instead of key)?
Internally, hashes are stored in a way that prevents you from imposing an order on key−value pairs.
you have to sort a list of the keys or values:

 @keys = sort keys %hash; # sorted by key
 @keys = sort {

 $hash{$a} cmp $hash{$b}
 } keys %hash; # and by value

Here we‘ll do a reverse numeric sort by value, and if two keys are identical, sort by length of key, and
fails, by straight ASCII comparison of the keys (well, possibly modified by your locale — see perllocale).

 @keys = sort {
$hash{$b} <=> $hash{$a}

 ||
length($b) <=> length($a)

 ||
 $a cmp $b

 } keys %hash;

How can I always keep my hash sorted?
You can look into using the DB_File module and tie() using the $DB_BTREE hash bindings as
documented in In Memory Databases in DB_File. The Tie::IxHash module from CPAN might also b
instructive.

What‘s the difference between "delete" and "undef" with hashes?
Hashes are pairs of scalars: the first is the key, the second is the value. The key will be coerced to
although the value can be any kind of scalar: string, number, or reference. If a key $key is present in the
array, exists($key) will return true. The value for a given key can be undef , in which case
$array{$key} will be undef while $exists{$key} will return true. This corresponds to ($key,
undef) being in the hash.

Pictures help... here‘s the %ary table:
18−Oct−1998 Version 5.005_02 59

perlfaq4 Perl Programmers Reference Guide perlfaq4
 keys values
+−−−−−−+−−−−−−+
a	3
x	7
d	0
e	2
+−−−−−−+−−−−−−+

And these conditions hold

$ary{’a’} is true
$ary{’d’} is false
defined $ary{’d’} is true
defined $ary{’a’} is true
exists $ary{’a’} is true (perl5 only)
grep ($_ eq ’a’, keys %ary) is true

If you now say

undef $ary{’a’}

your table now reads:

 keys values
+−−−−−−+−−−−−−+
a	undef
x	7
d	0
e	2
+−−−−−−+−−−−−−+

and these conditions now hold; changes in caps:

$ary{’a’} is FALSE
$ary{’d’} is false
defined $ary{’d’} is true
defined $ary{’a’} is FALSE
exists $ary{’a’} is true (perl5 only)
grep ($_ eq ’a’, keys %ary) is true

Notice the last two: you have an undef value, but a defined key!

Now, consider this:

delete $ary{’a’}

your table now reads:

 keys values
+−−−−−−+−−−−−−+
x	7
d	0
e	2
+−−−−−−+−−−−−−+

and these conditions now hold; changes in caps:

$ary{’a’} is false
$ary{’d’} is false
defined $ary{’d’} is true
defined $ary{’a’} is false
exists $ary{’a’} is FALSE (perl5 only)
60 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

e
ve will
hing with

roblem

dule
grep ($_ eq ’a’, keys %ary) is FALSE

See, the whole entry is gone!

Why don‘t my tied hashes make the defined/exists distinction?
They may or may not implement the EXISTS() and DEFINED() methods differently. For example, ther
isn‘t the concept of undef with hashes that are tied to DBM* files. This means the true/false tables abo
give different results when used on such a hash. It also means that exists and defined do the same t
a DBM* file, and what they end up doing is not what they do with ordinary hashes.

How do I reset an each() operation part−way through?
Using keys %hash in scalar context returns the number of keys in the hash and resets the iterator
associated with the hash. You may need to do this if you use last to exit a loop early so that when you
re−enter it, the hash iterator has been reset.

How can I get the unique keys from two hashes?
First you extract the keys from the hashes into arrays, and then solve the uniquifying the array p
described above. For example:

 %seen = ();
 for $element (keys(%foo), keys(%bar)) {

$seen{$element}++;
 }
 @uniq = keys %seen;

Or more succinctly:

 @uniq = keys %{{%foo,%bar}};

Or if you really want to save space:

 %seen = ();
 while (defined ($key = each %foo)) {
 $seen{$key}++;
 }
 while (defined ($key = each %bar)) {
 $seen{$key}++;
 }
 @uniq = keys %seen;

How can I store a multidimensional array in a DBM file?
Either stringify the structure yourself (no fun), or else get the MLDBM (which uses Data::Dumper) mo
from CPAN and layer it on top of either DB_File or GDBM_File.

How can I make my hash remember the order I put elements into it?
Use the Tie::IxHash from CPAN.

 use Tie::IxHash;
 tie(%myhash, Tie::IxHash);
 for ($i=0; $i<20; $i++) {
 $myhash{$i} = 2*$i;
 }
 @keys = keys %myhash;
 # @keys = (0,1,2,3,...)

Why does passing a subroutine an undefined element in a hash create it?
If you say something like:

 somefunc($hash{"nonesuch key here"});
18−Oct−1998 Version 5.005_02 61

perlfaq4 Perl Programmers Reference Guide perlfaq4

or not.

.

les are

 See

Regular

se a

t
tring
Then that element "autovivifies"; that is, it springs into existence whether you store something there
That‘s because functions get scalars passed in by reference. If somefunc() modifies $_[0], it has to be
ready to write it back into the caller‘s version.

This has been fixed as of perl5.004.

Normally, merely accessing a key‘s value for a nonexistent key does not cause that key to be forever there
This is different than awk‘s behavior.

How can I make the Perl equivalent of a C structure/C++ class/hash or array of hashes or arrays?
Use references (documented in perlref). Examples of complex data structures are given in perldsc and
perllol. Examples of structures and object−oriented classes are in perltoot.

How can I use a reference as a hash key?
You can‘t do this directly, but you could use the standard Tie::Refhash module distributed with perl.

Data: Misc

How do I handle binary data correctly?
Perl is binary clean, so this shouldn‘t be a problem. For example, this works fine (assuming the fi
found):

 if (‘cat /vmunix‘ =~ /gzip/) {
print "Your kernel is GNU−zip enabled!\n";

 }

On some systems, however, you have to play tedious games with "text" versus "binary" files.
binmode in perlfunc.

If you‘re concerned about 8−bit ASCII data, then see perllocale.

If you want to deal with multibyte characters, however, there are some gotchas. See the section on
Expressions.

How do I determine whether a scalar is a number/whole/integer/float?
Assuming that you don‘t care about IEEE notations like "NaN" or "Infinity", you probably just want to u
regular expression.

 warn "has nondigits" if /\D/;
 warn "not a natural number" unless /^\d+$/; # rejects −3
 warn "not an integer" unless /^−?\d+$/; # rejects +3
 warn "not an integer" unless /^[+−]?\d+$/;
 warn "not a decimal number" unless /^−?\d+\.?\d*$/; # rejects .2
 warn "not a decimal number" unless /^−?(?:\d+(?:\.\d*)?|\.\d+)$/;
 warn "not a C float"
 unless /^([+−]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+−]?\d+))?$/;

If you‘re on a POSIX system, Perl‘s supports the POSIX::strtod function. Its semantics are somewha
cumbersome, so here‘s a getnum wrapper function for more convenient access. This function takes a s
and returns the number it found, or undef for input that isn‘t a C float. The is_numeric function is a
front end to getnum if you just want to say, ‘‘Is this a float?‘’

 sub getnum {
 use POSIX qw(strtod);
 my $str = shift;
 $str =~ s/^\s+//;
 $str =~ s/\s+$//;
 $! = 0;
 my($num, $unparsed) = strtod($str);
 if (($str eq ’’) || ($unparsed != 0) || $!) {
 return undef;
62 Version 5.005_02 18−Oct−1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

ar.gz

pying

hether
 Any
 be

 You
 fit. A
 } else {
 return $num;
 }
 }

 sub is_numeric { defined &getnum }

Or you could check out http://www.perl.com/CPAN/modules/by−module/String/String−Scanf−1.1.t
instead. The POSIX module (part of the standard Perl distribution) provides the strtol and strtod for
converting strings to double and longs, respectively.

How do I keep persistent data across program calls?
For some specific applications, you can use one of the DBM modules. See AnyDBM_File. More generically,
you should consult the FreezeThaw, Storable, or Class::Eroot modules from CPAN.

How do I print out or copy a recursive data structure?
The Data::Dumper module on CPAN is nice for printing out data structures, and FreezeThaw for co
them. For example:

 use FreezeThaw qw(freeze thaw);
 $new = thaw freeze $old;

Where $old can be (a reference to) any kind of data structure you‘d like. It will be deeply copied.

How do I define methods for every class/object?
Use the UNIVERSAL class (see UNIVERSAL).

How do I verify a credit card checksum?
Get the Business::CreditCard module from CPAN.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation w
printed or otherwise, this work may be distributed only under the terms of Perl‘s Artistic License.
distribution of this file or derivatives thereof outside of that package require that special arrangements
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
are permitted and encouraged to use this code in your own programs for fun or for profit as you see
simple comment in the code giving credit would be courteous but is not required.
18−Oct−1998 Version 5.005_02 63

perlfaq5 Perl Programmers Reference Guide perlfaq5

iency

 to the
ets are
ormally

every
u want

andle.

he

Y way
rk in
r. In
NAME
perlfaq5 − Files and Formats ($Revision: 1.24 $, $Date: 1998/07/05 15:07:20 $)

DESCRIPTION
This section deals with I/O and the "f" issues: filehandles, flushing, formats, and footers.

How do I flush/unbuffer an output filehandle? Why must I do this?
The C standard I/O library (stdio) normally buffers characters sent to devices. This is done for effic
reasons, so that there isn‘t a system call for each byte. Any time you use print() or write() in Perl,
you go though this buffering. syswrite() circumvents stdio and buffering.

In most stdio implementations, the type of output buffering and the size of the buffer varies according
type of device. Disk files are block buffered, often with a buffer size of more than 2k. Pipes and sock
often buffered with a buffer size between 1/2 and 2k. Serial devices (e.g. modems, terminals) are n
line−buffered, and stdio sends the entire line when it gets the newline.

Perl does not support truly unbuffered output (except insofar as you can syswrite(OUT, $char, 1)).
What it does instead support is "command buffering", in which a physical write is performed after
output command. This isn‘t as hard on your system as unbuffering, but does get the output where yo
it when you want it.

If you expect characters to get to your device when you print them there, you‘ll want to autoflush its h
Use select() and the $| variable to control autoflushing (see $| and select):

 $old_fh = select(OUTPUT_HANDLE);
 $| = 1;
 select($old_fh);

Or using the traditional idiom:

 select((select(OUTPUT_HANDLE), $| = 1)[0]);

Or if don‘t mind slowly loading several thousand lines of module code just because you‘re afraid of t$|
variable:

 use FileHandle;
 open(DEV, "+</dev/tty"); # ceci n’est pas une pipe
 DEV−>autoflush(1);

or the newer IO::* modules:

 use IO::Handle;
 open(DEV, ">/dev/printer"); # but is this?
 DEV−>autoflush(1);

or even this:

 use IO::Socket; # this one is kinda a pipe?
 $sock = IO::Socket::INET−>new(PeerAddr => ’www.perl.com’,

 PeerPort => ’http(80)’,
 Proto => ’tcp’);

 die "$!" unless $sock;

 $sock−>autoflush();
 print $sock "GET / HTTP/1.0" . "\015\012" x 2;
 $document = join(’’, <$sock>);
 print "DOC IS: $document\n";

Note the bizarrely hardcoded carriage return and newline in their octal equivalents. This is the ONL
(currently) to assure a proper flush on all platforms, including Macintosh. That the way things wo
network programming: you really should specify the exact bit pattern on the network line terminato
64 Version 5.005_02 18−Oct−1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

s much
f bytes.
move

Another
ing the
e

py that

d
s;

f byte
th line
f the
practice, "\n\n" often works, but this is not portable.

See perlfaq9 for other examples of fetching URLs over the web.

How do I change one line in a file/delete a line in a file/insert a line in the middle of a file/append to
the beginning of a file?
Although humans have an easy time thinking of a text file as being a sequence of lines that operate
like a stack of playing cards — or punch cards — computers usually see the text file as a sequence o
In general, there‘s no direct way for Perl to seek to a particular line of a file, insert text into a file, or re
text from a file.

(There are exceptions in special circumstances. You can add or remove at the very end of the file.
is replacing a sequence of bytes with another sequence of the same length. Another is us
$DB_RECNO array bindings as documented in DB_File. Yet another is manipulating files with all lines th
same length.)

The general solution is to create a temporary copy of the text file with the changes you want, then co
over the original. This assumes no locking.

 $old = $file;
 $new = "$file.tmp.$$";
 $bak = "$file.bak";

 open(OLD, "< $old") or die "can’t open $old: $!";
 open(NEW, "> $new") or die "can’t open $new: $!";

 # Correct typos, preserving case
 while (<OLD>) {

s/\b(p)earl\b/${1}erl/i;
(print NEW $_) or die "can’t write to $new: $!";

 }

 close(OLD) or die "can’t close $old: $!";
 close(NEW) or die "can’t close $new: $!";

 rename($old, $bak) or die "can’t rename $old to $bak: $!";
 rename($new, $old) or die "can’t rename $new to $old: $!";

Perl can do this sort of thing for you automatically with the −i command−line switch or the closely−relate
$^I variable (see perlrun for more details). Note that −i may require a suffix on some non−Unix system
see the platform−specific documentation that came with your port.

 # Renumber a series of tests from the command line
 perl −pi −e ’s/(^\s+test\s+)\d+/ $1 . ++$count /e’ t/op/taint.t

 # form a script
 local($^I, @ARGV) = (’.bak’, glob("*.c"));
 while (<>) {

if ($. == 1) {
 print "This line should appear at the top of each file\n";
}
s/\b(p)earl\b/${1}erl/i; # Correct typos, preserving case
print;
close ARGV if eof; # Reset $.

 }

If you need to seek to an arbitrary line of a file that changes infrequently, you could build up an index o
positions of where the line ends are in the file. If the file is large, an index of every tenth or hundred
end would allow you to seek and read fairly efficiently. If the file is sorted, try the look.pl library (part o
standard perl distribution).
18−Oct−1998 Version 5.005_02 65

perlfaq5 Perl Programmers Reference Guide perlfaq5

 into

//, as
 so

 and

self.

eed to
In the unique case of deleting lines at the end of a file, you can use tell() and truncate() . The
following code snippet deletes the last line of a file without making a copy or reading the whole file
memory:

open (FH, "+< $file");
 while (<FH>) { $addr = tell(FH) unless eof(FH) }
 truncate(FH, $addr);

Error checking is left as an exercise for the reader.

How do I count the number of lines in a file?
One fairly efficient way is to count newlines in the file. The following program uses a feature of tr/
documented in perlop. If your text file doesn‘t end with a newline, then it‘s not really a proper text file,
this may report one fewer line than you expect.

 $lines = 0;
 open(FILE, $filename) or die "Can’t open ‘$filename’: $!";
 while (sysread FILE, $buffer, 4096) {

$lines += ($buffer =~ tr/\n//);
 }
 close FILE;

This assumes no funny games with newline translations.

How do I make a temporary file name?
Use the new_tmpfile class method from the IO::File module to get a filehandle opened for reading
writing. Use this if you don‘t need to know the file‘s name.

use IO::File;
 $fh = IO::File−>new_tmpfile()
 or die "Unable to make new temporary file: $!";

Or you can use the tmpnam function from the POSIX module to get a filename that you then open your
Use this if you do need to know the file‘s name.

 use Fcntl;
 use POSIX qw(tmpnam);

 # try new temporary filenames until we get one that didn’t already
 # exist; the check should be unnecessary, but you can’t be too careful
 do { $name = tmpnam() }
 until sysopen(FH, $name, O_RDWR|O_CREAT|O_EXCL);

 # install atexit−style handler so that when we exit or die,
 # we automatically delete this temporary file
 END { unlink($name) or die "Couldn’t unlink $name : $!" }

 # now go on to use the file ...

If you‘re committed to doing this by hand, use the process ID and/or the current time−value. If you n
have many temporary files in one process, use a counter:

 BEGIN {
use Fcntl;
my $temp_dir = −d ’/tmp’ ? ’/tmp’ : $ENV{TMP} || $ENV{TEMP};
my $base_name = sprintf("%s/%d−%d−0000", $temp_dir, $$, time());
sub temp_file {
 local *FH;
 my $count = 0;
 until (defined(fileno(FH)) || $count++ > 100) {

$base_name =~ s/−(\d+)$/"−" . (1 + $1)/e;
66 Version 5.005_02 18−Oct−1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

ines, in

le well.

lso have

hash an
sysopen(FH, $base_name, O_WRONLY|O_EXCL|O_CREAT);
 }
 if (defined(fileno(FH))

return (*FH, $base_name);
 } else {

return ();
 }
}

 }

How can I manipulate fixed−record−length files?
The most efficient way is using pack() and unpack() . This is faster than using substr() when take
many, many strings. It is slower for just a few.

Here is a sample chunk of code to break up and put back together again some fixed−format input l
this case from the output of a normal, Berkeley−style ps:

 # sample input line:
 # 15158 p5 T 0:00 perl /home/tchrist/scripts/now−what
 $PS_T = ’A6 A4 A7 A5 A*’;
 open(PS, "ps|");
 print scalar <PS>;
 while (<PS>) {

($pid, $tt, $stat, $time, $command) = unpack($PS_T, $_);
for $var (qw!pid tt stat time command!) {
 print "$var: <$$var>\n";
}
print ’line=’, pack($PS_T, $pid, $tt, $stat, $time, $command),

"\n";
 }

We‘ve used $$var in a way that forbidden by use strict ‘refs’ . That is, we‘ve promoted a string to
a scalar variable reference using symbolic references. This is ok in small programs, but doesn‘t sca
It also only works on global variables, not lexicals.

How can I make a filehandle local to a subroutine? How do I pass filehandles between
subroutines? How do I make an array of filehandles?
The fastest, simplest, and most direct way is to localize the typeglob of the filehandle in question:

 local *TmpHandle;

Typeglobs are fast (especially compared with the alternatives) and reasonably easy to use, but they a
one subtle drawback. If you had, for example, a function named TmpHandle() , or a variable named
%TmpHandle, you just hid it from yourself.

 sub findme {
 local *HostFile;

open(HostFile, "</etc/hosts") or die "no /etc/hosts: $!";
local $_; # <− VERY IMPORTANT

 while (<HostFile>) {
 print if /\b127\.(0\.0\.)?1\b/;
}
*HostFile automatically closes/disappears here

 }

Here‘s how to use this in a loop to open and store a bunch of filehandles. We‘ll use as values of the
ordered pair to make it easy to sort the hash in insertion order.

 @names = qw(motd termcap passwd hosts);
18−Oct−1998 Version 5.005_02 67

perlfaq5 Perl Programmers Reference Guide perlfaq5

). See

le, or
nably

nymous
ee the

. Here

e that

dle, an
 my $i = 0;
 foreach $filename (@names) {

local *FH;
open(FH, "/etc/$filename") || die "$filename: $!";

 $file{$filename} = [$i++, *FH];
 }

 # Using the filehandles in the array
 foreach $name (sort { $file{$a}[0] <=> $file{$b}[0] } keys %file) {
 my $fh = $file{$name}[1];
 my $line = <$fh>;
 print "$name $. $line";
 }

For passing filehandles to functions, the easiest way is to prefer them with a star, as in func(*STDIN
Passing Filehandles in perlfaq7 for details.

If you want to create many, anonymous handles, you should check out the Symbol, FileHand
IO::Handle (etc.) modules. Here‘s the equivalent code with Symbol::gensym, which is reaso
light−weight:

 foreach $filename (@names) {
use Symbol;
my $fh = gensym();
open($fh, "/etc/$filename") || die "open /etc/$filename: $!";

 $file{$filename} = [$i++, $fh];
 }

Or here using the semi−object−oriented FileHandle, which certainly isn‘t light−weight:

 use FileHandle;

 foreach $filename (@names) {
 my $fh = FileHandle−>new("/etc/$filename") or die "$filename: $!";
 $file{$filename} = [$i++, $fh];
 }

Please understand that whether the filehandle happens to be a (probably localized) typeglob or an ano
handle from one of the modules, in no way affects the bizarre rules for managing indirect handles. S
next question.

How can I use a filehandle indirectly?
An indirect filehandle is using something other than a symbol in a place that a filehandle is expected
are ways to get those:

 $fh = SOME_FH; # bareword is strict−subs hostile
 $fh = "SOME_FH"; # strict−refs hostile; same package only
 $fh = *SOME_FH; # typeglob
 $fh = *SOME_FH; # ref to typeglob (bless−able)
 $fh = *SOME_FH{IO}; # blessed IO::Handle from *SOME_FH typeglob

Or to use the new method from the FileHandle or IO modules to create an anonymous filehandle, stor
in a scalar variable, and use it as though it were a normal filehandle.

 use FileHandle;
 $fh = FileHandle−>new();

 use IO::Handle; # 5.004 or higher
 $fh = IO::Handle−>new();

Then use any of those as you would a normal filehandle. Anywhere that Perl is expecting a filehan
68 Version 5.005_02 18−Oct−1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

ains a

rings

use only
ins like

place

nds the

d
suming
named
ld
ch

globs,
indirect filehandle may be used instead. An indirect filehandle is just a scalar variable that cont
filehandle. Functions like print , open , seek , or the functions or the <FH> diamond operator will accept
either a read filehandle or a scalar variable containing one:

 ($ifh, $ofh, $efh) = (*STDIN, *STDOUT, *STDERR);
 print $ofh "Type it: ";
 $got = <$ifh>
 print $efh "What was that: $got";

Of you‘re passing a filehandle to a function, you can write the function in two ways:

 sub accept_fh {
 my $fh = shift;
 print $fh "Sending to indirect filehandle\n";
 }

Or it can localize a typeglob and use the filehandle directly:

 sub accept_fh {
 local *FH = shift;
 print FH "Sending to localized filehandle\n";
 }

Both styles work with either objects or typeglobs of real filehandles. (They might also work with st
under some circumstances, but this is risky.)

 accept_fh(*STDOUT);
 accept_fh($handle);

In the examples above, we assigned the filehandle to a scalar variable before using it. That is beca
simple scalar variables, not expressions or subscripts into hashes or arrays, can be used with built−
print , printf , or the diamond operator. These are illegal and won‘t even compile:

 @fd = (*STDIN, *STDOUT, *STDERR);
 print $fd[1] "Type it: "; # WRONG
 $got = <$fd[0]> # WRONG
 print $fd[2] "What was that: $got"; # WRONG

With print and printf , you get around this by using a block and an expression where you would
the filehandle:

 print { $fd[1] } "funny stuff\n";
 printf { $fd[1] } "Pity the poor %x.\n", 3_735_928_559;
 # Pity the poor deadbeef.

That block is a proper block like any other, so you can put more complicated code there. This se
message out to one of two places:

 $ok = −x "/bin/cat";
 print { $ok ? $fd[1] : $fd[2] } "cat stat $ok\n";
 print { $fd[1+ ($ok || 0)] } "cat stat $ok\n";

This approach of treating print and printf like object methods calls doesn‘t work for the diamon
operator. That‘s because it‘s a real operator, not just a function with a comma−less argument. As
you‘ve been storing typeglobs in your structure as we did above, you can use the built−in function
readline to reads a record just as <> does. Given the initialization shown above for @fd, this wou
work, but only because readline() require a typeglob. It doesn‘t work with objects or strings, whi
might be a bug we haven‘t fixed yet.

 $got = readline($fd[0]);

Let it be noted that the flakiness of indirect filehandles is not related to whether they‘re strings, type
18−Oct−1998 Version 5.005_02 69

perlfaq5 Perl Programmers Reference Guide perlfaq5

n‘t help

pid

s, are

at
s. The
objects, or anything else. It‘s the syntax of the fundamental operators. Playing the object game does
you at all here.

How can I set up a footer format to be used with write() ?
There‘s no builtin way to do this, but perlform has a couple of techniques to make it possible for the intre
hacker.

How can I write() into a string?
See perlform for an swrite() function.

How can I output my numbers with commas added?
This one will do it for you:

 sub commify {
local $_ = shift;
1 while s/^(−?\d+)(\d{3})/$1,$2/;
return $_;

 }

 $n = 23659019423.2331;
 print "GOT: ", commify($n), "\n";

 GOT: 23,659,019,423.2331

You can‘t just:

 s/^(−?\d+)(\d{3})/$1,$2/g;

because you have to put the comma in and then recalculate your position.

Alternatively, this commifies all numbers in a line regardless of whether they have decimal portion
preceded by + or −, or whatever:

 # from Andrew Johnson <ajohnson@gpu.srv.ualberta.ca>
 sub commify {
 my $input = shift;
 $input = reverse $input;
 $input =~ s<(\d\d\d)(?=\d)(?!\d*\.)><$1,>g;
 return reverse $input;
 }

How can I translate tildes (~) in a filename?
Use the <> (glob()) operator, documented in perlfunc. This requires that you have a shell installed th
groks tildes, meaning csh or tcsh or (some versions of) ksh, and thus may have portability problem
Glob::KGlob module (available from CPAN) gives more portable glob functionality.

Within Perl, you may use this directly:

$filename =~ s{
 ^ ~ # find a leading tilde
 (# save this in $1
 [^/] # a non−slash character
 * # repeated 0 or more times (0 means me)
)
}{
 $1
 ? (getpwnam($1))[7]
 : ($ENV{HOME} || $ENV{LOGDIR})
}ex;
70 Version 5.005_02 18−Oct−1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

rs or

. That
clusive

sed by
How come when I open a file read−write it wipes it out?
Because you‘re using something like this, which truncates the file and then gives you read−write access:

 open(FH, "+> /path/name"); # WRONG (almost always)

Whoops. You should instead use this, which will fail if the file doesn‘t exist. Using ">" always clobbe
creates. Using "<" never does either. The "+" doesn‘t change this.

Here are examples of many kinds of file opens. Those using sysopen() all assume

 use Fcntl;

To open file for reading:

 open(FH, "< $path") || die $!;
 sysopen(FH, $path, O_RDONLY) || die $!;

To open file for writing, create new file if needed or else truncate old file:

 open(FH, "> $path") || die $!;
 sysopen(FH, $path, O_WRONLY|O_TRUNC|O_CREAT) || die $!;
 sysopen(FH, $path, O_WRONLY|O_TRUNC|O_CREAT, 0666) || die $!;

To open file for writing, create new file, file must not exist:

 sysopen(FH, $path, O_WRONLY|O_EXCL|O_CREAT) || die $!;
 sysopen(FH, $path, O_WRONLY|O_EXCL|O_CREAT, 0666) || die $!;

To open file for appending, create if necessary:

 open(FH, ">> $path") || die $!;
 sysopen(FH, $path, O_WRONLY|O_APPEND|O_CREAT) || die $!;
 sysopen(FH, $path, O_WRONLY|O_APPEND|O_CREAT, 0666) || die $!;

To open file for appending, file must exist:

 sysopen(FH, $path, O_WRONLY|O_APPEND) || die $!;

To open file for update, file must exist:

 open(FH, "+< $path") || die $!;
 sysopen(FH, $path, O_RDWR) || die $!;

To open file for update, create file if necessary:

 sysopen(FH, $path, O_RDWR|O_CREAT) || die $!;
 sysopen(FH, $path, O_RDWR|O_CREAT, 0666) || die $!;

To open file for update, file must not exist:

 sysopen(FH, $path, O_RDWR|O_EXCL|O_CREAT) || die $!;
 sysopen(FH, $path, O_RDWR|O_EXCL|O_CREAT, 0666) || die $!;

To open a file without blocking, creating if necessary:

 sysopen(FH, "/tmp/somefile", O_WRONLY|O_NDELAY|O_CREAT)
 or die "can’t open /tmp/somefile: $!":

Be warned that neither creation nor deletion of files is guaranteed to be an atomic operation over NFS
is, two processes might both successful create or unlink the same file! Therefore O_EXCL isn‘t so ex
as you might wish.

Why do I sometimes get an "Argument list too long" when I use <*?
The <> operator performs a globbing operation (see above). By default glob() forks csh(1) to do the actual
glob expansion, but csh can‘t handle more than 127 items and so gives the error message Argument list
too long . People who installed tcsh as csh won‘t have this problem, but their users may be surpri
18−Oct−1998 Version 5.005_02 71

perlfaq5 Perl Programmers Reference Guide perlfaq5

e

t‘s best

g "|")
mplete
lone:

r,
moral

e new
 a real

 some

g (or

ed

t‘s why
it.

To get around this, either do the glob yourself with Dirhandle s and patterns, or use a module lik
Glob::KGlob, one that doesn‘t use the shell to do globbing.

Is there a leak/bug in glob() ?
Due to the current implementation on some operating systems, when you use the glob() function or its
angle−bracket alias in a scalar context, you may cause a leak and/or unpredictable behavior. I
therefore to use glob() only in list context.

How can I open a file with a leading ">" or trailing blanks?
Normally perl ignores trailing blanks in filenames, and interprets certain leading characters (or a trailin
to mean something special. To avoid this, you might want to use a routine like this. It makes inco
pathnames into explicit relative ones, and tacks a trailing null byte on the name to make perl leave it a

 sub safe_filename {
local $_ = shift;
return m#^/#

? "$_\0"
: "./$_\0";

 }

 $fn = safe_filename("<<<something really wicked ");
 open(FH, "> $fn") or "couldn’t open $fn: $!";

You could also use the sysopen() function (see sysopen).

How can I reliably rename a file?
Well, usually you just use Perl‘s rename() function. But that may not work everywhere, in particula
renaming files across file systems. If your operating system supports a mv(1) program or its
equivalent, this works:

 rename($old, $new) or system("mv", $old, $new);

It may be more compelling to use the File::Copy module instead. You just copy to the new file to th
name (checking return values), then delete the old one. This isn‘t really the same semantics as
rename() , though, which preserves metainformation like permissions, timestamps, inode info, etc.

The newer version of File::Copy export a move() function.

How can I lock a file?
Perl‘s builtin flock() function (see perlfunc for details) will call flock(2) if that exists, fcntl(2) if it doesn‘t
(on perl version 5.004 and later), and lockf(3) if neither of the two previous system calls exists. On
systems, it may even use a different form of native locking. Here are some gotchas with Perl‘s flock() :

1 Produces a fatal error if none of the three system calls (or their close equivalent) exists.

2 lockf(3) does not provide shared locking, and requires that the filehandle be open for writin
appending, or read/writing).

3 Some versions of flock() can‘t lock files over a network (e.g. on NFS file systems), so you‘d ne
to force the use of fcntl(2) when you build Perl. See the flock entry of perlfunc, and the INSTALL file
in the source distribution for information on building Perl to do this.

What can‘t I just open(FH, "file.lock")?
A common bit of code NOT TO USE is this:

 sleep(3) while −e "file.lock"; # PLEASE DO NOT USE
 open(LCK, "> file.lock"); # THIS BROKEN CODE

This is a classic race condition: you take two steps to do something which must be done in one. Tha
computer hardware provides an atomic test−and−set instruction. In theory, this "ought" to work:
72 Version 5.005_02 18−Oct−1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

st, not
nd

ey‘re a
 more

orry.

r, etc)
f
eve the
 sysopen(FH, "file.lock", O_WRONLY|O_EXCL|O_CREAT)
or die "can’t open file.lock: $!":

except that lamentably, file creation (and deletion) is not atomic over NFS, so this won‘t work (at lea
every time) over the net. Various schemes involving involving link() have been suggested, but these te
to involve busy−wait, which is also subdesirable.

I still don‘t get locking. I just want to increment the number in the file. How can I do this?
Didn‘t anyone ever tell you web−page hit counters were useless? They don‘t count number of hits, th
waste of time, and they serve only to stroke the writer‘s vanity. Better to pick a random number. It‘s
realistic.

Anyway, this is what you can do if you can‘t help yourself.

 use Fcntl;
 sysopen(FH, "numfile", O_RDWR|O_CREAT) or die "can’t open numfile: $!";
 flock(FH, 2) or die "can’t flock numfile: $!";
 $num = <FH> || 0;
 seek(FH, 0, 0) or die "can’t rewind numfile: $!";
 truncate(FH, 0) or die "can’t truncate numfile: $!";
 (print FH $num+1, "\n") or die "can’t write numfile: $!";
 # DO NOT UNLOCK THIS UNTIL YOU CLOSE
 close FH or die "can’t close numfile: $!";

Here‘s a much better web−page hit counter:

 $hits = int((time() − 850_000_000) / rand(1_000));

If the count doesn‘t impress your friends, then the code might. :−)

How do I randomly update a binary file?
If you‘re just trying to patch a binary, in many cases something as simple as this works:

 perl −i −pe ’s{window manager}{window mangler}g’ /usr/bin/emacs

However, if you have fixed sized records, then you might do something more like this:

 $RECSIZE = 220; # size of record, in bytes
 $recno = 37; # which record to update
 open(FH, "+<somewhere") || die "can’t update somewhere: $!";
 seek(FH, $recno * $RECSIZE, 0);
 read(FH, $record, $RECSIZE) == $RECSIZE || die "can’t read record $recno: $!";
 # munge the record
 seek(FH, $recno * $RECSIZE, 0);
 print FH $record;
 close FH;

Locking and error checking are left as an exercise for the reader. Don‘t forget them, or you‘ll be quite s

How do I get a file‘s timestamp in perl?
If you want to retrieve the time at which the file was last read, written, or had its meta−data (owne
changed, you use the −M , −A, or −C filetest operations as documented in perlfunc. These retrieve the age o
the file (measured against the start−time of your program) in days as a floating point number. To retri
"raw" time in seconds since the epoch, you would call the stat function, then use localtime() ,
gmtime() , or POSIX::strftime() to convert this into human−readable form.

Here‘s an example:

 $write_secs = (stat($file))[9];
 printf "file %s updated at %s\n", $file,

scalar localtime($write_secs);
18−Oct−1998 Version 5.005_02 73

perlfaq5 Perl Programmers Reference Guide perlfaq5

ersion

s

ed.

 if you

 use
Perl

al

ssing
If you prefer something more legible, use the File::stat module (part of the standard distribution in v
5.004 and later):

 use File::stat;
 use Time::localtime;
 $date_string = ctime(stat($file)−>mtime);
 print "file $file updated at $date_string\n";

Error checking is left as an exercise for the reader.

How do I set a file‘s timestamp in perl?
You use the utime() function documented in utime. By way of example, here‘s a little program that copie
the read and write times from its first argument to all the rest of them.

 if (@ARGV < 2) {
die "usage: cptimes timestamp_file other_files ...\n";

 }
 $timestamp = shift;
 ($atime, $mtime) = (stat($timestamp))[8,9];
 utime $atime, $mtime, @ARGV;

Error checking is left as an exercise for the reader.

Note that utime() currently doesn‘t work correctly with Win95/NT ports. A bug has been report
Check it carefully before using it on those platforms.

How do I print to more than one file at once?
If you only have to do this once, you can do this:

 for $fh (FH1, FH2, FH3) { print $fh "whatever\n" }

To connect up to one filehandle to several output filehandles, it‘s easiest to use the tee(1) program
have it, and let it take care of the multiplexing:

 open (FH, "| tee file1 file2 file3");

Or even:

 # make STDOUT go to three files, plus original STDOUT
 open (STDOUT, "| tee file1 file2 file3") or die "Teeing off: $!\n";
 print "whatever\n" or die "Writing: $!\n";
 close(STDOUT) or die "Closing: $!\n";

Otherwise you‘ll have to write your own multiplexing print function — or your own tee program — or
Tom Christiansen‘s, at http://www.perl.com/CPAN/authors/id/TOMC/scripts/tct.gz, which is written in
and offers much greater functionality than the stock version.

How can I read in a file by paragraphs?
Use the $\ variable (see perlvar for details). You can either set it to "" to eliminate empty paragraphs
("abc\n\n\n\ndef" , for instance, gets treated as two paragraphs and not three), or "\n\n" to accept
empty paragraphs.

How can I read a single character from a file? From the keyboard?
You can use the builtin getc() function for most filehandles, but it won‘t (easily) work on a termin
device. For STDIN, either use the Term::ReadKey module from CPAN, or use the sample code in getc.

If your system supports POSIX, you can use the following code, which you‘ll note turns off echo proce
as well.

 #!/usr/bin/perl −w
 use strict;
 $| = 1;
74 Version 5.005_02 18−Oct−1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

ce file)
 for (1..4) {
my $got;
print "gimme: ";
$got = getone();
print "−−> $got\n";

 }
 exit;

 BEGIN {
use POSIX qw(:termios_h);

my ($term, $oterm, $echo, $noecho, $fd_stdin);

$fd_stdin = fileno(STDIN);

$term = POSIX::Termios−>new();
$term−>getattr($fd_stdin);
$oterm = $term−>getlflag();

$echo = ECHO | ECHOK | ICANON;
$noecho = $oterm & ~$echo;

sub cbreak {
 $term−>setlflag($noecho);
 $term−>setcc(VTIME, 1);
 $term−>setattr($fd_stdin, TCSANOW);
}

sub cooked {
 $term−>setlflag($oterm);
 $term−>setcc(VTIME, 0);
 $term−>setattr($fd_stdin, TCSANOW);
}

sub getone {
 my $key = ’’;
 cbreak();
 sysread(STDIN, $key, 1);
 cooked();
 return $key;
}

 }

 END { cooked() }

The Term::ReadKey module from CPAN may be easier to use:

 use Term::ReadKey;
 open(TTY, "</dev/tty");
 print "Gimme a char: ";
 ReadMode "raw";
 $key = ReadKey 0, *TTY;
 ReadMode "normal";
 printf "\nYou said %s, char number %03d\n",
 $key, ord $key;

For DOS systems, Dan Carson <dbc@tc.fluke.COM reports the following:

To put the PC in "raw" mode, use ioctl with some magic numbers gleaned from msdos.c (Perl sour
and Ralf Brown‘s interrupt list (comes across the net every so often):
18−Oct−1998 Version 5.005_02 75

perlfaq5 Perl Programmers Reference Guide perlfaq5

ey.
s

 now
tems.

: the
stems:

oked
 $old_ioctl = ioctl(STDIN,0,0); # Gets device info
 $old_ioctl &= 0xff;
 ioctl(STDIN,1,$old_ioctl | 32); # Writes it back, setting bit 5

Then to read a single character:

 sysread(STDIN,$c,1); # Read a single character

And to put the PC back to "cooked" mode:

 ioctl(STDIN,1,$old_ioctl); # Sets it back to cooked mode.

So now you have $c. If ord($c) == 0 , you have a two byte code, which means you hit a special k
Read another byte with sysread(STDIN,$c,1), and that value tells you what combination it wa
according to this table:

 # PC 2−byte keycodes = ^@ + the following:

 # HEX KEYS
 # −−− −−−−
 # 0F SHF TAB
 # 10−19 ALT QWERTYUIOP
 # 1E−26 ALT ASDFGHJKL
 # 2C−32 ALT ZXCVBNM
 # 3B−44 F1−F10
 # 47−49 HOME,UP,PgUp
 # 4B LEFT
 # 4D RIGHT
 # 4F−53 END,DOWN,PgDn,Ins,Del
 # 54−5D SHF F1−F10
 # 5E−67 CTR F1−F10
 # 68−71 ALT F1−F10
 # 73−77 CTR LEFT,RIGHT,END,PgDn,HOME
 # 78−83 ALT 1234567890−=
 # 84 CTR PgUp

This is all trial and error I did a long time ago, I hope I‘m reading the file that worked.

How can I tell if there‘s a character waiting on a filehandle?
The very first thing you should do is look into getting the Term::ReadKey extension from CPAN. It
even has limited support for closed, proprietary (read: not open systems, not POSIX, not Unix, etc) sys

You should also check out the Frequently Asked Questions list in comp.unix.* for things like this
answer is essentially the same. It‘s very system dependent. Here‘s one solution that works on BSD sy

 sub key_ready {
my($rin, $nfd);
vec($rin, fileno(STDIN), 1) = 1;
return $nfd = select($rin,undef,undef,0);

 }

If you want to find out how many characters are waiting, there‘s also the FIONREAD ioctl call to be lo
at.

The h2ph tool that comes with Perl tries to convert C include files to Perl code, which can be require d.
FIONREAD ends up defined as a function in the sys/ioctl.ph file:

 require ’sys/ioctl.ph’;

 $size = pack("L", 0);
 ioctl(FH, FIONREAD(), $size) or die "Couldn’t call ioctl: $!\n";
 $size = unpack("L", $size);
76 Version 5.005_02 18−Oct−1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

ork, but

the
.

re like

ed
If h2ph wasn‘t installed or doesn‘t work for you, you can grep the include files by hand:

 % grep FIONREAD /usr/include/*/*
 /usr/include/asm/ioctls.h:#define FIONREAD 0x541B

Or write a small C program using the editor of champions:

 % cat > fionread.c
 #include <sys/ioctl.h>
 main() {
 printf("%#08x\n", FIONREAD);
 }
 ^D
 % cc −o fionread fionread
 % ./fionread
 0x4004667f

And then hard−code it, leaving porting as an exercise to your successor.

 $FIONREAD = 0x4004667f; # XXX: opsys dependent

 $size = pack("L", 0);
 ioctl(FH, $FIONREAD, $size) or die "Couldn’t call ioctl: $!\n";
 $size = unpack("L", $size);

FIONREAD requires a filehandle connected to a stream, meaning sockets, pipes, and tty devices w
not files.

How do I do a tail −f in perl?
First try

 seek(GWFILE, 0, 1);

The statement seek(GWFILE, 0, 1) doesn‘t change the current position, but it does clear
end−of−file condition on the handle, so that the next <GWFILE makes Perl try again to read something

If that doesn‘t work (it relies on features of your stdio implementation), then you need something mo
this:

for (;;) {
 for ($curpos = tell(GWFILE); <GWFILE>; $curpos = tell(GWFILE)) {
 # search for some stuff and put it into files
 }
 # sleep for a while
 seek(GWFILE, $curpos, 0); # seek to where we had been
}

If this still doesn‘t work, look into the POSIX module. POSIX defines the clearerr() method, which
can remove the end of file condition on a filehandle. The method: read until end of file, clearerr() , read
some more. Lather, rinse, repeat.

How do I dup() a filehandle in Perl?
If you check open, you‘ll see that several of the ways to call open() should do the trick. For example:

 open(LOG, ">>/tmp/logfile");
 open(STDERR, ">&LOG");

Or even with a literal numeric descriptor:

 $fd = $ENV{MHCONTEXTFD};
 open(MHCONTEXT, "<&=$fd"); # like fdopen(3S)

Note that "<&STDIN" makes a copy, but "<&=STDIN" make an alias. That means if you close an alias
18−Oct−1998 Version 5.005_02 77

perlfaq5 Perl Programmers Reference Guide perlfaq5

d
e to,

strings

or

rsions
he
just to

ou‘ll

w" in

ppen to
ectory.
n the
vern

tion is

ted or
art of

uraged
fit. A
handle, all aliases become inaccessible. This is not true with a copied one.

Error checking, as always, has been left as an exercise for the reader.

How do I close a file descriptor by number?
This should rarely be necessary, as the Perl close() function is to be used for things that Perl opene
itself, even if it was a dup of a numeric descriptor, as with MHCONTEXT above. But if you really hav
you may be able to do this:

 require ’sys/syscall.ph’;
 $rc = syscall(&SYS_close, $fd + 0); # must force numeric
 die "can’t sysclose $fd: $!" unless $rc == −1;

Why can‘t I use "C:\temp\foo" in DOS paths? What doesn‘t ‘C:\temp\foo.exe‘ work?
Whoops! You just put a tab and a formfeed into that filename! Remember that within double quoted
("like\this"), the backslash is an escape character. The full list of these is in
Quote and Quote−like Operators. Unsurprisingly, you don‘t have a file called "c:(tab)emp(formfeed)oo"
"c:(tab)emp(formfeed)oo.exe" on your DOS filesystem.

Either single−quote your strings, or (preferably) use forward slashes. Since all DOS and Windows ve
since something like MS−DOS 2.0 or so have treated / and \ the same in a path, you might as well use t
one that doesn‘t clash with Perl — or the POSIX shell, ANSI C and C++, awk, Tcl, Java, or Python,
mention a few.

Why doesn‘t glob("*.*") get all the files?
Because even on non−Unix ports, Perl‘s glob function follows standard Unix globbing semantics. Y
need glob("*") to get all (non−hidden) files. This makes glob() portable.

Why does Perl let me delete read−only files? Why does −i clobber protected files? Isn‘t this a
bug in Perl?
This is elaborately and painstakingly described in the "Far More Than You Ever Wanted To Kno
http://www.perl.com/CPAN/doc/FMTEYEWTK/file−dir−perms .

The executive summary: learn how your filesystem works. The permissions on a file say what can ha
the data in that file. The permissions on a directory say what can happen to the list of files in that dir
If you delete a file, you‘re removing its name from the directory (so the operation depends o
permissions of the directory, not of the file). If you try to write to the file, the permissions of the file go
whether you‘re allowed to.

How do I select a random line from a file?
Here‘s an algorithm from the Camel Book:

 srand;
 rand($.) < 1 && ($line = $_) while <>;

This has a significant advantage in space over reading the whole file in. A simple proof by induc
available upon request if you doubt its correctness.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as an integrated part of the Standard Distribution of Perl or of its documentation (prin
otherwise), this works is covered under Perl‘s Artistic Licence. For separate distributions of all or p
this FAQ outside of that, see perlfaq.

Irrespective of its distribution, all code examples here are public domain. You are permitted and enco
to use this code and any derivatives thereof in your own programs for fun or for profit as you see
simple comment in the code giving credit to the FAQ would be courteous but is not required.
78 Version 5.005_02 18−Oct−1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

gular
led with
 and the

s), and
ments

of the

y
s.

using

ading
NAME
perlfaq6 − Regexps ($Revision: 1.22 $, $Date: 1998/07/16 14:01:07 $)

DESCRIPTION
This section is surprisingly small because the rest of the FAQ is littered with answers involving re
expressions. For example, decoding a URL and checking whether something is a number are hand
regular expressions, but those answers are found elsewhere in this document (in the section on Data
Networking one on networking, to be precise).

How can I hope to use regular expressions without creating illegible and unmaintainable code?
Three techniques can make regular expressions maintainable and understandable.

Comments Outside the Regexp
Describe what you‘re doing and how you‘re doing it, using normal Perl comments.

 # turn the line into the first word, a colon, and the
 # number of characters on the rest of the line
 s/^(\w+)(.*)/ lc($1) . ":" . length($2) /meg;

Comments Inside the Regexp
The /x modifier causes whitespace to be ignored in a regexp pattern (except in a character clas
also allows you to use normal comments there, too. As you can imagine, whitespace and com
help a lot.

/x lets you turn this:

 s{<(?:[^>’"]*|".*?"|’.*?’)+>}{}gs;

into this:

 s{ < # opening angle bracket
 (?: # Non−backreffing grouping paren
 [^>’"] * # 0 or more things that are neither > nor ’ nor "
 | # or else
 ".*?" # a section between double quotes (stingy match)
 | # or else
 ’.*?’ # a section between single quotes (stingy match)
) + # all occurring one or more times
 > # closing angle bracket
 }{}gsx; # replace with nothing, i.e. delete

It‘s still not quite so clear as prose, but it is very useful for describing the meaning of each part
pattern.

Different Delimiters
While we normally think of patterns as being delimited with / characters, they can be delimited b
almost any character. perlre describes this. For example, the s/// above uses braces as delimiter
Selecting another delimiter can avoid quoting the delimiter within the pattern:

 s/\/usr\/local/\/usr\/share/g; # bad delimiter choice
 s#/usr/local#/usr/share#g; # better

I‘m having trouble matching over more than one line. What‘s wrong?
Either you don‘t have more than one line in the string you‘re looking at (probably), or else you aren‘t
the correct modifier(s) on your pattern (possibly).

There are many ways to get multiline data into a string. If you want it to happen automatically while re
input, you‘ll want to set $/ (probably to ‘’ for paragraphs or undef for the whole file) to allow you to read
more than one line at a time.
18−Oct−1998 Version 5.005_02 79

perlfaq6 Perl Programmers Reference Guide perlfaq6

tring.

ragraph
ant
ny

e

n

Read perlre to help you decide which of /s and /m (or both) you might want to use: /s allows dot to
include newline, and /m allows caret and dollar to match next to a newline, not just at the end of the s
You do need to make sure that you‘ve actually got a multiline string in there.

For example, this program detects duplicate words, even when they span line breaks (but not pa
ones). For this example, we don‘t need /s because we aren‘t using dot in a regular expression that we w
to cross line boundaries. Neither do we need /m because we aren‘t wanting caret or dollar to match at a
point inside the record next to newlines. But it‘s imperative that $/ be set to something other than th
default, or else we won‘t actually ever have a multiline record read in.

 $/ = ’’; # read in more whole paragraph, not just one line
 while (<>) {

while (/\b([\w’−]+)(\s+\1)+\b/gi) { # word starts alpha
 print "Duplicate $1 at paragraph $.\n";
}

 }

Here‘s code that finds sentences that begin with "From " (which would be mangled by many mailers):

 $/ = ’’; # read in more whole paragraph, not just one line
 while (<>) {

while (/^From /gm) { # /m makes ^ match next to \n
 print "leading from in paragraph $.\n";
}

 }

Here‘s code that finds everything between START and END in a paragraph:

 undef $/; # read in whole file, not just one line or paragraph
 while (<>) {

while (/START(.*?)END/sm) { # /s makes . cross line boundaries
 print "$1\n";
}

 }

How can I pull out lines between two patterns that are themselves on different lines?
You can use Perl‘s somewhat exotic .. operator (documented in perlop):

 perl −ne ’print if /START/ .. /END/’ file1 file2 ...

If you wanted text and not lines, you would use

 perl −0777 −pe ’print "$1\n" while /START(.*?)END/gs’ file1 file2 ...

But if you want nested occurrences of START through END, you‘ll run up against the problem described i
the question in this section on matching balanced text.

Here‘s another example of using .. :

 while (<>) {
 $in_header = 1 .. /^$/;
 $in_body = /^$/ .. eof();

now choose between them
 } continue {

reset if eof(); # fix $.
 }

I put a regular expression into $/ but it didn‘t work. What‘s wrong?
$/ must be a string, not a regular expression. Awk has to be better for something. :−)

Actually, you could do this if you don‘t mind reading the whole file into memory:
80 Version 5.005_02 18−Oct−1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

m, or

ve the
g being
 undef $/;
 @records = split /your_pattern/, <FH>;

The Net::Telnet module (available from CPAN) has the capability to wait for a pattern in the input strea
timeout if it doesn‘t appear within a certain time.

 ## Create a file with three lines.
 open FH, ">file";
 print FH "The first line\nThe second line\nThe third line\n";
 close FH;

 ## Get a read/write filehandle to it.
 $fh = new FileHandle "+<file";

 ## Attach it to a "stream" object.
 use Net::Telnet;
 $file = new Net::Telnet (−fhopen => $fh);

 ## Search for the second line and print out the third.
 $file−>waitfor(’/second line\n/’);
 print $file−>getline;

How do I substitute case insensitively on the LHS, but preserving case on the RHS?
It depends on what you mean by "preserving case". The following script makes the substitution ha
same case, letter by letter, as the original. If the substitution has more characters than the strin
substituted, the case of the last character is used for the rest of the substitution.

 # Original by Nathan Torkington, massaged by Jeffrey Friedl
 #
 sub preserve_case($$)
 {
 my ($old, $new) = @_;
 my ($state) = 0; # 0 = no change; 1 = lc; 2 = uc
 my ($i, $oldlen, $newlen, $c) = (0, length($old), length($new));
 my ($len) = $oldlen < $newlen ? $oldlen : $newlen;

 for ($i = 0; $i < $len; $i++) {
 if ($c = substr($old, $i, 1), $c =~ /[\W\d_]/) {
 $state = 0;
 } elsif (lc $c eq $c) {
 substr($new, $i, 1) = lc(substr($new, $i, 1));
 $state = 1;
 } else {
 substr($new, $i, 1) = uc(substr($new, $i, 1));
 $state = 2;
 }
 }
 # finish up with any remaining new (for when new is longer than old)
 if ($newlen > $oldlen) {
 if ($state == 1) {
 substr($new, $oldlen) = lc(substr($new, $oldlen));
 } elsif ($state == 2) {
 substr($new, $oldlen) = uc(substr($new, $oldlen));
 }
 }
 return $new;
 }
18−Oct−1998 Version 5.005_02 81

perlfaq6 Perl Programmers Reference Guide perlfaq6

ld

 the

 will

ch time
stant
r entire

e will

en you
t want

s, in
ing like
 $a = "this is a TEsT case";
 $a =~ s/(test)/preserve_case($1, "success")/gie;
 print "$a\n";

This prints:

 this is a SUcCESS case

How can I make \w match national character sets?
See perllocale.

How can I match a locale−smart version of /[a−zA−Z]/ ?
One alphabetic character would be /[^\W\d_]/ , no matter what locale you‘re in. Non−alphabetics wou
be /[\W\d_]/ (assuming you don‘t consider an underscore a letter).

How can I quote a variable to use in a regexp?
The Perl parser will expand $variable and @variable references in regular expressions unless
delimiter is a single quote. Remember, too, that the right−hand side of a s/// substitution is considered a
double−quoted string (see perlop for more details). Remember also that any regexp special characters
be acted on unless you precede the substitution with \Q. Here‘s an example:

 $string = "to die?";
 $lhs = "die?";
 $rhs = "sleep no more";

 $string =~ s/\Q$lhs/$rhs/;
 # $string is now "to sleep no more"

Without the \Q, the regexp would also spuriously match "di".

What is /o really for?
Using a variable in a regular expression match forces a re−evaluation (and perhaps recompilation) ea
through. The /o modifier locks in the regexp the first time it‘s used. This always happens in a con
regular expression, and in fact, the pattern was compiled into the internal format at the same time you
program was.

Use of /o is irrelevant unless variable interpolation is used in the pattern, and if so, the regexp engin
neither know nor care whether the variables change after the pattern is evaluated the very first time.

/o is often used to gain an extra measure of efficiency by not performing subsequent evaluations wh
know it won‘t matter (because you know the variables won‘t change), or more rarely, when you don‘
the regexp to notice if they do.

For example, here‘s a "paragrep" program:

 $/ = ’’; # paragraph mode
 $pat = shift;
 while (<>) {
 print if /$pat/o;
 }

How do I use a regular expression to strip C style comments from a file?
While this actually can be done, it‘s much harder than you‘d think. For example, this one−liner

 perl −0777 −pe ’s{/*.*?*/}{}gs’ foo.c

will work in many but not all cases. You see, it‘s too simple−minded for certain kinds of C program
particular, those with what appear to be comments in quoted strings. For that, you‘d need someth
this, created by Jeffrey Friedl:

 $/ = undef;
 $_ = <>;
82 Version 5.005_02 18−Oct−1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

se they
o
ntheses or

 like

ally the
ediate

l on to

space

 chunk
n in the
 s#/*[^*]**+([^/*][^*]**+)*/|("(\\.|[^"\\])*"|’(\\.|[^’\\])*’|\n+|.[^/"’\\]*)#$
 print;

This could, of course, be more legibly written with the /x modifier, adding whitespace and comments.

Can I use Perl regular expressions to match balanced text?
Although Perl regular expressions are more powerful than "mathematical" regular expressions, becau
feature conveniences like backreferences (\1 and its ilk), they still aren‘t powerful enough. You still need t
use non−regexp techniques to parse balanced text, such as the text enclosed between matching pare
braces, for example.

An elaborate subroutine (for 7−bit ASCII only) to pull out balanced and possibly nested single chars,‘
and ’ , { and } , or (and) can be found in
http://www.perl.com/CPAN/authors/id/TOMC/scripts/pull_quotes.gz .

The C::Scan module from CPAN contains such subs for internal usage, but they are undocumented.

What does it mean that regexps are greedy? How can I get around it?
Most people mean that greedy regexps match as much as they can. Technically speaking, it‘s actu
quantifiers (?, * , +, {}) that are greedy rather than the whole pattern; Perl prefers local greed and imm
gratification to overall greed. To get non−greedy versions of the same quantifiers, use (?? , *? , +?, {}?).

An example:

 $s1 = $s2 = "I am very very cold";
 $s1 =~ s/ve.*y //; # I am cold
 $s2 =~ s/ve.*?y //; # I am very cold

Notice how the second substitution stopped matching as soon as it encountered "y ". The *? quantifier
effectively tells the regular expression engine to find a match as quickly as possible and pass contro
whatever is next in line, like you would if you were playing hot potato.

How do I process each word on each line?
Use the split function:

 while (<>) {
foreach $word (split) {
 # do something with $word here
}

 }

Note that this isn‘t really a word in the English sense; it‘s just chunks of consecutive non−white
characters.

To work with only alphanumeric sequences, you might consider

 while (<>) {
foreach $word (m/(\w+)/g) {
 # do something with $word here
}

 }

How can I print out a word−frequency or line−frequency summary?
To do this, you have to parse out each word in the input stream. We‘ll pretend that by word you mean
of alphabetics, hyphens, or apostrophes, rather than the non−whitespace chunk idea of a word give
previous question:

 while (<>) {
while (/(\b[^\W_\d][\w’−]+\b)/g) { # misses "‘sheep’"
 $seen{$1}++;
}
18−Oct−1998 Version 5.005_02 83

perlfaq6 Perl Programmers Reference Guide perlfaq6

h might
effrey
 }
 while (($word, $count) = each %seen) {

print "$count $word\n";
 }

If you wanted to do the same thing for lines, you wouldn‘t need a regular expression:

 while (<>) {
$seen{$_}++;

 }
 while (($line, $count) = each %seen) {

print "$count $line";
 }

If you want these output in a sorted order, see the section on Hashes.

How can I do approximate matching?
See the module String::Approx available from CPAN.

How do I efficiently match many regular expressions at once?
The following is super−inefficient:

 while (<FH>) {
 foreach $pat (@patterns) {
 if (/$pat/) {
 # do something
 }
 }
 }

Instead, you either need to use one of the experimental Regexp extension modules from CPAN (whic
well be overkill for your purposes), or else put together something like this, inspired from a routine in J
Friedl‘s book:

 sub _bm_build {
 my $condition = shift;
 my @regexp = @_; # this MUST not be local(); need my()
 my $expr = join $condition => map { "m/\$regexp[$_]/o" } (0..$#regexp);
 my $match_func = eval "sub { $expr }";
 die if $@; # propagate $@; this shouldn’t happen!
 return $match_func;
 }

 sub bm_and { _bm_build(’&&’, @_) }
 sub bm_or { _bm_build(’||’, @_) }

 $f1 = bm_and qw{
 xterm
 (?i)window
 };

 $f2 = bm_or qw{
 \b[Ff]ree\b
 \bBSD\B
 (?i)sys(tem)?\s*[V5]\b
 };

 # feed me /etc/termcap, prolly
 while (<>) {
 print "1: $_" if &$f1;
84 Version 5.005_02 18−Oct−1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

ce

p

f

s

ide them

use

 once,

is, with

effrey
 use of
the
 print "2: $_" if &$f2;
 }

Why don‘t word−boundary searches with \b work for me?
Two common misconceptions are that \b is a synonym for \s+ , and that it‘s the edge between whitespa
characters and non−whitespace characters. Neither is correct. \b is the place between a \w character and a
\W character (that is, \b is the edge of a "word"). It‘s a zero−width assertion, just like ^ , $, and all the
other anchors, so it doesn‘t consume any characters. perlre describes the behaviour of all the regex
metacharacters.

Here are examples of the incorrect application of \b , with fixes:

 "two words" =~ /(\w+)\b(\w+)/; # WRONG
 "two words" =~ /(\w+)\s+(\w+)/; # right

 " =matchless= text" =~ /\b=(\w+)=\b/; # WRONG
 " =matchless= text" =~ /=(\w+)=/; # right

Although they may not do what you thought they did, \b and \B can still be quite useful. For an example o
the correct use of \b , see the example of matching duplicate words over multiple lines.

An example of using \B is the pattern \Bis\B . This will find occurrences of "is" on the insides of word
only, as in "thistle", but not "this" or "island".

Why does using $&, $‘, or $’ slow my program down?
Because once Perl sees that you need one of these variables anywhere in the program, it has to prov
on each and every pattern match. The same mechanism that handles these provides for the use of $1, $2,
etc., so you pay the same price for each regexp that contains capturing parentheses. But if you never $&,
etc., in your script, then regexps without capturing parentheses won‘t be penalized. So avoid $&, $‘, and
$‘ if you can, but if you can‘t (and some algorithms really appreciate them), once you‘ve used them
use them at will, because you‘ve already paid the price.

What good is \G in a regular expression?
The notation \G is used in a match or substitution in conjunction the /g modifier (and ignored if there‘s no
/g) to anchor the regular expression to the point just past where the last match occurred, i.e. the pos()
point.

For example, suppose you had a line of text quoted in standard mail and Usenet notation, (that
leading > characters), and you want change each leading > into a corresponding : . You could do so in this
way:

 s/^(>+)/’:’ x length($1)/gem;

Or, using \G , the much simpler (and faster):

 s/\G>/:/g;

A more sophisticated use might involve a tokenizer. The following lex−like example is courtesy of J
Friedl. It did not work in 5.003 due to bugs in that release, but does work in 5.004 or better. (Note the
/c , which prevents a failed match with /g from resetting the search position back to the beginning of
string.)

 while (<>) {
 chomp;
 PARSER: {
 m/ \G(\d+\b)/gcx && do { print "number: $1\n"; redo; };
 m/ \G(\w+)/gcx && do { print "word: $1\n"; redo; };
 m/ \G(\s+)/gcx && do { print "space: $1\n"; redo; };
 m/ \G([^\w\d]+)/gcx && do { print "other: $1\n"; redo; };
 }
 }
18−Oct−1998 Version 5.005_02 85

perlfaq6 Perl Programmers Reference Guide perlfaq6

f the
allow

rst−case
 what‘s

 Friedl

 to the
uage,

t a byte
 whose

e single
XX",

, ’ ‘,

 it is
Of course, that could have been written as

 while (<>) {
 chomp;
 PARSER: {

 if (/\G(\d+\b)/gcx {
print "number: $1\n";
redo PARSER;

 }
 if (/\G(\w+)/gcx {

print "word: $1\n";
redo PARSER;

 }
 if (/\G(\s+)/gcx {

print "space: $1\n";
redo PARSER;

 }
 if (/\G([^\w\d]+)/gcx {

print "other: $1\n";
redo PARSER;

 }
 }
 }

But then you lose the vertical alignment of the regular expressions.

Are Perl regexps DFAs or NFAs? Are they POSIX compliant?
While it‘s true that Perl‘s regular expressions resemble the DFAs (deterministic finite automata) o
egrep(1) program, they are in fact implemented as NFAs (non−deterministic finite automata) to
backtracking and backreferencing. And they aren‘t POSIX−style either, because those guarantee wo
behavior for all cases. (It seems that some people prefer guarantees of consistency, even when
guaranteed is slowness.) See the book "Mastering Regular Expressions" (from O‘Reilly) by Jeffrey
for all the details you could ever hope to know on these matters (a full citation appears in perlfaq2).

What‘s wrong with using grep or map in a void context?
Both grep and map build a return list, regardless of their context. This means you‘re making Perl go
trouble of building up a return list that you then just ignore. That‘s no way to treat a programming lang
you insensitive scoundrel!

How can I match strings with multibyte characters?
This is hard, and there‘s no good way. Perl does not directly support wide characters. It pretends tha
and a character are synonymous. The following set of approaches was offered by Jeffrey Friedl,
article in issue #5 of The Perl Journal talks about this very matter.

Let‘s suppose you have some weird Martian encoding where pairs of ASCII uppercase letters encod
Martian letters (i.e. the two bytes "CV" make a single Martian letter, as do the two bytes "SG", "VS", "
etc.). Other bytes represent single characters, just like ASCII.

So, the string of Martian "I am CVSGXX!" uses 12 bytes to encode the nine characters ‘I‘, ’ ‘, ‘a‘, ‘m‘
‘CV‘, ‘SG‘, ‘XX‘, ‘!’.

Now, say you want to search for the single character /GX/ . Perl doesn‘t know about Martian, so it‘ll find the
two bytes "GX" in the "I am CVSGXX!" string, even though that character isn‘t there: it just looks like
because "SG" is next to "XX", but there‘s no real "GX". This is a big problem.

Here are a few ways, all painful, to deal with it:

 $martian =~ s/([A−Z][A−Z])/ $1 /g; # Make sure adjacent ‘‘martian’’ bytes
 # are no longer adjacent.
86 Version 5.005_02 18−Oct−1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

UC

of these

hether
 Any
 be

 You
 fit. A
 print "found GX!\n" if $martian =~ /GX/;

Or like this:

 @chars = $martian =~ m/([A−Z][A−Z]|[^A−Z])/g;
 # above is conceptually similar to: @chars = $text =~ m/(.)/g;
 #
 foreach $char (@chars) {
 print "found GX!\n", last if $char eq ’GX’;
 }

Or like this:

 while ($martian =~ m/\G([A−Z][A−Z]|.)/gs) { # \G probably unneeded
 print "found GX!\n", last if $1 eq ’GX’;
 }

Or like this:

 die "sorry, Perl doesn’t (yet) have Martian support)−:\n";

In addition, a sample program which converts half−width to full−width katakana (in Shift−JIS or E
encoding) is available from CPAN as

=for Tom make it so

There are many double− (and multi−) byte encodings commonly used these days. Some versions
have 1−, 2−, 3−, and 4−byte characters, all mixed.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation w
printed or otherwise, this work may be distributed only under the terms of Perl‘s Artistic License.
distribution of this file or derivatives thereof outside of that package require that special arrangements
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
are permitted and encouraged to use this code in your own programs for fun or for profit as you see
simple comment in the code giving credit would be courteous but is not required.
18−Oct−1998 Version 5.005_02 87

perlfaq7 Perl Programmers Reference Guide perlfaq7

.

tion if
re into

erl is

ys use

,

e under
utine)
NAME
perlfaq7 − Perl Language Issues ($Revision: 1.21 $, $Date: 1998/06/22 15:20:07 $)

DESCRIPTION
This section deals with general Perl language issues that don‘t clearly fit into any of the other sections

Can I get a BNF/yacc/RE for the Perl language?
There is no BNF, but you can paw your way through the yacc grammar in perly.y in the source distribu
you‘re particularly brave. The grammar relies on very smart tokenizing code, so be prepared to ventu
toke.c as well.

In the words of Chaim Frenkel: "Perl‘s grammar can not be reduced to BNF. The work of parsing p
distributed between yacc, the lexer, smoke and mirrors."

What are all these $@%* punctuation signs, and how do I know when to use them?
They are type specifiers, as detailed in perldata:

 $ for scalar values (number, string or reference)
 @ for arrays
 % for hashes (associative arrays)
 * for all types of that symbol name. In version 4 you used them like
 pointers, but in modern perls you can just use references.

While there are a few places where you don‘t actually need these type specifiers, you should alwa
them.

A couple of others that you‘re likely to encounter that aren‘t really type specifiers are:

 <> are used for inputting a record from a filehandle.
 \ takes a reference to something.

Note that <FILE> is neither the type specifier for files nor the name of the handle. It is the <> operator
applied to the handle FILE. It reads one line (well, record − see $/) from the handle FILE in scalar context
or all lines in list context. When performing open, close, or any other operation besides <> on files, or even
talking about the handle, do not use the brackets. These are correct: eof(FH) , seek(FH, 0, 2) and
"copying from STDIN to FILE".

Do I always/never have to quote my strings or use semicolons and commas?
Normally, a bareword doesn‘t need to be quoted, but in most cases probably should be (and must b
use strict). But a hash key consisting of a simple word (that isn‘t the name of a defined subro
and the left−hand operand to the => operator both count as though they were quoted:

 This is like this
 −−−−−−−−−−−− −−−−−−−−−−−−−−−
 $foo{line} $foo{"line"}
 bar => stuff "bar" => stuff

The final semicolon in a block is optional, as is the final comma in a list. Good style (see perlstyle) says to
put them in except for one−liners:

 if ($whoops) { exit 1 }
 @nums = (1, 2, 3);

 if ($whoops) {
 exit 1;
 }
 @lines = (

"There Beren came from mountains cold",
"And lost he wandered under leaves",

);
88 Version 5.005_02 18−Oct−1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

uld

t

C. The
ing on
 such in

ist

minus,
How do I skip some return values?
One way is to treat the return values as a list and index into it:

 $dir = (getpwnam($user))[7];

Another way is to use undef as an element on the left−hand−side:

 ($dev, $ino, undef, undef, $uid, $gid) = stat($file);

How do I temporarily block warnings?
The $^W variable (documented in perlvar) controls runtime warnings for a block:

 {
local $^W = 0; # temporarily turn off warnings
$a = $b + $c; # I know these might be undef

 }

Note that like all the punctuation variables, you cannot currently use my() on $^W, only local() .

A new use warnings pragma is in the works to provide finer control over all this. The curious sho
check the perl5−porters mailing list archives for details.

What‘s an extension?
A way of calling compiled C code from Perl. Reading perlxstut is a good place to learn more abou
extensions.

Why do Perl operators have different precedence than C operators?
Actually, they don‘t. All C operators that Perl copies have the same precedence in Perl as they do in
problem is with operators that C doesn‘t have, especially functions that give a list context to everyth
their right, eg print, chmod, exec, and so on. Such functions are called "list operators" and appear as
the precedence table in perlop.

A common mistake is to write:

 unlink $file || die "snafu";

This gets interpreted as:

 unlink ($file || die "snafu");

To avoid this problem, either put in extra parentheses or use the super low precedence or operator:

 (unlink $file) || die "snafu";
 unlink $file or die "snafu";

The "English" operators (and , or , xor , and not) deliberately have precedence lower than that of l
operators for just such situations as the one above.

Another operator with surprising precedence is exponentiation. It binds more tightly even than unary
making −2**2 product a negative not a positive four. It is also right−associating, meaning that 2**3**2 is
two raised to the ninth power, not eight squared.

Although it has the same precedence as in C, Perl‘s ?: operator produces an lvalue. This assigns $x to
either $a or $b, depending on the trueness of $maybe:

 ($maybe ? $a : $b) = $x;

How do I declare/create a structure?
In general, you don‘t "declare" a structure. Just use a (probably anonymous) hash reference. See perlref and
perldsc for details. Here‘s an example:

 $person = {}; # new anonymous hash
 $person−>{AGE} = 24; # set field AGE to 24
 $person−>{NAME} = "Nat"; # set field NAME to "Nat"
18−Oct−1998 Version 5.005_02 89

perlfaq7 Perl Programmers Reference Guide perlfaq7

 would

change
If you‘re looking for something a bit more rigorous, try perltoot.

How do I create a module?
A module is a package that lives in a file of the same name. For example, the Hello::There module
live in Hello/There.pm. For details, read perlmod. You‘ll also find Exporter helpful. If you‘re writing a C
or mixed−language module with both C and Perl, then you should study perlxstut.

Here‘s a convenient template you might wish you use when starting your own module. Make sure to
the names appropriately.

 package Some::Module; # assumes Some/Module.pm

 use strict;

 BEGIN {
use Exporter ();
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

set the version for version checking; uncomment to use
$VERSION = 1.00;

if using RCS/CVS, this next line may be preferred,
but beware two−digit versions.
$VERSION = do{my@r=q$Revision: 1.21 $=~/\d+/g;sprintf ’%d.’.’%02d’x$#r,@r};

@ISA = qw(Exporter);
@EXPORT = qw(&func1 &func2 &func3);
%EXPORT_TAGS = (); # eg: TAG => [qw!name1 name2!],

your exported package globals go here,
as well as any optionally exported functions
@EXPORT_OK = qw($Var1 %Hashit);

 }
 use vars @EXPORT_OK;

 # non−exported package globals go here
 use vars qw(@more $stuff);

 # initialize package globals, first exported ones
 $Var1 = ’’;
 %Hashit = ();

 # then the others (which are still accessible as $Some::Module::stuff)
 $stuff = ’’;
 @more = ();

 # all file−scoped lexicals must be created before
 # the functions below that use them.

 # file−private lexicals go here
 my $priv_var = ’’;
 my %secret_hash = ();

 # here’s a file−private function as a closure,
 # callable as &$priv_func; it cannot be prototyped.
 my $priv_func = sub {
 # stuff goes here.
 };

 # make all your functions, whether exported or not;
 # remember to put something interesting in the {} stubs
 sub func1 {} # no prototype
90 Version 5.005_02 18−Oct−1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

m

you

ented
. These
ing).

ction be
are not
osures,
rts but

e
t

n
requires
nction
 sub func2() {} # proto’d void
 sub func3($$) {} # proto’d to 2 scalars

 # this one isn’t exported, but could be called!
 sub func4(\%) {} # proto’d to 1 hash ref

 END { } # module clean−up code here (global destructor)

 1; # modules must return true

How do I create a class?
See perltoot for an introduction to classes and objects, as well as perlobj and perlbot.

How can I tell if a variable is tainted?
See Laundering and Detecting Tainted Data in perlsec. Here‘s an example (which doesn‘t use any syste
calls, because the kill() is given no processes to signal):

 sub is_tainted {
return ! eval { join(’’,@_), kill 0; 1; };

 }

This is not −w clean, however. There is no −w clean way to detect taintedness − take this as a hint that
should untaint all possibly−tainted data.

What‘s a closure?
Closures are documented in perlref.

Closure is a computer science term with a precise but hard−to−explain meaning. Closures are implem
in Perl as anonymous subroutines with lasting references to lexical variables outside their own scopes
lexicals magically refer to the variables that were around when the subroutine was defined (deep bind

Closures make sense in any programming language where you can have the return value of a fun
itself a function, as you can in Perl. Note that some languages provide anonymous functions but
capable of providing proper closures; the Python language, for example. For more information on cl
check out any textbook on functional programming. Scheme is a language that not only suppo
encourages closures.

Here‘s a classic function−generating function:

 sub add_function_generator {
 return sub { shift + shift };
 }

 $add_sub = add_function_generator();
 $sum = $add_sub−>(4,5); # $sum is 9 now.

The closure works as a function template with some customization slots left out to be filled later. Th
anonymous subroutine returned by add_function_generator() isn‘t technically a closure because i
refers to no lexicals outside its own scope.

Contrast this with the following make_adder() function, in which the returned anonymous functio
contains a reference to a lexical variable outside the scope of that function itself. Such a reference
that Perl return a proper closure, thus locking in for all time the value that the lexical had when the fu
was created.

 sub make_adder {
 my $addpiece = shift;
 return sub { shift + $addpiece };
 }

 $f1 = make_adder(20);
 $f2 = make_adder(555);
18−Oct−1998 Version 5.005_02 91

perlfaq7 Perl Programmers Reference Guide perlfaq7

ode into

ed by

ay, but

nymous

e

, but
Now &$f1($n) is always 20 plus whatever $n you pass in, whereas &$f2($n) is always 555 plus
whatever $n you pass in. The $addpiece in the closure sticks around.

Closures are often used for less esoteric purposes. For example, when you want to pass in a bit of c
a function:

 my $line;
 timeout(30, sub { $line = <STDIN> });

If the code to execute had been passed in as a string, ‘$line = <STDIN>’ , there would have been no
way for the hypothetical timeout() function to access the lexical variable $line back in its caller‘s
scope.

What is variable suicide and how can I prevent it?
Variable suicide is when you (temporarily or permanently) lose the value of a variable. It is caus
scoping through my() and local() interacting with either closures or aliased foreach() interator
variables and subroutine arguments. It used to be easy to inadvertently lose a variable‘s value this w
now it‘s much harder. Take this code:

 my $f = "foo";
 sub T {
 while ($i++ < 3) { my $f = $f; $f .= "bar"; print $f, "\n" }
 }
 T;
 print "Finally $f\n";

The $f that has "bar" added to it three times should be a new $f (my $f should create a new local variable
each time through the loop). It isn‘t, however. This is a bug, and will be fixed.

How can I pass/return a {Function, FileHandle, Array, Hash, Method, Regexp}?
With the exception of regexps, you need to pass references to these objects. See
Pass by Reference in perlsub for this particular question, and perlref for information on references.

Passing Variables and Functions
Regular variables and functions are quite easy: just pass in a reference to an existing or ano
variable or function:

 func(\$some_scalar);

 func(\$some_array);
 func([1 .. 10]);

 func(\%some_hash);
 func({ this => 10, that => 20 });

 func(\&some_func);
 func(sub { $_[0] ** $_[1] });

Passing Filehandles
To pass filehandles to subroutines, use the *FH or *FH notations. These are "typeglobs" − se
Typeglobs and Filehandles in perldata and especially Pass by Reference in perlsub for more
information.

Here‘s an excerpt:

If you‘re passing around filehandles, you could usually just use the bare typeglob, like *STDOUT
typeglobs references would be better because they‘ll still work properly under use strict
‘refs’ . For example:

 splutter(*STDOUT);
 sub splutter {
 my $fh = shift;
92 Version 5.005_02 18−Oct−1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

ression
pass
xample

l and the
 print $fh "her um well a hmmm\n";
 }

 $rec = get_rec(*STDIN);
 sub get_rec {
 my $fh = shift;
 return scalar <$fh>;
 }

If you‘re planning on generating new filehandles, you could do this:

 sub openit {
 my $name = shift;
 local *FH;
 return open (FH, $path) ? *FH : undef;
 }
 $fh = openit(’< /etc/motd’);
 print <$fh>;

Passing Regexps
To pass regexps around, you‘ll need to either use one of the highly experimental regular exp
modules from CPAN (Nick Ing−Simmons‘s Regexp or Ilya Zakharevich‘s Devel::Regexp),
around strings and use an exception−trapping eval, or else be be very, very clever. Here‘s an e
of how to pass in a string to be regexp compared:

 sub compare($$) {
 my ($val1, $regexp) = @_;
 my $retval = eval { $val =~ /$regexp/ };

die if $@;
return $retval;

 }

 $match = compare("old McDonald", q/d.*D/);

Make sure you never say something like this:

 return eval "\$val =~ /$regexp/"; # WRONG

or someone can sneak shell escapes into the regexp due to the double interpolation of the eva
double−quoted string. For example:

 $pattern_of_evil = ’danger ${ system("rm −rf * &") } danger’;

 eval "\$string =~ /$pattern_of_evil/";

Those preferring to be very, very clever might see the O‘Reilly book, Mastering Regular Expressions,
by Jeffrey Friedl. Page 273‘s Build_MatchMany_Function() is particularly interesting. A
complete citation of this book is given in perlfaq2.

Passing Methods
To pass an object method into a subroutine, you can do this:

 call_a_lot(10, $some_obj, "methname")
 sub call_a_lot {
 my ($count, $widget, $trick) = @_;
 for (my $i = 0; $i < $count; $i++) {
 $widget−>$trick();
 }
 }

Or you can use a closure to bundle up the object and its method call and arguments:
18−Oct−1998 Version 5.005_02 93

perlfaq7 Perl Programmers Reference Guide perlfaq7

rl

her a
 that

e

t

ge.
e same

n

s or

−time,
 or
 my $whatnot = sub { $some_obj−>obfuscate(@args) };
 func($whatnot);
 sub func {
 my $code = shift;
 &$code();
 }

You could also investigate the can() method in the UNIVERSAL class (part of the standard pe
distribution).

How do I create a static variable?
As with most things in Perl, TMTOWTDI. What is a "static variable" in other languages could be eit
function−private variable (visible only within a single function, retaining its value between calls to
function), or a file−private variable (visible only to functions within the file it was declared in) in Perl.

Here‘s code to implement a function−private variable:

 BEGIN {
 my $counter = 42;
 sub prev_counter { return −−$counter }
 sub next_counter { return $counter++ }
 }

Now prev_counter() and next_counter() share a private variable $counter that was initialized
at compile time.

To declare a file−private variable, you‘ll still use a my() , putting it at the outer scope level at the top of th
file. Assume this is in file Pax.pm:

 package Pax;
 my $started = scalar(localtime(time()));

 sub begun { return $started }

When use Pax or require Pax loads this module, the variable will be initialized. It won‘t ge
garbage−collected the way most variables going out of scope do, because the begun() function cares about
it, but no one else can get it. It is not called $Pax::started because its scope is unrelated to the packa
 It‘s scoped to the file. You could conceivably have several packages in that same file all accessing th
private variable, but another file with the same package couldn‘t get to it.

See Peristent Private Variables in perlsub for details.

What‘s the difference between dynamic and lexical (static) scoping? Between local() and
my() ?
local($x) saves away the old value of the global variable $x, and assigns a new value for the duratio
of the subroutine, which is visible in other functions called from that subroutine. This is done at run−time,
so is called dynamic scoping. local() always affects global variables, also called package variable
dynamic variables.

my($x) creates a new variable that is only visible in the current subroutine. This is done at compile
so is called lexical or static scoping. my() always affects private variables, also called lexical variables
(improperly) static(ly scoped) variables.

For instance:

 sub visible {
print "var has value $var\n";

 }

 sub dynamic {
local $var = ’local’; # new temporary value for the still−global
visible(); # variable called $var
94 Version 5.005_02 18−Oct−1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

able

me,

in scope
 names
les (i.e.,
 are
wer to

f
eneral,
) but
efined
 }

 sub lexical {
my $var = ’private’; # new private variable, $var
visible(); # (invisible outside of sub scope)

 }

 $var = ’global’;

 visible(); # prints global
 dynamic(); # prints local
 lexical(); # prints global

Notice how at no point does the value "private" get printed. That‘s because $var only has that value within
the block of the lexical() function, and it is hidden from called subroutine.

In summary, local() doesn‘t make what you think of as private, local variables. It gives a global vari
a temporary value. my() is what you‘re looking for if you want private variables.

See "Private Variables via my() " and "Temporary Values via local() " for excruciating details.

How can I access a dynamic variable while a similarly named lexical is in scope?
You can do this via symbolic references, provided you haven‘t set use strict "refs" . So instead of
$var, use ${‘var‘}.

 local $var = "global";
 my $var = "lexical";

 print "lexical is $var\n";

 no strict ’refs’;
 print "global is ${’var’}\n";

If you know your package, you can just mention it explicitly, as in $Some_Pack::var. Note that the
notation $::var is not the dynamic $var in the current package, but rather the one in the main package,
as though you had written $main::var. Specifying the package directly makes you hard−code its na
but it executes faster and avoids running afoul of use strict "refs" .

What‘s the difference between deep and shallow binding?
In deep binding, lexical variables mentioned in anonymous subroutines are the same ones that were
when the subroutine was created. In shallow binding, they are whichever variables with the same
happen to be in scope when the subroutine is called. Perl always uses deep binding of lexical variab
those created with my()). However, dynamic variables (aka global, local, or package variables)
effectively shallowly bound. Consider this just one more reason not to use them. See the ans
"What‘s a closure?".

Why doesn‘t "my($foo) = <FILE;" work right?
my() and local() give list context to the right hand side of =. The <FH> read operation, like so many o
Perl‘s functions and operators, can tell which context it was called in and behaves appropriately. In g
the scalar() function can help. This function does nothing to the data itself (contrary to popular myth
rather tells its argument to behave in whatever its scalar fashion is. If that function doesn‘t have a d
scalar behavior, this of course doesn‘t help you (such as with sort()).

To enforce scalar context in this particular case, however, you need merely omit the parentheses:

 local($foo) = <FILE>; # WRONG
 local($foo) = scalar(<FILE>); # ok
 local $foo = <FILE>; # right

You should probably be using lexical variables anyway, although the issue is the same here:

 my($foo) = <FILE>; # WRONG
18−Oct−1998 Version 5.005_02 95

perlfaq7 Perl Programmers Reference Guide perlfaq7

you
 strictly
st

is

 old

he
tching,
gh it‘s

 it look
red in
 my $foo = <FILE>; # right

How do I redefine a builtin function, operator, or method?
Why do you want to do that? :−)

If you want to override a predefined function, such as open() , then you‘ll have to import the new definition
from a different module. See Overriding Builtin Functions in perlsub. There‘s also an example in
Class::Template in perltoot.

If you want to overload a Perl operator, such as + or ** , then you‘ll want to use the use overload
pragma, documented in overload.

If you‘re talking about obscuring method calls in parent classes, see Overridden Methods in perltoot.

What‘s the difference between calling a function as &foo and foo() ?
When you call a function as &foo, you allow that function access to your current @_ values, and
by−pass prototypes. That means that the function doesn‘t get an empty @_, it gets yours! While not
speaking a bug (it‘s documented that way in perlsub), it would be hard to consider this a feature in mo
cases.

When you call your function as &foo() , then you do get a new @_, but prototyping is still circumvented.

Normally, you want to call a function using foo() . You may only omit the parentheses if the function
already known to the compiler because it already saw the definition (use but not require), or via a
forward reference or use subs declaration. Even in this case, you get a clean @_ without any of the
values leaking through where they don‘t belong.

How do I create a switch or case statement?
This is explained in more depth in the perlsyn. Briefly, there‘s no official case statement, because of t
variety of tests possible in Perl (numeric comparison, string comparison, glob comparison, regexp ma
overloaded comparisons, ...). Larry couldn‘t decide how best to do this, so he left it out, even thou
been on the wish list since perl1.

The general answer is to write a construct like this:

 for ($variable_to_test) {
if (/pat1/) { } # do something
elsif (/pat2/) { } # do something else
elsif (/pat3/) { } # do something else
else { } # default

 }

Here‘s a simple example of a switch based on pattern matching, this time lined up in a way to make
more like a switch statement. We‘ll do a multi−way conditional based on the type of reference sto
$whatchamacallit:

 SWITCH: for (ref $whatchamacallit) {

/^$/ && die "not a reference";

/SCALAR/ && do {
print_scalar($$ref);
last SWITCH;

};

/ARRAY/ && do {
print_array(@$ref);
last SWITCH;

};

/HASH/ && do {
print_hash(%$ref);
96 Version 5.005_02 18−Oct−1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

.

ay you
allows
if you
last SWITCH;
};

/CODE/ && do {
warn "can’t print function ref";
last SWITCH;

};

DEFAULT

warn "User defined type skipped";

 }

See perlsyn/"Basic BLOCKs and Switch Statements" for many other examples in this style

Sometimes you should change the positions of the constant and the variable. For example, let‘s s
wanted to test which of many answers you were given, but in a case−insensitive way that also
abbreviations. You can use the following technique if the strings all start with different characters, or
want to arrange the matches so that one takes precedence over another, as "SEND" has precedence over
"STOP" here:

 chomp($answer = <>);
 if ("SEND" =~ /^\Q$answer/i) { print "Action is send\n" }
 elsif ("STOP" =~ /^\Q$answer/i) { print "Action is stop\n" }
 elsif ("ABORT" =~ /^\Q$answer/i) { print "Action is abort\n" }
 elsif ("LIST" =~ /^\Q$answer/i) { print "Action is list\n" }
 elsif ("EDIT" =~ /^\Q$answer/i) { print "Action is edit\n" }

A totally different approach is to create a hash of function references.

 my %commands = (
 "happy" => \&joy,
 "sad", => \&sullen,
 "done" => sub { die "See ya!" },
 "mad" => \&angry,
);

 print "How are you? ";
 chomp($string = <STDIN>);
 if ($commands{$string}) {
 $commands{$string}−>();
 } else {
 print "No such command: $string\n";
 }

How can I catch accesses to undefined variables/functions/methods?
The AUTOLOAD method, discussed in Autoloading in perlsub and
AUTOLOAD: Proxy Methods in perltoot, lets you capture calls to undefined functions and methods.

When it comes to undefined variables that would trigger a warning under −w, you can use a handler to trap
the pseudo−signal __WARN__ like this:

 $SIG{__WARN__} = sub {

for ($_[0]) { # voici un switch statement

 /Use of uninitialized value/ && do {
promote warning to a fatal
die $_;

 };
18−Oct−1998 Version 5.005_02 97

perlfaq7 Perl Programmers Reference Guide perlfaq7

, or the

ure your
e

 were

tement,

hether
 Any
 # other warning cases to catch could go here;

 warn $_;
}

 };

Why can‘t a method included in this same file be found?
Some possible reasons: your inheritance is getting confused, you‘ve misspelled the method name
object is of the wrong type. Check out perltoot for details on these. You may also use print
ref($object) to find out the class $object was blessed into.

Another possible reason for problems is because you‘ve used the indirect object syntax (eg, find Guru
"Samy") on a class name before Perl has seen that such a package exists. It‘s wisest to make s
packages are all defined before you start using them, which will be taken care of if you use thuse
statement instead of require . If not, make sure to use arrow notation (eg, Guru−>find("Samy"))
instead. Object notation is explained in perlobj.

Make sure to read about creating modules in perlmod and the perils of indirect objects in
WARNING in perlobj.

How can I find out my current package?
If you‘re just a random program, you can do this to find out what the currently compiled package is:

 my $packname = __PACKAGE__;

But if you‘re a method and you want to print an error message that includes the kind of object you
called on (which is not necessarily the same as the one in which you were compiled):

 sub amethod {
my $self = shift;
my $class = ref($self) || $self;
warn "called me from a $class object";

 }

How can I comment out a large block of perl code?
Use embedded POD to discard it:

 # program is here

 =for nobody
 This paragraph is commented out

 # program continues

 =begin comment text

 all of this stuff

 here will be ignored
 by everyone

 =end comment text

 =cut

This can‘t go just anywhere. You have to put a pod directive where the parser is expecting a new sta
not just in the middle of an expression or some other arbitrary yacc grammar production.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation w
printed or otherwise, this work may be distributed only under the terms of Perl‘s Artistic License.
98 Version 5.005_02 18−Oct−1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

 be

 You
 fit. A
distribution of this file or derivatives thereof outside of that package require that special arrangements
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
are permitted and encouraged to use this code in your own programs for fun or for profit as you see
simple comment in the code giving credit would be courteous but is not required.
18−Oct−1998 Version 5.005_02 99

perlfaq8 Perl Programmers Reference Guide perlfaq8

olves
vices),

was

ant to

Try the

ice. If
odule

se the
NAME
perlfaq8 − System Interaction ($Revision: 1.26 $, $Date: 1998/08/05 12:20:28 $)

DESCRIPTION
This section of the Perl FAQ covers questions involving operating system interaction. This inv
interprocess communication (IPC), control over the user−interface (keyboard, screen and pointing de
and most anything else not related to data manipulation.

Read the FAQs and documentation specific to the port of perl to your operating system (eg, perlvms,
perlplan9, ...). These should contain more detailed information on the vagaries of your perl.

How do I find out which operating system I‘m running under?
The $^O variable ($OSNAME if you use English) contains the operating system that your perl binary
built for.

How come exec() doesn‘t return?
Because that‘s what it does: it replaces your currently running program with a different one. If you w
keep going (as is probably the case if you‘re asking this question) use system() instead.

How do I do fancy stuff with the keyboard/screen/mouse?
How you access/control keyboards, screens, and pointing devices ("mice") is system−dependent.
following modules:

Keyboard
 Term::Cap Standard perl distribution
 Term::ReadKey CPAN
 Term::ReadLine::Gnu CPAN
 Term::ReadLine::Perl CPAN
 Term::Screen CPAN

Screen
 Term::Cap Standard perl distribution
 Curses CPAN
 Term::ANSIColor CPAN

Mouse
 Tk CPAN

Some of these specific cases are shown below.

How do I print something out in color?
In general, you don‘t, because you don‘t know whether the recipient has a color−aware display dev
you know that they have an ANSI terminal that understands color, you can use the Term::ANSIColor m
from CPAN:

 use Term::ANSIColor;
 print color("red"), "Stop!\n", color("reset");
 print color("green"), "Go!\n", color("reset");

Or like this:

 use Term::ANSIColor qw(:constants);
 print RED, "Stop!\n", RESET;
 print GREEN, "Go!\n", RESET;

How do I read just one key without waiting for a return key?
Controlling input buffering is a remarkably system−dependent matter. If most systems, you can just u
stty command as shown in getc, but as you see, that‘s already getting you into portability snags.
100 Version 5.005_02 18−Oct−1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

nt than

CPAN
suming

OSIX
 open(TTY, "+</dev/tty") or die "no tty: $!";
 system "stty cbreak </dev/tty >/dev/tty 2>&1";
 $key = getc(TTY); # perhaps this works
 # OR ELSE
 sysread(TTY, $key, 1); # probably this does
 system "stty −cbreak </dev/tty >/dev/tty 2>&1";

The Term::ReadKey module from CPAN offers an easy−to−use interface that should be more efficie
shelling out to stty for each key. It even includes limited support for Windows.

 use Term::ReadKey;
 ReadMode(’cbreak’);
 $key = ReadKey(0);
 ReadMode(’normal’);

However, that requires that you have a working C compiler and can use it to build and install a
module. Here‘s a solution using the standard POSIX module, which is already on your systems (as
your system supports POSIX).

 use HotKey;
 $key = readkey();

And here‘s the HotKey module, which hides the somewhat mystifying calls to manipulate the P
termios structures.

 # HotKey.pm
 package HotKey;

 @ISA = qw(Exporter);
 @EXPORT = qw(cbreak cooked readkey);

 use strict;
 use POSIX qw(:termios_h);
 my ($term, $oterm, $echo, $noecho, $fd_stdin);

 $fd_stdin = fileno(STDIN);
 $term = POSIX::Termios−>new();
 $term−>getattr($fd_stdin);
 $oterm = $term−>getlflag();

 $echo = ECHO | ECHOK | ICANON;
 $noecho = $oterm & ~$echo;

 sub cbreak {
 $term−>setlflag($noecho); # ok, so i don’t want echo either
 $term−>setcc(VTIME, 1);
 $term−>setattr($fd_stdin, TCSANOW);
 }

 sub cooked {
 $term−>setlflag($oterm);
 $term−>setcc(VTIME, 0);
 $term−>setattr($fd_stdin, TCSANOW);
 }

 sub readkey {
 my $key = ’’;
 cbreak();
 sysread(STDIN, $key, 1);
 cooked();
 return $key;
18−Oct−1998 Version 5.005_02 101

perlfaq8 Perl Programmers Reference Guide perlfaq8

 from

m 100

o use

ght in
 }

 END { cooked() }

 1;

How do I check whether input is ready on the keyboard?
The easiest way to do this is to read a key in nonblocking mode with the Term::ReadKey module
CPAN, passing it an argument of −1 to indicate not to block:

 use Term::ReadKey;

 ReadMode(’cbreak’);

 if (defined ($char = ReadKey(−1))) {
 # input was waiting and it was $char
 } else {
 # no input was waiting
 }

 ReadMode(’normal’); # restore normal tty settings

How do I clear the screen?
If you only have to so infrequently, use system :

 system("clear");

If you have to do this a lot, save the clear string so you can print it 100 times without calling a progra
times:

 $clear_string = ‘clear‘;
 print $clear_string;

If you‘re planning on doing other screen manipulations, like cursor positions, etc, you might wish t
Term::Cap module:

 use Term::Cap;
 $terminal = Term::Cap−>Tgetent({OSPEED => 9600});
 $clear_string = $terminal−>Tputs(’cl’);

How do I get the screen size?
If you have Term::ReadKey module installed from CPAN, you can use it to fetch the width and hei
characters and in pixels:

 use Term::ReadKey;
 ($wchar, $hchar, $wpixels, $hpixels) = GetTerminalSize();

This is more portable than the raw ioctl , but not as illustrative:

 require ’sys/ioctl.ph’;
 die "no TIOCGWINSZ " unless defined &TIOCGWINSZ;
 open(TTY, "+</dev/tty") or die "No tty: $!";
 unless (ioctl(TTY, &TIOCGWINSZ, $winsize=’’)) {
 die sprintf "$0: ioctl TIOCGWINSZ (%08x: $!)\n", &TIOCGWINSZ;
 }
 ($row, $col, $xpixel, $ypixel) = unpack(’S4’, $winsize);
 print "(row,col) = ($row,$col)";
 print " (xpixel,ypixel) = ($xpixel,$ypixel)" if $xpixel || $ypixel;
 print "\n";
102 Version 5.005_02 18−Oct−1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

the

 to use

l ports
everal

tocol.

te (see
ing
rl

f perl,
ave
s a

for

lly to

How do I ask the user for a password?
(This question has nothing to do with the web. See a different FAQ for that.)

There‘s an example of this in crypt). First, you put the terminal into "no echo" mode, then just read
password normally. You may do this with an old−style ioctl() function, POSIX terminal control (see
POSIX, and Chapter 7 of the Camel), or a call to the stty program, with varying degrees of portability.

You can also do this for most systems using the Term::ReadKey module from CPAN, which is easier
and in theory more portable.

 use Term::ReadKey;

 ReadMode(’noecho’);
 $password = ReadLine(0);

How do I read and write the serial port?
This depends on which operating system your program is running on. In the case of Unix, the seria
will be accessible through files in /dev; on other systems, the devices names will doubtless differ. S
problem areas common to all device interaction are the following

lockfiles
Your system may use lockfiles to control multiple access. Make sure you follow the correct pro
Unpredictable behaviour can result from multiple processes reading from one device.

open mode
If you expect to use both read and write operations on the device, you‘ll have to open it for upda
open in perlfunc for details). You may wish to open it without running the risk of blocking by us
sysopen() and O_RDWR|O_NDELAY|O_NOCTTY from the Fcntl module (part of the standard pe
distribution). See sysopen in perlfunc for more on this approach.

end of line
Some devices will be expecting a "\r" at the end of each line rather than a "\n". In some ports o
"\r" and "\n" are different from their usual (Unix) ASCII values of "\012" and "\015". You may h
to give the numeric values you want directly, using octal ("\015"), hex ("0x0D"), or a
control−character specification ("\cM").

 print DEV "atv1\012"; # wrong, for some devices
 print DEV "atv1\015"; # right, for some devices

Even though with normal text files, a "\n" will do the trick, there is still no unified scheme
terminating a line that is portable between Unix, DOS/Win, and Macintosh, except to terminateALL
line ends with "\015\012", and strip what you don‘t need from the output. This applies especia
socket I/O and autoflushing, discussed next.

flushing output
If you expect characters to get to your device when you print() them, you‘ll want to autoflush that
filehandle. You can use select() and the $| variable to control autoflushing (see $| and select):

 $oldh = select(DEV);
 $| = 1;
 select($oldh);

You‘ll also see code that does this without a temporary variable, as in

 select((select(DEV), $| = 1)[0]);

Or if you don‘t mind pulling in a few thousand lines of code just because you‘re afraid of a little$|
variable:

 use IO::Handle;
 DEV−>autoflush(1);
18−Oct−1998 Version 5.005_02 103

perlfaq8 Perl Programmers Reference Guide perlfaq8

 and

o
g
t

much
nctions

−way
g else
ck can

change

STDIN,
appen.

rent.

 the
rocess
ue with
As mentioned in the previous item, this still doesn‘t work when using socket I/O between Unix
Macintosh. You‘ll need to hardcode your line terminators, in that case.

non−blocking input
If you are doing a blocking read() or sysread() , you‘ll have to arrange for an alarm handler t
provide a timeout (see alarm). If you have a non−blocking open, you‘ll likely have a non−blockin
read, which means you may have to use a 4−arg select() to determine whether I/O is ready on tha
device (see select in perlfunc.

While trying to read from his caller−id box, the notorious Jamie Zawinski <jwz@netscape.com, after
gnashing of teeth and fighting with sysread, sysopen, POSIX‘s tcgetattr business, and various other fu
that go bump in the night, finally came up with this:

 sub open_modem {
use IPC::Open2;
my $stty = ‘/bin/stty −g‘;
open2(*MODEM_IN, *MODEM_OUT, "cu −l$modem_device −s2400 2>&1");
starting cu hoses /dev/tty’s stty settings, even when it has
been opened on a pipe...
system("/bin/stty $stty");
$_ = <MODEM_IN>;
chop;
if (!m/^Connected/) {
 print STDERR "$0: cu printed ‘$_’ instead of ‘Connected’\n";
}

 }

How do I decode encrypted password files?
You spend lots and lots of money on dedicated hardware, but this is bound to get you talked about.

Seriously, you can‘t if they are Unix password files − the Unix password system employs one
encryption. It‘s more like hashing than encryption. The best you can check is whether somethin
hashes to the same string. You can‘t turn a hash back into the original string. Programs like Cra
forcibly (and intelligently) try to guess passwords, but don‘t (can‘t) guarantee quick success.

If you‘re worried about users selecting bad passwords, you should proactively check when they try to
their password (by modifying passwd(1), for example).

How do I start a process in the background?
You could use

 system("cmd &")

or you could use fork as documented in fork in perlfunc, with further examples in perlipc. Some things to be
aware of, if you‘re on a Unix−like system:

STDIN, STDOUT, and STDERR are shared
Both the main process and the backgrounded one (the "child" process) share the same
STDOUT and STDERR filehandles. If both try to access them at once, strange things can h
You may want to close or reopen these for the child. You can get around this with open ing a pipe
(see open in perlfunc) but on some systems this means that the child process cannot outlive the pa

Signals
You‘ll have to catch the SIGCHLD signal, and possibly SIGPIPE too. SIGCHLD is sent when
backgrounded process finishes. SIGPIPE is sent when you write to a filehandle whose child p
has closed (an untrapped SIGPIPE can cause your program to silently die). This is not an iss
system("cmd&").
104 Version 5.005_02 18−Oct−1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

with

 to your
ls are

e, and

ble and

FH>,
by

. To

te and
is.) This

g an

e

Zombies
You have to be prepared to "reap" the child process when it finishes

 $SIG{CHLD} = sub { wait };

See Signals in perlipc for other examples of code to do this. Zombies are not an issue
system("prog &").

How do I trap control characters/signals?
You don‘t actually "trap" a control character. Instead, that character generates a signal which is sent
terminal‘s currently foregrounded process group, which you then trap in your process. Signa
documented in Signals in perlipc and chapter 6 of the Camel.

Be warned that very few C libraries are re−entrant. Therefore, if you attempt to print() in a handler that
got invoked during another stdio operation your internal structures will likely be in an inconsistent stat
your program will dump core. You can sometimes avoid this by using syswrite() instead of print() .

Unless you‘re exceedingly careful, the only safe things to do inside a signal handler are: set a varia
exit. And in the first case, you should only set a variable in such a way that malloc() is not called (eg, by
setting a variable that already has a value).

For example:

 $Interrupted = 0; # to ensure it has a value
 $SIG{INT} = sub {
 $Interrupted++;

syswrite(STDERR, "ouch\n", 5);
 }

However, because syscalls restart by default, you‘ll find that if you‘re in a "slow" call, such as <
read() , connect() , or wait() , that the only way to terminate them is by "longjumping" out; that is,
raising an exception. See the time−out handler for a blocking flock() in Signals in perlipc or chapter 6 of
the Camel.

How do I modify the shadow password file on a Unix system?
If perl was installed correctly, and your shadow library was written properly, the getpw*() functions
described in perlfunc should in theory provide (read−only) access to entries in the shadow password file
change the file, make a new shadow password file (the format varies from system to system − see passwd(5)
for specifics) and use pwd_mkdb(8) to install it (see pwd_mkdb(5) for more details).

How do I set the time and date?
Assuming you‘re running under sufficient permissions, you should be able to set the system−wide da
time by running the date(1) program. (There is no way to set the time and date on a per−process bas
mechanism will work for Unix, MS−DOS, Windows, and NT; the VMS equivalent is set time .

However, if all you want to do is change your timezone, you can probably get away with settin
environment variable:

 $ENV{TZ} = "MST7MDT"; # unixish
 $ENV{’SYS$TIMEZONE_DIFFERENTIAL’}="−5" # vms
 system "trn comp.lang.perl.misc";

How can I sleep() or alarm() for under a second?
If you want finer granularity than the 1 second that the sleep() function provides, the easiest way is to us
the select() function as documented in select in perlfunc. If your system has itimers and syscall()
support, you can check out the old example in
http://www.perl.com/CPAN/doc/misc/ancient/tutorial/eg/itimers.pl .
18−Oct−1998 Version 5.005_02 105

perlfaq8 Perl Programmers Reference Guide perlfaq8

 this

 filling

s you

locking

 perl

s. Since
 way to
How can I measure time under a second?
In general, you may not be able to. The Time::HiRes module (available from CPAN) provides
functionality for some systems.

In general, you may not be able to. But if your system supports both the syscall() function in Perl as
well as a system call like gettimeofday(2), then you may be able to do something like this:

 require ’sys/syscall.ph’;

 $TIMEVAL_T = "LL";

 $done = $start = pack($TIMEVAL_T, ());

 syscall(&SYS_gettimeofday, $start, 0)) != −1
 or die "gettimeofday: $!";

 ##########################
 # DO YOUR OPERATION HERE #
 ##########################

 syscall(&SYS_gettimeofday, $done, 0) != −1
 or die "gettimeofday: $!";

 @start = unpack($TIMEVAL_T, $start);
 @done = unpack($TIMEVAL_T, $done);

 # fix microseconds
 for ($done[1], $start[1]) { $_ /= 1_000_000 }

 $delta_time = sprintf "%.4f", ($done[0] + $done[1])
 −
 ($start[0] + $start[1]);

How can I do an atexit() or setjmp()/longjmp() ? (Exception handling)
Release 5 of Perl added the END block, which can be used to simulate atexit() . Each package‘s END
block is called when the program or thread ends (see perlmod manpage for more details).

For example, you can use this to make sure your filter program managed to finish its output without
up the disk:

 END {
close(STDOUT) || die "stdout close failed: $!";

 }

The END block isn‘t called when untrapped signals kill the program, though, so if you use END block
should also use

use sigtrap qw(die normal−signals);

Perl‘s exception−handling mechanism is its eval() operator. You can use eval() as setjmp and die()
as longjmp. For details of this, see the section on signals, especially the time−out handler for a b
flock() in Signals in perlipc and chapter 6 of the Camel.

If exception handling is all you‘re interested in, try the exceptions.pl library (part of the standard
distribution).

If you want the atexit() syntax (and an rmexit() as well), try the AtExit module available from
CPAN.

Why doesn‘t my sockets program work under System V (Solaris)? What does the error message
"Protocol not supported" mean?
Some Sys−V based systems, notably Solaris 2.X, redefined some of the standard socket constant
these were constant across all architectures, they were often hardwired into perl code. The proper
106 Version 5.005_02 18−Oct−1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

.

king C
ports

e may

ogram

ut it

to use
s. See

ives you

ternally
 its

it has a

nd the
.
deal with this is to "use Socket" to get the correct values.

Note that even though SunOS and Solaris are binary compatible, these values are different. Go figure

How can I call my system‘s unique C functions from Perl?
In most cases, you write an external module to do it − see the answer to "Where can I learn about lin
with Perl? [h2xs, xsubpp]". However, if the function is a system call, and your system sup
syscall() , you can use the syscall function (documented in perlfunc).

Remember to check the modules that came with your distribution, and CPAN as well − someon
already have written a module to do it.

Where do I get the include files to do ioctl() or syscall() ?
Historically, these would be generated by the h2ph tool, part of the standard perl distribution. This pr
converts cpp(1) directives in C header files to files containing subroutine definitions, like
&SYS_getitimer, which you can use as arguments to your functions. It doesn‘t work perfectly, b
usually gets most of the job done. Simple files like errno.h, syscall.h, and socket.h were fine, but the hard
ones like ioctl.h nearly always need to hand−edited. Here‘s how to install the *.ph files:

 1. become super−user
 2. cd /usr/include
 3. h2ph *.h */*.h

If your system supports dynamic loading, for reasons of portability and sanity you probably ought
h2xs (also part of the standard perl distribution). This tool converts C header files to Perl extension
perlxstut for how to get started with h2xs.

If your system doesn‘t support dynamic loading, you still probably ought to use h2xs. See perlxstut and
ExtUtils::MakeMaker for more information (in brief, just use make perl instead of a plain make to rebuild
perl with a new static extension).

Why do setuid perl scripts complain about kernel problems?
Some operating systems have bugs in the kernel that make setuid scripts inherently insecure. Perl g
a number of options (described in perlsec) to work around such systems.

How can I open a pipe both to and from a command?
The IPC::Open2 module (part of the standard perl distribution) is an easy−to−use approach that in
uses pipe() , fork() , and exec() to do the job. Make sure you read the deadlock warnings in
documentation, though (see IPC::Open2). See
Bidirectional Communication with Another Process in perlipc and
Bidirectional Communication with Yourself in perlipc

You may also use the IPC::Open3 module (part of the standard perl distribution), but be warned that
different order of arguments from IPC::Open2 (see IPC::Open3).

Why can‘t I get the output of a command with system() ?
You‘re confusing the purpose of system() and backticks (‘‘). system() runs a command and returns
exit status information (as a 16 bit value: the low 7 bits are the signal the process died from, if any, a
high 8 bits are the actual exit value). Backticks (‘‘) run a command and return what it sent to STDOUT

 $exit_status = system("mail−users");
 $output_string = ‘ls‘;

How can I capture STDERR from an external command?
There are three basic ways of running external commands:

 system $cmd; # using system()
 $output = ‘$cmd‘; # using backticks (‘‘)
 open (PIPE, "cmd |"); # using open()
18−Oct−1998 Version 5.005_02 107

perlfaq8 Perl Programmers Reference Guide perlfaq8

ese,

lling

the
es to

why

 and

DOUT

ct them

tions in
With system() , both STDOUT and STDERR will go the same place as the script‘s versions of th
unless the command redirects them. Backticks and open() read only the STDOUT of your command.

With any of these, you can change file descriptors before the call:

 open(STDOUT, ">logfile");
 system("ls");

or you can use Bourne shell file−descriptor redirection:

 $output = ‘$cmd 2>some_file‘;
 open (PIPE, "cmd 2>some_file |");

You can also use file−descriptor redirection to make STDERR a duplicate of STDOUT:

 $output = ‘$cmd 2>&1‘;
 open (PIPE, "cmd 2>&1 |");

Note that you cannot simply open STDERR to be a dup of STDOUT in your Perl program and avoid ca
the shell to do the redirection. This doesn‘t work:

 open(STDERR, ">&STDOUT");
 $alloutput = ‘cmd args‘; # stderr still escapes

This fails because the open() makes STDERR go to where STDOUT was going at the time of
open() . The backticks then make STDOUT go to a string, but don‘t change STDERR (which still go
the old STDOUT).

Note that you must use Bourne shell (sh(1)) redirection syntax in backticks, not csh(1)! Details on
Perl‘s system() and backtick and pipe opens all use the Bourne shell are in
http://www.perl.com/CPAN/doc/FMTEYEWTK/versus/csh.whynot . To capture a command‘s STDERR
STDOUT together:

 $output = ‘cmd 2>&1‘; # either with backticks
 $pid = open(PH, "cmd 2>&1 |"); # or with an open pipe
 while (<PH>) { } # plus a read

To capture a command‘s STDOUT but discard its STDERR:

 $output = ‘cmd 2>/dev/null‘; # either with backticks
 $pid = open(PH, "cmd 2>/dev/null |"); # or with an open pipe
 while (<PH>) { } # plus a read

To capture a command‘s STDERR but discard its STDOUT:

 $output = ‘cmd 2>&1 1>/dev/null‘; # either with backticks
 $pid = open(PH, "cmd 2>&1 1>/dev/null |"); # or with an open pipe
 while (<PH>) { } # plus a read

To exchange a command‘s STDOUT and STDERR in order to capture the STDERR but leave its ST
to come out our old STDERR:

 $output = ‘cmd 3>&1 1>&2 2>&3 3>&−‘; # either with backticks
 $pid = open(PH, "cmd 3>&1 1>&2 2>&3 3>&−|");# or with an open pipe
 while (<PH>) { } # plus a read

To read both a command‘s STDOUT and its STDERR separately, it‘s easiest and safest to redire
separately to files, and then read from those files when the program is done:

 system("program args 1>/tmp/program.stdout 2>/tmp/program.stderr");

Ordering is important in all these examples. That‘s because the shell processes file descriptor redirec
strictly left to right order.
108 Version 5.005_02 18−Oct−1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

mmand
.

ow

 a

cause
 very
row it

e for

got to

 return

ereas
 system("prog args 1>tmpfile 2>&1");
 system("prog args 2>&1 1>tmpfile");

The first command sends both standard out and standard error to the temporary file. The second co
sends only the old standard output there, and the old standard error shows up on the old standard out

Why doesn‘t open() return an error when a pipe open fails?
It does, but probably not how you expect it to. On systems that follow the standard fork()/exec()
paradigm (such as Unix), it works like this: open() causes a fork() . In the parent, open() returns with
the process ID of the child. The child exec() s the command to be piped to/from. The parent can‘t kn
whether the exec() was successful or not − all it can return is whether the fork() succeeded or not. To
find out if the command succeeded, you have to catch SIGCHLD and wait() to get the exit status. You
should also catch SIGPIPE if you‘re writing to the child — you may not have found out the exec() failed
by the time you write. This is documented in perlipc.

On systems that follow the spawn() paradigm, open() might do what you expect − unless perl uses
shell to start your command. In this case the fork()/exec() description still applies.

What‘s wrong with using backticks in a void context?
Strictly speaking, nothing. Stylistically speaking, it‘s not a good way to write maintainable code be
backticks have a (potentially humungous) return value, and you‘re ignoring it. It‘s may also not be
efficient, because you have to read in all the lines of output, allocate memory for them, and then th
away. Too often people are lulled to writing:

 ‘cp file file.bak‘;

And now they think "Hey, I‘ll just always use backticks to run programs." Bad idea: backticks ar
capturing a program‘s output; the system() function is for running programs.

Consider this line:

 ‘cat /etc/termcap‘;

You haven‘t assigned the output anywhere, so it just wastes memory (for a little while). Plus you for
check $? to see whether the program even ran correctly. Even if you wrote

 print ‘cat /etc/termcap‘;

In most cases, this could and probably should be written as

 system("cat /etc/termcap") == 0
or die "cat program failed!";

Which will get the output quickly (as its generated, instead of only at the end) and also check the
value.

system() also provides direct control over whether shell wildcard processing may take place, wh
backticks do not.

How can I call backticks without shell processing?
This is a bit tricky. Instead of writing

 @ok = ‘grep @opts ’$search_string’ @filenames‘;

You have to do this:

 my @ok = ();
 if (open(GREP, "−|")) {
 while (<GREP>) {

 chomp;
 push(@ok, $_);
 }

close GREP;
18−Oct−1998 Version 5.005_02 109

perlfaq8 Perl Programmers Reference Guide perlfaq8

s:

eking

e shell
igh−on
ill
s many

ocol,

andard

 never
ect
.

ample)
ng the
 } else {
 exec ’grep’, @opts, $search_string, @filenames;
 }

Just as with system() , no shell escapes happen when you exec() a list.

There are more examples of this Safe Pipe Opens in perlipc.

Why can‘t my script read from STDIN after I gave it EOF (^D on Unix, ^Z on MS−DOS)?
Because some stdio‘s set error and eof flags that need clearing. The POSIX module defines clearerr()
that you can use. That is the technically correct way to do it. Here are some less reliable workaround

1 Try keeping around the seekpointer and go there, like this:

 $where = tell(LOG);
 seek(LOG, $where, 0);

2 If that doesn‘t work, try seeking to a different part of the file and then back.

3 If that doesn‘t work, try seeking to a different part of the file, reading something, and then se
back.

4 If that doesn‘t work, give up on your stdio package and use sysread.

How can I convert my shell script to perl?
Learn Perl and rewrite it. Seriously, there‘s no simple converter. Things that are awkward to do in th
are easy to do in Perl, and this very awkwardness is what would make a shell−perl converter n
impossible to write. By rewriting it, you‘ll think about what you‘re really trying to do, and hopefully w
escape the shell‘s pipeline datastream paradigm, which while convenient for some matters, cause
inefficiencies.

Can I use perl to run a telnet or ftp session?
Try the Net::FTP, TCP::Client, and Net::Telnet modules (available from CPAN).
http://www.perl.com/CPAN/scripts/netstuff/telnet.emul.shar will also help for emulating the telnet prot
but Net::Telnet is quite probably easier to use..

If all you want to do is pretend to be telnet but don‘t need the initial telnet handshaking, then the st
dual−process approach will suffice:

 use IO::Socket; # new in 5.004
 $handle = IO::Socket::INET−>new(’www.perl.com:80’)

 || die "can’t connect to port 80 on www.perl.com: $!";
 $handle−>autoflush(1);
 if (fork()) { # XXX: undef means failure

select($handle);
print while <STDIN>; # everything from stdin to socket

 } else {
print while <$handle>; # everything from socket to stdout

 }
 close $handle;
 exit;

How can I write expect in Perl?
Once upon a time, there was a library called chat2.pl (part of the standard perl distribution), which
really got finished. If you find it somewhere, don‘t use it. These days, your best bet is to look at the Exp
module available from CPAN, which also requires two other modules from CPAN, IO::Pty and IO::Stty

Is there a way to hide perl‘s command line from programs such as "ps"?
First of all note that if you‘re doing this for security reasons (to avoid people seeing passwords, for ex
then you should rewrite your program so that critical information is never given as an argument. Hidi
arguments won‘t make your program completely secure.
110 Version 5.005_02 18−Oct−1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

as in:

ll it was
d after

s (see
l to

ocess is
odule

 of your

e from
To actually alter the visible command line, you can assign to the variable $0 as documented in perlvar. This
won‘t work on all operating systems, though. Daemon programs like sendmail place their state there,

 $0 = "orcus [accepting connections]";

I {changed directory, modified my environment} in a perl script. How come the change
disappeared when I exited the script? How do I get my changes to be visible?

Unix
In the strictest sense, it can‘t be done — the script executes as a different process from the she
started from. Changes to a process are not reflected in its parent, only in its own children create
the change. There is shell magic that may allow you to fake it by eval() ing the script‘s output in
your shell; check out the comp.unix.questions FAQ for details.

How do I close a process‘s filehandle without waiting for it to complete?
Assuming your system supports such things, just send an appropriate signal to the proces
kill in perlfunc. It‘s common to first send a TERM signal, wait a little bit, and then send a KILL signa
finish it off.

How do I fork a daemon process?
If by daemon process you mean one that‘s detached (disassociated from its tty), then the following pr
reported to work on most Unixish systems. Non−Unix users should check their Your_OS::Process m
for other solutions.

 Open /dev/tty and use the the TIOCNOTTY ioctl on it. See tty(4) for details. Or better yet, you can
just use the POSIX::setsid() function, so you don‘t have to worry about process groups.

 Change directory to /

 Reopen STDIN, STDOUT, and STDERR so they‘re not connected to the old tty.

 Background yourself like this:

 fork && exit;

How do I make my program run with sh and csh?
See the eg/nih script (part of the perl source distribution).

How do I find out if I‘m running interactively or not?
Good question. Sometimes −t STDIN and −t STDOUT can give clues, sometimes not.

 if (−t STDIN && −t STDOUT) {
print "Now what? ";

 }

On POSIX systems, you can test whether your own process group matches the current process group
controlling terminal as follows:

 use POSIX qw/getpgrp tcgetpgrp/;
 open(TTY, "/dev/tty") or die $!;
 $tpgrp = tcgetpgrp(TTY);
 $pgrp = getpgrp();
 if ($tpgrp == $pgrp) {
 print "foreground\n";
 } else {
 print "background\n";
 }

How do I timeout a slow event?
Use the alarm() function, probably in conjunction with a signal handler, as documented Signals in perlipc
and chapter 6 of the Camel. You may instead use the more flexible Sys::AlarmCall module availabl
18−Oct−1998 Version 5.005_02 111

perlfaq8 Perl Programmers Reference Guide perlfaq8

e

le from
at

al

s do),
ith

04 and
llow

een the
CPAN.

How do I set CPU limits?
Use the BSD::Resource module from CPAN.

How do I avoid zombies on a Unix system?
Use the reaper code from Signals in perlipc to call wait() when a SIGCHLD is received, or else use th
double−fork technique described in fork.

How do I use an SQL database?
There are a number of excellent interfaces to SQL databases. See the DBD::* modules availab
http://www.perl.com/CPAN/modules/dbperl/DBD . A lot of information on this can be found
http://www.hermetica.com/technologia/perl/DBI/index.html .

How do I make a system() exit on control−C?
You can‘t. You need to imitate the system() call (see perlipc for sample code) and then have a sign
handler for the INT signal that passes the signal on to the subprocess. Or you can check for it:

 $rc = system($cmd);
 if ($rc & 127) { die "signal death" }

How do I open a file without blocking?
If you‘re lucky enough to be using a system that supports non−blocking reads (most Unixish system
you need only to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction w
sysopen() :

 use Fcntl;
 sysopen(FH, "/tmp/somefile", O_WRONLY|O_NDELAY|O_CREAT, 0644)
 or die "can’t open /tmp/somefile: $!":

How do I install a CPAN module?
The easiest way is to have the CPAN module do it for you. This module comes with perl version 5.0
later. To manually install the CPAN module, or any well−behaved CPAN module for that matter, fo
these steps:

1 Unpack the source into a temporary area.

2
 perl Makefile.PL

3
 make

4
 make test

5
 make install

If your version of perl is compiled without dynamic loading, then you just need to replace step 3 (make)
with make perl and you will get a new perl binary with your extension linked in.

See ExtUtils::MakeMaker for more details on building extensions. See also the next question.

What‘s the difference between require and use?
Perl offers several different ways to include code from one file into another. Here are the deltas betw
various inclusion constructs:

 1) do $file is like eval ‘cat $file‘, except the former:
1.1: searches @INC and updates %INC.
1.2: bequeaths an *unrelated* lexical scope on the eval’ed code.
112 Version 5.005_02 18−Oct−1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

es (see

 lib.pm

hether
 Any
 be

 You
 fit. A
 2) require $file is like do $file, except the former:
2.1: checks for redundant loading, skipping already loaded files.
2.2: raises an exception on failure to find, compile, or execute $file.

 3) require Module is like require "Module.pm", except the former:
3.1: translates each "::" into your system’s directory separator.
3.2: primes the parser to disambiguate class Module as an indirect object.

 4) use Module is like require Module, except the former:
4.1: loads the module at compile time, not run−time.
4.2: imports symbols and semantics from that package to the current one.

In general, you usually want use and a proper Perl module.

How do I keep my own module/library directory?
When you build modules, use the PREFIX option when generating Makefiles:

 perl Makefile.PL PREFIX=/u/mydir/perl

then either set the PERL5LIB environment variable before you run scripts that use the modules/librari
perlrun) or say

 use lib ’/u/mydir/perl’;

See Perl‘s lib for more information.

How do I add the directory my program lives in to the module/library search path?
 use FindBin;
 use lib "$FindBin::Bin";
 use your_own_modules;

How do I add a directory to my include path at runtime?
Here are the suggested ways of modifying your include path:

 the PERLLIB environment variable
 the PERL5LIB environment variable
 the perl −Idir commpand line flag
 the use lib pragma, as in
 use lib "$ENV{HOME}/myown_perllib";

The latter is particularly useful because it knows about machine dependent architectures. The
pragmatic module was first included with the 5.002 release of Perl.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation w
printed or otherwise, this work may be distributed only under the terms of Perl‘s Artistic License.
distribution of this file or derivatives thereof outside of that package require that special arrangements
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
are permitted and encouraged to use this code in your own programs for fun or for profit as you see
simple comment in the code giving credit would be courteous but is not required.
18−Oct−1998 Version 5.005_02 113

perlfaq9 Perl Programmers Reference Guide perlfaq9

imple
ou post
GI
sted to

r log.

ck to

gging,
NAME
perlfaq9 − Networking ($Revision: 1.20 $, $Date: 1998/06/22 18:31:09 $)

DESCRIPTION
This section deals with questions related to networking, the internet, and a few on the web.

My CGI script runs from the command line but not the browser. (500 Server Error)
If you can demonstrate that you‘ve read the following FAQs and that your problem isn‘t something s
that can be easily answered, you‘ll probably receive a courteous and useful reply to your question if y
it on comp.infosystems.www.authoring.cgi (if it‘s something to do with HTTP, HTML, or the C
protocols). Questions that appear to be Perl questions but are really CGI ones that are po
comp.lang.perl.misc may not be so well received.

The useful FAQs and related documents are:

 CGI FAQ
 http://www.webthing.com/page.cgi/cgifaq

 Web FAQ
 http://www.boutell.com/faq/

 WWW Security FAQ
 http://www.w3.org/Security/Faq/

 HTTP Spec
 http://www.w3.org/pub/WWW/Protocols/HTTP/

 HTML Spec
 http://www.w3.org/TR/REC−html40/
 http://www.w3.org/pub/WWW/MarkUp/

 CGI Spec
 http://www.w3.org/CGI/

 CGI Security FAQ
 http://www.go2net.com/people/paulp/cgi−security/safe−cgi.txt

How can I get better error messages from a CGI program?
Use the CGI::Carp module. It replaces warn and die , plus the normal Carp modules carp , croak , and
confess functions with more verbose and safer versions. It still sends them to the normal server erro

 use CGI::Carp;
 warn "This is a complaint";
 die "But this one is serious";

The following use of CGI::Carp also redirects errors to a file of your choice, placed in a BEGIN blo
catch compile−time warnings as well:

 BEGIN {
 use CGI::Carp qw(carpout);
 open(LOG, ">>/var/local/cgi−logs/mycgi−log")
 or die "Unable to append to mycgi−log: $!\n";
 carpout(*LOG);
 }

You can even arrange for fatal errors to go back to the client browser, which is nice for your own debu
but might confuse the end user.

 use CGI::Carp qw(fatalsToBrowser);
 die "Bad error here";
114 Version 5.005_02 18−Oct−1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

this to
you‘ve

−perl

r HTML

s, deal
o runs
s the
Even if the error happens before you get the HTTP header out, the module will try to take care of
avoid the dreaded server 500 errors. Normal warnings still go out to the server error log (or wherever
sent them with carpout) with the application name and date stamp prepended.

How do I remove HTML from a string?
The most correct way (albeit not the fastest) is to use HTML::Parse from CPAN (part of the libwww
distribution, which is a must−have module for all web hackers).

Many folks attempt a simple−minded regular expression approach, like s/<.*?>//g , but that fails in many
cases because the tags may continue over line breaks, they may contain quoted angle−brackets, o
comment may be present. Plus folks forget to convert entities, like < for example.

Here‘s one "simple−minded" approach, that works for most files:

 #!/usr/bin/perl −p0777
 s/<(?:[^>’"]*|([’"]).*?\1)*>//gs

If you want a more complete solution, see the 3−stage striphtml program in
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/striphtml.gz .

Here are some tricky cases that you should think about when picking a solution:

 B">

 <IMG SRC = "foo.gif"
 ALT = "A > B">

 <!−− <A comment> −−>

 <script>if (a<b && a>c)</script>

 <# Just data #>

 <![INCLUDE CDATA [>>>>>>>>>>>>]]>

If HTML comments include other tags, those solutions would also break on text like this:

 <!−− This section commented out.
 You can’t see me!
 −−>

How do I extract URLs?
A quick but imperfect approach is

 #!/usr/bin/perl −n00
 # qxurl − tchrist@perl.com
 print "$2\n" while m{

< \s*
 A \s+ HREF \s* = \s* (["’]) (.*?) \1
\s* >

 }gsix;

This version does not adjust relative URLs, understand alternate bases, deal with HTML comment
with HREF and NAME attributes in the same tag, or accept URLs themselves as arguments. It als
about 100x faster than a more "complete" solution using the LWP suite of modules, such a
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/xurl.gz program.

How do I download a file from the user‘s machine? How do I open a file on another machine?
In the context of an HTML form, you can use what‘s known as multipart/form−data encoding. The
CGI.pm module (available from CPAN) supports this in the start_multipart_form() method, which
isn‘t the same as the startform() method.
18−Oct−1998 Version 5.005_02 115

perlfaq9 Perl Programmers Reference Guide perlfaq9

his

ugh

g the

er (
How do I make a pop−up menu in HTML?
Use the <SELECT> and <OPTION> tags. The CGI.pm module (available from CPAN) supports t
widget, as well as many others, including some that it cleverly synthesizes on its own.

How do I fetch an HTML file?
One approach, if you have the lynx text−based HTML browser installed on your system, is this:

 $html_code = ‘lynx −source $url‘;
 $text_data = ‘lynx −dump $url‘;

The libwww−perl (LWP) modules from CPAN provide a more powerful way to do this. They work thro
proxies, and don‘t require lynx:

 # simplest version
 use LWP::Simple;
 $content = get($URL);

 # or print HTML from a URL
 use LWP::Simple;
 getprint "http://www.sn.no/libwww−perl/";

 # or print ASCII from HTML from a URL
 use LWP::Simple;
 use HTML::Parse;
 use HTML::FormatText;
 my ($html, $ascii);
 $html = get("http://www.perl.com/");
 defined $html
 or die "Can’t fetch HTML from http://www.perl.com/";
 $ascii = HTML::FormatText−>new−>format(parse_html($html));
 print $ascii;

How do I automate an HTML form submission?
If you‘re submitting values using the GET method, create a URL and encode the form usin
query_form method:

 use LWP::Simple;
 use URI::URL;

 my $url = url(’http://www.perl.com/cgi−bin/cpan_mod’);
 $url−>query_form(module => ’DB_File’, readme => 1);
 $content = get($url);

If you‘re using the POST method, create your own user agent and encode the content appropriately.

 use HTTP::Request::Common qw(POST);
 use LWP::UserAgent;

 $ua = LWP::UserAgent−>new();
 my $req = POST ’http://www.perl.com/cgi−bin/cpan_mod’,
 [module => ’DB_File’, readme => 1];
 $content = $ua−>request($req)−>as_string;

How do I decode or create those %−encodings on the web?
Here‘s an example of decoding:

 $string = "http://altavista.digital.com/cgi−bin/query?pg=q&what=news&fmt=.&q=%2Bc
 $string =~ s/%([a−fA−F0−9]{2})/chr(hex($1))/ge;

Encoding is a bit harder, because you can‘t just blindly change all the non−alphanumunder charact\W)
into their hex escapes. It‘s important that characters with special meaning like / and ? not be translated.
116 Version 5.005_02 18−Oct−1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

scape

rvers do.

 of the

these
h a DBI
tion

and

ters)
 of
shell

ming

ore

 so by
Probably the easiest way to get this right is to avoid reinventing the wheel and just use the URI::E
module, which is part of the libwww−perl package (LWP) available from CPAN.

How do I redirect to another page?
Instead of sending back a Content−Type as the headers of your reply, send back a Location: header.
Officially this should be a URI: header, so the CGI.pm module (available from CPAN) sends back both:

 Location: http://www.domain.com/newpage
 URI: http://www.domain.com/newpage

Note that relative URLs in these headers can cause strange effects because of "optimizations" that se

 $url = "http://www.perl.com/CPAN/";
 print "Location: $url\n\n";
 exit;

To be correct to the spec, each of those "\n" should really each be "\015\012" , but unless you‘re stuck
on MacOS, you probably won‘t notice.

How do I put a password on my web pages?
That depends. You‘ll need to read the documentation for your web server, or perhaps check some
other FAQs referenced above.

How do I edit my .htpasswd and .htgroup files with Perl?
The HTTPD::UserAdmin and HTTPD::GroupAdmin modules provide a consistent OO interface to
files, regardless of how they‘re stored. Databases may be text, dbm, Berkley DB or any database wit
compatible driver. HTTPD::UserAdmin supports files used by the ‘Basic’ and ‘Digest’ authentica
schemes. Here‘s an example:

 use HTTPD::UserAdmin ();
 HTTPD::UserAdmin

 −>new(DB => "/foo/.htpasswd")
 −>add($username => $password);

How do I make sure users can‘t enter values into a form that cause my CGI script to do bad
things?
Read the CGI security FAQ, at http://www−genome.wi.mit.edu/WWW/faqs/www−security−faq.html,
the Perl/CGI FAQ at http://www.perl.com/CPAN/doc/FAQs/cgi/perl−cgi−faq.html.

In brief: use tainting (see perlsec), which makes sure that data from outside your script (eg, CGI parame
are never used in eval or system calls. In addition to tainting, never use the single−argument form
system() or exec() . Instead, supply the command and arguments as a list, which prevents
globbing.

How do I parse a mail header?
For a quick−and−dirty solution, try this solution derived from page 222 of the 2nd edition of "Program
Perl":

 $/ = ’’;
 $header = <MSG>;
 $header =~ s/\n\s+/ /g; # merge continuation lines
 %head = (UNIX_FROM_LINE, split /^([−\w]+):\s*/m, $header);

That solution doesn‘t do well if, for example, you‘re trying to maintain all the Received lines. A m
complete approach is to use the Mail::Header module from CPAN (part of the MailTools package).

How do I decode a CGI form?
You use a standard module, probably CGI.pm. Under no circumstances should you attempt to do
hand!
18−Oct−1998 Version 5.005_02 117

perlfaq9 Perl Programmers Reference Guide perlfaq9

l to
 very

forms
 than

 wheel.
−free

ed for
 feedback
be no
se the
rvening
lly, POST
urchase a

wer you,
you can
tandard)

uch as
lid

st the
to (say,
e DNS

 as you
l to that

that it‘s

address
the PIN
. So

ed, one
You‘ll see a lot of CGI programs that blindly read from STDIN the number of bytes equa
CONTENT_LENGTH for POSTs, or grab QUERY_STRING for decoding GETs. These programs are
poorly written. They only work sometimes. They typically forget to check the return value of the read()
system call, which is a cardinal sin. They don‘t handle HEAD requests. They don‘t handle multipart
used for file uploads. They don‘t deal with GET/POST combinations where query fields are in more
one place. They don‘t deal with keywords in the query string.

In short, they‘re bad hacks. Resist them at all costs. Please do not be tempted to reinvent the
Instead, use the CGI.pm or CGI_Lite.pm (available from CPAN), or if you‘re trapped in the module
land of perl1 .. perl4, you might look into cgi−lib.pl (available from
http://www.bio.cam.ac.uk/web/form.html).

Make sure you know whether to use a GET or a POST in your form. GETs should only be us
something that doesn‘t update the server. Otherwise you can get mangled databases and repeated
mail messages. The fancy word for this is ‘‘idempotency‘’. This simply means that there should
difference between making a GET request for a particular URL once or multiple times. This is becau
HTTP protocol definition says that a GET request may be cached by the browser, or server, or an inte
proxy. POST requests cannot be cached, because each request is independent and matters. Typica
requests change or depend on state on the server (query or update a database, send mail, or p
computer).

How do I check a valid mail address?
You can‘t, at least, not in real time. Bummer, eh?

Without sending mail to the address and seeing whether there‘s a human on the other hand to ans
you cannot determine whether a mail address is valid. Even if you apply the mail header standard,
have problems, because there are deliverable addresses that aren‘t RFC−822 (the mail header s
compliant, and addresses that aren‘t deliverable which are compliant.

Many are tempted to try to eliminate many frequently−invalid mail addresses with a simple regexp, s
/^[\w.−]+\@([\w.−]\.)+\w+$/. It‘s a very bad idea. However, this also throws out many va
ones, and says nothing about potential deliverability, so is not suggested. Instead, see
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/ckaddr.gz , which actually checks again
full RFC spec (except for nested comments), looks for addresses you may not wish to accept mail
Bill Clinton or your postmaster), and then makes sure that the hostname given can be looked up in th
MX records. It‘s not fast, but it works for what it tries to do.

Our best advice for verifying a person‘s mail address is to have them enter their address twice, just
normally do to change a password. This usually weeds out typos. If both versions match, send mai
address with a personal message that looks somewhat like:

 Dear someuser@host.com,

 Please confirm the mail address you gave us Wed May 6 09:38:41
 MDT 1998 by replying to this message. Include the string
 "Rumpelstiltskin" in that reply, but spelled in reverse; that is,
 start with "Nik...". Once this is done, your confirmed address will
 be entered into our records.

If you get the message back and they‘ve followed your directions, you can be reasonably assured
real.

A related strategy that‘s less open to forgery is to give them a PIN (personal ID number). Record the
and PIN (best that it be a random one) for later processing. In the mail you send, ask them to include
in their reply. But if it bounces, or the message is included via a ‘‘vacation‘’ script, it‘ll be there anyway
it‘s best to ask them to mail back a slight alteration of the PIN, such as with the characters revers
added or subtracted to each digit, etc.
118 Version 5.005_02 18−Oct−1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

omes

the

il system
ystems

ve, using
 often

sage".

 leave it
How do I decode a MIME/BASE64 string?
The MIME−tools package (available from CPAN) handles this and a lot more. Decoding BASE64 bec
as simple as:

 use MIME::base64;
 $decoded = decode_base64($encoded);

A more direct approach is to use the unpack() function‘s "u" format after minor transliterations:

 tr#A−Za−z0−9+/##cd; # remove non−base64 chars
 tr#A−Za−z0−9+/# −_#; # convert to uuencoded format
 $len = pack("c", 32 + 0.75*length); # compute length byte
 print unpack("u", $len . $_); # uudecode and print

How do I return the user‘s mail address?
On systems that support getpwuid, the $< variable and the Sys::Hostname module (which is part of
standard perl distribution), you can probably try using something like this:

 use Sys::Hostname;
 $address = sprintf(’%s@%s’, getpwuid($<), hostname);

Company policies on mail address can mean that this generates addresses that the company‘s ma
will not accept, so you should ask for users’ mail addresses when this matters. Furthermore, not all s
on which Perl runs are so forthcoming with this information as is Unix.

The Mail::Util module from CPAN (part of the MailTools package) provides a mailaddress() function
that tries to guess the mail address of the user. It makes a more intelligent guess than the code abo
information given when the module was installed, but it could still be incorrect. Again, the best way is
just to ask the user.

How do I send mail?
Use the sendmail program directly:

 open(SENDMAIL, "|/usr/lib/sendmail −oi −t −odq")
 or die "Can’t fork for sendmail: $!\n";
 print SENDMAIL <<"EOF";
 From: User Originating Mail <me\@host>
 To: Final Destination <you\@otherhost>
 Subject: A relevant subject line

 Body of the message goes here, in as many lines as you like.
 EOF
 close(SENDMAIL) or warn "sendmail didn’t close nicely";

The −oi option prevents sendmail from interpreting a line consisting of a single dot as "end of mes
The −t option says to use the headers to decide who to send the message to, and −odq says to put the
message into the queue. This last option means your message won‘t be immediately delivered, so
out if you want immediate delivery.

Or use the CPAN module Mail::Mailer:

 use Mail::Mailer;

 $mailer = Mail::Mailer−>new();
 $mailer−>open({ From => $from_address,
 To => $to_address,
 Subject => $subject,
 })
 or die "Can’t open: $!\n";
 print $mailer $body;
18−Oct−1998 Version 5.005_02 119

perlfaq9 Perl Programmers Reference Guide perlfaq9

able.
 These

dule

ot. It‘s
 $mailer−>close();

The Mail::Internet module uses Net::SMTP which is less Unix−centric than Mail::Mailer, but less reli
Avoid raw SMTP commands. There are many reasons to use a mail transport agent like sendmail.
include queueing, MX records, and security.

How do I read mail?
Use the Mail::Folder module from CPAN (part of the MailFolder package) or the Mail::Internet mo
from CPAN (also part of the MailTools package).

 # sending mail
 use Mail::Internet;
 use Mail::Header;
 # say which mail host to use
 $ENV{SMTPHOSTS} = ’mail.frii.com’;
 # create headers
 $header = new Mail::Header;
 $header−>add(’From’, ’gnat@frii.com’);
 $header−>add(’Subject’, ’Testing’);
 $header−>add(’To’, ’gnat@frii.com’);
 # create body
 $body = ’This is a test, ignore’;
 # create mail object
 $mail = new Mail::Internet(undef, Header => $header, Body => \[$body]);
 # send it
 $mail−>smtpsend or die;

Often a module is overkill, though. Here‘s a mail sorter.

 #!/usr/bin/perl
 # bysub1 − simple sort by subject
 my(@msgs, @sub);
 my $msgno = −1;
 $/ = ’’; # paragraph reads
 while (<>) {
 if (/^From/m) {
 /^Subject:\s*(?:Re:\s*)*(.*)/mi;
 $sub[++$msgno] = lc($1) || ’’;
 }
 $msgs[$msgno] .= $_;
 }
 for my $i (sort { $sub[$a] cmp $sub[$b] || $a <=> $b } (0 .. $#msgs)) {
 print $msgs[$i];
 }

Or more succinctly,

 #!/usr/bin/perl −n00
 # bysub2 − awkish sort−by−subject
 BEGIN { $msgno = −1 }
 $sub[++$msgno] = (/^Subject:\s*(?:Re:\s*)*(.*)/mi)[0] if /^From/m;
 $msg[$msgno] .= $_;
 END { print @msg[sort { $sub[$a] cmp $sub[$b] || $a <=> $b } (0 .. $#msg)] }

How do I find out my hostname/domainname/IP address?
The normal way to find your own hostname is to call the ‘hostname‘ program. While sometimes
expedient, this has some problems, such as not knowing whether you‘ve got the canonical name or n
one of those tradeoffs of convenience versus portability.
120 Version 5.005_02 18−Oct−1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

which

 under
sts.

s like

ore

of the

hether
 Any
 be

 You
 fit. A
The Sys::Hostname module (part of the standard perl distribution) will give you the hostname after
you can find out the IP address (assuming you have working DNS) with a gethostbyname() call.

 use Socket;
 use Sys::Hostname;
 my $host = hostname();
 my $addr = inet_ntoa(scalar(gethostbyname($name)) || ’localhost’);

Probably the simplest way to learn your DNS domain name is to grok it out of /etc/resolv.conf, at least
Unix. Of course, this assumes several things about your resolv.conf configuration, including that it exi

(We still need a good DNS domain name−learning method for non−Unix systems.)

How do I fetch a news article or the active newsgroups?
Use the Net::NNTP or News::NNTPClient modules, both available from CPAN. This can make task
fetching the newsgroup list as simple as:

 perl −MNews::NNTPClient
 −e ’print News::NNTPClient−>new−>list("newsgroups")’

How do I fetch/put an FTP file?
LWP::Simple (available from CPAN) can fetch but not put. Net::FTP (also available from CPAN) is m
complex but can put as well as fetch.

How can I do RPC in Perl?
A DCE::RPC module is being developed (but is not yet available), and will be released as part
DCE−Perl package (available from CPAN). No ONC::RPC module is known.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation w
printed or otherwise, this work may be distributed only under the terms of Perl‘s Artistic License.
distribution of this file or derivatives thereof outside of that package require that special arrangements
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
are permitted and encouraged to use this code in your own programs for fun or for profit as you see
simple comment in the code giving credit would be courteous but is not required.
18−Oct−1998 Version 5.005_02 121

perl Perl Programmers Reference Guide perl
NAME
perl − Practical Extraction and Report Language

SYNOPSIS
perl [−sTuU]

[−hv] [−V[:configvar]]
[−cw] [−d[:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal]]
[−Idir] [−m[−]module] [−M [−]‘module...’]
[−P]
[−S]
[−x[dir]]
[−i[extension]]
[−e ‘command’] [—] [programfile] [argument]...

For ease of access, the Perl manual has been split up into a number of sections:

 perl Perl overview (this section)
 perldelta Perl changes since previous version
 perlfaq Perl frequently asked questions
 perltoc Perl documentation table of contents

 perldata Perl data structures
 perlsyn Perl syntax
 perlop Perl operators and precedence
 perlre Perl regular expressions
 perlrun Perl execution and options
 perlfunc Perl builtin functions
 perlvar Perl predefined variables
 perlsub Perl subroutines
 perlmod Perl modules: how they work
 perlmodlib Perl modules: how to write and use
 perlmodinstall Perl modules: how to install from CPAN
 perlform Perl formats
 perllocale Perl locale support

 perlref Perl references
 perldsc Perl data structures intro
 perllol Perl data structures: lists of lists
 perltoot Perl OO tutorial
 perlobj Perl objects
 perltie Perl objects hidden behind simple variables
 perlbot Perl OO tricks and examples
 perlipc Perl interprocess communication

 perldebug Perl debugging
 perldiag Perl diagnostic messages
 perlsec Perl security
 perltrap Perl traps for the unwary
 perlport Perl portability guide
 perlstyle Perl style guide

 perlpod Perl plain old documentation
 perlbook Perl book information

 perlembed Perl ways to embed perl in your C or C++ application
 perlapio Perl internal IO abstraction interface
 perlxs Perl XS application programming interface
122 Version 5.005_02 18−Oct−1998

perl Perl Programmers Reference Guide perl

educe

l will

rl, but

roper
here

t

r help,

s, and
t tasks.
legant,

ome
to C
u‘ve
. And
egraded

ata very
 files
 which

t
e also

ions).
e more
 This
 perlxstut Perl XS tutorial
 perlguts Perl internal functions for those doing extensions
 perlcall Perl calling conventions from C

 perlhist Perl history records

(If you‘re intending to read these straight through for the first time, the suggested order will tend to r
the number of forward references.)

By default, all of the above manpages are installed in the /usr/local/man/ directory.

Extensive additional documentation for Perl modules is available. The default configuration for per
place this additional documentation in the /usr/local/lib/perl5/man directory (or else in the man subdirectory
of the Perl library directory). Some of this additional documentation is distributed standard with Pe
you‘ll also find documentation for third−party modules there.

You should be able to view Perl‘s documentation with your man(1) program by including the p
directories in the appropriate start−up files, or in the MANPATH environment variable. To find out w
the configuration has installed the manpages, type:

 perl −V:man.dir

If the directories have a common stem, such as /usr/local/man/man1 and /usr/local/man/man3, you need
only to add that stem (/usr/local/man) to your man(1) configuration files or your MANPATH environmen
variable. If they do not share a stem, you‘ll have to add both stems.

If that doesn‘t work for some reason, you can still use the supplied perldoc script to view module
information. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you‘re not sure where you should look fo
try the −w switch first. It will often point out exactly where the trouble is.

DESCRIPTION
Perl is a language optimized for scanning arbitrary text files, extracting information from those text file
printing reports based on that information. It‘s also a good language for many system managemen
The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny, e
minimal).

Perl combines (in the author‘s opinion, anyway) some of the best features of C, sed, awk, and sh, so people
familiar with those languages should have little difficulty with it. (Language historians will also note s
vestiges of csh, Pascal, and even BASIC−PLUS.) Expression syntax corresponds quite closely
expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data—if yo
got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth
the tables used by hashes (previously called "associative arrays") grow as necessary to prevent d
performance. Perl uses sophisticated pattern matching techniques to scan large amounts of d
quickly. Although optimized for scanning text, Perl can also deal with binary data, and can make dbm
look like hashes. Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism
prevents many stupid security holes.

If you have a problem that would ordinarily use sed or awk or sh, but it exceeds their capabilities or mus
run a little faster, and you don‘t want to write the silly thing in C, then Perl may be for you. There ar
translators to turn your sed and awk scripts into Perl scripts.

But wait, there‘s more...

Perl version 5 is nearly a complete rewrite, and provides the following additional benefits:

 Many usability enhancements
It is now possible to write much more readable Perl code (even within regular express
Formerly cryptic variable names can be replaced by mnemonic identifiers. Error messages ar
informative, and the optional warnings will catch many of the mistakes a novice might make.
cannot be stressed enough. Whenever you get mysterious behavior, try the −w switch!!! Whenever
18−Oct−1998 Version 5.005_02 123

perl Perl Programmers Reference Guide perl

s have
old Perl

s this
ous

ble or
s your

arious
rface.

ported
ed as

led by
asy to
lf can

tines

piled,
 when

the
w any

fined

g a
ents for
e with
you don‘t get mysterious behavior, try using −w anyway.

 Simplified grammar
The new yacc grammar is one half the size of the old one. Many of the arbitrary grammar rule
been regularized. The number of reserved words has been cut by 2/3. Despite this, nearly all
scripts will continue to work unchanged.

 Lexical scoping
Perl variables may now be declared within a lexical scope, like "auto" variables in C. Not only i
more efficient, but it contributes to better privacy for "programming in the large". Anonym
subroutines exhibit deep binding of lexical variables (closures).

 Arbitrarily nested data structures
Any scalar value, including any array element, may now contain a reference to any other varia
subroutine. You can easily create anonymous variables and subroutines. Perl manage
reference counts for you.

 Modularity and reusability
The Perl library is now defined in terms of modules which can be easily shared among v
packages. A package may choose to import all or a portion of a module‘s published inte
Pragmas (that is, compiler directives) are defined and used by the same mechanism.

 Object−oriented programming
A package can function as a class. Dynamic multiple inheritance and virtual methods are sup
in a straightforward manner and with very little new syntax. Filehandles may now be treat
objects.

 Embeddable and Extensible
Perl may now be embedded easily in your C or C++ application, and can either call or be cal
your routines through a documented interface. The XS preprocessor is provided to make it e
glue your C or C++ routines into Perl. Dynamic loading of modules is supported, and Perl itse
be made into a dynamic library.

 POSIX compliant
A major new module is the POSIX module, which provides access to all available POSIX rou
and definitions, via object classes where appropriate.

 Package constructors and destructors
The new BEGIN and END blocks provide means to capture control as a package is being com
and after the program exits. As a degenerate case they work just like awk‘s BEGIN and END
you use the −p or −n switches.

 Multiple simultaneous DBM implementations
A Perl program may now access DBM, NDBM, SDBM, GDBM, and Berkeley DB files from
same script simultaneously. In fact, the old dbmopen interface has been generalized to allo
variable to be tied to an object class which defines its access methods.

 Subroutine definitions may now be autoloaded
In fact, the AUTOLOAD mechanism also allows you to define any arbitrary semantics for unde
subroutine calls. It‘s not for just autoloading.

 Regular expression enhancements
You can now specify nongreedy quantifiers. You can now do grouping without creatin
backreference. You can now write regular expressions with embedded whitespace and comm
readability. A consistent extensibility mechanism has been added that is upwardly compatibl
all old regular expressions.
124 Version 5.005_02 18−Oct−1998

perl Perl Programmers Reference Guide perl

rate

f Perl in
please

oken

ndency".

l. (This

 still a
nent of
n

onfig
 Innumerable Unbundled Modules
The Comprehensive Perl Archive Network described in perlmodlib contains hundreds of
plug−and−play modules full of reusable code. See http://www.perl.com/CPAN for a site near you.

 Compilability
While not yet in full production mode, a working perl−to−C compiler does exist. It can gene
portable byte code, simple C, or optimized C code.

Okay, that‘s definitely enough hype.

ENVIRONMENT
See perlrun.

AUTHOR
Larry Wall <larry@wall.org, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate the use o
their applications, or if you wish to simply express your gratitude to Larry and the Perl developers,
write to <perl−thanks@perl.org.

FILES
 "/tmp/perl−e$$" temporary file for −e commands
 "@INC" locations of perl libraries

SEE ALSO
 a2p awk to perl translator

 s2p sed to perl translator

DIAGNOSTICS
The −w switch produces some lovely diagnostics.

See perldiag for explanations of all Perl‘s diagnostics. The use diagnostics pragma automatically
turns Perl‘s normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the next token or t
type that was to be examined. (In the case of a script passed to Perl via −e switches, each −e is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as "Insecure depe
See perlsec.

Did we mention that you should definitely consider using the −w switch?

BUGS
The −w switch is not mandatory.

Perl is at the mercy of your machine‘s definitions of various operations such as type casting, atof() , and
floating−point output with sprintf() .

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Per
doesn‘t apply to sysread() and syswrite() .)

While none of the built−in data types have any arbitrary size limits (apart from memory size), there are
few arbitrary limits: a given variable name may not be longer than 255 characters, and no compo
your PATH may be longer than 255 if you use −S. A regular expression may not compile to more tha
32767 bytes internally.

You may mail your bug reports (be sure to include full configuration information as output by the myc
program in the perl source tree, or by perl −V) to <perlbug@perl.com. If you‘ve succeeded in compiling
perl, the perlbug script in the utils/ subdirectory can be used to help mail in a bug report.
18−Oct−1998 Version 5.005_02 125

perl Perl Programmers Reference Guide perl

ise to

ook for
Perl actually stands for Pathologically Eclectic Rubbish Lister, but don‘t tell anyone I said that.

NOTES
The Perl motto is "There‘s more than one way to do it." Divining how many more is left as an exerc
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel B
why.
126 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

 NT.
reter.

ror).

3. If
ymbol
inary

nt
f your
itches:

ld

ine.

 But

mend
e some
NAME
perldelta − what‘s new for perl5.004

DESCRIPTION
This document describes differences between the 5.003 release (as documented in Programming Perl,
second edition—the Camel Book) and this one.

Supported Environments
Perl5.004 builds out of the box on Unix, Plan 9, LynxOS, VMS, OS/2, QNX, AmigaOS, and Windows
Perl runs on Windows 95 as well, but it cannot be built there, for lack of a reasonable command interp

Core Changes
Most importantly, many bugs were fixed, including several security problems. See the Changes file in the
distribution for details.

List assignment to %ENV works
%ENV = () and %ENV = @list now work as expected (except on VMS where it generates a fatal er

"Can‘t locate Foo.pm in @INC" error now lists @INC

Compilation option: Binary compatibility with 5.003
There is a new Configure question that asks if you want to maintain binary compatibility with Perl 5.00
you choose binary compatibility, you do not have to recompile your extensions, but you might have s
conflicts if you embed Perl in another application, just as in the 5.003 release. By default, b
compatibility is preserved at the expense of symbol table pollution.

$PERL5OPT environment variable
You may now put Perl options in the $PERL5OPT environment variable. Unless Perl is running with tai
checks, it will interpret this variable as if its contents had appeared on a "#!perl" line at the beginning o
script, except that hyphens are optional. PERL5OPT may only be used to set the following sw
−[DIMUdmw] .

Limitations on −M, −m, and −T options
The −M and −m options are no longer allowed on the #! line of a script. If a script needs a module, it shou
invoke it with the use pragma.

The −T option is also forbidden on the #! line of a script, unless it was present on the Perl command l
Due to the way #! works, this usually means that −T must be in the first argument. Thus:

 #!/usr/bin/perl −T −w

will probably work for an executable script invoked as scriptname , while:

 #!/usr/bin/perl −w −T

will probably fail under the same conditions. (Non−Unix systems will probably not follow this rule.)
perl scriptname is guaranteed to fail, since then there is no chance of −T being found on the command
line before it is found on the #! line.

More precise warnings
If you removed the −w option from your Perl 5.003 scripts because it made Perl too verbose, we recom
that you try putting it back when you upgrade to Perl 5.004. Each new perl version tends to remov
undesirable warnings, while adding new warnings that may catch bugs in your scripts.

Deprecated: Inherited AUTOLOAD for non−methods
Before Perl 5.004, AUTOLOAD functions were looked up as methods (using the @ISA hierarchy), even when
the function to be autoloaded was called as a plain function (e.g. Foo::bar()), not a method (e.g.
Foo−>bar() or $obj−>bar()).
18−Oct−1998 Version 5.005_02 127

perl5004delta Perl Programmers Reference Guide perl5004delta

f
optional

code
ed

g the

existence

always
ere not
 into

h

roup,

ue
to the

−used

 special

l 5.004

is
Perl 5.005 will use method lookup only for methods’ AUTOLOADs. However, there is a significant base o
existing code that may be using the old behavior. So, as an interim step, Perl 5.004 issues an
warning when a non−method uses an inherited AUTOLOAD.

The simple rule is: Inheritance will not work when autoloading non−methods. The simple fix for old
is: In any module that used to depend on inheriting AUTOLOAD for non−methods from a base class nam
BaseClass , execute *AUTOLOAD = \&BaseClass::AUTOLOAD during startup.

Previously deprecated %OVERLOAD is no longer usable
Using %OVERLOAD to define overloading was deprecated in 5.003. Overloading is now defined usin
overload pragma. %OVERLOAD is still used internally but should not be used by Perl scripts. See overload
for more details.

Subroutine arguments created only when they‘re modified
In Perl 5.004, nonexistent array and hash elements used as subroutine parameters are brought into
only if they are actually assigned to (via @_).

Earlier versions of Perl vary in their handling of such arguments. Perl versions 5.002 and 5.003
brought them into existence. Perl versions 5.000 and 5.001 brought them into existence only if they w
the first argument (which was almost certainly a bug). Earlier versions of Perl never brought them
existence.

For example, given this code:

 undef @a; undef %a;
 sub show { print $_[0] };
 sub change { $_[0]++ };
 show($a[2]);
 change($a{b});

After this code executes in Perl 5.004, $a{b} exists but $a[2] does not. In Perl 5.002 and 5.003, bot
$a{b} and $a[2] would have existed (but $a[2]‘s value would have been undefined).

Group vector changeable with $)
The $) special variable has always (well, in Perl 5, at least) reflected not only the current effective g
but also the group list as returned by the getgroups() C function (if there is one). However, until this
release, there has not been a way to call the setgroups() C function from Perl.

In Perl 5.004, assigning to $) is exactly symmetrical with examining it: The first number in its string val
is used as the effective gid; if there are any numbers after the first one, they are passed
setgroups() C function (if there is one).

Fixed parsing of $$<digit , &$<digit , etc.
Perl versions before 5.004 misinterpreted any type marker followed by "$" and a digit. For example, "$$0"
was incorrectly taken to mean "${$}0" instead of "${$0}". This bug is (mostly) fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two widely
modules depend on the old meaning of "$$0" in a string. So Perl 5.004 still interprets "$$<digit " in the
old (broken) way inside strings; but it generates this message as a warning. And in Perl 5.005, this
treatment will cease.

Fixed localization of $<digit , $&, etc.
Perl versions before 5.004 did not always properly localize the regex−related special variables. Per
does localize them, as the documentation has always said it should. This may result in $1, $2, etc. no
longer being set where existing programs use them.

No resetting of $. on implicit close
The documentation for Perl 5.0 has always stated that $. is not reset when an already−open file handle
reopened with no intervening call to close . Due to a bug, perl versions 5.000 through 5.003 did reset $.
under that circumstance; Perl 5.004 does not.
128 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

e. In
ed at
to be

g the
lways
e scope

g bugs

 turned

 be

will be
gram.

n ways

o

s, and

revised
 Opcode

a single
n fixed.

lembed

ed for
dle,
e.
wantarray may return undef
The wantarray operator returns true if a subroutine is expected to return a list, and false otherwis
Perl 5.004, wantarray can also return the undefined value if a subroutine‘s return value will not be us
all, which allows subroutines to avoid a time−consuming calculation of a return value if it isn‘t going
used.

eval EXPR determines value of EXPR in scalar context
Perl (version 5) used to determine the value of EXPR inconsistently, sometimes incorrectly usin
surrounding context for the determination. Now, the value of EXPR (before being parsed by eval) is a
determined in a scalar context. Once parsed, it is executed as before, by providing the context that th
surrounding the eval provided. This change makes the behavior Perl4 compatible, besides fixin
resulting from the inconsistent behavior. This program:

 @a = qw(time now is time);
 print eval @a;
 print ’|’, scalar eval @a;

used to print something like "timenowis881399109|4", but now (and in perl4) prints "4|4".

Changes to tainting checks
A bug in previous versions may have failed to detect some insecure conditions when taint checks are
on. (Taint checks are used in setuid or setgid scripts, or when explicitly turned on with the −T invocation
option.) Although it‘s unlikely, this may cause a previously−working script to now fail — which should
construed as a blessing, since that indicates a potentially−serious security hole was just plugged.

The new restrictions when tainting include:

No glob() or <*
These operators may spawn the C shell (csh), which cannot be made safe. This restriction
lifted in a future version of Perl when globbing is implemented without the use of an external pro

No spawning if tainted $CDPATH, $ENV, $BASH_ENV
These environment variables may alter the behavior of spawned programs (especially shells) i
that subvert security. So now they are treated as dangerous, in the manner of $IFS and $PATH.

No spawning if tainted $TERM doesn‘t look like a terminal name
Some termcap libraries do unsafe things with $TERM. However, it would be unnecessarily harsh t
treat all $TERM values as unsafe, since only shell metacharacters can cause trouble in $TERM. So a
tainted $TERM is considered to be safe if it contains only alphanumerics, underscores, dashe
colons, and unsafe if it contains other characters (including whitespace).

New Opcode module and revised Safe module
A new Opcode module supports the creation, manipulation and application of opcode masks. The
Safe module has a new API and is implemented using the new Opcode module. Please read the new
and Safe documentation.

Embedding improvements
In older versions of Perl it was not possible to create more than one Perl interpreter instance inside
process without leaking like a sieve and/or crashing. The bugs that caused this behavior have all bee
However, you still must take care when embedding Perl in a C program. See the updated per
manpage for tips on how to manage your interpreters.

Internal change: FileHandle class based on IO::* classes
File handles are now stored internally as type IO::Handle. The FileHandle module is still support
backwards compatibility, but it is now merely a front end to the IO::* modules — specifically, IO::Han
IO::Seekable, and IO::File. We suggest, but do not require, that you use the IO::* modules in new cod
18−Oct−1998 Version 5.005_02 129

perl5004delta Perl Programmers Reference Guide perl5004delta

r

. This

;

e (due

y Perl

e the
rl

before

lt, it is
In harmony with this change, *GLOB{FILEHANDLE} is now just a backward−compatible synonym fo
*GLOB{IO} .

Internal change: PerlIO abstraction interface
It is now possible to build Perl with AT&T‘s sfio IO package instead of stdio. See perlapio for more
details, and the INSTALL file for how to use it.

New and changed syntax

$coderef− (PARAMS)
A subroutine reference may now be suffixed with an arrow and a (possibly empty) parameter list
syntax denotes a call of the referenced subroutine, with the given parameters (if any).

This new syntax follows the pattern of $hashref−>{FOO} and $aryref−>[$foo]: You may
now write &$subref($foo) as $subref−>($foo). All of these arrow terms may be chained
thus, &{$table−>{FOO}}($bar) may now be written $table−>{FOO}−>($bar).

New and changed builtin constants

__PACKAGE__
The current package name at compile time, or the undefined value if there is no current packag
to a package; directive). Like __FILE__ and __LINE__ , __PACKAGE__ does not interpolate
into strings.

New and changed builtin variables

$^E Extended error message on some platforms. (Also known as $EXTENDED_OS_ERROR if you use
English).

$^H The current set of syntax checks enabled by use strict . See the documentation of strict for
more details. Not actually new, but newly documented. Because it is intended for internal use b
core components, there is no use English long name for this variable.

$^M By default, running out of memory it is not trappable. However, if compiled for this, Perl may us
contents of $^M as an emergency pool after die() ing with this message. Suppose that your Pe
were compiled with −DPERL_EMERGENCY_SBRK and used Perl‘s malloc. Then

 $^M = ’a’ x (1<<16);

would allocate a 64K buffer for use when in emergency. See the INSTALL file for information on how
to enable this option. As a disincentive to casual use of this advanced feature, there is nouse
English long name for this variable.

New and changed builtin functions

delete on slices
This now works. (e.g. delete @ENV{‘PATH‘, ‘MANPATH‘})

flock
is now supported on more platforms, prefers fcntl to lockf when emulating, and always flushes
(un)locking.

printf and sprintf
Perl now implements these functions itself; it doesn‘t use the C library function sprintf() any
more, except for floating−point numbers, and even then only known flags are allowed. As a resu
now possible to know which conversions and flags will work, and what they will do.

The new conversions in Perl‘s sprintf() are:

 %i a synonym for %d
 %p a pointer (the address of the Perl value, in hexadecimal)
 %n special: *stores* the number of characters output so far
130 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

h case
dth or
flag:

hash.
ilar to

f you

trol

"my".

 is a
e most
 into the next variable in the parameter list

The new flags that go between the % and the conversion are:

 # prefix octal with "0", hex with "0x"
 h interpret integer as C type "short" or "unsigned short"
 V interpret integer as Perl’s standard integer type

Also, where a number would appear in the flags, an asterisk ("*") may be used instead, in whic
Perl uses the next item in the parameter list as the given number (that is, as the field wi
precision). If a field width obtained through "*" is negative, it has the same effect as the ‘−’
left−justification.

See sprintf for a complete list of conversion and flags.

keys as an lvalue
As an lvalue, keys allows you to increase the number of hash buckets allocated for the given
This can gain you a measure of efficiency if you know the hash is going to get big. (This is sim
pre−extending an array by assigning a larger number to $#array.) If you say

 keys %hash = 200;

then %hash will have at least 200 buckets allocated for it. These buckets will be retained even i
do %hash = () ; use undef %hash if you want to free the storage while %hash is still in scope.
You can‘t shrink the number of buckets allocated for the hash using keys in this way (but you needn‘t
worry about doing this by accident, as trying has no effect).

my() in Control Structures
You can now use my() (with or without the parentheses) in the control expressions of con
structures such as:

 while (defined(my $line = <>)) {
 $line = lc $line;
 } continue {
 print $line;
 }

 if ((my $answer = <STDIN>) =~ /^y(es)?$/i) {
 user_agrees();
 } elsif ($answer =~ /^n(o)?$/i) {
 user_disagrees();
 } else {
 chomp $answer;
 die "‘$answer’ is neither ‘yes’ nor ‘no’";
 }

Also, you can declare a foreach loop control variable as lexical by preceding it with the word
For example, in:

 foreach my $i (1, 2, 3) {
 some_function();
 }

$i is a lexical variable, and the scope of $i extends to the end of the loop, but not beyond it.

Note that you still cannot use my() on global punctuation variables such as $_ and the like.

pack() and unpack()
A new format ‘w’ represents a BER compressed integer (as defined in ASN.1). Its format
sequence of one or more bytes, each of which provides seven bits of the total value, with th
significant first. Bit eight of each byte is set, except for the last byte, in which bit eight is clear.
18−Oct−1998 Version 5.005_02 131

perl5004delta Perl Programmers Reference Guide perl5004delta

es

ite

e. If
nd Perl
the

 have

thod,
f the

ut it is
hod for

. (Not

of
oses.

f

efault.

o

isible

c" (for

 before
,
If ‘p’ or ‘P’ are given undef as values, they now generate a NULL pointer.

Both pack() and unpack() now fail when their templates contain invalid types. (Invalid typ
used to be ignored.)

sysseek()
The new sysseek() operator is a variant of seek() that sets and gets the file‘s system read/wr
position, using the lseek(2) system call. It is the only reliable way to seek before using sysread()
or syswrite() . Its return value is the new position, or the undefined value on failure.

use VERSION
If the first argument to use is a number, it is treated as a version number instead of a module nam
the version of the Perl interpreter is less than VERSION, then an error message is printed a
exits immediately. Because use occurs at compile time, this check happens immediately during
compilation process, unlike require VERSION , which waits until runtime for the check. This is
often useful if you need to check the current Perl version before use ing library modules which have
changed in incompatible ways from older versions of Perl. (We try not to do this more than we
to.)

use Module VERSION LIST
If the VERSION argument is present between Module and LIST, then the use will call the VERSION
method in class Module with the given version as an argument. The default VERSION me
inherited from the UNIVERSAL class, croaks if the given version is larger than the value o
variable $Module::VERSION. (Note that there is not a comma after VERSION!)

This version−checking mechanism is similar to the one currently used in the Exporter module, b
faster and can be used with modules that don‘t use the Exporter. It is the recommended met
new code.

prototype(FUNCTION)
Returns the prototype of a function as a string (or undef if the function has no prototype).
FUNCTION is a reference to or the name of the function whose prototype you want to retrieve
actually new; just never documented before.)

srand
The default seed for srand , which used to be time , has been changed. Now it‘s a heady mix
difficult−to−predict system−dependent values, which should be sufficient for most everyday purp

Previous to version 5.004, calling rand without first calling srand would yield the same sequence o
random numbers on most or all machines. Now, when perl sees that you‘re calling rand and haven‘t
yet called srand , it calls srand with the default seed. You should still call srand manually if your
code might ever be run on a pre−5.004 system, of course, or if you want a seed other than the d

$_ as Default
Functions documented in the Camel to default to $_ now in fact do, and all those that do are s
documented in perlfunc.

m//gc does not reset search position on failure
The m//g match iteration construct has always reset its target string‘s search position (which is v
through the pos operator) when a match fails; as a result, the next m//g match after a failure starts
again at the beginning of the string. With Perl 5.004, this reset may be disabled by adding the "
"continue") modifier, i.e. m//gc . This feature, in conjunction with the \G zero−width assertion,
makes it possible to chain matches together. See perlop and perlre.

m//x ignores whitespace before ?*+{}
The m//x construct has always been intended to ignore all unescaped whitespace. However,
Perl 5.004, whitespace had the effect of escaping repeat modifiers like "*" or "?"; for example/a
*b/x was (mis)interpreted as /a*b/x . This bug has been fixed in 5.004.
132 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

riable
ted

ther

 check

is

hen it
t
thod.
nested sub{} closures work now
Prior to the 5.004 release, nested anonymous functions didn‘t work right. They do now.

formats work right on changing lexicals
Just like anonymous functions that contain lexical variables that change (like a lexical index va
for a foreach loop), formats now work properly. For example, this silently failed before (prin
only zeros), but is fine now:

 my $i;
 foreach $i (1 .. 10) {

write;
 }
 format =

my i is @#
$i

 .

However, it still fails (without a warning) if the foreach is within a subroutine:

 my $i;
 sub foo {
 foreach $i (1 .. 10) {

write;
 }
 }
 foo;
 format =

my i is @#
$i

 .

New builtin methods
The UNIVERSAL package automatically contains the following methods that are inherited by all o
classes:

isa(CLASS)
isa returns true if its object is blessed into a subclass of CLASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to
what a reference points to. Example:

 use UNIVERSAL qw(isa);

 if(isa($ref, ’ARRAY’)) {
 ...
 }

can(METHOD)
can checks to see if its object has a method called METHOD, if it does then a reference to the sub
returned; if it does not then undef is returned.

VERSION([NEED])
VERSION returns the version number of the class (package). If the NEED argument is given t
will check that the current version (as defined by the $VERSION variable in the given package) no
less than NEED; it will die if this is not the case. This method is normally called as a class me
This method is called automatically by the VERSION form of use .

 use A 1.2 qw(some imported subs);
 # implies:
18−Oct−1998 Version 5.005_02 133

perl5004delta Perl Programmers Reference Guide perl5004delta

ackage.

 wish

rt. The

it also

.

 there
 A−>VERSION(1.2);

NOTE: can directly uses Perl‘s internal code for method lookup, and isa uses a very similar method and
caching strategy. This may cause strange effects if the Perl code dynamically changes @ISA in any p

You may add other methods to the UNIVERSAL class via Perl or XS code. You do not need to use
UNIVERSAL in order to make these methods available to your program. This is necessary only if you
to have isa available as a plain subroutine in the current package.

TIEHANDLE now supported
See perltie for other kinds of tie() s.

TIEHANDLE classname, LIST
This is the constructor for the class. That means it is expected to return an object of some so
reference can be used to hold some internal information.

 sub TIEHANDLE {
print "<shout>\n";
my $i;
return bless \$i, shift;

 }

PRINT this, LIST
This method will be triggered every time the tied handle is printed to. Beyond its self reference
expects the list that was passed to the print function.

 sub PRINT {
$r = shift;
$$r++;
return print join($, => map {uc} @_), $\;

 }

PRINTF this, LIST
This method will be triggered every time the tied handle is printed to with the printf() function.
Beyond its self reference it also expects the format and list that was passed to the printf function

 sub PRINTF {
 shift;

 my $fmt = shift;
 print sprintf($fmt, @_)."\n";
 }

READ this LIST
This method will be called when the handle is read from via the read or sysread functions.

 sub READ {
$r = shift;
my($buf,$len,$offset) = @_;
print "READ called, \$buf=$buf, \$len=$len, \$offset=$offset";

 }

READLINE this
This method will be called when the handle is read from. The method should return undef when
is no more data.

 sub READLINE {
$r = shift;
return "PRINT called $$r times\n"

 }
134 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

troyed.

cs are
dule

 with

cated

alloc

es it
r quite

ard to

r of
l for

peed
e real
ating

 such

d (e.g.

ey. So
GETC this
This method will be called when the getc function is called.

 sub GETC { print "Don’t GETC, Get Perl"; return "a"; }

DESTROY this
As with the other types of ties, this method will be called when the tied handle is about to be des
This is useful for debugging and possibly for cleaning up.

 sub DESTROY {
print "</shout>\n";

 }

Malloc enhancements
If perl is compiled with the malloc included with the perl distribution (that is, if perl −V:d_mymalloc is
‘define’) then you can print memory statistics at runtime by running Perl thusly:

 env PERL_DEBUG_MSTATS=2 perl your_script_here

The value of 2 means to print statistics after compilation and on exit; with a value of 1, the statisti
printed only on exit. (If you want the statistics at an arbitrary time, you‘ll need to install the optional mo
Devel::Peek.)

Three new compilation flags are recognized by malloc.c. (They have no effect if perl is compiled
system malloc() .)

−DPERL_EMERGENCY_SBRK
If this macro is defined, running out of memory need not be a fatal error: a memory pool can allo
by assigning to the special variable $^M. See "$^M" .

−DPACK_MALLOC
Perl memory allocation is by bucket with sizes close to powers of two. Because of these m
overhead may be big, especially for data of size exactly a power of two. If PACK_MALLOC is defined,
perl uses a slightly different algorithm for small allocations (up to 64 bytes long), which mak
possible to have overhead down to 1 byte for allocations which are powers of two (and appea
often).

Expected memory savings (with 8−byte alignment in alignbytes) is about 20% for typical Perl
usage. Expected slowdown due to additional malloc overhead is in fractions of a percent (h
measure, because of the effect of saved memory on speed).

−DTWO_POT_OPTIMIZE
Similarly to PACK_MALLOC, this macro improves allocations of data with size close to a powe
two; but this works for big allocations (starting with 16K by default). Such allocations are typica
big hashes and special−purpose scripts, especially image processing.

On recent systems, the fact that perl requires 2M from system for 1M allocation will not affect s
of execution, since the tail of such a chunk is not going to be touched (and thus will not requir
memory). However, it may result in a premature out−of−memory error. So if you will be manipul
very large blocks with sizes close to powers of two, it would be wise to define this macro.

Expected saving of memory is 0−100% (100% in applications which require most memory in
2**n chunks); expected slowdown is negligible.

Miscellaneous efficiency enhancements
Functions that have an empty prototype and that do nothing but return a fixed value are now inline
sub PI () { 3.14159 }).

Each unique hash key is only allocated once, no matter how many hashes have an entry with that k
even if you have 100 copies of the same hash, the hash keys never have to be reallocated.
18−Oct−1998 Version 5.005_02 135

perl5004delta Perl Programmers Reference Guide perl5004delta

isual
). The
 it got

ow be
and

 tools
ostly

 be

an

 and
intf
ats

ot
with
Support for More Operating Systems
Support for the following operating systems is new in Perl 5.004.

Win32
Perl 5.004 now includes support for building a "native" perl under Windows NT, using the Microsoft V
C++ compiler (versions 2.0 and above) or the Borland C++ compiler (versions 5.02 and above
resulting perl can be used under Windows 95 (if it is installed in the same directory locations as
installed in Windows NT). This port includes support for perl extension building tools like MakeMaker and
h2xs, so that many extensions available on the Comprehensive Perl Archive Network (CPAN) can n
readily built under Windows NT. See http://www.perl.com/ for more information on CPAN
README.win32 in the perl distribution for more details on how to get started with building this port.

There is also support for building perl under the Cygwin32 environment. Cygwin32 is a set of GNU
that make it possible to compile and run many UNIX programs under Windows NT by providing a m
UNIX−like interface for compilation and execution. See README.cygwin32 in the perl distribution for
more details on this port and how to obtain the Cygwin32 toolkit.

Plan 9
See README.plan9 in the perl distribution.

QNX
See README.qnx in the perl distribution.

AmigaOS
See README.amigaos in the perl distribution.

Pragmata
Six new pragmatic modules exist:

use autouse MODULE = qw(sub1 sub2 sub3)
Defers require MODULE until someone calls one of the specified subroutines (which must
exported by MODULE). This pragma should be used with caution, and only when necessary.

use blib
use blib ‘dir’

Looks for MakeMaker−like ‘blib’ directory structure starting in dir (or current directory) and working
back up to five levels of parent directories.

Intended for use on command line with −M option as a way of testing arbitrary scripts against
uninstalled version of a package.

use constant NAME = VALUE
Provides a convenient interface for creating compile−time constants, See
Constant Functions in perlsub.

use locale
Tells the compiler to enable (or disable) the use of POSIX locales for builtin operations.

When use locale is in effect, the current LC_CTYPE locale is used for regular expressions
case mapping; LC_COLLATE for string ordering; and LC_NUMERIC for numeric formating in pr
and sprintf (but not in print). LC_NUMERIC is always used in write, since lexical scoping of form
is problematic at best.

Each use locale or no locale affects statements to the end of the enclosing BLOCK or, if n
inside a BLOCK, to the end of the current file. Locales can be switched and queried
POSIX::setlocale() .

See perllocale for more information.
136 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

ilable:
IX;

a few

rl 4),

brary
nded to
ithout
use ops
Disable unsafe opcodes, or any named opcodes, when compiling Perl code.

use vmsish
Enable VMS−specific language features. Currently, there are three VMS−specific features ava
‘status‘, which makes $? and system return genuine VMS status values instead of emulating POS
‘exit‘, which makes exit take a genuine VMS status value instead of assuming that exit 1 is an
error; and ‘time‘, which makes all times relative to the local time zone, in the VMS tradition.

Modules

Required Updates
Though Perl 5.004 is compatible with almost all modules that work with Perl 5.003, there are
exceptions:

 Module Required Version for Perl 5.004
 −−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Filter Filter−1.12
 LWP libwww−perl−5.08
 Tk Tk400.202 (−w makes noise)

Also, the majordomo mailing list program, version 1.94.1, doesn‘t work with Perl 5.004 (nor with pe
because it executes an invalid regular expression. This bug is fixed in majordomo version 1.94.2.

Installation directories
The installperl script now places the Perl source files for extensions in the architecture−specific li
directory, which is where the shared libraries for extensions have always been. This change is inte
allow administrators to keep the Perl 5.004 library directory unchanged from a previous version, w
running the risk of binary incompatibility between extensions’ Perl source and shared libraries.

Module information summary
Brand new modules, arranged by topic rather than strictly alphabetically:

 CGI.pm Web server interface ("Common Gateway Interface")
 CGI/Apache.pm Support for Apache’s Perl module
 CGI/Carp.pm Log server errors with helpful context
 CGI/Fast.pm Support for FastCGI (persistent server process)
 CGI/Push.pm Support for server push
 CGI/Switch.pm Simple interface for multiple server types

 CPAN Interface to Comprehensive Perl Archive Network
 CPAN::FirstTime Utility for creating CPAN configuration file
 CPAN::Nox Runs CPAN while avoiding compiled extensions

 IO.pm Top−level interface to IO::* classes
 IO/File.pm IO::File extension Perl module
 IO/Handle.pm IO::Handle extension Perl module
 IO/Pipe.pm IO::Pipe extension Perl module
 IO/Seekable.pm IO::Seekable extension Perl module
 IO/Select.pm IO::Select extension Perl module
 IO/Socket.pm IO::Socket extension Perl module

 Opcode.pm Disable named opcodes when compiling Perl code

 ExtUtils/Embed.pm Utilities for embedding Perl in C programs
 ExtUtils/testlib.pm Fixes up @INC to use just−built extension

 FindBin.pm Find path of currently executing program

 Class/Struct.pm Declare struct−like datatypes as Perl classes
18−Oct−1998 Version 5.005_02 137

perl5004delta Perl Programmers Reference Guide perl5004delta

system

 refer to

xplicitly

ly this

se are
 File/stat.pm By−name interface to Perl’s builtin stat
 Net/hostent.pm By−name interface to Perl’s builtin gethost*
 Net/netent.pm By−name interface to Perl’s builtin getnet*
 Net/protoent.pm By−name interface to Perl’s builtin getproto*
 Net/servent.pm By−name interface to Perl’s builtin getserv*
 Time/gmtime.pm By−name interface to Perl’s builtin gmtime
 Time/localtime.pm By−name interface to Perl’s builtin localtime
 Time/tm.pm Internal object for Time::{gm,local}time
 User/grent.pm By−name interface to Perl’s builtin getgr*
 User/pwent.pm By−name interface to Perl’s builtin getpw*

 Tie/RefHash.pm Base class for tied hashes with references as keys

 UNIVERSAL.pm Base class for *ALL* classes

Fcntl
New constants in the existing Fcntl modules are now supported, provided that your operating
happens to support them:

 F_GETOWN F_SETOWN
 O_ASYNC O_DEFER O_DSYNC O_FSYNC O_SYNC
 O_EXLOCK O_SHLOCK

These constants are intended for use with the Perl operators sysopen() and fcntl() and the basic
database modules like SDBM_File. For the exact meaning of these and other Fcntl constants please
your operating system‘s documentation for fcntl() and open() .

In addition, the Fcntl module now provides these constants for use with the Perl operator flock() :

LOCK_SH LOCK_EX LOCK_NB LOCK_UN

These constants are defined in all environments (because where there is no flock() system call, Perl
emulates it). However, for historical reasons, these constants are not exported unless they are e
requested with the ":flock" tag (e.g. use Fcntl ‘:flock’).

IO
The IO module provides a simple mechanism to load all of the IO modules at one go. Current
includes:

 IO::Handle
 IO::Seekable
 IO::File
 IO::Pipe
 IO::Socket

For more information on any of these modules, please see its respective documentation.

Math::Complex
The Math::Complex module has been totally rewritten, and now supports more operations. The
overloaded:

 + − * / ** <=> neg ~ abs sqrt exp log sin cos atan2 "" (stringify)

And these functions are now exported:

 pi i Re Im arg
 log10 logn ln cbrt root
 tan
 csc sec cot
 asin acos atan
 acsc asec acot
138 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

metric

40 to

if

 1.01

ted
 sinh cosh tanh
 csch sech coth
 asinh acosh atanh
 acsch asech acoth
 cplx cplxe

Math::Trig
This new module provides a simpler interface to parts of Math::Complex for those who need trigono
functions only for real numbers.

DB_File
There have been quite a few changes made to DB_File. Here are a few of the highlights:

 Fixed a handful of bugs.

 By public demand, added support for the standard hash function exists() .

 Made it compatible with Berkeley DB 1.86.

 Made negative subscripts work with RECNO interface.

 Changed the default flags from O_RDWR to O_CREAT|O_RDWR and the default mode from 06
0666.

 Made DB_File automatically import the open() constants (O_RDWR, O_CREAT etc.) from Fcntl,
available.

 Updated documentation.

Refer to the HISTORY section in DB_File.pm for a complete list of changes. Everything after DB_File
has been added since 5.003.

Net::Ping
Major rewrite − support added for both udp echo and real icmp pings.

Object−oriented overrides for builtin operators
Many of the Perl builtins returning lists now have object−oriented overrides. These are:

 File::stat
 Net::hostent
 Net::netent
 Net::protoent
 Net::servent
 Time::gmtime
 Time::localtime
 User::grent
 User::pwent

For example, you can now say

 use File::stat;
 use User::pwent;
 $his = (stat($filename)−>st_uid == pwent($whoever)−>pw_uid);

Utility Changes

pod2html

Sends converted HTML to standard output
The pod2html utility included with Perl 5.004 is entirely new. By default, it sends the conver
HTML to its standard output, instead of writing it to a file like Perl 5.003‘s pod2html did. Use the
—outfile=FILENAME option to write to a file.
18−Oct−1998 Version 5.005_02 139

perl5004delta Perl Programmers Reference Guide perl5004delta

pe of
, but
ailure.

t
rn an

 it
isible to

s

value
. See

d will

s keys).

t.
xsubpp

void XSUBs now default to returning nothing
Due to a documentation/implementation bug in previous versions of Perl, XSUBs with a return ty
void have actually been returning one value. Usually that value was the GV for the XSUB
sometimes it was some already freed or reused value, which would sometimes lead to program f

In Perl 5.004, if an XSUB is declared as returning void , it actually returns no value, i.e. an empty lis
(though there is a backward−compatibility exception; see below). If your XSUB really does retu
SV, you should give it a return type of SV * .

For backward compatibility, xsubpp tries to guess whether a void XSUB is really void or if it wants
to return an SV * . It does so by examining the text of the XSUB: if xsubpp finds what looks like an
assignment to ST(0) , it assumes that the XSUB‘s return type is really SV * .

C Language API Changes

gv_fetchmethod and perl_call_sv
The gv_fetchmethod function finds a method for an object, just like in Perl 5.003. The GV
returns may be a method cache entry. However, in Perl 5.004, method cache entries are not v
users; therefore, they can no longer be passed directly to perl_call_sv . Instead, you should use the
GvCV macro on the GV to extract its CV, and pass the CV to perl_call_sv .

The most likely symptom of passing the result of gv_fetchmethod to perl_call_sv is Perl‘s
producing an "Undefined subroutine called" error on the second call to a given method (since there i
no cache on the first call).

perl_eval_pv
A new function handy for eval‘ing strings of Perl code inside C code. This function returns the
from the eval statement, which can be used instead of fetching globals from the symbol table
perlguts, perlembed and perlcall for details and examples.

Extended API for manipulating hashes
Internal handling of hash keys has changed. The old hashtable API is still fully supported, an
likely remain so. The additions to the API allow passing keys as SV*s, so that tied hashes can be
given real scalars as keys rather than plain strings (nontied hashes still can only use strings a
New extensions must use the new hash access functions and macros if they wish to use SV* keys.
These additions also make it feasible to manipulate HE*s (hash entries), which can be more efficien
See perlguts for details.

Documentation Changes
Many of the base and library pods were updated. These new pods are included in section 1:

perldelta
This document.

perlfaq
Frequently asked questions.

perllocale
Locale support (internationalization and localization).

perltoot
Tutorial on Perl OO programming.

perlapio
Perl internal IO abstraction interface.
140 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

orms.
isted in

 to the
ill still

alues.
 — the
his is

cess of
 a string
perlmodlib
Perl module library and recommended practice for module creation. Extracted from perlmod (which is
much smaller as a result).

perldebug
Although not new, this has been massively updated.

perlsec
Although not new, this has been massively updated.

New Diagnostics
Several new conditions will trigger warnings that were silent before. Some only affect certain platf
The following new warnings and errors outline these. These messages are classified as follows (l
increasing order of desperation):

 (W) A warning (optional).
 (D) A deprecation (optional).
 (S) A severe warning (mandatory).
 (F) A fatal error (trappable).
 (P) An internal error you should never see (trappable).
 (X) A very fatal error (nontrappable).
 (A) An alien error message (not generated by Perl).

"my" variable %s masks earlier declaration in same scope
(W) A lexical variable has been redeclared in the same scope, effectively eliminating all access
previous instance. This is almost always a typographical error. Note that the earlier variable w
exist until the end of the scope or until all closure referents to it are destroyed.

%s argument is not a HASH element or slice
(F) The argument to delete() must be either a hash element, such as

 $foo{$bar}
 $ref−>[12]−>{"susie"}

or a hash slice, such as

 @foo{$bar, $baz, $xyzzy}
 @{$ref−>[12]}{"susie", "queue"}

Allocation too large: %lx
(X) You can‘t allocate more than 64K on an MS−DOS machine.

Allocation too large
(F) You can‘t allocate more than 2^31+"small amount" bytes.

Applying %s to %s will act on scalar(%s)
(W) The pattern match (//), substitution (s///), and transliteration (tr///) operators work on scalar v
 If you apply one of them to an array or a hash, it will convert the array or hash to a scalar value
length of an array, or the population info of a hash — and then work on that scalar value. T
probably not what you meant to do. See grep and map for alternatives.

Attempt to free nonexistent shared string
(P) Perl maintains a reference counted internal table of strings to optimize the storage and ac
hash keys and other strings. This indicates someone tried to decrement the reference count of
that can no longer be found in the table.

Attempt to use reference as lvalue in substr
(W) You supplied a reference as the first argument to substr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first. See substr.
18−Oct−1998 Version 5.005_02 141

perl5004delta Perl Programmers Reference Guide perl5004delta

at

ried to
really

routine

tional

ames,
s

cause

hes:

cture

2−bit
Bareword "%s" refers to nonexistent package
(W) You used a qualified bareword of the form Foo:: , but the compiler saw no other uses of th
namespace before that point. Perhaps you need to predeclare a package?

Can‘t redefine active sort subroutine %s
(F) Perl optimizes the internal handling of sort subroutines and keeps pointers into them. You t
redefine one such sort subroutine when it was currently active, which is not allowed. If you
want to do this, you should write sort { &func } @x instead of sort func @x .

Can‘t use bareword ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowed. See perlref.

Cannot resolve method ‘%s’ overloading ‘%s’ in package ‘%s’
(P) Internal error trying to resolve overloading specified by a method name (as opposed to a sub
reference).

Constant subroutine %s redefined
(S) You redefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsub for commentary and workarounds.

Constant subroutine %s undefined
(S) You undefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsub for commentary and workarounds.

Copy method did not return a reference
(F) The method which overloads "=" is buggy. See Copy Constructor.

Died
(F) You passed die() an empty string (the equivalent of die "") or you called it with no args and
both $@ and $_ were empty.

Exiting pseudo−block via %s
(W) You are exiting a rather special block construct (like a sort block or subroutine) by unconven
means, such as a goto, or a loop control statement. See sort.

Identifier too long
(F) Perl limits identifiers (names for variables, functions, etc.) to 252 characters for simple n
somewhat more for compound names (like $A::B). You‘ve exceeded Perl‘s limits. Future version
of Perl are likely to eliminate these arbitrary limitations.

Illegal character %s (carriage return)
(F) A carriage return character was found in the input. This is an error, and not a warning, be
carriage return characters can break multi−line strings, including here documents (e.g., print
<<EOF;).

Illegal switch in PERL5OPT: %s
(X) The PERL5OPT environment variable may only be used to set the following switc
−[DIMUdmw] .

Integer overflow in hex number
(S) The literal hex number you have specified is too big for your architecture. On a 32−bit archite
the largest hex literal is 0xFFFFFFFF.

Integer overflow in octal number
(S) The literal octal number you have specified is too big for your architecture. On a 3
architecture the largest octal literal is 037777777777.
142 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

fig.sh:

run

having

o be

his is

(or

mpiled.

(or
e−time

rs are
an the
internal error: glob failed
(P) Something went wrong with the external program(s) used for glob and <*.c> . This may mean
that your csh (C shell) is broken. If so, you should change all of the csh−related variables in con
 If you have tcsh, make the variables refer to it as if it were csh (e.g.
full_csh=‘/usr/bin/tcsh’); otherwise, make them all empty (except that d_csh should be
‘undef’) so that Perl will think csh is missing. In either case, after editing config.sh,
./Configure −S and rebuild Perl.

Invalid conversion in %s: "%s"
(W) Perl does not understand the given format conversion. See sprintf.

Invalid type in pack: ‘%s’
(F) The given character is not a valid pack type. See pack.

Invalid type in unpack: ‘%s’
(F) The given character is not a valid unpack type. See unpack.

Name "%s::%s" used only once: possible typo
(W) Typographical errors often show up as unique variable names. If you had a good reason for
a unique name, then just mention it again somehow to suppress the message (the use vars pragma
is provided for just this purpose).

Null picture in formline
(F) The first argument to formline must be a valid format picture specification. It was found t
empty, which probably means you supplied it an uninitialized value. See perlform.

Offset outside string
(F) You tried to do a read/write/send/recv operation with an offset pointing outside the buffer. T
difficult to imagine. The sole exception to this is that sysread() ing past the buffer will extend the
buffer and zero pad the new area.

Out of memory!
(X|F) The malloc() function returned 0, indicating there was insufficient remaining memory
virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on the way Perl was co
By default it is not trappable. However, if compiled for this, Perl may use the contents of $^M as an
emergency pool after die() ing with this message. In this case the error is trappable once.

Out of memory during request for %s
(F) The malloc() function returned 0, indicating there was insufficient remaining memory
virtual memory) to satisfy the request. However, the request was judged large enough (compil
default is 64K), so a possibility to shut down by trapping this error is granted.

panic: frexp
(P) The library function frexp() failed, making printf("%f") impossible.

Possible attempt to put comments in qw() list
(W) qw() lists contain items separated by whitespace; as with literal strings, comment characte
not ignored, but are instead treated as literal data. (You may have used different delimiters th
parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

 @list = qw(
 a # a comment
 b # another comment
);
18−Oct−1998 Version 5.005_02 143

perl5004delta Perl Programmers Reference Guide perl5004delta

rate the
re also

hem

lly it‘s

 weird

ver be

 eval).
.

ome of
when you should have written this:

 @list = qw(
 a
 b
);

If you really want comments, build your list the old−fashioned way, with quotes and commas:

 @list = (
 ’a’, # a comment
 ’b’, # another comment
);

Possible attempt to separate words with commas
(W) qw() lists contain items separated by whitespace; therefore commas aren‘t needed to sepa
items. (You may have used different delimiters than the parentheses shown here; braces a
frequently used.)

You probably wrote something like this:

 qw! a, b, c !;

which puts literal commas into some of the list items. Write it without commas if you don‘t want t
to appear in your data:

 qw! a b c !;

Scalar value @%s{%s} better written as $%s{%s}
(W) You‘ve used a hash slice (indicated by @) to select a single element of a hash. Genera
better to ask for a scalar value (indicated by $). The difference is that $foo{&bar} always behaves
like a scalar, both when assigning to it and when evaluating its argument, while @foo{&bar}
behaves like a list when you assign to it, and provides a list context to its subscript, which can do
things if you‘re expecting only one subscript.

Stub found while resolving method ‘%s’ overloading ‘%s’ in package ‘%s’
(P) Overloading resolution over @ISA tree may be broken by importing stubs. Stubs should ne
implicitely created, but explicit calls to can may break this.

Too late for "−T" option
(X) The #! line (or local equivalent) in a Perl script contains the −T option, but Perl was not invoked
with −T in its argument list. This is an error because, by the time Perl discovers a −T in a script, it‘s
too late to properly taint everything from the environment. So Perl gives up.

untie attempted while %d inner references still exist
(W) A copy of the object returned from tie (or tied) was still valid when untie was called.

Unrecognized character %s
(F) The Perl parser has no idea what to do with the specified character in your Perl script (or
Perhaps you tried to run a compressed script, a binary program, or a directory as a Perl program

Unsupported function fork
(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors of Perl executables, s
which may support fork, some not. Try changing the name you call Perl by to perl_ , perl__ , and
so on.

Use of "$$<digit " to mean "${$}<digit " is deprecated
(D) Perl versions before 5.004 misinterpreted any type marker followed by "$" and a digit. For
example, "$$0" was incorrectly taken to mean "${$}0" instead of "${$0}". This bug is (mostly)
144 Version 5.005_02 18−Oct−1998

perl5004delta Perl Programmers Reference Guide perl5004delta

t two

 And

itional
itional

r
 in the

most
lled or
le as it

t you

 named

ter

ble as
o the
lue for

lf, then

lled or

 over
slated
some
s, or it

hould
fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at leas
widely−used modules depend on the old meaning of "$$0" in a string. So Perl 5.004 still interprets
"$$<digit " in the old (broken) way inside strings; but it generates this message as a warning.
in Perl 5.005, this special treatment will cease.

Value of %s can be "0"; test with defined()
(W) In a conditional expression, you used <HANDLE, <* (glob), each() , or readdir() as a
boolean value. Each of these constructs can return a value of "0"; that would make the cond
expression false, which is probably not what you intended. When using these constructs in cond
expressions, test their values with the defined operator.

Variable "%s" may be unavailable
(W) An inner (nested) anonymous subroutine is inside a named subroutine, and outside that is anothe
subroutine; and the anonymous (innermost) subroutine is referencing a lexical variable defined
outermost subroutine. For example:

 sub outermost { my $a; sub middle { sub { $a } } }

If the anonymous subroutine is called or referenced (directly or indirectly) from the outer
subroutine, it will share the variable as you would expect. But if the anonymous subroutine is ca
referenced when the outermost subroutine is not active, it will see the value of the shared variab
was before and during the *first* call to the outermost subroutine, which is probably not wha
want.

In these circumstances, it is usually best to make the middle subroutine anonymous, using the sub {}
syntax. Perl has specific support for shared variables in nested anonymous subroutines; a
subroutine in between interferes with this feature.

Variable "%s" will not stay shared
(W) An inner (nested) named subroutine is referencing a lexical variable defined in an ou
subroutine.

When the inner subroutine is called, it will probably see the value of the outer subroutine‘s varia
it was before and during the *first* call to the outer subroutine; in this case, after the first call t
outer subroutine is complete, the inner and outer subroutines will no longer share a common va
the variable. In other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a lexical variable outside itse
the outer and inner subroutines will never share the given variable.

This problem can usually be solved by making the inner subroutine anonymous, using the sub {}
syntax. When inner anonymous subs that reference variables in outer subroutines are ca
referenced, they are automatically rebound to the current values of such variables.

Warning: something‘s wrong
(W) You passed warn() an empty string (the equivalent of warn "") or you called it with no args
and $_ was empty.

Ill−formed logical name |%s| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate
%ENV which violates the syntactic rules governing logical names. Since it cannot be tran
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as
software packages might directly modify logical name tables and introduce nonstandard name
may indicate that a logical name table has been corrupted.

Got an error from DosAllocMem
(P) An error peculiar to OS/2. Most probably you‘re using an obsolete version of Perl, and this s
not happen anyway.
18−Oct−1998 Version 5.005_02 145

perl5004delta Perl Programmers Reference Guide perl5004delta

,
. See

ce. It
ers, see

n the
Home

.
utput

teran

, with
Malformed PERLLIB_PREFIX
(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

 prefix1;prefix2

or

 prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix of a builtin library search path
prefix2 is substituted. The error may appear if components are not found, or are too long
"PERLLIB_PREFIX" in README.os2.

PERL_SH_DIR too long
(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find the sh −shell in. See
"PERL_SH_DIR" in README.os2.

Process terminated by SIG%s
(W) This is a standard message issued by OS/2 applications, while *nix applications die in silen
is considered a feature of the OS/2 port. One can easily disable this by appropriate sighandl
Signals in perlipc. See also "Process terminated by SIGTERM/SIGINT" in README.os2.

BUGS
If you find what you think is a bug, you might check the headers of recently posted articles i
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/, the Perl
Page.

If you believe you have an unreported bug, please run the perlbug program included with your release
Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along with the o
of perl −V , will be sent off to <perlbug@perl.com to be analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl. This file has been significantly updated for 5.004, so even ve
users should look through it.

The README file for general stuff.

The Copying file for copyright information.

HISTORY
Constructed by Tom Christiansen, grabbing material with permission from innumerable contributors
kibitzing by more than a few Perl porters.

Last update: Wed May 14 11:14:09 EDT 1997
146 Version 5.005_02 18−Oct−1998

perldata Perl Programmers Reference Guide perldata

 "hashes".
 Hash

me tells
hich it
nd
d by
mespace
e
e detail

 collide
e saved
s
s (see

rks

:

 initial

a scalar
ans that

andles,
", for

ords.)
r or
NAME
perldata − Perl data types

DESCRIPTION

Variable names
Perl has three data structures: scalars, arrays of scalars, and associative arrays of scalars, known as
Normal arrays are indexed by number, starting with 0. (Negative subscripts count from the end.)
arrays are indexed by string.

Values are usually referred to by name (or through a named reference). The first character of the na
you to what sort of data structure it refers. The rest of the name tells you the particular value to w
refers. Most often, it consists of a single identifier, that is, a string beginning with a letter or underscore, a
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separate::
(or by ’ , but that‘s deprecated); all but the last are interpreted as names of packages, to locate the na
in which to look up the final identifier (see Packages for details). It‘s possible to substitute for a simpl
identifier an expression that produces a reference to the value at runtime; this is described in mor
below, and in perlref.

There are also special variables whose names don‘t follow these rules, so that they don‘t accidentally
with one of your normal variables. Strings that match parenthesized parts of a regular expression ar
under names containing only digits after the $ (see perlop and perlre). In addition, several special variable
that provide windows into the inner working of Perl have names containing punctuation character
perlvar).

Scalar values are always named with ‘$‘, even when referring to a scalar that is part of an array. It wo
like the English word "the". Thus we have:

 $days # the simple scalar value "days"
 $days[28] # the 29th element of array @days
 $days{’Feb’} # the ’Feb’ value from hash %days
 $#days # the last index of array @days

but entire arrays or array slices are denoted by ‘@‘, which works much like the word "these" or "those"

 @days # ($days[0], $days[1],... $days[n])
 @days[3,4,5] # same as @days[3..5]
 @days{’a’,’c’} # same as ($days{’a’},$days{’c’})

and entire hashes are denoted by ‘%‘:

 %days # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial ‘&‘, though this is optional when it‘s otherwise
unambiguous (just as "do" is often redundant in English). Symbol table entries can be named with an
‘*‘, but you don‘t really care about that yet.

Every variable type has its own namespace. You can, without fear of conflict, use the same name for
variable, an array, or a hash (or, for that matter, a filehandle, a subroutine name, or a label). This me
$foo and @foo are two different variables. It also means that $foo[1] is a part of @foo, not a part of
$foo. This may seem a bit weird, but that‘s okay, because it is weird.

Because variable and array references always start with ‘$‘, ‘@‘, or ‘%‘, the "reserved" words aren‘t in fact
reserved with respect to variable names. (They ARE reserved with respect to labels and fileh
however, which don‘t have an initial special character. You can‘t have a filehandle named "log
instance. Hint: you could say open(LOG,‘logfile’) rather than open(log,‘logfile’) . Using
uppercase filehandles also improves readability and protects you from conflict with future reserved w
Case IS significant—"FOO", "Foo", and "foo" are all different names. Names that start with a lette
underscore may also contain digits and underscores.
18−Oct−1998 Version 5.005_02 147

perldata Perl Programmers Reference Guide perldata

object of

rscore,
ned

 context
turn list
ill be

s based
 "fish"

ts. For

ng one
f that

ilable
s and

 right
nt to an
tes the

ext, but
s. See

 various
 form to
array or
nctions
ng or a

 of type
phic
ings and
ly−typed

 (or its

turned
en you
ed the
It is possible to replace such an alphanumeric name with an expression that returns a reference to an
that type. For a description of this, see perlref.

Names that start with a digit may contain only more digits. Names that do not start with a letter, unde
or digit are limited to one character, e.g., $% or $$. (Most of these one character names have a predefi
significance to Perl. For instance, $$ is the current process id.)

Context
The interpretation of operations and values in Perl sometimes depends on the requirements of the
around the operation or value. There are two major contexts: scalar and list. Certain operations re
values in contexts wanting a list, and scalar values otherwise. (If this is true of an operation it w
mentioned in the documentation for that operation.) In other words, Perl overloads certain operation
on whether the expected return value is singular or plural. (Some words in English work this way, like
and "sheep".)

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its argumen
example, if you say

 int(<STDIN>)

the integer operation provides a scalar context for the <STDIN> operator, which responds by readi
line from STDIN and passing it back to the integer operation, which will then find the integer value o
line and return that. If, on the other hand, you say

 sort(<STDIN>)

then the sort operation provides a list context for <STDIN>, which will proceed to read every line ava
up to the end of file, and pass that list of lines back to the sort routine, which will then sort those line
return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the
argument. Assignment to a scalar evaluates the righthand side in a scalar context, while assignme
array or array slice evaluates the righthand side in a list context. Assignment to a list also evalua
righthand side in a list context.

User defined subroutines may choose to care whether they are being called in a scalar or list cont
most subroutines do not need to care, because scalars are automatically interpolated into list
wantarray.

Scalar values
All data in Perl is a scalar or an array of scalars or a hash of scalars. Scalar variables may contain
kinds of singular data, such as numbers, strings, and references. In general, conversion from one
another is transparent. (A scalar may not contain multiple values, but may contain a reference to an
hash containing multiple values.) Because of the automatic conversion of scalars, operations, and fu
that return scalars don‘t need to care (and, in fact, can‘t care) whether the context is looking for a stri
number.

Scalars aren‘t necessarily one thing or another. There‘s no place to declare a scalar variable to be
"string", or of type "number", or type "filehandle", or anything else. Perl is a contextually polymor
language whose scalars can be strings, numbers, or references (which includes objects). While str
numbers are considered pretty much the same thing for nearly all purposes, references are strong
uncastable pointers with builtin reference−counting and destructor invocation.

A scalar value is interpreted as TRUE in the Boolean sense if it is not the null string or the number 0
string equivalent, "0"). The Boolean context is just a special kind of scalar context.

There are actually two varieties of null scalars: defined and undefined. Undefined null scalars are re
when there is no real value for something, such as when there was an error, or at end of file, or wh
refer to an uninitialized variable or element of an array. An undefined null scalar may become defin
first time you use it as if it were defined, but prior to that you can use the defined() operator to determine
whether the value is defined or not.
148 Version 5.005_02 18−Oct−1998

perldata Perl Programmers Reference Guide perldata

t both
‘t

 check

ere is
 by

ake sure
ncy by
element

not true
eturn

u

ins any
ber of

l only to
mple,
s only

his isn‘t
To find out whether a given string is a valid nonzero number, it‘s usually enough to test it agains
numeric 0 and also lexical "0" (although this will cause −w noises). That‘s because strings that aren
numbers count as 0, just as they do in awk:

 if ($str == 0 && $str ne "0") {
warn "That doesn’t look like a number";

 }

That‘s usually preferable because otherwise you won‘t treat IEEE notations like NaN or Infinity
properly. At other times you might prefer to use the POSIX::strtod function or a regular expression to
whether data is numeric. See perlre for details on regular expressions.

 warn "has nondigits" if /\D/;
 warn "not a natural number" unless /^\d+$/; # rejects −3
 warn "not an integer" unless /^−?\d+$/; # rejects +3
 warn "not an integer" unless /^[+−]?\d+$/;
 warn "not a decimal number" unless /^−?\d+\.?\d*$/; # rejects .2
 warn "not a decimal number" unless /^−?(?:\d+(?:\.\d*)?|\.\d+)$/;
 warn "not a C float"

unless /^([+−]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+−]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evaluating $#days, as
in csh. (Actually, it‘s not the length of the array, it‘s the subscript of the last element, because th
(ordinarily) a 0th element.) Assigning to $#days changes the length of the array. Shortening an array
this method destroys intervening values. Lengthening an array that was previously shortened NO LONGER
recovers the values that were in those elements. (It used to in Perl 4, but we had to break this to m
destructors were called when expected.) You can also gain some miniscule measure of efficie
pre−extending an array that is going to get big. (You can also extend an array by assigning to an
that is off the end of the array.) You can truncate an array down to nothing by assigning the null list () to it.
The following are equivalent:

 @whatever = ();
 $#whatever = −1;

If you evaluate a named array in a scalar context, it returns the length of the array. (Note that this is
of lists, which return the last value, like the C comma operator, nor of built−in functions, which r
whatever they feel like returning.) The following is always true:

 scalar(@whatever) == $#whatever − $[+ 1;

Version 5 of Perl changed the semantics of $[: files that don‘t set the value of $[no longer need to worry
about whether another file changed its value. (In other words, use of $[is deprecated.) So in general yo
can assume that

 scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so nothing‘s left to doubt:

 $element_count = scalar(@whatever);

If you evaluate a hash in a scalar context, it returns a value that is true if and only if the hash conta
key/value pairs. (If there are any key/value pairs, the value returned is a string consisting of the num
used buckets and the number of allocated buckets, separated by a slash. This is pretty much usefu
find out whether Perl‘s (compiled in) hashing algorithm is performing poorly on your data set. For exa
you stick 10,000 things in a hash, but evaluating %HASH in scalar context reveals "1/16", which mean
one out of sixteen buckets has been touched, and presumably contains all 10,000 of your items. T
supposed to happen.)

You can preallocate space for a hash by assigning to the keys() function. This rounds up the allocated
bucked to the next power of two:
18−Oct−1998 Version 5.005_02 149

perldata Perl Programmers Reference Guide perldata

uotes:
 are not
line,

teger

 begin.
r line
inside

t "The

erics.
hash

ill be

 quote is

name,
 tokens;

 actual
for
o

ATA
n), at

ese are
 letters
 keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors
Numeric literals are specified in any of the customary floating point or integer formats:

 12345
 12345.67
 .23E−10
 0xffff # hex
 0377 # octal
 4_294_967_296 # underline for legibility

String literals are usually delimited by either single or double quotes. They work much like shell q
double−quoted string literals are subject to backslash and variable substitution; single−quoted strings
(except for "\’ " and "\\ "). The usual Unix backslash rules apply for making characters such as new
tab, etc., as well as some more exotic forms. See Quote and Quotelike Operators for a list.

Octal or hex representations in string literals (e.g. ‘0xffff’) are not automatically converted to their in
representation. The hex() and oct() functions make these conversions for you. See hex and oct for more
details.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds anothe
containing the quote character, which may be much further on in the script. Variable substitution
strings is limited to scalar variables, arrays, and array slices. (In other words, names beginning with $ or @,
followed by an optional bracketed expression as a subscript.) The following code segment prints ou
price is $100."

 $Price = ’$100’; # not interpreted
 print "The price is $Price.\n"; # interpreted

As in some shells, you can put curly brackets around the name to delimit it from following alphanum
In fact, an identifier within such curlies is forced to be a string, as is any single identifier within a
subscript. Our earlier example,

 $days{’Feb’}

can be written as

 $days{Feb}

and the quotes will be assumed automatically. But anything more complicated in the subscript w
interpreted as an expression.

Note that a single−quoted string must be separated from a preceding word by a space, because single
a valid (though deprecated) character in a variable name (see Packages).

Three special literals are __FILE__, __LINE__, and __PACKAGE__, which represent the current file
line number, and package name at that point in your program. They may be used only as separate
they will not be interpolated into strings. If there is no current package (due to an empty package;
directive), __PACKAGE__ is the undefined value.

The tokens __END__ and __DATA__ may be used to indicate the logical end of the script before the
end of file. Any following text is ignored, but may be read via a DATA filehandle: main::DATA
__END__, or PACKNAME::DATA (where PACKNAME is the current package) for __DATA__. The tw
control characters ^D and ^Z are synonyms for __END__ (or __DATA__ in a module). See SelfLoader for
more description of __DATA__, and an example of its use. Note that you cannot read from the D
filehandle in a BEGIN block: the BEGIN block is executed as soon as it is seen (during compilatio
which point the corresponding __DATA__ (or __END__) token has not yet been seen.

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. Th
known as "barewords". As with filehandles and labels, a bareword that consists entirely of lowercase
150 Version 5.005_02 18−Oct−1998

perldata Perl Programmers Reference Guide perldata

 error
this by

ith the

ty: Is
r
‘t

orrect

string
text. If
g. An

) The
inating
risks conflict with future reserved words, and if you use the −w switch, Perl will warn you about any such
words. Some people may wish to outlaw barewords entirely. If you say

 use strict ’subs’;

then any bareword that would NOT be interpreted as a subroutine call produces a compile−time
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand
saying no strict ‘subs’ .

Array variables are interpolated into double−quoted strings by joining all the elements of the array w
delimiter specified in the $" variable ($LIST_SEPARATOR in English), space by default. The following
are equivalent:

 $temp = join($",@ARGV);
 system "echo $temp";

 system "echo @ARGV";

Within search patterns (which also undergo double−quotish substitution) there is a bad ambigui
/$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character class for the regula
expression) or as /${foo[bar]}/ (where [bar] is the subscript to array @foo)? If @foo doesn
otherwise exist, then it‘s obviously a character class. If @foo exists, Perl takes a good guess about [bar] ,
and is almost always right. If it does guess wrong, or if you‘re just plain paranoid, you can force the c
interpretation with curly brackets as above.

A line−oriented form of quoting is based on the shell "here−doc" syntax. Following a << you specify a
string to terminate the quoted material, and all lines following the current line down to the terminating
are the value of the item. The terminating string may be either an identifier (a word), or some quoted
quoted, the type of quotes you use determines the treatment of the text, just as in regular quotin
unquoted identifier works like double quotes. There must be no space between the << and the identifier. (If
you put a space it will be treated as a null identifier, which is valid, and matches the first empty line.
terminating string must appear by itself (unquoted and with no surrounding whitespace) on the term
line.

print <<EOF;
 The price is $Price.
 EOF

print <<"EOF"; # same as above
 The price is $Price.
 EOF

print <<‘EOC‘; # execute commands
 echo hi there
 echo lo there
 EOC

print <<"foo", <<"bar"; # you can stack them
 I said foo.
 foo
 I said bar.
 bar

myfunc(<<"THIS", 23, <<’THAT’);
 Here’s a line
 or two.
 THIS
 and here’s another.
 THAT
18−Oct−1998 Version 5.005_02 151

perldata Perl Programmers Reference Guide perldata

‘t know

ntheses

ith the

ntext is

 list is
idual

ents
airs of

 at that

 avoid
Just don‘t forget that you have to put a semicolon on the end to finish the statement, as Perl doesn
you‘re not going to try to do this:

print <<ABC
 179231
 ABC

+ 20;

List value constructors
List values are denoted by separating individual values by commas (and enclosing the list in pare
where precedence requires it):

 (LIST)

In a context not requiring a list value, the value of the list literal is the value of the final element, as w
C comma operator. For example,

 @foo = (’cc’, ’−E’, $bar);

assigns the entire list value to array foo, but

 $foo = (’cc’, ’−E’, $bar);

assigns the value of variable bar to variable foo. Note that the value of an actual array in a scalar co
the length of the array; the following assigns the value 3 to $foo:

 @foo = (’cc’, ’−E’, $bar);
 $foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of a list literal, so that you can say:

 @foo = (
1,
2,
3,

);

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the
evaluated in a list context, and the resulting list value is interpolated into LIST just as if each indiv
element were a member of LIST. Thus arrays and hashes lose their identity in a LIST—the list

 (@foo,@bar,&SomeSub,%glarch)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elem
returned by the subroutine named SomeSub called in a list context, followed by the key/value p
%glarch. To make a list reference that does NOT interpolate, see perlref.

The null list is represented by () . Interpolating it in a list has no effect. Thus ((),(),()) is equivalent to
() . Similarly, interpolating an array with no elements is the same as if no array had been interpolated
point.

A list value may also be subscripted like a normal array. You must put the list in parentheses to
ambiguity. For example:

 # Stat returns list value.
 $time = (stat($file))[8];

 # SYNTAX ERROR HERE.
 $time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

 # Find a hex digit.
 $hexdigit = (’a’,’b’,’c’,’d’,’e’,’f’)[$digit−10];

 # A "reverse comma operator".
152 Version 5.005_02 18−Oct−1998

perldata Perl Programmers Reference Guide perldata

ion:

the right

nctions

all the

 because
 a hash.
ctions)

to be
lizing
 return (pop(@foo),pop(@foo))[0];

You may assign to undef in a list. This is useful for throwing away some of the return values of a funct

 ($dev, $ino, undef, undef, $uid, $gid) = stat($file);

Lists may be assigned to if and only if each element of the list is legal to assign to:

 ($a, $b, $c) = (1, 2, 3);

 ($map{’red’}, $map{’blue’}, $map{’green’}) = (0x00f, 0x0f0, 0xf00);

Array assignment in a scalar context returns the number of elements produced by the expression on
side of the assignment:

 $x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
 $x = (($foo,$bar) = f()); # set $x to f()’s return count

This is very handy when you want to do a list assignment in a Boolean context, because most list fu
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

The final element may be an array or a hash:

 ($a, $b, @rest) = split;
 my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up
values, and anything after it will get a null value. This may be useful in a local() or my() .

A hash literal contains pairs of values to be interpreted as a key and a value:

 # same as map assignment above
 %map = (’red’,0x00f,’blue’,0x0f0,’green’,0xf00);

While literal lists and named arrays are usually interchangeable, that‘s not the case for hashes. Just
you can subscript a list value like a normal array does not mean that you can subscript a list value as
Likewise, hashes included as parts of other lists (including parameters lists and return lists from fun
always flatten out into key/value pairs. That‘s why it‘s good to use references sometimes.

It is often more readable to use the => operator between key/value pairs. The => operator is mostly just a
more visually distinctive synonym for a comma, but it also arranges for its left−hand operand
interpreted as a string—if it‘s a bareword that would be a legal identifier. This makes it nice for initia
hashes:

 %map = (
 red => 0x00f,
 blue => 0x0f0,
 green => 0xf00,

);

or for initializing hash references to be used as records:

 $rec = {
witch => ’Mable the Merciless’,
cat => ’Fluffy the Ferocious’,
date => ’10/31/1776’,

 };

or for using call−by−named−parameter to complicated functions:

 $field = $query−>radio_group(
 name => ’group_name’,

 values => [’eenie’,’meenie’,’minie’],
18−Oct−1998 Version 5.005_02 153

perldata Perl Programmers Reference Guide perldata

See

 a
 hashes

s

/export

eed to

ions,
That‘s
*FH

dules

}

 default => ’meenie’,
 linebreak => ’true’,
 labels => \%labels
);

Note that just because a hash is initialized in that order doesn‘t mean that it comes out in that order. sort
for examples of how to arrange for an output ordering.

Typeglobs and Filehandles
Perl uses an internal type called a typeglob to hold an entire symbol table entry. The type prefix of
typeglob is a * , because it represents all types. This used to be the preferred way to pass arrays and
by reference into a function, but now that we have real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:

 *this = *that;

makes $this an alias for $that, @this an alias for @that, %this an alias for %that, &this an alias for
&that, etc. Much safer is to use a reference. This:

 local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but doesn‘t make @Here::blue an alia
for @There::green, or %Here::blue an alias for %There::green, etc. See Symbol Tables in perlmod for more
examples of this. Strange though this may seem, this is the basis for the whole module import
system.

Another use for typeglobs is to to pass filehandles into a function or to create new filehandles. If you n
use a typeglob to save away a filehandle, do it this way:

 $fh = *STDOUT;

or perhaps as a real reference, like this:

 $fh = *STDOUT;

See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle using the local() operator. These last until their
block is exited, but may be passed back. For example:

 sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

 }
 $fh = newopen(’/etc/passwd’);

Now that we have the *foo{THING} notation, typeglobs aren‘t used as much for filehandle manipulat
although they‘re still needed to pass brand new file and directory handles into or out of functions.
because *HANDLE{IO} only works if HANDLE has already been used as a handle. In other words,
can be used to create new symbol table entries, but *foo{THING} cannot.

Another way to create anonymous filehandles is with the IO::Handle module and its ilk. These mo
have the advantage of not hiding different types of the same name during the local() . See the bottom of
open() for an example.

See perlref, perlsub, and Symbol Tables in perlmod for more discussion on typeglobs and the *foo{THING
syntax.
154 Version 5.005_02 18−Oct−1998

perlsyn Perl Programmers Reference Guide perlsyn

declared
 those

e use of

ou must
over
ith

s, for
ou
ing,

primary
e put at
reated
pe as

t point

d

aring a
ence of
n−time

tement
icolon

ou may

xplicit
NAME
perlsyn − Perl syntax

DESCRIPTION
A Perl script consists of a sequence of declarations and statements. The only things that need to be
in Perl are report formats and subroutines. See the sections below for more information on
declarations. All uninitialized user−created objects are assumed to start with a null or value until they
are defined by some explicit operation such as assignment. (Though you can get warnings about th
undefined values if you like.) The sequence of statements is executed just once, unlike in sed and awk
scripts, where the sequence of statements is executed for each input line. While this means that y
explicitly loop over the lines of your input file (or files), it also means you have much more control
which files and which lines you look at. (Actually, I‘m lying—it is possible to do an implicit loop w
either the −n or −p switch. It‘s just not the mandatory default like it is in sed and awk.)

Declarations
Perl is, for the most part, a free−form language. (The only exception to this is format declaration
obvious reasons.) Comments are indicated by the "#" character, and extend to the end of the line. If y
attempt to use /* */ C−style comments, it will be interpreted either as division or pattern match
depending on the context, and C++ // comments just look like a null regular expression, so don‘t do that.

A declaration can be put anywhere a statement can, but has no effect on the execution of the
sequence of statements—declarations all take effect at compile time. Typically all the declarations ar
the beginning or the end of the script. However, if you‘re using lexically−scoped private variables c
with my() , you‘ll have to make sure your format or subroutine definition is within the same block sco
the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from tha
forward in the program. You can declare a subroutine without defining it by saying sub name , thus:

 sub myname;
 $me = myname $0 or die "can’t get myname";

Note that it functions as a list operator, not as a unary operator; so be careful to use or instead of || in this
case. However, if you were to declare the subroutine as sub myname ($), then myname would function
as a unary operator, so either or or || would work.

Subroutines declarations can also be loaded up with the require statement or both loaded and importe
into your namespace with a use statement. See perlmod for details on this.

A statement sequence may contain declarations of lexically−scoped variables, but apart from decl
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequ
statements as if it were an ordinary statement. That means it actually has both compile−time and ru
effects.

Simple statements
The only kind of simple statement is an expression evaluated for its side effects. Every simple sta
must be terminated with a semicolon, unless it is the final statement in a block, in which case the sem
is optional. (A semicolon is still encouraged there if the block takes up more than one line, because y
eventually add another line.) Note that there are some operators like eval {} and do {} that look like
compound statements, but aren‘t (they‘re just TERMs in an expression), and thus need an e
termination if used as the last item in a statement.

Any simple statement may optionally be followed by a SINGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

 if EXPR
 unless EXPR
 while EXPR
 until EXPR
18−Oct−1998 Version 5.005_02 155

perlsyn Perl Programmers Reference Guide perlsyn

 The
e

 you can

d by the
ock is

tactic

 that the
out
 foreach EXPR

The if and unless modifiers have the expected semantics, presuming you‘re a speaker of English.
foreach modifier is an iterator: For each value in EXPR, it aliases $_ to the value and executes th
statement. The while and until modifiers have the usual "while loop" semantics (conditional
evaluated first), except when applied to a do−BLOCK (or to the now−deprecated do−SUBROUTINE
statement), in which case the block executes once before the conditional is evaluated. This is so that
write loops like:

 do {
$line = <STDIN>;
...

 } until $line eq ".\n";

See do. Note also that the loop control statements described later will NOT work in this construct, because
modifiers don‘t take loop labels. Sorry. You can always put another block inside of it (for next) or around
it (for last) to do that sort of thing. For next , just double the braces:

 do {{
next if $x == $y;
do something here

 }} until $x++ > $z;

For last , you have to be more elaborate:

 LOOP: {
 do {

last if $x = $y**2;
do something here

 } while $x++ <= $z;
 }

Compound statements
In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimite
file containing it (in the case of a required file, or the program as a whole), and sometimes a bl
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syn
construct a BLOCK.

The following compound statements may be used to control flow:

 if (EXPR) BLOCK
 if (EXPR) BLOCK else BLOCK
 if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
 LABEL while (EXPR) BLOCK
 LABEL while (EXPR) BLOCK continue BLOCK
 LABEL for (EXPR; EXPR; EXPR) BLOCK
 LABEL foreach VAR (LIST) BLOCK
 LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKs, not statements. This means
curly brackets are required—no dangling statements allowed. If you want to write conditionals with
curly brackets there are several other ways to do it. The following all do the same thing:

 if (!open(FOO)) { die "Can’t open $FOO: $!"; }
 die "Can’t open $FOO: $!" unless open(FOO);
 open(FOO) or die "Can’t open $FOO: $!"; # FOO or bust!
 open(FOO) ? ’hi mom’ : die "Can’t open $FOO: $!";

a bit exotic, that last one
156 Version 5.005_02 18−Oct−1998

perlsyn Perl Programmers Reference Guide perlsyn

s never

ll string
n.

ically
ing if

ated
ven

 in

elves

o

ines.
The if statement is straightforward. Because BLOCKs are always bounded by curly brackets, there i
any ambiguity about which if an else goes with. If you use unless in place of if , the sense of the test
is reversed.

The while statement executes the block as long as the expression is true (does not evaluate to the nu
("") or or "0") . The LABEL is optional, and if present, consists of an identifier followed by a colo
The LABEL identifies the loop for the loop control statements next , last , and redo . If the LABEL is
omitted, the loop control statement refers to the innermost enclosing loop. This may include dynam
looking back your call−stack at run time to find the LABEL. Such desperate behavior triggers a warn
you use the −w flag.

If there is a continue BLOCK, it is always executed just before the conditional is about to be evalu
again, just like the third part of a for loop in C. Thus it can be used to increment a loop variable, e
when the loop has been continued via the next statement (which is similar to the C continue statement).

Loop Control
The next command is like the continue statement in C; it starts the next iteration of the loop:

 LINE: while (<STDIN>) {
next LINE if /^#/; # discard comments
...

 }

The last command is like the break statement in C (as used in loops); it immediately exits the loop
question. The continue block, if any, is not executed:

 LINE: while (<STDIN>) {
last LINE if /^$/; # exit when done with header
...

 }

The redo command restarts the loop block without evaluating the conditional again. The continue
block, if any, is not executed. This command is normally used by programs that want to lie to thems
about what was just input.

For example, when processing a file like /etc/termcap. If your input lines might end in backslashes t
indicate continuation, you want to skip ahead and get the next record.

 while (<>) {
chomp;
if (s/\\$//) {
 $_ .= <>;
 redo unless eof();
}
now process $_

 }

which is Perl short−hand for the more explicitly written version:

 LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =~ s/\\$//) {
 $line .= <ARGV>;
 redo LINE unless eof(); # not eof(ARGV)!
}
now process $line

 }

Note that if there were a continue block on the above code, it would get executed even on discarded l
 This is often used to reset line counters or ?pat? one−time matches.
18−Oct−1998 Version 5.005_02 157

perlsyn Perl Programmers Reference Guide perlsyn

l is

e

nce

e‘s
riptor

he list
le
upon
l

 # inspired by :1,$g/fred/s//WILMA/
 while (<>) {

?(fred)? && s//WILMA $1 WILMA/;
?(barney)? && s//BETTY $1 BETTY/;
?(homer)? && s//MARGE $1 MARGE/;

 } continue {
print "$ARGV $.: $_";
close ARGV if eof(); # reset $.
reset if eof(); # reset ?pat?

 }

If the word while is replaced by the word until , the sense of the test is reversed, but the conditiona
still tested before the first iteration.

The loop control statements don‘t work in an if or unless , since they aren‘t loops. You can double th
braces to make them such, though.

 if (/pattern/) {{
next if /fred/;
next if /barney/;
so something here

 }}

The form while/if BLOCK BLOCK , available in Perl 4, is no longer available. Replace any occurre
of if BLOCK by if (do BLOCK) .

For Loops
Perl‘s C−style for loop works exactly like the corresponding while loop; that means that this:

 for ($i = 1; $i < 10; $i++) {
...

 }

is the same as this:

 $i = 1;
 while ($i < 10) {

...
 } continue {

$i++;
 }

(There is one minor difference: The first form implies a lexical scope for variables declared with my in the
initialization expression.)

Besides the normal array index looping, for can lend itself to many other interesting applications. Her
one that avoids the problem you get into if you explicitly test for end−of−file on an interactive file desc
causing your program to appear to hang.

 $on_a_tty = −t STDIN && −t STDOUT;
 sub prompt { print "yes? " if $on_a_tty }
 for (prompt(); <STDIN>; prompt()) {

do something
 }

Foreach Loops
The foreach loop iterates over a normal list value and sets the variable VAR to be each element of t
in turn. If the variable is preceded with the keyword my, then it is lexically scoped, and is therefore visib
only within the loop. Otherwise, the variable is implicitly local to the loop and regains its former value
exiting the loop. If the variable was previously declared with my, it uses that variable instead of the globa
158 Version 5.005_02 18−Oct−1998

perlsyn Perl Programmers Reference Guide perlsyn

u have

e,

he

that

t‘s safer
identally
 it‘s
one, but it‘s still localized to the loop. (Note that a lexically scoped variable can cause problems if yo
subroutine or format declarations within the loop which refer to it.)

The foreach keyword is actually a synonym for the for keyword, so you can use foreach for
readability or for for brevity. (Or because the Bourne shell is more familiar to you than csh, so writing
for comes more naturally.) If VAR is omitted, $_ is set to each value. If any element of LIST is an lvalu
you can modify it by modifying VAR inside the loop. That‘s because the foreach loop index variable is
an implicit alias for each item in the list that you‘re looping over.

If any part of LIST is an array, foreach will get very confused if you add or remove elements within t
loop body, for example with splice . So don‘t do that.

foreach probably won‘t do what you expect if VAR is a tied or other special variable. Don‘t do
either.

Examples:

 for (@ary) { s/foo/bar/ }

 foreach my $elem (@elements) {
$elem *= 2;

 }

 for $count (10,9,8,7,6,5,4,3,2,1,’BOOM’) {
print $count, "\n"; sleep(1);

 }

 for (1..15) { print "Merry Christmas\n"; }

 foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
print "Item: $item\n";

 }

Here‘s how a C programmer might code up a particular algorithm in Perl:

 for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {
 if ($ary1[$i] > $ary2[$j]) {

last; # can’t go to outer :−(
 }
 $ary1[$i] += $ary2[$j];
}
this is where that last takes me

 }

Whereas here‘s how a Perl programmer more comfortable with the idiom might do it:

 OUTER: foreach my $wid (@ary1) {
 INNER: foreach my $jet (@ary2) {

next OUTER if $wid > $jet;
$wid += $jet;

 }
 }

See how much easier this is? It‘s cleaner, safer, and faster. It‘s cleaner because it‘s less noisy. I
because if code gets added between the inner and outer loops later on, the new code won‘t be acc
executed. The next explicitly iterates the other loop rather than merely terminating the inner one. And
faster because Perl executes a foreach statement more rapidly than it would the equivalent for loop.
18−Oct−1998 Version 5.005_02 159

perlsyn Perl Programmers Reference Guide perlsyn

u can

 the

ithin an
Basic BLOCKs and Switch Statements
A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus yo
use any of the loop control statements in it to leave or restart the block. (Note that this is NOT true in
eval{} , sub{} , or contrary to popular belief do{} blocks, which do NOT count as loops.) The
continue block is optional.

The BLOCK construct is particularly nice for doing case structures.

 SWITCH: {
if (/^abc/) { $abc = 1; last SWITCH; }
if (/^def/) { $def = 1; last SWITCH; }
if (/^xyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

 }

There is no official switch statement in Perl, because there are already several ways to write
equivalent. In addition to the above, you could write

 SWITCH: {
$abc = 1, last SWITCH if /^abc/;
$def = 1, last SWITCH if /^def/;
$xyz = 1, last SWITCH if /^xyz/;
$nothing = 1;

 }

(That‘s actually not as strange as it looks once you realize that you can use loop control "operators" w
expression, That‘s just the normal C comma operator.)

or

 SWITCH: {
/^abc/ && do { $abc = 1; last SWITCH; };
/^def/ && do { $def = 1; last SWITCH; };
/^xyz/ && do { $xyz = 1; last SWITCH; };
$nothing = 1;

 }

or formatted so it stands out more as a "proper" switch statement:

 SWITCH: {
/^abc/ && do {

 $abc = 1;
 last SWITCH;

 };

/^def/ && do {
 $def = 1;
 last SWITCH;

 };

/^xyz/ && do {
 $xyz = 1;
 last SWITCH;

 };
$nothing = 1;

 }

or

 SWITCH: {
160 Version 5.005_02 18−Oct−1998

perlsyn Perl Programmers Reference Guide perlsyn

to

" on
/^abc/ and $abc = 1, last SWITCH;
/^def/ and $def = 1, last SWITCH;
/^xyz/ and $xyz = 1, last SWITCH;
$nothing = 1;

 }

or even, horrors,

 if (/^abc/)
{ $abc = 1 }

 elsif (/^def/)
{ $def = 1 }

 elsif (/^xyz/)
{ $xyz = 1 }

 else
{ $nothing = 1 }

A common idiom for a switch statement is to use foreach ‘s aliasing to make a temporary assignment
$_ for convenient matching:

 SWITCH: for ($where) {
/In Card Names/ && do { push @flags, ’−e’; last; };
/Anywhere/ && do { push @flags, ’−h’; last; };
/In Rulings/ && do { last; };
die "unknown value for form variable where: ‘$where’";

 }

Another interesting approach to a switch statement is arrange for a do block to return the proper value:

 $amode = do {
if ($flag & O_RDONLY) { "r" } # XXX: isn’t this 0?
elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
elsif ($flag & O_RDWR) {
 if ($flag & O_CREAT) { "w+" }
 else { ($flag & O_APPEND) ? "a+" : "r+" }
}

 };

Or

 print do {
 ($flags & O_WRONLY) ? "write−only" :
 ($flags & O_RDWR) ? "read−write" :
 "read−only";
 };

Or if you are certainly that all the && clauses are true, you can use something like this, which "switches
the value of the HTTP_USER_AGENT envariable.

 #!/usr/bin/perl
 # pick out jargon file page based on browser
 $dir = ’http://www.wins.uva.nl/~mes/jargon’;
 for ($ENV{HTTP_USER_AGENT}) {

$page = /Mac/ && ’m/Macintrash.html’
 || /Win(dows)?NT/ && ’e/evilandrude.html’
 || /Win|MSIE|WebTV/ && ’m/MicroslothWindows.html’
 || /Linux/ && ’l/Linux.html’
 || /HP−UX/ && ’h/HP−SUX.html’
 || /SunOS/ && ’s/ScumOS.html’
18−Oct−1998 Version 5.005_02 161

perlsyn Perl Programmers Reference Guide perlsyn

 not

e within
such as

s for

ently
en

sms of
of

ing of

arsing
h. This
 || ’a/AppendixB.html’;
 }
 print "Location: $dir/$page\015\012\015\012";

That kind of switch statement only works when you know the && clauses will be true. If you don‘t, the
previous ?: example should be used.

You might also consider writing a hash instead of synthesizing a switch statement.

Goto
Although not for the faint of heart, Perl does support a goto statement. A loop‘s LABEL is not actually a
valid target for a goto ; it‘s just the name of the loop. There are three forms: goto −LABEL, goto −EXPR,
and goto −&NAME.

The goto −LABEL form finds the statement labeled with LABEL and resumes execution there. It may
be used to go into any construct that requires initialization, such as a subroutine or a foreach loop. It also
can‘t be used to go into a construct that is optimized away. It can be used to go almost anywhere els
the dynamic scope, including out of subroutines, but it‘s usually better to use some other construct
last or die . The author of Perl has never felt the need to use this form of goto (in Perl, that is—C is
another matter).

The goto −EXPR form expects a label name, whose scope will be resolved dynamically. This allow
computed goto s per FORTRAN, but isn‘t necessarily recommended if you‘re optimizing for
maintainability:

 goto ("FOO", "BAR", "GLARCH")[$i];

The goto −&NAME form is highly magical, and substitutes a call to the named subroutine for the curr
running subroutine. This is used by AUTOLOAD() subroutines that wish to load another subroutine and th
pretend that the other subroutine had been called in the first place (except that any modifications to @_ in the
current subroutine are propagated to the other subroutine.) After the goto , not even caller() will be
able to tell that this routine was called first.

In almost all cases like this, it‘s usually a far, far better idea to use the structured control flow mechani
next , last , or redo instead of resorting to a goto . For certain applications, the catch and throw pair
eval{} and die() for exception processing can also be a prudent approach.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source code. While it‘s expecting the beginn
a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this

 =head1 Here There Be Pods!

Then that text and all remaining text up through and including a line beginning with =cut will be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text freely, as in

 =item snazzle($)

 The snazzle() function will behave in the most spectacular
 form that you can possibly imagine, not even excepting
 cybernetic pyrotechnics.

 =cut back to the compiler, nuff of this pod stuff!

 sub snazzle($) {
my $thingie = shift;
.........

 }

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes p
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a paragrap
162 Version 5.005_02 18−Oct−1998

perlsyn Perl Programmers Reference Guide perlsyn

re

idea of
ed with
 regular
means that the following secret stuff will be ignored by both the compiler and the translators.

 $a=3;
 =secret stuff
 warn "Neither POD nor CODE!?"
 =cut back
 print "got $a\n";

You probably shouldn‘t rely upon the warn() being podded out forever. Not all pod translators a
well−behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

Plain Old Comments (Not!)
Much like the C preprocessor, Perl can process line directives. Using this, one can control Perl‘s
filenames and line numbers in error or warning messages (especially for strings that are process
eval()). The syntax for this mechanism is the same as for most C preprocessors: it matches the
expression /^#\s*line\s+(\d+)\s*(?:\s"([^"]*)")?/ with $1 being the line number for the
next line, and $2 being the optional filename (specified within quotes).

Here are some examples that you should be able to type into your command shell:

 % perl
 # line 200 "bzzzt"
 # the ‘#’ on the previous line must be the first char on line
 die ’foo’;
 __END__
 foo at bzzzt line 201.

 % perl
 # line 200 "bzzzt"
 eval qq[\n#line 2001 ""\ndie ’foo’]; print $@;
 __END__
 foo at − line 2001.

 % perl
 eval qq[\n#line 200 "foo bar"\ndie ’foo’]; print $@;
 __END__
 foo at foo bar line 200.

 % perl
 # line 345 "goop"
 eval "\n#line " . __LINE__ . ’ "’ . __FILE__ ."\"\ndie ’foo’";
 print $@;
 __END__
 foo at goop line 345.
18−Oct−1998 Version 5.005_02 163

perlop Perl Programmers Reference Guide perlop

lowest.
n where
tions,

rs, any
n‘t really
you put

f highest

erator.

valuated
NAME
perlop − Perl operators and precedence

SYNOPSIS
Perl operators have the following associativity and precedence, listed from highest precedence to
Note that all operators borrowed from C keep the same precedence relationship with each other, eve
C‘s precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few excep
these all operate on scalar values only, not array values.

 left terms and list operators (leftward)
 left −>
 nonassoc ++ −−
 right **
 right ! ~ \ and unary + and −
 left =~ !~
 left * / % x
 left + − .
 left << >>
 nonassoc named unary operators
 nonassoc < > <= >= lt gt le ge
 nonassoc == != <=> eq ne cmp
 left &
 left | ^
 left &&
 left ||
 nonassoc
 right ?:
 right = += −= *= etc.
 left , =>
 nonassoc list operators (rightward)
 right not
 left and
 left or xor

In the following sections, these operators are covered in precedence order.

Many operators can be overloaded for objects. See overload.

DESCRIPTION

Terms and List Operators (Leftward)
A TERM has the highest precedence in Perl. They includes variables, quote and quote−like operato
expression in parentheses, and any function whose arguments are parenthesized. Actually, there are
functions in this sense, just list operators and unary operators behaving as functions because
parentheses around the arguments. These are all documented in perlfunc.

If any list operator (print() , etc.) or any unary operator (chdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be o
precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print , sort , or chmod is either
very high or very low depending on whether you are looking at the left side or the right side of the op
For example, in

 @ary = (1, 3, sort 4, 2);
 print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are e
164 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

t like a
ses:

nd

location

 and the
e

riable
value.

meric,
ble has
tches the
n its

2**4
les

string
 with a
is that
after. In other words, list operators tend to gobble up all the arguments that follow them, and then ac
simple TERM with regard to the preceding expression. Note that you have to be careful with parenthe

 # These evaluate exit before doing the print:
 print($foo, exit); # Obviously not what you want.
 print $foo, exit; # Nor is this.

 # These do the print before evaluating exit:
 (print $foo), exit; # This is what you want.
 print($foo), exit; # Or this.
 print ($foo), exit; # Or even this.

Also note that

 print ($foo & 255) + 1, "\n";

probably doesn‘t do what you expect at first glance. See Named Unary Operators for more discussion of
this.

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine and method calls, a
the anonymous constructors [] and {} .

See also Quote and Quote−like Operators toward the end of this section, as well as O Operators".

The Arrow Operator
Just as in C and C++, "−>" is an infix dereference operator. If the right side is either a [...] or {...}
subscript, then the left side must be either a hard or symbolic reference to an array or hash (or a
capable of holding a hard reference, if it‘s an lvalue (assignable)). See perlref.

Otherwise, the right side is a method name or a simple scalar variable containing the method name,
left side must either be an object (a blessed reference) or a class name (that is, a package name). Seperlobj.

Auto−increment and Auto−decrement
"++" and "—" work as in C. That is, if placed before a variable, they increment or decrement the va
before returning the value, and if placed after, increment or decrement the variable after returning the

The auto−increment operator has a little extra builtin magic to it. If you increment a variable that is nu
or that has ever been used in a numeric context, you get a normal increment. If, however, the varia
been used in only string contexts since it was set, and has a value that is not the empty string and ma
pattern /^[a−zA−Z]*[0−9]*$/, the increment is done as a string, preserving each character withi
range, with carry:

 print ++($foo = ’99’); # prints ’100’
 print ++($foo = ’a0’); # prints ’a1’
 print ++($foo = ’Az’); # prints ’Ba’
 print ++($foo = ’zz’); # prints ’aaa’

The auto−decrement operator is not magical.

Exponentiation
Binary "**" is the exponentiation operator. Note that it binds even more tightly than unary minus, so −
is −(2**4), not (−2)**4. (This is implemented using C‘s pow(3) function, which actually works on doub
internally.)

Symbolic Unary Operators
Unary "!" performs logical negation, i.e., "not". See also not for a lower precedence version of this.

Unary "−" performs arithmetic negation if the operand is numeric. If the operand is an identifier, a
consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts
plus or minus, a string starting with the opposite sign is returned. One effect of these rules
−bareword is equivalent to "−bareword" .
18−Oct−1998 Version 5.005_02 165

perlop Perl Programmers Reference Guide perlop

 name
nction

t thing

ring
nt is a
arched,
he
eration,
because

us
ds, but

erand
 list in

right

right

ntheses.
Unary "~" performs bitwise negation, i.e., 1‘s complement. For example, 0666 &~ 027 is 0640. (See
also Integer Arithmetic and Bitwise String Operators.)

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separating a function
from a parenthesized expression that would otherwise be interpreted as the complete list of fu
arguments. (See examples above under Terms and List Operators (Leftward).)

Unary "\" creates a reference to whatever follows it. See perlref. Do not confuse this behavior with the
behavior of backslash within a string, although both forms do convey the notion of protecting the nex
from interpretation.

Binding Operators
Binary "=~" binds a scalar expression to a pattern match. Certain operations search or modify the st$_
by default. This operator makes that kind of operation work on some other string. The right argume
search pattern, substitution, or transliteration. The left argument is what is supposed to be se
substituted, or transliterated instead of the default $_. The return value indicates the success of t
operation. (If the right argument is an expression rather than a search pattern, substitution, or translit
it is interpreted as a search pattern at run time. This can be is less efficient than an explicit search,
the pattern must be compiled every time the expression is evaluated.

Binary "!~" is just like "=~" except the return value is negated in the logical sense.

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" computes the modulus of two numbers. Given integer operands $a and $b: If $b is positive,
then $a % $b is $a minus the largest multiple of $b that is not greater than $a. If $b is negative, then
$a % $b is $a minus the smallest multiple of $b that is not less than $a (i.e. the result will be less than or
equal to zero). Note than when use integer is in scope, "%" give you direct access to the modul
operator as implemented by your C compiler. This operator is not as well defined for negative operan
it will execute faster.

Binary "x" is the repetition operator. In scalar context, it returns a string consisting of the left op
repeated the number of times specified by the right operand. In list context, if the left operand is a
parentheses, it repeats the list.

 print ’−’ x 80; # print row of dashes

 print "\t" x ($tab/8), ’ ’ x ($tab%8); # tab over

 @ones = (1) x 80; # a list of 80 1’s
 @ones = (5) x @ones; # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary "−" returns the difference of two numbers.

Binary "." concatenates two strings.

Shift Operators
Binary "<<" returns the value of its left argument shifted left by the number of bits specified by the
argument. Arguments should be integers. (See also Integer Arithmetic.)

Binary "" returns the value of its left argument shifted right by the number of bits specified by the
argument. Arguments should be integers. (See also Integer Arithmetic.)

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional pare
These include the filetest operators, like −f , −M, etc. See perlfunc.
166 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

f highest

ual to,

l to, or
If any list operator (print() , etc.) or any unary operator (chdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be o
precedence, just like a normal function call. Examples:

 chdir $foo || die; # (chdir $foo) || die
 chdir($foo) || die; # (chdir $foo) || die
 chdir ($foo) || die; # (chdir $foo) || die
 chdir +($foo) || die; # (chdir $foo) || die

but, because * is higher precedence than ||:

 chdir $foo * 20; # chdir ($foo * 20)
 chdir($foo) * 20; # (chdir $foo) * 20
 chdir ($foo) * 20; # (chdir $foo) * 20
 chdir +($foo) * 20; # chdir ($foo * 20)

 rand 10 * 20; # rand (10 * 20)
 rand(10) * 20; # (rand 10) * 20
 rand (10) * 20; # (rand 10) * 20
 rand +(10) * 20; # rand (10 * 20)

See also "Terms and List Operators (Leftward)".

Relational Operators
Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argument.

Binary "<=" returns true if the left argument is numerically less than or equal to the right argument.

Binary ">=" returns true if the left argument is numerically greater than or equal to the right argument.

Binary "lt" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argument.

Binary "le" returns true if the left argument is stringwise less than or equal to the right argument.

Binary "ge" returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary "==" returns true if the left argument is numerically equal to the right argument.

Binary "!=" returns true if the left argument is numerically not equal to the right argument.

Binary "<=>" returns −1, 0, or 1 depending on whether the left argument is numerically less than, eq
or greater than the right argument.

Binary "eq" returns true if the left argument is stringwise equal to the right argument.

Binary "ne" returns true if the left argument is stringwise not equal to the right argument.

Binary "cmp" returns −1, 0, or 1 depending on whether the left argument is stringwise less than, equa
greater than the right argument.

"lt", "le", "ge", "gt" and "cmp" use the collation (sort) order specified by the current locale if use locale
is in effect. See perllocale.

Bitwise And
Binary "&" returns its operators ANDed together bit by bit. (See also Integer Arithmetic and
Bitwise String Operators.)
18−Oct−1998 Version 5.005_02 167

perlop Perl Programmers Reference Guide perlop

right
ated.

right
ated.

alue
t be:

nt:

lower,

In list
useful
ent
sion in

his:

tes the
ean
tays true
ome
e on the
ht
not
rator is

y

Bitwise Or and Exclusive Or
Binary "|" returns its operators ORed together bit by bit. (See also Integer Arithmetic and
Bitwise String Operators.)

Binary "^" returns its operators XORed together bit by bit. (See also Integer Arithmetic and
Bitwise String Operators.)

C−style Logical And
Binary "&&" performs a short−circuit logical AND operation. That is, if the left operand is false, the
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evalu

C−style Logical Or
Binary "||" performs a short−circuit logical OR operation. That is, if the left operand is true, the
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evalu

The || and && operators differ from C‘s in that, rather than returning 0 or 1, they return the last v
evaluated. Thus, a reasonably portable way to find out the home directory (assuming it‘s not "0") migh

 $home = $ENV{’HOME’} || $ENV{’LOGDIR’} ||
(getpwuid($<))[7] || die "You’re homeless!\n";

In particular, this means that you shouldn‘t use this for selecting between two aggregates for assignme

 @a = @b || @c; # this is wrong
 @a = scalar(@b) || @c; # really meant this
 @a = @b ? @b : @c; # this works fine, though

As more readable alternatives to && and || when used for control flow, Perl provides and and or operators
(see below). The short−circuit behavior is identical. The precedence of "and" and "or" is much
however, so that you can safely use them after a list operator without the need for parentheses:

 unlink "alpha", "beta", "gamma"
 or gripe(), next LINE;

With the C−style operators that would have been written like this:

 unlink("alpha", "beta", "gamma")
 || (gripe(), next LINE);

Use "or" for assignment is unlikely to do what you want; see below.

Range Operators
Binary ".." is the range operator, which is really two different operators depending on the context.
context, it returns an array of values counting (by ones) from the left value to the right value. This is
for writing foreach (1..10) loops and for doing slice operations on arrays. In the curr
implementation, no temporary array is created when the range operator is used as the expres
foreach loops, but older versions of Perl might burn a lot of memory when you write something like t

 for (1 .. 1_000_000) {
code

 }

In scalar context, ".." returns a boolean value. The operator is bistable, like a flip−flop, and emula
line−range (comma) operator of sed, awk, and various editors. Each ".." operator maintains its own bool
state. It is false as long as its left operand is false. Once the left operand is true, the range operator s
until the right operand is true, AFTER which the range operator becomes false again. (It doesn‘t bec
false till the next time the range operator is evaluated. It can test the right operand and become fals
same evaluation it became true (as in awk), but it still returns true once. If you don‘t want it to test the rig
operand till the next evaluation (as in sed), use three dots ("...") instead of two.) The right operand is
evaluated while the operator is in the "false" state, and the left operand is not evaluated while the ope
in the "true" state. The precedence is a little lower than || and &&. The value returned is either the empt
168 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

or each
 doesn‘t
ou can
rand of

nds are

rement

ment
ed. For

 you can
string for false, or a sequence number (beginning with 1) for true. The sequence number is reset f
range encountered. The final sequence number in a range has the string "E0" appended to it, which
affect its numeric value, but gives you something to search for if you want to exclude the endpoint. Y
exclude the beginning point by waiting for the sequence number to be greater than 1. If either ope
scalar ".." is a constant expression, that operand is implicitly compared to the $. variable, the current line
number. Examples:

As a scalar operator:

 if (101 .. 200) { print; } # print 2nd hundred lines
 next line if (1 .. /^$/); # skip header lines
 s/^/> / if (/^$/ .. eof()); # quote body

 # parse mail messages
 while (<>) {
 $in_header = 1 .. /^$/;
 $in_body = /^$/ .. eof();

do something based on those
 } continue {

close ARGV if eof; # reset $. each file
 }

As a list operator:

 for (101 .. 200) { print; } # print $_ 100 times
 @foo = @foo[0 .. $#foo]; # an expensive no−op
 @foo = @foo[$#foo−4 .. $#foo]; # slice last 5 items

The range operator (in list context) makes use of the magical auto−increment algorithm if the opera
strings. You can say

 @alphabet = (’A’ .. ’Z’);

to get all the letters of the alphabet, or

 $hexdigit = (0 .. 9, ’a’ .. ’f’)[$num & 15];

to get a hexadecimal digit, or

 @z2 = (’01’ .. ’31’); print $z2[$mday];

to get dates with leading zeros. If the final value specified is not in the sequence that the magical inc
would produce, the sequence goes until the next value would be longer than the final value specified.

Conditional Operator
Ternary "?:" is the conditional operator, just as in C. It works much like an if−then−else. If the argu
before the ? is true, the argument before the : is returned, otherwise the argument after the : is return
example:

 printf "I have %d dog%s.\n", $n,
 ($n == 1) ? ’’ : "s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

 $a = $ok ? $b : $c; # get a scalar
 @a = $ok ? @b : @c; # get an array
 $a = $ok ? @b : @c; # oops, that’s just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues (meaning that
assign to them):

 ($a_or_b ? $a : $b) = $c;
18−Oct−1998 Version 5.005_02 169

perlop Perl Programmers Reference Guide perlop

et you in

 from

lent to
fying a

 away,

ments
ring.

arated
r", and
This is not necessarily guaranteed to contribute to the readability of your program.

Because this operator produces an assignable result, using assignments without parentheses will g
trouble. For example, this:

 $a % 2 ? $a += 10 : $a += 2

Really means this:

 (($a % 2) ? ($a += 10) : $a) += 2

Rather than this:

 ($a % 2) ? ($a += 10) : ($a += 2)

Assignment Operators
"=" is the ordinary assignment operator.

Assignment operators work as in C. That is,

 $a += 2;

is equivalent to

 $a = $a + 2;

although without duplicating any side effects that dereferencing the lvalue might trigger, such as
tie() . Other assignment operators work similarly. The following are recognized:

 **= += *= &= <<= &&=
 −= /= |= >>= ||=
 .= %= ^=

 x=

Note that while these are grouped by family, they all have the precedence of assignment.

Unlike in C, the assignment operator produces a valid lvalue. Modifying an assignment is equiva
doing the assignment and then modifying the variable that was assigned to. This is useful for modi
copy of something, like this:

 ($tmp = $global) =~ tr [A−Z] [a−z];

Likewise,

 ($a += 2) *= 3;

is equivalent to

 $a += 2;
 $a *= 3;

Comma Operator
Binary "," is the comma operator. In scalar context it evaluates its left argument, throws that value
then evaluates its right argument and returns that value. This is just like C‘s comma operator.

In list context, it‘s just the list argument separator, and inserts both its arguments into the list.

The => digraph is mostly just a synonym for the comma operator. It‘s useful for documenting argu
that come in pairs. As of release 5.001, it also forces any word to the left of it to be interpreted as a st

List Operators (Rightward)
On the right side of a list operator, it has very low precedence, such that it controls all comma−sep
expressions found there. The only operators with lower precedence are the logical operators "and", "o
"not", which may be used to evaluate calls to list operators without the need for extra parentheses:

 open HANDLE, "filename"
170 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

r the

o
aluated

pt for

 false.

 need

urse.

 kinds
 these
lowing
aracter
or die "Can’t open: $!\n";

See also discussion of list operators in Terms and List Operators (Leftward).

Logical Not
Unary "not" returns the logical negation of the expression to its right. It‘s the equivalent of "!" except fo
very low precedence.

Logical And
Binary "and" returns the logical conjunction of the two surrounding expressions. It‘s equivalent t&&
except for the very low precedence. This means that it short−circuits: i.e., the right expression is ev
only if the left expression is true.

Logical or and Exclusive Or
Binary "or" returns the logical disjunction of the two surrounding expressions. It‘s equivalent to || exce
the very low precedence. This makes it useful for control flow

 print FH $data or die "Can’t write to FH: $!";

This means that it short−circuits: i.e., the right expression is evaluated only if the left expression is
Due to its precedence, you should probably avoid using this for assignment, only for control flow.

 $a = $b or $c; # bug: this is wrong
 ($a = $b) or $c; # really means this
 $a = $b || $c; # better written this way

However, when it‘s a list context assignment and you‘re trying to use "||" for control flow, you probably
"or" so that the assignment takes higher precedence.

 @info = stat($file) || die; # oops, scalar sense of stat!
 @info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary "xor" returns the exclusive−OR of the two surrounding expressions. It cannot short circuit, of co

C Operators Missing From Perl
Here is what C has that Perl doesn‘t:

unary & Address−of operator. (But see the "\" operator for taking a reference.)

unary * Dereference−address operator. (Perl‘s prefix dereferencing operators are typed: $, @, %, and
&.)

(TYPE) Type casting operator.

Quote and Quote−like Operators
While we usually think of quotes as literal values, in Perl they function as operators, providing various
of interpolating and pattern matching capabilities. Perl provides customary quote characters for
behaviors, but also provides a way for you to choose your quote character for any of them. In the fol
table, a {} represents any pair of delimiters you choose. Non−bracketing delimiters use the same ch
fore and aft, but the 4 sorts of brackets (round, angle, square, curly) will all nest.

 Customary Generic Meaning Interpolates
’’ q{} Literal no
"" qq{} Literal yes
‘‘ qx{} Command yes (unless ’’ is delimiter)

qw{} Word list no
// m{} Pattern match yes

qr{} Pattern yes
 s{}{} Substitution yes
tr{}{} Transliteration no (but see below)
18−Oct−1998 Version 5.005_02 171

perlop Perl Programmers Reference Guide perlop

e

g as
ers, C

CII
CR+LF

a second
ern from

ations
de

ed from
h, RE
ossibly
Note that there can be whitespace between the operator and the quoting characters, except when # is being
used as the quoting character. q#foo# is parsed as being the string foo , while q #foo# is the operator q
followed by a comment. Its argument will be taken from the next line. This allows you to write:

 s {foo} # Replace foo
 {bar} # with bar.

For constructs that do interpolation, variables beginning with "$" or "@" are interpolated, as are the
following sequences. Within a transliteration, the first ten of these sequences may be used.

 \t tab (HT, TAB)
 \n newline (NL)
 \r return (CR)
 \f form feed (FF)
 \b backspace (BS)
 \a alarm (bell) (BEL)
 \e escape (ESC)
 \033 octal char
 \x1b hex char
 \c[control char

 \l lowercase next char
 \u uppercase next char
 \L lowercase till \E
 \U uppercase till \E
 \E end case modification
 \Q quote non−word characters till \E

If use locale is in effect, the case map used by \l , \L , \u and \U is taken from the current locale. Se
perllocale.

All systems use the virtual "\n" to represent a line terminator, called a "newline". There is no such thin
an unvarying, physical newline character. It is an illusion that the operating system, device driv
libraries, and Perl all conspire to preserve. Not all systems read "\r" as ASCII CR and "\n" as ASCII LF.
 For example, on a Mac, these are reversed, and on systems without line terminator, printing "\n" may emit
no actual data. In general, use "\n" when you mean a "newline" for your system, but use the literal AS
when you need an exact character. For example, most networking protocols expect and prefer a
("\012\015" or "\cJ\cM") for line terminators, and although they often accept just "\012" , they
seldom tolerate just "\015" . If you get in the habit of using "\n" for networking, you may be burned
some day.

You cannot include a literal $ or @ within a \Q sequence. An unescaped $ or @ interpolates the
corresponding variable, while escaping will cause the literal string \$ to be inserted. You‘ll need to write
something like m/\Quser\E\@\Qhost/ .

Patterns are subject to an additional level of interpretation as a regular expression. This is done as
pass, after variables are interpolated, so that regular expressions may be incorporated into the patt
the variables. If this is not what you want, use \Q to interpolate a variable literally.

Apart from the above, there are no multiple levels of interpolation. In particular, contrary to the expect
of shell programmers, back−quotes do NOT interpolate within double quotes, nor do single quotes impe
evaluation of variables when used within double quotes.

Regexp Quote−Like Operators
Here are the quote−like operators that apply to pattern matching and related activities.

Most of this section is related to use of regular expressions from Perl. Such a use may be consider
two points of view: Perl handles a a string and a "pattern" to RE (regular expression) engine to matc
engine finds (or does not find) the match, and Perl uses the findings of RE engine for its operation, p
asking the engine for other matches.
172 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

a what
ction we

 the
ence

 If no
h
the
s

ed, no
ormal

ful for
?" is

very
e
add a
seful
ver,
 you

ns

 in the
RE engine has no idea what Perl is going to do with what it finds, similarly, the rest of Perl has no ide
a particular regular expression means to RE engine. This creates a clean separation, and in this se
discuss matching from Perl point of view only. The other point of view may be found in perlre.

?PATTERN?
This is just like the /pattern/ search, except that it matches only once between calls to
reset() operator. This is a useful optimization when you want to see only the first occurr
of something in each file of a set of files, for instance. Only ?? patterns local to the current
package are reset.

 while (<>) {
if (?^$?) {

 # blank line between header and body
}

 } continue {
reset if eof; # clear ?? status for next file

 }

This usage is vaguely deprecated, and may be removed in some future version of Perl.

m/PATTERN/cgimosx
/PATTERN/cgimosx

Searches a string for a pattern match, and in scalar context returns true (1) or false (‘’).
string is specified via the =~ or !~ operator, the $_ string is searched. (The string specified wit
=~ need not be an lvalue—it may be the result of an expression evaluation, but remember =~
binds rather tightly.) See also perlre. See perllocale for discussion of additional consideration
that apply when use locale is in effect.

Options are:

 c Do not reset search position on a failed match when /g is in effect.
 g Match globally, i.e., find all occurrences.
 i Do case−insensitive pattern matching.
 m Treat string as multiple lines.
 o Compile pattern only once.
 s Treat string as single line.
 x Use extended regular expressions.

If "/" is the delimiter then the initial m is optional. With the m you can use any pair of
non−alphanumeric, non−whitespace characters as delimiters (if single quotes are us
interpretation is done on the replacement string. Unlike Perl 4, Perl 5 treats backticks as n
delimiters; the replacement text is not evaluated as a command). This is particularly use
matching Unix path names that contain "/", to avoid LTS (leaning toothpick syndrome). If "
the delimiter, then the match−only−once rule of ?PATTERN? applies.

PATTERN may contain variables, which will be interpolated (and the pattern recompiled) e
time the pattern search is evaluated. (Note that $) and $| might not be interpolated becaus
they look like end−of−string tests.) If you want such a pattern to be compiled only once,
/o after the trailing delimiter. This avoids expensive run−time recompilations, and is u
when the value you are interpolating won‘t change over the life of the script. Howe
mentioning /o constitutes a promise that you won‘t change the variables in the pattern. If
change them, Perl won‘t even notice.

If the PATTERN evaluates to the empty string, the last successfully matched regular expression
is used instead.

If the /g option is not used, m// in a list context returns a list consisting of the subexpressio
matched by the parentheses in the pattern, i.e., ($1, $2, $3...). (Note that here $1 etc. are
also set, and that this differs from Perl 4‘s behavior.) When there are no parentheses
18−Oct−1998 Version 5.005_02 173

perlop Perl Programmers Reference Guide perlop

t is

gns
e

sible
of all
re no

und the

,
t using
he
pattern, the return value is the list (1) for success. With or without parentheses, an empty lis
returned upon failure.

Examples:

 open(TTY, ’/dev/tty’);
 <TTY> =~ /^y/i && foo(); # do foo if desired

 if (/Version: *([0−9.]*)/) { $version = $1; }

 next if m#^/usr/spool/uucp#;

 # poor man’s grep
 $arg = shift;
 while (<>) {

print if /$arg/o; # compile only once
 }

 if (($F1, $F2, $Etc) = ($foo =~ /^(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the remainder of the line, and assi
those three fields to $F1, $F2, and $Etc. The conditional is true if any variables wer
assigned, i.e., if the pattern matched.

The /g modifier specifies global pattern matching—that is, matching as many times as pos
within the string. How it behaves depends on the context. In list context, it returns a list
the substrings matched by all the parentheses in the regular expression. If there a
parentheses, it returns a list of all the matched strings, as if there were parentheses aro
whole pattern.

In scalar context, each execution of m//g finds the next match, returning TRUE if it matches
and FALSE if there is no further match. The position after the last match can be read or se
the pos() function; see pos. A failed match normally resets the search position to t
beginning of the string, but you can avoid that by adding the /c modifier (e.g. m//gc).
Modifying the target string also resets the search position.

You can intermix m//g matches with m/\G.../g , where \G is a zero−width assertion that
matches the exact position where the previous m//g , if any, left off. The \G assertion is not
supported without the /g modifier; currently, without /g , \G behaves just like \A , but that‘s
accidental and may change in the future.

Examples:

 # list context
 ($one,$five,$fifteen) = (‘uptime‘ =~ /(\d+\.\d+)/g);

 # scalar context
 $/ = ""; $* = 1; # $* deprecated in modern perls
 while (defined($paragraph = <>)) {

while ($paragraph =~ /[a−z][’")]*[.!?]+[’")]*\s/g) {
 $sentences++;
}

 }
 print "$sentences\n";

 # using m//gc with \G
 $_ = "ppooqppqq";
 while ($i++ < 2) {
 print "1: ’";
 print $1 while /(o)/gc; print "’, pos=", pos, "\n";
 print "2: ’";
174 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

e
gexp

y the
 print $1 if /\G(q)/gc; print "’, pos=", pos, "\n";
 print "3: ’";
 print $1 while /(p)/gc; print "’, pos=", pos, "\n";
 }

The last example should print:

 1: ’oo’, pos=4
 2: ’q’, pos=5
 3: ’pp’, pos=7
 1: ’’, pos=7
 2: ’q’, pos=8
 3: ’’, pos=8

A useful idiom for lex −like scanners is /\G.../gc . You can combine several regexps lik
this to process a string part−by−part, doing different actions depending on which re
matched. Each regexp tries to match where the previous one leaves off.

 $_ = <<’EOL’;
 $url = new URI::URL "http://www/"; die if $url eq "xXx";
 EOL
 LOOP:
 {
 print(" digits"), redo LOOP if /\G\d+\b[,.;]?\s*/gc;
 print(" lowercase"), redo LOOP if /\G[a−z]+\b[,.;]?\s*/gc;
 print(" UPPERCASE"), redo LOOP if /\G[A−Z]+\b[,.;]?\s*/gc;
 print(" Capitalized"), redo LOOP if /\G[A−Z][a−z]+\b[,.;]?\s*/gc;
 print(" MiXeD"), redo LOOP if /\G[A−Za−z]+\b[,.;]?\s*/gc;
 print(" alphanumeric"), redo LOOP if /\G[A−Za−z0−9]+\b[,.;]?\s*/gc;
 print(" line−noise"), redo LOOP if /\G[^A−Za−z0−9]+/gc;
 print ". That’s all!\n";
 }

Here is the output (split into several lines):

 line−noise lowercase line−noise lowercase UPPERCASE line−noise
 UPPERCASE line−noise lowercase line−noise lowercase line−noise
 lowercase lowercase line−noise lowercase lowercase line−noise
 MiXeD line−noise. That’s all!

q/STRING/
‘STRING’

A single−quoted, literal string. A backslash represents a backslash unless followed b
delimiter or another backslash, in which case the delimiter or backslash is interpolated.

 $foo = q!I said, "You said, ’She said it.’"!;
 $bar = q(’This is it.’);
 $baz = ’\n’; # a two−character string

qq/STRING/
"STRING"

A double−quoted, interpolated string.

 $_ .= qq
 (*** The previous line contains the naughty word "$1".\n)

if /(tcl|rexx|python)/; # :−)
 $baz = "\n"; # a one−character string
18−Oct−1998 Version 5.005_02 175

perlop Perl Programmers Reference Guide perlop

result

 does
 to do

the

 with
The
scalar
st of

ng the
DOUT

ve its

est to
qr/STRING/imosx
A string which is (possibly) interpolated and then compiled as a regular expression. The
may be used as a pattern in a match

 $re = qr/$pattern/;
 $string =~ /foo${re}bar/; # can be interpolated in other patterns
 $string =~ $re; # or used standalone

Options are:

 i Do case−insensitive pattern matching.
 m Treat string as multiple lines.
 o Compile pattern only once.
 s Treat string as single line.
 x Use extended regular expressions.

The benefit from this is that the pattern is precompiled into an internal representation, and
not need to be recompiled every time a match is attempted. This makes it very efficient
something like:

 foreach $pattern (@pattern_list) {
my $re = qr/$pattern/;
foreach $line (@lines) {
 if($line =~ /$re/) {

do_something($line);
 }
}

 }

See perlre for additional information on valid syntax for STRING, and for a detailed look at
semantics of regular expressions.

qx/STRING/
‘STRING‘ A string which is (possibly) interpolated and then executed as a system command

/bin/sh or its equivalent. Shell wildcards, pipes, and redirections will be honored.
collected standard output of the command is returned; standard error is unaffected. In
context, it comes back as a single (potentially multi−line) string. In list context, returns a li
lines (however you‘ve defined lines with $/ or $INPUT_RECORD_SEPARATOR).

Because backticks do not affect standard error, use shell file descriptor syntax (assumi
shell supports this) if you care to address this. To capture a command‘s STDERR and ST
together:

 $output = ‘cmd 2>&1‘;

To capture a command‘s STDOUT but discard its STDERR:

 $output = ‘cmd 2>/dev/null‘;

To capture a command‘s STDERR but discard its STDOUT (ordering is important here):

 $output = ‘cmd 2>&1 1>/dev/null‘;

To exchange a command‘s STDOUT and STDERR in order to capture the STDERR but lea
STDOUT to come out the old STDERR:

 $output = ‘cmd 3>&1 1>&2 2>&3 3>&−‘;

To read both a command‘s STDOUT and its STDERR separately, it‘s easiest and saf
redirect them separately to files, and then read from those files when the program is done:

 system("program args 1>/tmp/program.stdout 2>/tmp/program.stderr");
176 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

lation,

 your
them
cters.

 with
 may
mand

d line.
ee the

mands

o get
ether is

 word

calar

nto a
s

xt and
mpty

.
r an

ERN

e. If
e
Using single−quote as a delimiter protects the command from Perl‘s double−quote interpo
passing it on to the shell instead:

 $perl_info = qx(ps $$); # that’s Perl’s $$
 $shell_info = qx’ps $$’; # that’s the new shell’s $$

Note that how the string gets evaluated is entirely subject to the command interpreter on
system. On most platforms, you will have to protect shell metacharacters if you want
treated literally. This is in practice difficult to do, as it‘s unclear how to escape which chara
See perlsec for a clean and safe example of a manual fork() and exec() to emulate
backticks safely.

On some platforms (notably DOS−like ones), the shell may not be capable of dealing
multiline commands, so putting newlines in the string may not get you what you want. You
be able to evaluate multiple commands in a single line by separating them with the com
separator character, if your shell supports that (e.g. ; on many Unix shells; & on the Windows
NT cmd shell).

Beware that some command shells may place restrictions on the length of the comman
You must ensure your strings don‘t exceed this limit after any necessary interpolations. S
platform−specific release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port, because the shell com
called vary between systems, and may in fact not be present at all. As one example, thetype
command under the POSIX shell is very different from the type command under DOS. That
doesn‘t mean you should go out of your way to avoid backticks when they‘re the right way t
something done. Perl was made to be a glue language, and one of the things it glues tog
commands. Just understand what you‘re getting yourself into.

See O Operators" for more discussion.

qw/STRING/
Returns a list of the words extracted out of STRING, using embedded whitespace as the
delimiters. It is exactly equivalent to

 split(’ ’, q/STRING/);

This equivalency means that if used in scalar context, you‘ll get split‘s (unfortunate) s
context behavior, complete with mysterious warnings.

Some frequently seen examples:

 use POSIX qw(setlocale localeconv)
 @EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with comma or to put comments i
multi−line qw−string. For this reason the −w switch produce warnings if the STRING contain
the "," or the "#" character.

s/PATTERN/REPLACEMENT/egimosx
Searches a string for a pattern, and if found, replaces that pattern with the replacement te
returns the number of substitutions made. Otherwise it returns false (specifically, the e
string).

If no string is specified via the =~ or !~ operator, the $_ variable is searched and modified
(The string specified with =~ must be scalar variable, an array element, a hash element, o
assignment to one of those, i.e., an lvalue.)

If the delimiter chosen is single quote, no variable interpolation is done on either the PATT
or the REPLACEMENT. Otherwise, if the PATTERN contains a $ that looks like a variable
rather than an end−of−string test, the variable will be interpolated into the pattern at run−tim
you want the pattern compiled only once the first time the variable is interpolated, use th/o
18−Oct−1998 Version 5.005_02 177

perlop Perl Programmers Reference Guide perlop

egular

es are

 is not
 the
 e.g.,
ed
x

option. If the pattern evaluates to the empty string, the last successfully executed r
expression is used instead. See perlre for further explanation on these. See perllocale for
discussion of additional considerations that apply when use locale is in effect.

Options are:

 e Evaluate the right side as an expression.
 g Replace globally, i.e., all occurrences.
 i Do case−insensitive pattern matching.
 m Treat string as multiple lines.
 o Compile pattern only once.
 s Treat string as single line.
 x Use extended regular expressions.

Any non−alphanumeric, non−whitespace delimiter may replace the slashes. If single quot
used, no interpretation is done on the replacement string (the /e modifier overrides this,
however). Unlike Perl 4, Perl 5 treats backticks as normal delimiters; the replacement text
evaluated as a command. If the PATTERN is delimited by bracketing quotes,
REPLACEMENT has its own pair of quotes, which may or may not be bracketing quotes,
s(foo)(bar) or s<foo>/bar/ . A /e will cause the replacement portion to be interpret
as a full−fledged Perl expression and eval() ed right then and there. It is, however, synta
checked at compile−time.

Examples:

 s/\bgreen\b/mauve/g; # don’t change wintergreen

 $path =~ s|/usr/bin|/usr/local/bin|;

 s/Login: $foo/Login: $bar/; # run−time pattern

 ($foo = $bar) =~ s/this/that/; # copy first, then change

 $count = ($paragraph =~ s/Mister\b/Mr./g); # get change−count

 $_ = ’abc123xyz’;
 s/\d+/$&*2/e; # yields ’abc246xyz’
 s/\d+/sprintf("%5d",$&)/e; # yields ’abc 246xyz’
 s/\w/$& x 2/eg; # yields ’aabbcc 224466xxyyzz’

 s/%(.)/$percent{$1}/g; # change percent escapes; no /e
 s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
 s/^=(\w+)/&pod($1)/ge; # use function call

 # expand variables in $_, but dynamics only, using
 # symbolic dereferencing
 s/\$(\w+)/${$1}/g;

 # /e’s can even nest; this will expand
 # any embedded scalar variable (including lexicals) in $_
 s/(\$\w+)/$1/eeg;

 # Delete (most) C comments.
 $program =~ s {

/* # Match the opening delimiter.
.*? # Match a minimal number of characters.
*/ # Match the closing delimiter.

 } []gsx;

 s/^\s*(.*?)\s*$/$1/; # trim white space in $_, expensively

 for ($variable) { # trim white space in $variable, cheap
178 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

on

onding
. If no
d
 one of

e
otes,

r of

cter are

ied.
r is

 is
racter
s/^\s+//;
s/\s+$//;

 }

 s/([^]*) *([^]*)/$2 $1/; # reverse 1st two fields

Note the use of $ instead of \ in the last example. Unlike sed, we use the \<digit> form in only
the left hand side. Anywhere else it‘s $<digit >.

Occasionally, you can‘t use just a /g to get all the changes to occur. Here are two comm
cases:

 # put commas in the right places in an integer
 1 while s/(.*\d)(\d\d\d)/$1,$2/g; # perl4
 1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g; # perl5

 # expand tabs to 8−column spacing
 1 while s/\t+/’ ’ x (length($&)*8 − length($‘)%8)/e;

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

Transliterates all occurrences of the characters found in the search list with the corresp
character in the replacement list. It returns the number of characters replaced or deleted
string is specified via the =~ or !~ operator, the $_ string is transliterated. (The string specifie
with =~ must be a scalar variable, an array element, a hash element, or an assignment to
those, i.e., an lvalue.) A character range may be specified with a hyphen, so tr/A−J/0−9/
does the same replacement as tr/ACEGIBDFHJ/0246813579/ . For sed devotees, y is
provided as a synonym for tr . If the SEARCHLIST is delimited by bracketing quotes, th
REPLACEMENTLIST has its own pair of quotes, which may or may not be bracketing qu
e.g., tr[A−Z][a−z] or tr(+\−*/)/ABCD/ .

Options:

 c Complement the SEARCHLIST.
 d Delete found but unreplaced characters.
 s Squash duplicate replaced characters.

If the /c modifier is specified, the SEARCHLIST character set is complemented. If the/d
modifier is specified, any characters specified by SEARCHLIST not found in
REPLACEMENTLIST are deleted. (Note that this is slightly more flexible than the behavio
some tr programs, which delete anything they find in the SEARCHLIST, period.) If the /s
modifier is specified, sequences of characters that were transliterated to the same chara
squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specif
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final characte
replicated till it is long enough. If the REPLACEMENTLIST is empty, the SEARCHLIST
replicated. This latter is useful for counting characters in a class or for squashing cha
sequences in a class.

Examples:

 $ARGV[1] =~ tr/A−Z/a−z/; # canonicalize to lower case

 $cnt = tr/*/*/; # count the stars in $_

 $cnt = $sky =~ tr/*/*/; # count the stars in $sky

 $cnt = tr/0−9//; # count the digits in $_

 tr/a−zA−Z//s; # bookkeeper −> bokeper
18−Oct−1998 Version 5.005_02 179

perlop Perl Programmers Reference Guide perlop

T nor
 you

rinciple
of the
ey write.

quent
ssions.

iscussed

ame, we
s, from

−char
r

 ($HOST = $host) =~ tr/a−z/A−Z/;

 tr/a−zA−Z/ /cs; # change non−alphas to single space

 tr [\200−\377]
 [\000−\177]; # delete 8th bit

If multiple transliterations are given for a character, only the first one is used:

 tr/AAA/XYZ/

will transliterate any A to X.

Note that because the transliteration table is built at compile time, neither the SEARCHLIS
the REPLACEMENTLIST are subjected to double quote interpolation. That means that if
want to use variables, you must use an eval() :

 eval "tr/$oldlist/$newlist/";
 die $@ if $@;

 eval "tr/$oldlist/$newlist/, 1" or die $@;

Gory details of parsing quoted constructs
When presented with something which may have several different interpretations, Perl uses the p
DWIM (expanded to Do What I Mean − not what I wrote) to pick up the most probable interpretation
 source. This strategy is so successful that Perl users usually do not suspect ambivalence of what th
However, time to time Perl‘s ideas differ from what the author meant.

The target of this section is to clarify the Perl‘s way of interpreting quoted constructs. The most fre
reason one may have to want to know the details discussed in this section is hairy regular expre
However, the first steps of parsing are the same for all Perl quoting operators, so here they are d
together.

Some of the passes discussed below are performed concurrently, but as far as results are the s
consider them one−by−one. For different quoting constructs Perl performs different number of passe
one to five, but they are always performed in the same order.

Finding the end
First pass is finding the end of the quoted construct, be it multichar ender "\nEOF\n" of <<EOF
construct, / which terminates qq/ construct,] which terminates qq[construct, or > which terminates
a fileglob started with <.

When searching for multichar construct no skipping is performed. When searching for one
non−matching delimiter, such as / , combinations \\ and \/ are skipped. When searching fo
one−char matching delimiter, such as] , combinations \\ , \] and \[are skipped, and nested [,] are
skipped as well.

For 3−parts constructs, s/// etc. the search is repeated once more.

During this search no attention is paid to the semantic of the construct, thus

 "$hash{"$foo/$bar"}"

or

 m/
 bar # This is not a comment, this slash / terminated m//!
 /x

do not form legal quoted expressions. Note that since the slash which terminated m// was followed
by a SPACE, this is not m//x , thus # was interpreted as a literal #.
180 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

ed to a

es.

ts,

sert a

r ends,

paces

s
 or

t: if
Removal of backslashes before delimiters
During the second pass the text between the starting delimiter and the ending delimiter is copi
safe location, and the \ is removed from combinations consisting of \ and delimiter(s) (both starting
and ending delimiter if they differ).

The removal does not happen for multi−char delimiters.

Note that the combination \\ is left as it was!

Starting from this step no information about the delimiter(s) is used in the parsing.

Interpolation
Next step is interpolation in the obtained delimiter−independent text. There are four different cas

<<‘EOF’ , m‘’ , s‘’’ , tr/// , y///
No interpolation is performed.

‘’ , q//
The only interpolation is removal of \ from pairs \\ .

"" , ‘‘ , qq// , qx// , <file*glob>
\Q , \U , \u , \L , \l (possibly paired with \E) are converted to corresponding Perl construc
thus "$foo\Qbaz$bar" is converted to

 $foo . (quotemeta("baz" . $bar));

Other combinations of \ with following chars are substituted with appropriate expansions.

Interpolated scalars and arrays are converted to join and . Perl constructs, thus "‘@arr‘"
becomes

 "’" . (join $", @arr) . "’";

Since all three above steps are performed simultaneously left−to−right, the is no way to in
literal $ or @ inside \Q\E pair: it cannot be protected by \ , since any \ (except in \E) is
interpreted as a literal inside \Q\E , and any $ is interpreted as starting an interpolated scalar.

Note also that the interpolating code needs to make decision where the interpolated scala
say, whether "a $b −> {c}" means

 "a " . $b . " −> {c}";

or

 "a " . $b −> {c};

Most the time the decision is to take the longest possible text which does not include s
between components and contains matching braces/brackets.

?RE?, /RE/ , m/RE/ , s/RE/foo/ ,
Processing of \Q , \U , \u , \L , \l and interpolation happens (almost) as with qq// constructs,
but the substitution of \ followed by other chars is not performed! Moreover, inside
(?{BLOCK}) no processing is performed at all.

Interpolation has several quirks: $|, $(and $) are not interpolated, and construct
$var[SOMETHING] are voted (by several different estimators) to be an array element
$var followed by a RE alternative. This is the place where the notation ${arr[$bar]}
comes handy: /${arr[0−9]}/ is interpreted as an array element −9, not as a regular
expression from variable $arr followed by a digit, which is the interpretation of
/$arr[0−9]/.

Note that absence of processing of \\ creates specific restrictions on the post−processed tex
the delimiter is / , one cannot get the combination \/ into the result of this step: / will finish the
18−Oct−1998 Version 5.005_02 181

perlop Perl Programmers Reference Guide perlop

iter

rther.

in run
l the
casing

ng

odes of
 nodes.
or is

e

tep are

ts) first
 and the
 string
utput.
literal

f the

), or
ere an
 a

d. The
"" or "0"
lmost
regular expression, \/ will be stripped to / on the previous step, and \\/ will be left as is.
Since / is equivalent to \/ inside a regular expression, this does not matter unless the delim
is special character for the RE engine, as in s*foo*bar* , m[foo] , or ?foo? .

This step is the last one for all the constructs except regular expressions, which are processed fu

Interpolation of regular expressions
All the previous steps were performed during the compilation of Perl code, this one happens
time (though it may be optimized to be calculated at compile time if appropriate). After al
preprocessing performed above (and possibly after evaluation if catenation, joining, up/down−
and quotemeta() ing are involved) the resulting string is passed to RE engine for compilation.

Whatever happens in the RE engine is better be discussed in perlre, but for the sake of continuity let us
do it here.

This is the first step where presence of the //x switch is relevant. The RE engine scans the stri
left−to−right, and converts it to a finite automaton.

Backslashed chars are either substituted by corresponding literal strings, or generate special n
the finite automaton. Characters which are special to the RE engine generate corresponding
(?#...) comments are ignored. All the rest is either converted to literal strings to match,
ignored (as is whitespace and #−style comments if //x is present).

Note that the parsing of the construct [...] is performed using absolutely different rules than th
rest of the regular expression. Similarly, the (?{...}) is only checked for matching braces.

Optimization of regular expressions
This step is listed for completeness only. Since it does not change semantics, details of this s
not documented and are subject to change.

I/O Operators
There are several I/O operators you should know about. A string enclosed by backticks (grave accen
undergoes variable substitution just like a double quoted string. It is then interpreted as a command,
output of that command is the value of the pseudo−literal, like in a shell. In scalar context, a single
consisting of all the output is returned. In list context, a list of values is returned, one for each line of o
 (You can set $/ to use a different line terminator.) The command is executed each time the pseudo−
is evaluated. The status value of the command is returned in $? (see perlvar for the interpretation of $?).
Unlike in csh, no translation is done on the return data—newlines remain newlines. Unlike in any o
shells, single quotes do not hide variable names in the command from interpretation. To pass a $ through to
the shell you need to hide it with a backslash. The generalized form of backticks is qx// . (Because
backticks always undergo shell expansion as well, see perlsec for security concerns.)

Evaluating a filehandle in angle brackets yields the next line from that file (newline, if any, included
undef at end of file. Ordinarily you must assign that value to a variable, but there is one situation wh
automatic assignment happens. If and ONLY if the input symbol is the only thing inside the conditional of
while or for(;;) loop, the value is automatically assigned to the variable $_. In these loop constructs,
the assigned value (whether assignment is automatic or explicit) is then tested to see if it is define
defined test avoids problems where line has a string value that would be treated as false by perl e.g.
with no trailing newline. (This may seem like an odd thing to you, but you‘ll use the construct in a
every Perl script you write.) Anyway, the following lines are equivalent to each other:

 while (defined($_ = <STDIN>)) { print; }
 while ($_ = <STDIN>) { print; }
 while (<STDIN>) { print; }
 for (;<STDIN>;) { print; }
 print while defined($_ = <STDIN>);
 print while ($_ = <STDIN>);
 print while <STDIN>;
182 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

r than

s is

s: the

s. The

d put

> as

s you
der

 files

uments

 on the
and this also behaves similarly, but avoids the use of $_ :

 while (my $line = <STDIN>) { print $line }

If you really mean such values to terminate the loop they should be tested for explicitly:

 while (($_ = <STDIN>) ne ’0’) { ... }
 while (<STDIN>) { last unless $_; ... }

In other boolean contexts, <filehandle > without explicit defined test or comparison will solicit a
warning if −w is in effect.

The filehandles STDIN, STDOUT, and STDERR are predefined. (The filehandles stdin , stdout , and
stderr will also work except in packages, where they would be interpreted as local identifiers rathe
global.) Additional filehandles may be created with the open() function. See open() for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list consisting of all the input line
returned, one line per list element. It‘s easy to make a LARGE data space this way, so use with care.

The null filehandle <> is special and can be used to emulate the behavior of sed and awk. Input from <>
comes either from standard input, or from each file listed on the command line. Here‘s how it work
first time <> is evaluated, the @ARGV array is checked, and if it is empty, $ARGV[0] is set to "−", which
when opened gives you standard input. The @ARGV array is then processed as a list of filename
loop

 while (<>) {
... # code for each line

 }

is equivalent to the following Perl−like pseudo code:

 unshift(@ARGV, ’−’) unless @ARGV;
 while ($ARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {
 ... # code for each line
}

 }

except that it isn‘t so cumbersome to say, and will actually work. It really does shift array @ARGV an
the current filename into variable $ARGV. It also uses filehandle ARGV internally—<> is just a synonym
for <ARGV>, which is magical. (The pseudo code above doesn‘t work because it treats <ARGV
non−magical.)

You can modify @ARGV before the first <> as long as the array ends up containing the list of filename
really want. Line numbers ($.) continue as if the input were one big happy file. (But see example un
eof for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead. This sets @ARGV to all plain text
if no @ARGV was given:

 @ARGV = grep { −f && −T } glob(’*’) unless @ARGV;

You can even set them to pipe commands. For example, this automatically filters compressed arg
through gzip:

 @ARGV = map { /\.(gz|Z)$/ ? "gzip −dc < $_ |" : $_ } @ARGV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop
front like this:

 while ($_ = $ARGV[0], /^−/) {
shift;
18−Oct−1998 Version 5.005_02 183

perlop Perl Programmers Reference Guide perlop

e

ple:

andle
 a list of
mined
ut

rt curly
ll

st

s in

 before
y. In

f a
ain,
y
 last if /^−−$/;
if (/^−D(.*)/) { $debug = $1 }
if (/^−v/) { $verbose++ }
... # other switches

 }

 while (<>) {
... # code for each line

 }

The <> symbol will return undef for end−of−file only once. If you call it again after this it will assum
you are processing another @ARGV list, and if you haven‘t set @ARGV, will input from STDIN.

If the string inside the angle brackets is a reference to a scalar variable (e.g., <$foo>), then that variable
contains the name of the filehandle to input from, or its typeglob, or a reference to the same. For exam

 $fh = *STDIN;
 $line = <$fh>;

If what‘s within the angle brackets is neither a filehandle nor a simple scalar variable containing a fileh
name, typeglob, or typeglob reference, it is interpreted as a filename pattern to be globbed, and either
filenames or the next filename in the list is returned, depending on context. This distinction is deter
on syntactic grounds alone. That means <$x> is always a readline from an indirect handle, b
<$hash{key}> is always a glob. That‘s because $x is a simple scalar variable, but $hash{key} is
not—it‘s a hash element.

One level of double−quote interpretation is done first, but you can‘t say <$foo> because that‘s an indirect
filehandle as explained in the previous paragraph. (In older versions of Perl, programmers would inse
brackets to force interpretation as a filename glob: <${foo}>. These days, it‘s considered cleaner to ca
the internal function directly as glob($foo), which is probably the right way to have done it in the fir
place.) Example:

 while (<*.c>) {
chmod 0644, $_;

 }

is equivalent to

 open(FOO, "echo *.c | tr −s ’ \t\r\f’ ’\\012\\012\\012\\012’|");
 while (<FOO>) {

chop;
chmod 0644, $_;

 }

In fact, it‘s currently implemented that way. (Which means it will not work on filenames with space
them unless you have csh(1) on your machine.) Of course, the shortest way to do the above is:

 chmod 0644, <*.c>;

Because globbing invokes a shell, it‘s often faster to call readdir() yourself and do your own grep()
on the filenames. Furthermore, due to its current implementation of using a shell, the glob() routine may
get "Arg list too long" errors (unless you‘ve installed tcsh(1L) as /bin/csh).

A glob evaluates its (embedded) argument only when it is starting a new list. All values must be read
it will start over. In a list context this isn‘t important, because you automatically get them all anywa
scalar context, however, the operator returns the next value each time it is called, or a undef value if you‘ve
just run out. As for filehandles an automatic defined is generated when the glob occurs in the test part o
while or for − because legal glob returns (e.g. a file called) would otherwise terminate the loop. Ag
undef is returned only once. So if you‘re expecting a single value from a glob, it is much better to sa

 ($file) = <blurch*>;
184 Version 5.005_02 18−Oct−1998

perlop Perl Programmers Reference Guide perlop

 that all
ppens at
ens at

 to.

 If an
f

losing
than

 $file = <blurch*>;

because the latter will alternate between returning a filename and returning FALSE.

It you‘re trying to do variable interpolation, it‘s definitely better to use the glob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

 @files = glob("$dir/*.[ch]");
 @files = glob($files[$i]);

Constant Folding
Like C, Perl does a certain amount of expression evaluation at compile time, whenever it determines
arguments to an operator are static and have no side effects. In particular, string concatenation ha
compile time between literals that don‘t do variable substitution. Backslash interpretation also happ
compile time. You can say

 ’Now is the time for all’ . "\n" .
’good men to come to.’

and this all reduces to one string internally. Likewise, if you say

 foreach $file (@filenames) {
if (−s $file > 5 + 100 * 2**16) { }

 }

the compiler will precompute the number that expression represents so that the interpreter won‘t have

Bitwise String Operators
Bitstrings of any size may be manipulated by the bitwise operators (~ | & ^).

If the operands to a binary bitwise op are strings of different sizes, or and xor ops will act as if the shorter
operand had additional zero bits on the right, while the and op will act as if the longer operand were
truncated to the length of the shorter.

 # ASCII−based examples
 print "j p \n" ^ " a h"; # prints "JAPH\n"
 print "JA" | " ph\n"; # prints "japh\n"
 print "japh\nJunk" & ’_____’; # prints "JAPH\n";
 print ’p N$’ ^ " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, you should be certain that you‘re supplying bitstrings:
operand is a number, that will imply a numeric bitwise operation. You may explicitly show which type o
operation you intend by using "" or 0+, as in the examples below.

 $foo = 150 | 105 ; # yields 255 (0x96 | 0x69 is 0xFF)
 $foo = ’150’ | 105 ; # yields 255
 $foo = 150 | ’105’; # yields 255
 $foo = ’150’ | ’105’; # yields string ’155’ (under ASCII)

 $baz = 0+$foo & 0+$bar; # both ops explicitly numeric
 $biz = "$foo" ^ "$bar"; # both ops explicitly stringy

Integer Arithmetic
By default Perl assumes that it must do most of its arithmetic in floating point. But by saying

 use integer;

you may tell the compiler that it‘s okay to use integer operations from here to the end of the enc
BLOCK. An inner BLOCK may countermand this by saying

 no integer;
18−Oct−1998 Version 5.005_02 185

perlop Perl Programmers Reference Guide perlop

so
ts
s

 or

 There

ively
ber of

d perl

uld be
used by

and
l pitfalls
which lasts until the end of that BLOCK.

The bitwise operators ("&", "|", "^", "~", "<<", and "") always produce integral results. (But see al
Bitwise String Operators.) However, use integer still has meaning for them. By default, their resul
are interpreted as unsigned integers. However, if use integer is in effect, their results are interpreted a
signed integers. For example, ~0 usually evaluates to a large integral value. However, use integer;
~0 is −1 on twos−complement machines.

Floating−point Arithmetic
While use integer provides integer−only arithmetic, there is no similar ways to provide rounding
truncation at a certain number of decimal places. For rounding to a certain number of digits, sprintf() or
printf() is usually the easiest route.

Floating−point numbers are only approximations to what a mathematician would call real numbers.
are infinitely more reals than floats, so some corners must be cut. For example:

 printf "%.20g\n", 123456789123456789;
 # produces 123456789123456784

Testing for exact equality of floating−point equality or inequality is not a good idea. Here‘s a (relat
expensive) work−around to compare whether two floating−point numbers are equal to a particular num
decimal places. See Knuth, volume II, for a more robust treatment of this topic.

 sub fp_equal {
my ($X, $Y, $POINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

 }

The POSIX module (part of the standard perl distribution) implements ceil() , floor() , and a number of
other mathematical and trigonometric functions. The Math::Complex module (part of the standar
distribution) defines a number of mathematical functions that can also work on real numbers.
Math::Complex not as efficient as POSIX, but POSIX can‘t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used sho
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being
Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers
The standard Math::BigInt and Math::BigFloat modules provide variable precision arithmetic
overloaded operators. At the cost of some space and considerable speed, they avoid the norma
associated with limited−precision representations.

 use Math::BigInt;
 $x = Math::BigInt−>new(’123456789123456789’);
 print $x * $x;

 # prints +15241578780673678515622620750190521
186 Version 5.005_02 18−Oct−1998

perlre Perl Programmers Reference Guide perlre

 of the
 is used

d

ewline,

aracter
es

e a
ing the

nore
r regular
ing

 towards
 pattern
ee the

 8 regex
table
NAME
perlre − Perl regular expressions

DESCRIPTION
This page describes the syntax of regular expressions in Perl. For a description of how to use regular
expressions in matching operations, plus various examples of the same, see discussion of m// , s/// , qr//
and ?? in Regexp Quote−Like Operators in perlop.

The matching operations can have various modifiers. The modifiers that relate to the interpretation
regular expression inside are listed below. For the modifiers that alter the way a regular expression
by Perl, see Regexp Quote−Like Operators in perlop and
Gory details of parsing quoted constructs in perlop.

i Do case−insensitive pattern matching.

If use locale is in effect, the case map is taken from the current locale. See perllocale.

m Treat string as multiple lines. That is, change "^" and "$" from matching at only the very start or en
of the string to the start or end of any line anywhere within the string,

s Treat string as single line. That is, change "." to match any character whatsoever, even a n
which it normally would not match.

The /s and /m modifiers both override the $* setting. That is, no matter what $* contains, /s
without /m will force "^" to match only at the beginning of the string and "$" to match only at the end
(or just before a newline at the end) of the string. Together, as /ms, they let the "." match any ch
whatsoever, while yet allowing "^" and "$" to match, respectively, just after and just before newlin
within the string.

x Extend your pattern‘s legibility by permitting whitespace and comments.

These are usually written as "the /x modifier", even though the delimiter in question might not actually b
slash. In fact, any of these modifiers may also be embedded within the regular expression itself us
new (?...) construct. See below.

The /x modifier itself needs a little more explanation. It tells the regular expression parser to ig
whitespace that is neither backslashed nor within a character class. You can use this to break up you
expression into (slightly) more readable parts. The # character is also treated as a metacharacter introduc
a comment, just as in ordinary Perl code. This also means that if you want real whitespace or # characters in
the pattern (outside of a character class, where they are unaffected by /x), that you‘ll either have to escape
them or encode them using octal or hex escapes. Taken together, these features go a long way
making Perl‘s regular expressions more readable. Note that you have to be careful not to include the
delimiter in the comment—perl has no way of knowing you did not intend to close the pattern early. S
C−comment deletion code in perlop.

Regular Expressions
The patterns used in pattern matching are regular expressions such as those supplied in the Version
routines. (In fact, the routines are derived (distantly) from Henry Spencer‘s freely redistribu
reimplementation of the V8 routines.) See Version 8 Regular Expressions for details.

In particular the following metacharacters have their standard egrep−ish meanings:

 \ Quote the next metacharacter
 ^ Match the beginning of the line
 . Match any character (except newline)
 $ Match the end of the line (or before newline at the end)
 | Alternation
 () Grouping
 [] Character class
18−Oct−1998 Version 5.005_02 187

perlre Perl Programmers Reference Guide perlre

ion that

ithin
is by

he

other

fier is

iven a
h the
ange,

e

By default, the "^" character is guaranteed to match at only the beginning of the string, the "$" character at
only the end (or before the newline at the end) and Perl does certain optimizations with the assumpt
the string contains only one line. Embedded newlines will not be matched by "^" or "$". You may,
however, wish to treat a string as a multi−line buffer, such that the "^" will match after any newline w
the string, and "$" will match before any newline. At the cost of a little more overhead, you can do th
using the /m modifier on the pattern match operator. (Older programs did this by setting $*, but this
practice is now deprecated.)

To facilitate multi−line substitutions, the "." character never matches a newline unless you use t/s
modifier, which in effect tells Perl to pretend the string is a single line—even if it isn‘t. The /s modifier
also overrides the setting of $*, in case you have some (badly behaved) older code that sets it in an
module.

The following standard quantifiers are recognized:

 * Match 0 or more times
 + Match 1 or more times
 ? Match 1 or 0 times
 {n} Match exactly n times
 {n,} Match at least n times
 {n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context, it is treated as a regular character.) The "*" modi
equivalent to {0,} , the "+" modifier to {1,} , and the "?" modifier to {0,1} . n and m are limited to
integral values less than 65536.

By default, a quantified subpattern is "greedy", that is, it will match as many times as possible (g
particular starting location) while still allowing the rest of the pattern to match. If you want it to matc
minimum number of times possible, follow the quantifier with a "?". Note that the meanings don‘t ch
just the "greediness":

 *? Match 0 or more times
 +? Match 1 or more times
 ?? Match 0 or 1 time
 {n}? Match exactly n times
 {n,}? Match at least n times
 {n,m}? Match at least n but not more than m times

Because patterns are processed as double quoted strings, the following also work:

 \t tab (HT, TAB)
 \n newline (LF, NL)
 \r return (CR)
 \f form feed (FF)
 \a alarm (bell) (BEL)
 \e escape (think troff) (ESC)
 \033 octal char (think of a PDP−11)
 \x1B hex char
 \c[control char
 \l lowercase next char (think vi)
 \u uppercase next char (think vi)
 \L lowercase till \E (think vi)
 \U uppercase till \E (think vi)
 \E end case modification (think vi)
 \Q quote (disable) pattern metacharacters till \E

If use locale is in effect, the case map used by \l , \L , \u and \U is taken from the current locale. Se
perllocale.
188 Version 5.005_02 18−Oct−1998

perlre Perl Programmers Reference Guide perlre

y

s

 of the
ry.)

ring,

atch

he
ion
ope of
ext
rn (e.g.,

s
ings if
ackward
 through
You cannot include a literal $ or @ within a \Q sequence. An unescaped $ or @ interpolates the
corresponding variable, while escaping will cause the literal string \$ to be matched. You‘ll need to write
something like m/\Quser\E\@\Qhost/ .

In addition, Perl defines the following:

 \w Match a "word" character (alphanumeric plus "_")
 \W Match a non−word character
 \s Match a whitespace character
 \S Match a non−whitespace character
 \d Match a digit character
 \D Match a non−digit character

A \w matches a single alphanumeric character, not a whole word. To match a word you‘d need to sa\w+ .
If use locale is in effect, the list of alphabetic characters generated by \w is taken from the current
locale. See perllocale. You may use \w , \W, \s , \S , \d , and \D within character classes (though not a
either end of a range).

Perl defines the following zero−width assertions:

 \b Match a word boundary
 \B Match a non−(word boundary)
 \A Match only at beginning of string
 \Z Match only at end of string, or before newline at the end
 \z Match only at end of string
 \G Match only where previous m//g left off (works only with /g)

A word boundary (\b) is defined as a spot between two characters that has a \w on one side of it and a \W
on the other side of it (in either order), counting the imaginary characters off the beginning and end
string as matching a \W. (Within character classes \b represents backspace rather than a word bounda
The \A and \Z are just like "^" and "$", except that they won‘t match multiple times when the /m modifier
is used, while "^" and "$" will match at every internal line boundary. To match the actual end of the st
not ignoring newline, you can use \z . The \G assertion can be used to chain global matches (using m//g),
as described in Regexp Quote−Like Operators in perlop.

It is also useful when writing lex −like scanners, when you have several patterns that you want to m
against consequent substrings of your string, see the previous reference. The actual location where\G will
match can also be influenced by using pos() as an lvalue. See pos.

When the bracketing construct (...) is used, \<digit> matches the digit‘th substring. Outside of t
pattern, always use "$" instead of "\" in front of the digit. (While the \<digit> notation can on rare occas
work outside the current pattern, this should not be relied upon. See the WARNING below.) The sc
$<digit> (and $‘, $&, and $’) extends to the end of the enclosing BLOCK or eval string, or to the n
successful pattern match, whichever comes first. If you want to use parentheses to delimit a subpatte
a set of alternatives) without saving it as a subpattern, follow the (with a ?:.

You may have as many parentheses as you wish. If you have more than 9 substrings, the variable$10,
$11, ... refer to the corresponding substring. Within the pattern, \10, \11, etc. refer back to substr
there have been at least that many left parentheses before the backreference. Otherwise (for b
compatibility) \10 is the same as \010, a backspace, and \11 the same as \011, a tab. And so on. (\1
\9 are always backreferences.)

$+ returns whatever the last bracket match matched. $& returns the entire matched string. ($0 used to
return the same thing, but not any more.) $‘ returns everything before the matched string. $’ returns
everything after the matched string. Examples:

 s/^([^]*) *([^]*)/$2 $1/; # swap first two words

 if (/Time: (..):(..):(..)/) {
$hours = $1;
18−Oct−1998 Version 5.005_02 189

perlre Perl Programmers Reference Guide perlre

ch
s these
uring

te
f 5.005,

at looks
 once
ters in a

o

s with a
l). The
already

, a

and
$minutes = $2;
$seconds = $3;

 }

Once perl sees that you need one of $&, $‘ or $’ anywhere in the program, it has to provide them on ea
and every pattern match. This can slow your program down. The same mechanism that handle
provides for the use of $1, $2, etc., so you pay the same price for each pattern that contains capt
parentheses. But if you never use $&, etc., in your script, then patterns without capturing parentheses won‘t
be penalized. So avoid $&, $‘, and $‘ if you can, but if you can‘t (and some algorithms really apprecia
them), once you‘ve used them once, use them at will, because you‘ve already paid the price. As o
$& is not so costly as the other two.

Backslashed metacharacters in Perl are alphanumeric, such as \b , \w , \n . Unlike some other regular
expression languages, there are no backslashed symbols that aren‘t alphanumeric. So anything th
like \\, \(, \), \<, \>, \{, or \} is always interpreted as a literal character, not a metacharacter. This was
used in a common idiom to disable or quote the special meanings of regular expression metacharac
string that you want to use for a pattern. Simply quote all non−alphanumeric characters:

 $pattern =~ s/(\W)/\\$1/g;

Now it is much more common to see either the quotemeta() function or the \Q escape sequence used t
disable all metacharacters’ special meanings like this:

 /$unquoted\Q$quoted\E$unquoted/

Perl defines a consistent extension syntax for regular expressions. The syntax is a pair of parenthese
question mark as the first thing within the parentheses (this was a syntax error in older versions of Per
character after the question mark gives the function of the extension. Several extensions are
supported:

(?#text) A comment. The text is ignored. If the /x switch is used to enable whitespace formatting
simple # will suffice. Note that perl closes the comment as soon as it sees a) , so there is no
way to put a literal) in the comment.

(?:pattern)
(?imsx−imsx:pattern)

This is for clustering, not capturing; it groups subexpressions like "() ", but doesn‘t make
backreferences as "() " does. So

 @fields = split(/\b(?:a|b|c)\b/)

is like

 @fields = split(/\b(a|b|c)\b/)

but doesn‘t spit out extra fields.

The letters between ? and : act as flags modifiers, see (?imsx−imsx) . In particular,

 /(?s−i:more.*than).*million/i

is equivalent to more verbose

 /(?:(?s−i)more.*than).*million/i

(?=pattern)
A zero−width positive lookahead assertion. For example, /\w+(?=\t)/ matches a word
followed by a tab, without including the tab in $&.

(?!pattern)
A zero−width negative lookahead assertion. For example /foo(?!bar)/ matches any
occurrence of "foo" that isn‘t followed by "bar". Note however that lookahead
lookbehind are NOT the same thing. You cannot use this for lookbehind.
190 Version 5.005_02 18−Oct−1998

perlre Perl Programmers Reference Guide perlre

e
ing
not

pare

olves
If you are looking for a "bar" that isn‘t preceded by a "foo", /(?!foo)bar/ will not do
what you want. That‘s because the (?!foo) is just saying that the next thing cannot b
"foo"—and it‘s not, it‘s a "bar", so "foobar" will match. You would have to do someth
like /(?!foo)...bar/ for that. We say "like" because there‘s the case of your "bar"
having three characters before it. You could cover that this way:
/(?:(?!foo)...|^.{0,2})bar/ . Sometimes it‘s still easier just to say:

 if (/bar/ && $‘ !~ /foo$/)

For lookbehind see below.

(?<=pattern)
A zero−width positive lookbehind assertion. For example, /(?<=\t)\w+/ matches a word
following a tab, without including the tab in $&. Works only for fixed−width lookbehind.

(?<!pattern)
A zero−width negative lookbehind assertion. For example /(?<!bar)foo/ matches any
occurrence of "foo" that isn‘t following "bar". Works only for fixed−width lookbehind.

(?{ code })
Experimental "evaluate any Perl code" zero−width assertion. Always succeeds. code is not
interpolated. Currently the rules to determine where the code ends are somewhat
convoluted.

The code is properly scoped in the following sense: if the assertion is backtracked (com
"Backtracking"), all the changes introduced after local isation are undone, so

 $_ = ’a’ x 8;
 m<
 (?{ $cnt = 0 }) # Initialize $cnt.
 (
 a
 (?{
 local $cnt = $cnt + 1; # Update $cnt, backtracking−safe.
 })
)*
 aaaa
 (?{ $res = $cnt }) # On success copy to non−localized

location.
 >x;

will set $res = 4 . Note that after the match $cnt returns to the globally introduced value
0, since the scopes which restrict local statements are unwound.

This assertion may be used as (?(condition)yes−pattern|no−pattern) switch.
If not used in this way, the result of evaluation of code is put into variable $^R. This
happens immediately, so $^R can be used from other (?{ code }) assertions inside the
same regular expression.

The above assignment to $^R is properly localized, thus the old value of $^R is restored if
the assertion is backtracked (compare "Backtracking").

Due to security concerns, this construction is not allowed if the regular expression inv
run−time interpolation of variables, unless use re ‘eval’ pragma is used (see re), or the
variables contain results of qr() operator (see qr/STRING/imosx in perlop).

This restriction is due to the wide−spread (questionable) practice of using the construct

 $re = <>;
 chomp $re;
18−Oct−1998 Version 5.005_02 191

perlre Perl Programmers Reference Guide perlre

verely

s

lone
o an
 one
gular

track

ep
tring.
trings.
n.

mance
 $string =~ /$re/;

without tainting. While this code is frowned upon from security point of view, when (?{})
was introduced, it was considered bad to add new security holes to existing scripts.

NOTE: Use of the above insecure snippet without also enabling taint mode is to be se
frowned upon. use re ‘eval’ does not disable tainting checks, thus to allow $re in the
above snippet to contain (?{}) with tainting enabled, one needs both use re ‘eval’
and untaint the $re.

(?>pattern)
An "independent" subexpression. Matches the substring that a standalone pattern would
match if anchored at the given position, and only this substring.

Say, ̂ (?>a*)ab will never match, since (?>a*) (anchored at the beginning of string, a
above) will match all characters a at the beginning of string, leaving no a for ab to match. In
contrast, a*ab will match the same as a+b , since the match of the subgroup a* is influenced
by the following group ab (see "Backtracking"). In particular, a* inside a*ab will match
fewer characters than a standalone a* , since this makes the tail match.

An effect similar to (?>pattern) may be achieved by

 (?=(pattern))\1

since the lookahead is in "logical" context, thus matches the same substring as a standa
a+. The following \1 eats the matched string, thus making a zero−length assertion int
analogue of (?>...) . (The difference between these two constructs is that the second
uses a catching group, thus shifting ordinals of backreferences in the rest of a re
expression.)

This construct is useful for optimizations of "eternal" matches, because it will not back
(see "Backtracking").

 m{ \(
 (
 [^()]+

 |
 \([^()]* \)
)+
 \)
 }x

That will efficiently match a nonempty group with matching two−or−less−level−de
parentheses. However, if there is no such group, it will take virtually forever on a long s
 That‘s because there are so many different ways to split a long string into several subs
This is what (.+)+ is doing, and (.+)+ is similar to a subpattern of the above patter
Consider that the above pattern detects no−match on ((()aaaaaaaaaaaaaaaaaa in
several seconds, but that each extra letter doubles this time. This exponential perfor
will make it appear that your program has hung.

However, a tiny modification of this pattern

 m{ \(
 (
 (?> [^()]+)

 |
 \([^()]* \)
)+
 \)
 }x
192 Version 5.005_02 18−Oct−1998

perlre Perl Programmers Reference Guide perlre

self
imilar
ing

y

 is
aluate

s that
ome of

d

n mark
uestion"

he
 to fail,

.

ood
which uses (?>...) matches exactly when the one above does (verifying this your
would be a productive exercise), but finishes in a fourth the time when used on a s
string with 1000000 as. Be aware, however, that this pattern currently triggers a warn
message under −w saying it "matches the null string many times"):

On simple groups, such as the pattern (? [^()]+), a comparable effect may be achieved b
negative lookahead, as in [^()]+ (?! [^()]) . This was only 4 times slower on a
string with 1000000 as.

(?(condition)yes−pattern|no−pattern)
(?(condition)yes−pattern)

Conditional expression. (condition) should be either an integer in parentheses (which
valid if the corresponding pair of parentheses matched), or lookahead/lookbehind/ev
zero−width assertion.

Say,

 m{ (\()?
 [^()]+
 (?(1) \))
 }x

matches a chunk of non−parentheses, possibly included in parentheses themselves.

(?imsx−imsx)
One or more embedded pattern−match modifiers. This is particularly useful for pattern
are specified in a table somewhere, some of which want to be case sensitive, and s
which don‘t. The case insensitive ones need to include merely (?i) at the front of the
pattern. For example:

 $pattern = "foobar";
 if (/$pattern/i) { }

 # more flexible:

 $pattern = "(?i)foobar";
 if (/$pattern/) { }

Letters after − switch modifiers off.

These modifiers are localized inside an enclosing group (if any). Say,

 ((?i) blah) \s+ \1

(assuming x modifier, and no i modifier outside of this group) will match a repeate
(including the case!) word blah in any case.

A question mark was chosen for this and for the new minimal−matching construct because 1) questio
is pretty rare in older regular expressions, and 2) whenever you see one, you should stop and "q
exactly what is going on. That‘s psychology...

Backtracking
A fundamental feature of regular expression matching involves the notion called backtracking, which is
currently used (when needed) by all regular expression quantifiers, namely * , *? , +, +?, {n,m} , and
{n,m}? .

For a regular expression to match, the entire regular expression must match, not just part of it. So if t
beginning of a pattern containing a quantifier succeeds in a way that causes later parts in the pattern
the matching engine backs up and recalculates the beginning part—that‘s why it‘s called backtracking

Here is an example of backtracking: Let‘s say you want to find the word following "foo" in the string "F
is on the foo table.":
18−Oct−1998 Version 5.005_02 193

perlre Perl Programmers Reference Guide perlre

that
r
e next
utput of

" and

t "bar"

want to
 $_ = "Food is on the foo table.";
 if (/\b(foo)\s+(\w+)/i) {

print "$2 follows $1.\n";
 }

When the match runs, the first part of the regular expression (\b(foo)) finds a possible match right at the
beginning of the string, and loads up $1 with "Foo". However, as soon as the matching engine sees
there‘s no whitespace following the "Foo" that it had saved in $1, it realizes its mistake and starts ove
again one character after where it had the tentative match. This time it goes all the way until th
occurrence of "foo". The complete regular expression matches this time, and you get the expected o
"table follows foo."

Sometimes minimal matching can help a lot. Imagine you‘d like to match everything between "foo
"bar". Initially, you write something like this:

 $_ = "The food is under the bar in the barn.";
 if (/foo(.*)bar/) {

print "got <$1>\n";
 }

Which perhaps unexpectedly yields:

 got <d is under the bar in the >

That‘s because .* was greedy, so you get everything between the first "foo" and the last "bar". In this case,
it‘s more effective to use minimal matching to make sure you get the text between a "foo" and the firs
thereafter.

 if (/foo(.*?)bar/) { print "got <$1>\n" }
 got <d is under the >

Here‘s another example: let‘s say you‘d like to match a number at the end of a string, and you also
keep the preceding part the match. So you write this:

 $_ = "I have 2 numbers: 53147";
 if (/(.*)(\d*)/) { # Wrong!

print "Beginning is <$1>, number is <$2>.\n";
 }

That won‘t work at all, because .* was greedy and gobbled up the whole string. As \d* can match on an
empty string the complete regular expression matched successfully.

 Beginning is <I have 2 numbers: 53147>, number is <>.

Here are some variants, most of which don‘t work:

 $_ = "I have 2 numbers: 53147";
 @pats = qw{

(.*)(\d*)
(.*)(\d+)
(.*?)(\d*)
(.*?)(\d+)
(.*)(\d+)$
(.*?)(\d+)$
(.*)\b(\d+)$
(.*\D)(\d+)$

 };

 for $pat (@pats) {
printf "%−12s ", $pat;
if (/$pat/) {
194 Version 5.005_02 18−Oct−1998

perlre Perl Programmers Reference Guide perlre

 set of
efinition
eed to

 find a

string.

 1. The
,

er
 match

s
fact
 print "<$1> <$2>\n";
} else {
 print "FAIL\n";
}

 }

That will print out:

 (.*)(\d*) <I have 2 numbers: 53147> <>
 (.*)(\d+) <I have 2 numbers: 5314> <7>
 (.*?)(\d*) <> <>
 (.*?)(\d+) <I have > <2>
 (.*)(\d+)$ <I have 2 numbers: 5314> <7>
 (.*?)(\d+)$ <I have 2 numbers: > <53147>
 (.*)\b(\d+)$ <I have 2 numbers: > <53147>
 (.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It‘s important to realize that a regular expression is merely a
assertions that gives a definition of success. There may be 0, 1, or several different ways that the d
might succeed against a particular string. And if there are multiple ways it might succeed, you n
understand backtracking to know which variety of success you will achieve.

When using lookahead assertions and negations, this can all get even tricker. Imagine you‘d like to
sequence of non−digits not followed by "123". You might try to write that as

 $_ = "ABC123";
 if (/^\D*(?!123)/) { # Wrong!

print "Yup, no 123 in $_\n";
 }

But that isn‘t going to match; at least, not the way you‘re hoping. It claims that there is no 123 in the
Here‘s a clearer picture of why it that pattern matches, contrary to popular expectations:

 $x = ’ABC123’ ;
 $y = ’ABC445’ ;

 print "1: got $1\n" if $x =~ /^(ABC)(?!123)/ ;
 print "2: got $1\n" if $y =~ /^(ABC)(?!123)/ ;

 print "3: got $1\n" if $x =~ /^(\D*)(?!123)/ ;
 print "4: got $1\n" if $y =~ /^(\D*)(?!123)/ ;

This prints

 2: got ABC
 3: got AB
 4: got ABC

You might have expected test 3 to fail because it seems to a more general purpose version of test
important difference between them is that test 3 contains a quantifier (\D*) and so can use backtracking
whereas test 1 will not. What‘s happening is that you‘ve asked "Is it true that at the start of $x, following 0
or more non−digits, you have something that‘s not 123?" If the pattern matcher had let \D* expand to
"ABC", this would have caused the whole pattern to fail. The search engine will initially match \D* with
"ABC". Then it will try to match (?!123 with "123", which of course fails. But because a quantifi
(\D*) has been used in the regular expression, the search engine can backtrack and retry the
differently in the hope of matching the complete regular expression.

The pattern really, really wants to succeed, so it uses the standard pattern back−off−and−retry and let\D*
expand to just "AB" this time. Now there‘s indeed something following "AB" that is not "123". It‘s in
"C123", which suffices.
18−Oct−1998 Version 5.005_02 195

perlre Perl Programmers Reference Guide perlre

at the
match.

gether,
e
ssions

is not a

 to the
 a very

or

 (see
make
idered
e

 rules

r
rally by
s of

ithin a
z",
ape it

newline,

d the
n, it‘s
art and
We can deal with this by using both an assertion and a negation. We‘ll say that the first part in $1 must be
followed by a digit, and in fact, it must also be followed by something that‘s not "123". Remember th
lookaheads are zero−width expressions—they only look, but don‘t consume any of the string in their
So rewriting this way produces what you‘d expect; that is, case 5 will fail, but case 6 succeeds:

 print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/ ;
 print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/ ;

 6: got ABC

In other words, the two zero−width assertions next to each other work as though they‘re ANDed to
just as you‘d use any builtin assertions: /^$/ matches only if you‘re at the beginning of the line AND th
end of the line simultaneously. The deeper underlying truth is that juxtaposition in regular expre
always means AND, except when you write an explicit OR using the vertical bar. /ab/ means match "a"
AND (then) match "b", although the attempted matches are made at different positions because "a"
zero−width assertion, but a one−width assertion.

One warning: particularly complicated regular expressions can take exponential time to solve due
immense number of possible ways they can use backtracking to try match. For example this will take
long time to run

 /((a{0,5}){0,5}){0,5}/

And if you used * ‘s instead of limiting it to 0 through 5 matches, then it would take literally forever—
until you ran out of stack space.

A powerful tool for optimizing such beasts is "independent" groups, which do not backtrace
(?>pattern)). Note also that zero−length lookahead/lookbehind assertions will not backtrace to
the tail match, since they are in "logical" context: only the fact whether they match or not is cons
relevant. For an example where side−effects of a lookahead might have influenced the following match, se
(?>pattern) .

Version 8 Regular Expressions
In case you‘re not familiar with the "regular" Version 8 regex routines, here are the pattern−matching
not described above.

Any single character matches itself, unless it is a metacharacter with a special meaning described here o
above. You can cause characters that normally function as metacharacters to be interpreted lite
prefixing them with a "\" (e.g., "\." matches a ".", not any character; "\\" matches a "\"). A serie
characters matches that series of characters in the target string, so the pattern blurfl would match "blurfl"
in the target string.

You can specify a character class, by enclosing a list of characters in [] , which will match any one character
from the list. If the first character after the "[" is "^", the class matches any character not in the list. W
list, the "−" character is used to specify a range, so that a−z represents all characters between "a" and "
inclusive. If you want "−" itself to be a member of a class, put it at the start or end of the list, or esc
with a backslash. (The following all specify the same class of three characters: [−az] , [az−] , and
[a\−z] . All are different from [a−z] , which specifies a class containing twenty−six characters.)

Characters may be specified using a metacharacter syntax much like that used in C: "\n" matches a
"\t" a tab, "\r" a carriage return, "\f" a form feed, etc. More generally, \nnn, where nnn is a string of octal
digits, matches the character whose ASCII value is nnn. Similarly, \xnn, where nn are hexadecimal digits,
matches the character whose ASCII value is nn. The expression \cx matches the ASCII character control−x.
Finally, the "." metacharacter matches any character except "\n" (unless you use /s).

You can specify a series of alternatives for a pattern using "|" to separate them, so that fee|fie|foe will
match any of "fee", "fie", or "foe" in the target string (as would f(e|i|o)e). The first alternative includes
everything from the last pattern delimiter ("(", "[", or the beginning of the pattern) up to the first "|", an
last alternative contains everything from the last "|" to the next pattern delimiter. For this reaso
common practice to include alternatives in parentheses, to minimize confusion about where they st
196 Version 5.005_02 18−Oct−1998

perlre Perl Programmers Reference Guide perlre

tches,
 mathing
d it

ou are

es, and

hatever
erefore,
ually

n

rtainly

r tools,

s, with

ch,
is

 using
end.

Alternatives are tried from left to right, so the first alternative found for which the entire expression ma
is the one that is chosen. This means that alternatives are not necessarily greedy. For example: when
foo|foot against "barefoot", only the "foo" part will match, as that is the first alternative tried, an
successfully matches the target string. (This might not seem important, but it is important when y
capturing matched text using parentheses.)

Also remember that "|" is interpreted as a literal within square brackets, so if you write [fee|fie|foe]
you‘re really only matching [feio|] .

Within a pattern, you may designate subpatterns for later reference by enclosing them in parenthes
you may refer back to the nth subpattern later in the pattern using the metacharacter \n. Subpatterns are
numbered based on the left to right order of their opening parenthesis. A backreference matches w
actually matched the subpattern in the string being examined, not the rules for that subpattern. Th
(0|0x)\d*\s\1\d* will match "0x1234 0x4321", but not "0x1234 01234", because subpattern 1 act
matched "0x", even though the rule 0|0x could potentially match the leading 0 in the second number.

WARNING on \1 vs $1
Some people get too used to writing things like:

 $pattern =~ s/(\W)/\\\1/g;

This is grandfathered for the RHS of a substitute to avoid shocking the sed addicts, but it‘s a dirty habit to
get into. That‘s because in PerlThink, the righthand side of a s/// is a double−quoted string. \1 in the
usual double−quoted string means a control−A. The customary Unix meaning of \1 is kludged in for s/// .
 However, if you get into the habit of doing that, you get yourself into trouble if you then add a/e
modifier.

 s/(\d+)/ \1 + 1 /eg; # causes warning under −w

Or if you try to do

 s/(\d+)/\1000/;

You can‘t disambiguate that by saying \{1}000 , whereas you can fix it with ${1}000. Basically, the
operation of interpolation should not be confused with the operation of matching a backreference. Ce
they mean two different things on the left side of the s/// .

Repeated patterns matching zero−length substring
WARNING: Difficult material (and prose) ahead. This section needs a rewrite.

Regular expressions provide a terse and powerful programming language. As with most other powe
power comes together with the ability to wreak havoc.

A common abuse of this power stems from the ability to make infinite loops using regular expression
something as innocous as:

 ’foo’ =~ m{ (o?)* }x;

The o? can match at the beginning of ‘foo’ , and since the position in the string is not moved by the mat
o? would match again and again due to the * modifier. Another common way to create a similar cycle
with the looping modifier //g :

 @matches = (’foo’ =~ m{ o? }xg);

or

 print "match: <$&>\n" while ’foo’ =~ m{ o? }xg;

or the loop implied by split() .

However, long experience has shown that many programming tasks may be significantly simplified by
repeated subexpressions which may match zero−length substrings, with a simple example being:
18−Oct−1998 Version 5.005_02 197

perlre Perl Programmers Reference Guide perlre

ngth

h was
ave a

n the

 by

n

 @chars = split //, $string; # // is not magic in split
 ($whitewashed = $string) =~ s/()/ /g; # parens avoid magic s// /

Thus Perl allows the /()/ construct, which forcefully breaks the infinite loop. The rules for this are
different for lower−level loops given by the greedy modifiers *+{} , and for higher−level ones like the /g
modifier or split() operator.

The lower−level loops are interrupted when it is detected that a repeated expression did match a zero−le
substring, thus

 m{ (?: NON_ZERO_LENGTH | ZERO_LENGTH)* }x;

is made equivalent to

 m{ (?: NON_ZERO_LENGTH)*
 |
 (?: ZERO_LENGTH)?
 }x;

The higher level−loops preserve an additional state between iterations: whether the last matc
zero−length. To break the loop, the following match after a zero−length match is prohibited to h
length of zero. This prohibition interacts with backtracking (see "Backtracking"), and so the second best
match is chosen if the best match is of zero length.

Say,

 $_ = ’bar’;
 s/\w??/<$&>/g;

results in "< <b<<a<<r<". At each position of the string the best match given by non−greedy ?? is the
zero−length match, and the second best match is what is matched by \w . Thus zero−length matches
alternate with one−character−long matches.

Similarly, for repeated m/()/g the second−best match is the match at the position one notch further i
string.

The additional state of being matched with zero−length is associated to the matched string, and is reset
each assignment to pos() .

Creating custom RE engines
Overloaded constants (see overload) provide a simple way to extend the functionality of the RE engine.

Suppose that we want to enable a new RE escape−sequence \Y| which matches at boundary betwee
white−space characters and non−whitespace characters. Note that (?=\S)(?<!\S)|(?!\S)(?<=\S)
matches exactly at these positions, so we want to have each \Y| in the place of the more complicated
version. We can create a module customre to do this:

 package customre;
 use overload;

 sub import {
 shift;
 die "No argument to customre::import allowed" if @_;
 overload::constant ’qr’ => \&convert;
 }

 sub invalid { die "/$_[0]/: invalid escape ’\\$_[1]’"}

 my %rules = (’\\’ => ’\\’,
 ’Y|’ => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/);

 sub convert {
 my $re = shift;
 $re =~ s{
198 Version 5.005_02 18−Oct−1998

perlre Perl Programmers Reference Guide perlre

t any

rted
 \\ (\\ | Y .)
 }
 { $rules{$1} or invalid($re,$1) }sgex;
 return $re;
 }

Now use customre enables the new escape in constant regular expressions, i.e., those withou
runtime variable interpolations. As documented in overload, this conversion will work only over literal parts
of regular expressions. For \Y|$re\Y| the variable part of this regular expression needs to be conve
explicitly (but only if the special meaning of \Y| should be enabled inside $re):

 use customre;
 $re = <>;
 chomp $re;
 $re = customre::convert $re;
 /\Y|$re\Y|/;

SEE ALSO
Regexp Quote−Like Operators in perlop.

Gory details of parsing quoted constructs in perlop.

pos.

perllocale.

Mastering Regular Expressions (see perlbook) by Jeffrey Friedl.
18−Oct−1998 Version 5.005_02 199

perlrun Perl Programmers Reference Guide perlrun

tems

 pass

 a
 there
indicate

ne that
n get

f

acters,
 without
re or

tly, but
of your

− " are

he Perl
n tell a
preter
NAME
perlrun − how to execute the Perl interpreter

SYNOPSIS
perl [−sTuU]

[−hv] [−V[:configvar]]
[−cw] [−d[:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal]]
[−Idir] [−m[−]module] [−M [−]‘module...’]
[−P]
[−S]
[−x[dir]]
[−i[extension]]
[−e ‘command’] [—] [programfile] [argument]...

DESCRIPTION
Upon startup, Perl looks for your script in one of the following places:

1. Specified line by line via −e switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that sys
supporting the #! notation invoke interpreters this way. See Location of Perl.)

3. Passed in implicitly via standard input. This works only if there are no filename arguments—to
arguments to a STDIN script you must explicitly specify a "−" for the script name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you‘ve specified−x
switch, in which case it scans for the first line starting with #! and containing the word "perl", and starts
instead. This is useful for running a script embedded in a larger message. (In this case you would
the end of the script using the __END__ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you‘re on a machi
allows only one argument with the #! line, or worse, doesn‘t even recognize the #! line, you still ca
consistent switch behavior regardless of how Perl was invoked, even if −x was used to find the beginning o
the script.

Because many operating systems silently chop off kernel interpretation of the #! line after 32 char
some switches may be passed in on the command line, and some may not; you could even get a "−"
its letter, if you‘re not careful. You probably want to make sure that all your switches fall either befo
after that 32 character boundary. Most switches don‘t actually care if they‘re processed redundan
getting a − instead of a complete switch could cause Perl to try to execute standard input instead
script. And a partial −I switch could also cause odd results.

Some switches do care if they are processed twice, for instance combinations of −l and −0. Either put all the
switches after the 32 character boundary (if applicable), or replace the use of −0digits by BEGIN{ $/ =
"\0digits"; } .

Parsing of the #! switches starts wherever "perl" is mentioned in the line. The sequences "−*" and "
specifically ignored so that you could, if you were so inclined, say

 #!/bin/sh −− # −*− perl −*− −p
 eval ’exec /usr/bin/perl −wS $0 ${1+"$@"}’
 if $running_under_some_shell;

to let Perl see the −p switch.

If the #! line does not contain the word "perl", the program named after the #! is executed instead of t
interpreter. This is slightly bizarre, but it helps people on machines that don‘t do #!, because they ca
program that their SHELL is /usr/bin/perl, and Perl will then dispatch the program to the correct inter
for them.
200 Version 5.005_02 18−Oct−1998

perlrun Perl Programmers Reference Guide perlrun

lation
t run

 to
the
self.

 and a

 will

 You‘ll

neither

 but

 much
After locating your script, Perl compiles the entire script to an internal form. If there are any compi
errors, execution of the script is not attempted. (This is unlike the typical shell script, which migh
part−way through before finding a syntax error.)

If the script is syntactically correct, it is executed. If the script runs off the end without hitting an exit()
or die() operator, an implicit exit(0) is provided to indicate successful completion.

#! and quoting on non−Unix systems
Unix‘s #! technique can be simulated on other systems:

OS/2
Put

 extproc perl −S −your_switches

as the first line in *.cmd file (−S due to a bug in cmd.exe‘s ‘extproc’ handling).

MS−DOS
Create a batch file to run your script, and codify it in ALTERNATIVE_SHEBANG (see the dosish.h file
in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the Activeware port of Perl, will modify the Registry
associate the .pl extension with the perl interpreter. If you install another port of Perl, including
one in the Win32 directory of the Perl distribution, then you‘ll have to modify the Registry your
Note that this means you can no longer tell the difference between an executable Perl program
Perl library file.

Macintosh
Macintosh perl scripts will have the appropriate Creator and Type, so that double−clicking them
invoke the perl application.

Command−interpreters on non−Unix systems have rather different ideas on quoting than Unix shells.
need to learn the special characters in your command−interpreter (* , \ and " are common) and how to
protect whitespace and these characters to run one−liners (see −e below).

On some systems, you may have to change single−quotes to double ones, which you must NOT do on Unix
or Plan9 systems. You might also have to change a single % to a %%.

For example:

 # Unix
 perl −e ’print "Hello world\n"’

 # MS−DOS, etc.
 perl −e "print \"Hello world\n\""

 # Macintosh
 print "Hello world\n"
 (then Run "Myscript" or Shift−Command−R)

 # VMS
 perl −e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command and it is entirely possible
works. If 4DOS was the command shell, this would probably work better:

 perl −e "print <Ctrl−x>"Hello world\n<Ctrl−x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody was looking,
just try to find documentation for its quoting rules.

Under the Macintosh, it depends which environment you are using. The MacPerl shell, or MPW, is
18−Oct−1998 Version 5.005_02 201

perlrun Perl Programmers Reference Guide perlrun

tosh‘s

ood for
em
ch as

ce.

d

ter
ersion

e Perl

t
 the

 E.g.,

ad of
like Unix shells in its support for several quoting variants, except that it makes free use of the Macin
non−ASCII characters as control characters.

There is no general solution to all of this. It‘s just a mess.

Location of Perl
It may seem obvious to say, but Perl is useful only when users can easily find it. When possible, it‘s g
both /usr/bin/perl and /usr/local/bin/perl to be symlinks to the actual binary. If that can‘t be done, syst
administrators are strongly encouraged to put (symlinks to) perl and its accompanying utilities, su
perldoc, into a directory typically found along a user‘s PATH, or in another obvious and convenient pla

In this documentation, #!/usr/bin/perl on the first line of the script will stand in for whatever metho
works on your system.

Switches
A single−character switch may be combined with the following switch, if any.

 #!/usr/bin/perl −spi.bak # same as −s −p −i.bak

Switches include:

−0[digits]
specifies the input record separator ($/) as an octal number. If there are no digits, the null charac
is the separator. Other switches may precede or follow the digits. For example, if you have a v
of find which can print filenames terminated by the null character, you can say this:

 find . −name ’*.bak’ −print0 | perl −n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode. The value 0777 will caus
to slurp files whole because there is no legal character with that value.

−a turns on autosplit mode when used with a −n or −p. An implicit split command to the @F array is
done as the first thing inside the implicit while loop produced by the −n or −p.

 perl −ane ’print pop(@F), "\n";’

is equivalent to

 while (<>) {
@F = split(’ ’);
print pop(@F), "\n";

 }

An alternate delimiter may be specified using −F.

−c causes Perl to check the syntax of the script and then exit without executing it. Actually, iwill
execute BEGIN, END, and use blocks, because these are considered as occurring outside
execution of your program.

−d runs the script under the Perl debugger. See perldebug.

−d: foo
runs the script under the control of a debugging or tracing module installed as Devel::foo.
−d:DProf executes the script using the Devel::DProf profiler. See perldebug.

−Dletters
−Dnumber

sets debugging flags. To watch how it executes your script, use −Dtls. (This works only if
debugging is compiled into your Perl.) Another nice value is −Dx, which lists your compiled syntax
tree. And −Dr displays compiled regular expressions. As an alternative, specify a number inste
list of letters (e.g., −D14 is equivalent to −Dtls):

 1 p Tokenizing and parsing
202 Version 5.005_02 18−Oct−1998

perlrun Perl Programmers Reference Guide perlrun

is
r

use

ing
efault
ile to

ix.

ctory
 2 s Stack snapshots
 4 l Context (loop) stack processing
 8 t Trace execution
 16 o Method and overloading resolution
 32 c String/numeric conversions
 64 P Print preprocessor command for −P
 128 m Memory allocation
 256 f Format processing
 512 r Regular expression parsing and execution
 1024 x Syntax tree dump
 2048 u Tainting checks
 4096 L Memory leaks (needs C<−DLEAKTEST> when compiling Perl)
 8192 H Hash dump −− usurps values()
 16384 X Scratchpad allocation
 32768 D Cleaning up
 65536 S Thread synchronization

All these flags require −DDEBUGGING when you compile the Perl executable. This flag
automatically set if you include −g option when Configure asks you about optimizer/debugge
flags.

−e commandline
may be used to enter one line of script. If −e is given, Perl will not look for a script filename in the
argument list. Multiple −e commands may be given to build up a multi−line script. Make sure to
semicolons where you would in a normal program.

−Fpattern
specifies the pattern to split on if −a is also in effect. The pattern may be surrounded by // , "" , or
‘’ , otherwise it will be put in single quotes.

−h prints a summary of the options.

−i[extension]
specifies that files processed by the <> construct are to be edited in−place. It does this by renam
the input file, opening the output file by the original name, and selecting that output file as the d
for print() statements. The extension, if supplied, is used to modify the name of the old f
make a backup copy, following these rules:

If no extension is supplied, no backup is made and the current file is overwritten.

If the extension doesn‘t contain a * then it is appended to the end of the current filename as a suff

If the extension does contain one or more * characters, then each * is replaced with the current
filename. In perl terms you could think of this as:

 ($backup = $extension) =~ s/*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in addition to) a suffix:

 $ perl −pi’bak_*’ −e ’s/bar/baz/’ fileA # backup to ’bak_fileA’

Or even to place backup copies of the original files into another directory (provided the dire
already exists):

 $ perl −pi’old/*.bak’ −e ’s/bar/baz/’ fileA # backup to ’old/fileA.bak’

These sets of one−liners are equivalent:

 $ perl −pi −e ’s/bar/baz/’ fileA # overwrite current file
 $ perl −pi’*’ −e ’s/bar/baz/’ fileA # overwrite current file
18−Oct−1998 Version 5.005_02 203

perlrun Perl Programmers Reference Guide perlrun

UT is

So this

pend

it will

bug in Perl?.
 $ perl −pi’.bak’ −e ’s/bar/baz/’ fileA # backup to ’fileA.bak’
 $ perl −pi’*.bak’ −e ’s/bar/baz/’ fileA # backup to ’fileA.bak’

From the shell, saying

 $ perl −p −i.bak −e "s/foo/bar/; ... "

is the same as using the script:

 #!/usr/bin/perl −pi.bak
 s/foo/bar/;

which is equivalent to

 #!/usr/bin/perl
 $extension = ’.bak’;
 while (<>) {

if ($ARGV ne $oldargv) {
 if ($extension !~ /*/) {

$backup = $ARGV . $extension;
 }
 else {

($backup = $extension) =~ s/*/$ARGV/g;
 }
 rename($ARGV, $backup);
 open(ARGVOUT, ">$ARGV");
 select(ARGVOUT);
 $oldargv = $ARGV;
}
s/foo/bar/;

 }
 continue {

print; # this prints to original filename
 }
 select(STDOUT);

except that the −i form doesn‘t need to compare $ARGV to $oldargv to know when the filename
has changed. It does, however, use ARGVOUT for the selected filehandle. Note that STDO
restored as the default output filehandle after the loop.

As shown above, Perl creates the backup file whether or not any output is actually changed.
is just a fancy way to copy files:

 $ perl −p −i’/some/file/path/*’ −e 1 file1 file2 file3...
 or
 $ perl −p −i’.bak’ −e 1 file1 file2 file3...

You can use eof without parentheses to locate the end of each input file, in case you want to ap
to each file, or reset line numbering (see example in eof).

If, for a given file, Perl is unable to create the backup file as specified in the extension then
skip that file and continue on with the next one (if it exists).

For a discussion of issues surrounding file permissions and −i , see
Why does Perl let me delete read−only files? Why does −i clobber protected files? Isn‘t this a

You cannot use −i to create directories or to strip extensions from files.

Perl does not expand ~, so don‘t do that.
204 Version 5.005_02 18−Oct−1998

perlrun Perl Programmers Reference Guide perlrun

and
) and

"

ded

ord

xtra

name

n
t file.

ery

s in
Finally, note that the −i switch does not impede execution when no files are given on the comm
line. In this case, no backup is made (the original file cannot, of course, be determined
processing proceeds from STDIN to STDOUT as might be expected.

−Idirectory
Directories specified by −I are prepended to the search path for modules (@INC), and also tells the C
preprocessor where to search for include files. The C preprocessor is invoked with −P; by default it
searches /usr/include and /usr/lib/perl.

−l[octnum]
enables automatic line−ending processing. It has two effects: first, it automatically chomps $/"
(the input record separator) when used with −n or −p, and second, it assigns "$\" (the output record
separator) to have the value of octnum so that any print statements will have that separator ad
back on. If octnum is omitted, sets "$\" to the current value of "$/". For instance, to trim lines to
80 columns:

 perl −lpe ’substr($_, 80) = ""’

Note that the assignment $\ = $/ is done when the switch is processed, so the input rec
separator can be different than the output record separator if the −l switch is followed by a −0 switch:

 gnufind / −print0 | perl −ln0e ’print "found $_" if −p’

This sets $\ to newline and then sets $/ to the null character.

−m[−]module
−M[−]module
−M[−]‘module ...’
−[mM] [−]module=arg[,arg]...

−mmodule executes use module (); before executing your script.

−Mmodule executes use module ; before executing your script. You can use quotes to add e
code after the module name, e.g., −M‘module qw(foo bar)’ .

If the first character after the −M or −m is a dash (−) then the ‘use’ is replaced with ‘no’.

A little builtin syntactic sugar means you can also say −mmodule=foo,bar or
−Mmodule=foo,bar as a shortcut for −M‘module qw(foo bar)’ . This avoids the need to
use quotes when importing symbols. The actual code generated by −Mmodule=foo,bar is use
module split(/,/,q{foo,bar}) . Note that the = form removes the distinction between −m
and −M.

−n causes Perl to assume the following loop around your script, which makes it iterate over file
arguments somewhat like sed −n or awk:

 while (<>) {
... # your script goes here

 }

Note that the lines are not printed by default. See −p to have lines printed. If a file named by a
argument cannot be opened for some reason, Perl warns you about it, and moves on to the nex

Here is an efficient way to delete all files older than a week:

 find . −mtime +7 −print | perl −nle ’unlink;’

This is faster than using the −exec switch of find because you don‘t have to start a process on ev
filename found.

BEGIN and END blocks may be used to capture control before or after the implicit loop, just a
awk.
18−Oct−1998 Version 5.005_02 205

perlrun Perl Programmers Reference Guide perlrun

name

 moves
ng is

s in

se both
ts with

me but

nly if

e script
to the

s are
f those
Perl

e), and
with

d for
ill be

orks

ute the
nd thus
e

es and

h, some
litely
l work
−p causes Perl to assume the following loop around your script, which makes it iterate over file
arguments somewhat like sed:

 while (<>) {
... # your script goes here

 } continue {
print or die "−p destination: $!\n";

 }

If a file named by an argument cannot be opened for some reason, Perl warns you about it, and
on to the next file. Note that the lines are printed automatically. An error occuring during printi
treated as fatal. To suppress printing use the −n switch. A −p overrides a −n switch.

BEGIN and END blocks may be used to capture control before or after the implicit loop, just a
awk.

−P causes your script to be run through the C preprocessor before compilation by Perl. (Becau
comments and cpp directives begin with the # character, you should avoid starting commen
any words recognized by the C preprocessor such as "if", "else", or "define".)

−s enables some rudimentary switch parsing for switches on the command line after the script na
before any filename arguments (or before a —). Any switch found there is removed from @ARGV
and sets the corresponding variable in the Perl script. The following script prints "true" if and o
the script is invoked with a −xyz switch.

 #!/usr/bin/perl −s
 if ($xyz) { print "true\n"; }

−S makes Perl use the PATH environment variable to search for the script (unless the name of th
contains directory separators). On some platforms, this also makes Perl append suffixes
filename while searching for it. For example, on Win32 platforms, the ".bat" and ".cmd" suffixe
appended if a lookup for the original name fails, and if the name does not already end in one o
suffixes. If your Perl was compiled with DEBUGGING turned on, using the −Dp switch to
shows how the search progresses.

If the filename supplied contains directory separators (i.e. it is an absolute or relative pathnam
if the file is not found, platforms that append file extensions will do so and try to look for the file
those extensions added, one by one.

On DOS−like platforms, if the script does not contain directory separators, it will first be searche
in the current directory before being searched for on the PATH. On Unix platforms, the script w
searched for strictly on the PATH.

Typically this is used to emulate #! startup on platforms that don‘t support #!. This example w
on many platforms that have a shell compatible with Bourne shell:

 #!/usr/bin/perl
 eval ’exec /usr/bin/perl −wS $0 ${1+"$@"}’

 if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which proceeds to try to exec
Perl script as a shell script. The shell executes the second line as a normal shell command, a
starts up the Perl interpreter. On some systems $0 doesn‘t always contain the full pathname, so th
−S tells Perl to search for the script if necessary. After Perl locates the script, it parses the lin
ignores them because the variable $running_under_some_shell is never true. If the script
will be interpreted by csh, you will need to replace ${1+"$@"} with $*, even though that doesn‘t
understand embedded spaces (and such) in the argument list. To start up sh rather than cs
systems may have to replace the #! line with a line containing just a colon, which will be po
ignored by Perl. Other systems can‘t control that, and need a totally devious construct that wil
under any of csh, sh, or Perl, such as the following:
206 Version 5.005_02 18−Oct−1998

perlrun Perl Programmers Reference Guide perlrun

e only
n on
n
e or in

p and
at
 "hello
ion of

 by the

ng of
turned
o

re used
dles or
alues

f your

he first
ll be
cript.
 with
iling

ing
 is

or the
eval ’(exit $?0)’ && eval ’exec /usr/bin/perl −wS $0 ${1+"$@"}’
& eval ’exec /usr/bin/perl −wS $0 $argv:q’

if $running_under_some_shell;

−T forces "taint" checks to be turned on so you can test them. Ordinarily these checks are don
when running setuid or setgid. It‘s a good idea to turn them on explicitly for programs ru
another‘s behalf, such as CGI programs. See perlsec. Note that (for security reasons) this optio
must be seen by Perl quite early; usually this means it must appear early on the command lin
the #! line (for systems which support that).

−u causes Perl to dump core after compiling your script. You can then in theory take this core dum
turn it into an executable file by using the undump program (not supplied). This speeds startup
the expense of some disk space (which you can minimize by stripping the executable). (Still, a
world" executable comes out to about 200K on my machine.) If you want to execute a port
your script before dumping, use the dump() operator instead. Note: availability of undump is
platform specific and may not be available for a specific port of Perl. It has been superseded
new perl−to−C compiler, which is more portable, even though it‘s still only considered beta.

−U allows Perl to do unsafe operations. Currently the only "unsafe" operations are the unlinki
directories while running as superuser, and running setuid programs with fatal taint checks
into warnings. Note that the −w switch (or the $^W variable) must be used along with this option t
actually generate the taint−check warnings.

−v prints the version and patchlevel of your Perl executable.

−V prints summary of the major perl configuration values and the current value of @INC.

−V:name
Prints to STDOUT the value of the named configuration variable.

−w prints warnings about variable names that are mentioned only once, and scalar variables that a
before being set. Also warns about redefined subroutines, and references to undefined filehan
filehandles opened read−only that you are attempting to write on. Also warns you if you use v
as a number that doesn‘t look like numbers, using an array as though it were a scalar, i
subroutines recurse more than 100 deep, and innumerable other things.

You can disable specific warnings using __WARN__ hooks, as described in perlvar and warn. See
also perldiag and perltrap.

−x directory
tells Perl that the script is embedded in a message. Leading garbage will be discarded until t
line that starts with #! and contains the string "perl". Any meaningful switches on that line wi
applied. If a directory name is specified, Perl will switch to that directory before running the s
The −x switch controls only the disposal of leading garbage. The script must be terminated
__END__ if there is trailing garbage to be ignored (the script can process any or all of the tra
garbage via the DATA filehandle if desired).

ENVIRONMENT

HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the script if −S is used.

PERL5LIB A colon−separated list of directories in which to look for Perl library files before look
in the standard library and the current directory. If PERL5LIB is not defined, PERLLIB
used. When running taint checks (because the script was running setuid or setgid,
−T switch was used), neither variable is used. The script should instead say

 use lib "/my/directory";
18−Oct−1998 Version 5.005_02 207

perlrun Perl Programmers Reference Guide perlrun

re on

ing
not

tick"

ted.
with a

 high
 use a
 may
EC

hat
e

tatistics

natural

pt being
llowing
PERL5OPT Command−line options (switches). Switches in this variable are taken as if they we
every Perl command line. Only the −[DIMUdmw] switches are allowed. When running
taint checks (because the script was running setuid or setgid, or the −T switch was used),
this variable is ignored.

PERLLIB A colon−separated list of directories in which to look for Perl library files before look
in the standard library and the current directory. If PERL5LIB is defined, PERLLIB is
used.

PERL5DB The command used to load the debugger code. The default is:

BEGIN { require ’perl5db.pl’ }

PERL5SHELL (specific to WIN32 port)
May be set to an alternative shell that perl must use internally for executing "back
commands or system() . Default is cmd.exe /x/c on WindowsNT and
command.com /c on Windows95. The value is considered to be space delimi
Precede any character that needs to be protected (like a space or backslash)
backslash.

Note that Perl doesn‘t use COMSPEC for this purpose because COMSPEC has a
degree of variability among users, leading to portability concerns. Besides, perl can
shell that may not be fit for interactive use, and setting COMSPEC to such a shell
interfere with the proper functioning of other programs (which usually look in COMSP
to find a shell fit for interactive use).

PERL_DEBUG_MSTATS
Relevant only if perl is compiled with the malloc included with the perl distribution (t
is, if perl −V:d_mymalloc is ‘define’). If set, this causes memory statistics to b
dumped after execution. If set to an integer greater than one, also causes memory s
to be dumped after compilation.

PERL_DESTRUCT_LEVEL
Relevant only if your perl executable was built with −DDEBUGGING , this controls the
behavior of global destruction of objects and other references.

Perl also has environment variables that control how Perl handles data specific to particular
languages. See perllocale.

Apart from these, Perl uses no other environment variables, except to make them available to the scri
executed, and to child processes. However, scripts running setuid would do well to execute the fo
lines before doing anything else, just to keep people honest:

 $ENV{PATH} = ’/bin:/usr/bin’; # or whatever you need
 $ENV{SHELL} = ’/bin/sh’ if exists $ENV{SHELL};
 delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};
208 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

ies: list
omma.
 can
t merely
t to its

s both,
ne list

r the
tion of
t were
LIST

. (The
sionally
r.
een the

s:

ed in a

ist
erator
 Some
turn the
ount of

list in
ws
truction

fork(2),
e

NAME
perlfunc − Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression. They fall into two major categor
operators and named unary operators. These differ in their precedence relationship with a following c
 (See the precedence table in perlop.) List operators take more than one argument, while unary operators
never take more than one argument. Thus, a comma terminates the argument of a unary operator, bu
separates the arguments of a list operator. A unary operator generally provides a scalar contex
argument, while a list operator may provide either scalar and list contexts for its arguments. If it doe
the scalar arguments will be first, and the list argument will follow. (Note that there can ever be only o
argument.) For instance, splice() has three scalar arguments followed by a list.

In the syntax descriptions that follow, list operators that expect a list (and provide list context fo
elements of the list) are shown with LIST as an argument. Such a list may consist of any combina
scalar arguments or list values; the list values will be included in the list as if each individual elemen
interpolated at that point in the list, forming a longer single−dimensional list value. Elements of the
should be separated by commas.

Any function in the list below may be used either with or without parentheses around its arguments
syntax descriptions omit the parentheses.) If you use the parentheses, the simple (but occa
surprising) rule is this: It LOOKS like a function, therefore it IS a function, and precedence doesn‘t matte
Otherwise it‘s a list operator or unary operator, and precedence does matter. And whitespace betw
function and left parenthesis doesn‘t count—so you need to be careful sometimes:

 print 1+2+4; # Prints 7.
 print(1+2) + 4; # Prints 3.
 print (1+2)+4; # Also prints 3!
 print +(1+2)+4; # Prints 7.
 print ((1+2)+4); # Prints 7.

If you run Perl with the −w switch it can warn you about this. For example, the third line above produce

 print (...) interpreted as function at − line 1.
 Useless use of integer addition in void context at − line 1.

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicat
scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following important rule: There is no rule that relates the behavior of an expression in l
context to its behavior in scalar context, or vice versa. It might do two totally different things. Each op
and function decides which sort of value it would be most appropriate to return in a scalar context.
operators return the length of the list that would have been returned in list context. Some operators re
first value in the list. Some operators return the last value in the list. Some operators return a c
successful operations. In general, they do what you want, unless you want consistency.

An named array in scalar context is quite different from what would at first glance appear to be a
scalar context. You can‘t get a list like (1,2,3) into being in scalar context, because the compiler kno
the context at compile time. It would generate the scalar comma operator there, not the list cons
version of the comma. That means it was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls of the same name (like chown(2),
closedir(2), etc.) all return true when they succeed and undef otherwise, as is usually mentioned in th
descriptions below. This is different from the C interfaces, which return −1 on failure. Exceptions to this
rule are wait() , waitpid() , and syscall() . System calls also set the special $! variable on failure.
Other functions do not, except accidentally.
18−Oct−1998 Version 5.005_02 209

perlfunc Perl Programmers Reference Guide perlfunc

amed
Perl Functions by Category
Here are Perl‘s functions (including things that look like functions, like some keywords and n
operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARs or strings
chomp, chop , chr , crypt , hex , index , lc , lcfirst , length , oct , ord , pack ,
q/STRING/ , qq/STRING/ , reverse , rindex , sprintf , substr , tr/// , uc , ucfirst ,
y///

Regular expressions and pattern matching
m// , pos , quotemeta , s/// , split , study , qr//

Numeric functions
abs , atan2 , cos , exp , hex , int , log , oct , rand , sin , sqrt , srand

Functions for real @ARRAYs
pop , push , shift , splice , unshift

Functions for list data
grep , join , map, qw/STRING/ , reverse , sort , unpack

Functions for real %HASHes
delete , each , exists , keys , values

Input and output functions
binmode , close , closedir , dbmclose , dbmopen, die , eof , fileno , flock , format ,
getc , print , printf , read , readdir , rewinddir , seek , seekdir , select , syscall ,
sysread , sysseek , syswrite , tell , telldir , truncate , warn , write

Functions for fixed length data or records
pack , read , syscall , sysread , syswrite , unpack , vec

Functions for filehandles, files, or directories
−X, chdir , chmod, chown , chroot , fcntl , glob , ioctl , link , lstat , mkdir , open ,
opendir , readlink , rename , rmdir , stat , symlink , umask, unlink , utime

Keywords related to the control flow of your perl program
caller , continue , die , do , dump, eval , exit , goto , last , next , redo , return , sub ,
wantarray

Keywords related to scoping
caller , import , local , my, package , use

Miscellaneous functions
defined , dump, eval , formline , local , my, reset , scalar , undef , wantarray

Functions for processes and process groups
alarm , exec , fork , getpgrp , getppid , getpriority , kill , pipe , qx/STRING/ ,
setpgrp , setpriority , sleep , system , times , wait , waitpid

Keywords related to perl modules
do , import , no , package , require , use

Keywords related to classes and object−orientedness
bless , dbmclose , dbmopen, package , ref , tie , tied , untie , use

Low−level socket functions
accept , bind , connect , getpeername , getsockname , getsockopt , listen , recv ,
send , setsockopt , shutdown , socket , socketpair
210 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

ment,
bout it.

‘t
tor, and

any of:
System V interprocess communication functions
msgctl , msgget , msgrcv , msgsnd , semctl , semget , semop, shmctl , shmget , shmread ,
shmwrite

Fetching user and group info
endgrent , endhostent , endnetent , endpwent , getgrent , getgrgid , getgrnam ,
getlogin , getpwent , getpwnam , getpwuid , setgrent , setpwent

Fetching network info
endprotoent , endservent , gethostbyaddr , gethostbyname , gethostent ,
getnetbyaddr , getnetbyname , getnetent , getprotobyname , getprotobynumber ,
getprotoent , getservbyname , getservbyport , getservent , sethostent ,
setnetent , setprotoent , setservent

Time−related functions
gmtime , localtime , time , times

Functions new in perl5
abs , bless , chomp, chr , exists , formline , glob , import , lc , lcfirst , map, my, no ,
prototype , qx , qw, readline , readpipe , ref , sub* , sysopen , tie , tied , uc , ucfirst ,
untie , use

* − sub was a keyword in perl4, but in perl5 it is an operator, which can be used in expressions.

Functions obsoleted in perl5
dbmclose , dbmopen

Alphabetical Listing of Perl Functions

−X FILEHANDLE
−X EXPR
−X A file test, where X is one of the letters listed below. This unary operator takes one argu

either a filename or a filehandle, and tests the associated file to see if something is true a
If the argument is omitted, tests $_, except for −t , which tests STDIN. Unless otherwise
documented, it returns 1 for TRUE and ‘’ for FALSE, or the undefined value if the file doesn
exist. Despite the funny names, precedence is the same as any other named unary opera
the argument may be parenthesized like any other unary operator. The operator may be
X<−rX<−wX<−xX<−oX<−RX<−WX<−XX<−OX<−eX<−zX<−sX<−fX<−dX<−lX<−p
X<−SX<−bX<−cX<−tX<−uX<−gX<−kX<−TX<−BX<−MX<−AX<−C

 −r File is readable by effective uid/gid.
 −w File is writable by effective uid/gid.
 −x File is executable by effective uid/gid.
 −o File is owned by effective uid.

 −R File is readable by real uid/gid.
 −W File is writable by real uid/gid.
 −X File is executable by real uid/gid.
 −O File is owned by real uid.

 −e File exists.
 −z File has zero size.
 −s File has nonzero size (returns size).

 −f File is a plain file.
 −d File is a directory.
 −l File is a symbolic link.
 −p File is a named pipe (FIFO), or Filehandle is a pipe.
 −S File is a socket.
18−Oct−1998 Version 5.005_02 211

perlfunc Perl Programmers Reference Guide perlfunc

u can‘t
for the

dd
strange

t

l
r stat

r
eal
 −b File is a block special file.
 −c File is a character special file.
 −t Filehandle is opened to a tty.

 −u File has setuid bit set.
 −g File has setgid bit set.
 −k File has sticky bit set.

 −T File is a text file.
 −B File is a binary file (opposite of −T).

 −M Age of file in days when script started.
 −A Same for access time.
 −C Same for inode change time.

The interpretation of the file permission operators −r , −R, −w, −W, −x , and −X is based solely on
the mode of the file and the uids and gids of the user. There may be other reasons yo
actually read, write, or execute the file, such as AFS access control lists. Also note that,
superuser, −r , −R, −w, and −W always return 1, and −x and −X return 1 if any execute bit is set
in the mode. Scripts run by the superuser may thus need to do a stat() to determine the actual
mode of the file, or temporarily set the uid to something else.

Example:

 while (<>) {
chop;
next unless −f $_; # ignore specials
#...

 }

Note that −s/a/b/ does not do a negated substitution. Saying −exp($foo) still works as
expected, however—only single letters following a minus are interpreted as file tests.

The −T and −B switches work as follows. The first block or so of the file is examined for o
characters such as strange control codes or characters with the high bit set. If too many
characters (>30%) are found, it‘s a −B file, otherwise it‘s a −T file. Also, any file containing
null in the first block is considered a binary file. If −T or −B is used on a filehandle, the curren
stdio buffer is examined rather than the first block. Both −T and −B return TRUE on a null file,
or a file at EOF when testing a filehandle. Because you have to read a file to do the −T test, on
most occasions you want to use a −f against the file first, as in next unless −f $file
&& −T $file.

If any of the file tests (or either the stat() or lstat() operators) are given the specia
filehandle consisting of a solitary underline, then the stat structure of the previous file test (o
operator) is used, saving a system call. (This doesn‘t work with −t , and you need to remembe
that lstat() and −l will leave values in the stat structure for the symbolic link, not the r
file.) Example:

 print "Can do.\n" if −r $a || −w _ || −x _;

 stat($filename);
 print "Readable\n" if −r _;
 print "Writable\n" if −w _;
 print "Executable\n" if −x _;
 print "Setuid\n" if −u _;
 print "Setgid\n" if −g _;
 print "Sticky\n" if −k _;
 print "Text\n" if −T _;
 print "Binary\n" if −B _;
212 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

 packed

conds
,
 of how
revious
 new

E if it
 for the

uish
nslated
ix; in

 that
abs VALUE
abs Returns the absolute value of its argument. If VALUE is omitted, uses $_.

accept NEWSOCKET,GENERICSOCKET
Accepts an incoming socket connect, just as the accept(2) system call does. Returns the
address if it succeeded, FALSE otherwise. See example in
Sockets: Client/Server Communication in perlipc.

alarm SECONDS
alarm Arranges to have a SIGALRM delivered to this process after the specified number of se

have elapsed. If SECONDS is not specified, the value stored in $_ is used. (On some machines
unfortunately, the elapsed time may be up to one second less than you specified because
seconds are counted.) Only one timer may be counting at once. Each call disables the p
timer, and an argument of may be supplied to cancel the previous timer without starting a
one. The returned value is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, you may use Perl‘s syscall() interface to
access setitimer(2) if your system supports it, or else see /select() . It is usually a mistake to
intermix alarm() and sleep() calls.

If you want to use alarm() to time out a system call you need to use an eval()/die() pair.
 You can‘t rely on the alarm causing the system call to fail with $! set to EINTR because Perl
sets up signal handlers to restart system calls on some systems. Using eval()/die() always
works, modulo the caveats given in Signals in perlipc.

 eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;

 };
 if ($@) {

die unless $@ eq "alarm\n"; # propagate unexpected errors
 # timed out
 }
 else {
 # didn’t
 }

atan2 Y,X
Returns the arctangent of Y/X in the range −PI to PI.

For the tangent operation, you may use the POSIX::tan() function, or use the familiar
relation:

 sub tan { sin($_[0]) / cos($_[0]) }

bind SOCKET,NAME
Binds a network address to a socket, just as the bind system call does. Returns TRU
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type
socket. See the examples in Sockets: Client/Server Communication in perlipc.

binmode FILEHANDLE
Arranges for the file to be read or written in "binary" mode in operating systems that disting
between binary and text files. Files that are not in binary mode have CR LF sequences tra
to LF on input and LF translated to CR LF on output. Binmode has no effect under Un
MS−DOS and similarly archaic systems, it may be imperative—otherwise your
MS−DOS−damaged C library may mangle your file. The key distinction between systems
18−Oct−1998 Version 5.005_02 213

perlfunc Perl Programmers Reference Guide perlfunc

and

en

ME
e. It

ht be
s)

ckage

. The

tion:
d.

ome

erical

ed.
need binmode() and those that don‘t is their text file formats. Systems like Unix, MacOS,
Plan9 that delimit lines with a single character, and that encode that character in C as "\n" , do
not need binmode() . The rest need it. If FILEHANDLE is an expression, the value is tak
as the name of the filehandle.

bless REF,CLASSNAME
bless REF

This function tells the thingy referenced by REF that it is now an object in the CLASSNA
package—or the current package if no CLASSNAME is specified, which is often the cas
returns the reference for convenience, because a bless() is often the last thing in a
constructor. Always use the two−argument version if the function doing the blessing mig
inherited by a derived class. See perltoot and perlobj for more about the blessing (and blessing
of objects.

caller EXPR
caller Returns the context of the current subroutine call. In scalar context, returns the caller‘s pa

name if there is a caller, that is, if we‘re in a subroutine or eval() or require() , and the
undefined value otherwise. In list context, returns

 ($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace
value of EXPR indicates how many call frames to go back before the current one.

 ($package, $filename, $line, $subroutine,
 $hasargs, $wantarray, $evaltext, $is_require) = caller($i);

Here $subroutine may be "(eval)" if the frame is not a subroutine call, but an eval() .
In such a case additional elements $evaltext and $is_require are set: $is_require is
true if the frame is created by a require or use statement, $evaltext contains the text of
the eval EXPR statement. In particular, for a eval BLOCK statement, $filename is
"(eval)" , but $evaltext is undefined. (Note also that each use statement creates a
require frame inside an eval EXPR) frame.

Furthermore, when called from within the DB package, caller returns more detailed informa
it sets the list variable @DB::args to be the arguments with which the subroutine was invoke

Be aware that the optimizer might have optimized call frames away before caller() had a
chance to get the information. That means that caller(N) might not return information about
the call frame you expect it do, for N > 1 . In particular, @DB::args might have information
from the previous time caller() was called.

chdir EXPR
Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to h
directory. Returns TRUE upon success, FALSE otherwise. See example under die() .

chmod LIST
Changes the permissions of a list of files. The first element of the list must be the num
mode, which should probably be an octal number, and which definitely should not a string of
octal digits: 0644 is okay, ‘0644’ is not. Returns the number of files successfully chang
See also /oct, if all you have is a string.

 $cnt = chmod 0755, ’foo’, ’bar’;
 chmod 0755, @executables;
 $mode = ’0644’; chmod $mode, ’foo’; # !!! sets mode to
 # −−w−−−−r−T
 $mode = ’0644’; chmod oct($mode), ’foo’; # this is better
 $mode = 0644; chmod $mode, ’foo’; # this is best
214 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

he

ed to
cord

ved is

rily to

use

e the
chomp VARIABLE
chomp LIST
chomp This is a slightly safer version of /chop. It removes any line ending that corresponds to t

current value of $/ (also known as $INPUT_RECORD_SEPARATOR in the English module).
 It returns the total number of characters removed from all its arguments. It‘s often us
remove the newline from the end of an input record when you‘re worried that the final re
may be missing its newline. When in paragraph mode ($/ = ""), it removes all trailing
newlines from the string. If VARIABLE is omitted, it chomps $_. Example:

 while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);
...

 }

You can actually chomp anything that‘s an lvalue, including an assignment:

 chomp($cwd = ‘pwd‘);
 chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters remo
returned.

chop VARIABLE
chop LIST
chop Chops off the last character of a string and returns the character chopped. It‘s used prima

remove the newline from the end of an input record, but is much more efficient than s/\n//
because it neither scans nor copies the string. If VARIABLE is omitted, chops $_. Example:

 while (<>) {
chop; # avoid \n on last field
@array = split(/:/);
#...

 }

You can actually chop anything that‘s an lvalue, including an assignment:

 chop($cwd = ‘pwd‘);
 chop($answer = <STDIN>);

If you chop a list, each element is chopped. Only the value of the last chop() is returned.

Note that chop() returns the last character. To return all but the last character,
substr($string, 0, −1) .

chown LIST
Changes the owner (and group) of a list of files. The first two elements of the list must b
NUMERICAL uid and gid, in that order. Returns the number of files successfully changed.

 $cnt = chown $uid, $gid, ’foo’, ’bar’;
 chown $uid, $gid, @filenames;

Here‘s an example that looks up nonnumeric uids in the passwd file:

 print "User: ";
 chop($user = <STDIN>);
 print "Files: ";
 chop($pattern = <STDIN>);

 ($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";
18−Oct−1998 Version 5.005_02 215

perlfunc Perl Programmers Reference Guide perlfunc

re the
ps. On

e new

urity

sfully
ndle if

only

 of the
d into

sually

sually

UE if it
 for the
 @ary = glob($pattern); # expand filenames
 chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you‘
superuser, although you should be able to change the group to any of your secondary grou
insecure systems, these restrictions may be relaxed, but this is not a portable assumption.

chr NUMBER
chr Returns the character represented by that NUMBER in the character set. For example, chr(65)

is "A" in ASCII. For the reverse, use /ord.

If NUMBER is omitted, uses $_.

chroot FILENAME
chroot This function works like the system call by the same name: it makes the named directory th

root directory for all further pathnames that begin with a "/" by your process and all its
children. (It doesn‘t change your current working directory, which is unaffected.) For sec
reasons, this call is restricted to the superuser. If FILENAME is omitted, does a chroot() to
$_.

close FILEHANDLE
close Closes the file or pipe associated with the file handle, returning TRUE only if stdio succes

flushes buffers and closes the system file descriptor. Closes the currently selected fileha
the argument is omitted.

You don‘t have to close FILEHANDLE if you are immediately going to do another open() on
it, because open() will close it for you. (See open() .) However, an explicit close() on an
input file resets the line counter ($.), while the implicit close done by open() does not.

If the file handle came from a piped open close() will additionally return FALSE if one of the
other system calls involved fails or if the program exits with non−zero status. (If the
problem was that the program exited non−zero $! will be set to .) Also, closing a pipe waits
for the process executing on the pipe to complete, in case you want to look at the output
pipe afterwards. Closing a pipe explicitly also puts the exit status value of the comman
$?.

Example:

 open(OUTPUT, ’|sort >foo’) # pipe to sort
 or die "Can’t start sort: $!";
 #... # print stuff to output
 close OUTPUT # wait for sort to finish
 or warn $! ? "Error closing sort pipe: $!"
 : "Exit status $? from sort";
 open(INPUT, ’foo’) # get sort’s results
 or die "Can’t open ’foo’ for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, u
the real filehandle name.

closedir DIRHANDLE
Closes a directory opened by opendir() and returns the success of that system call.

DIRHANDLE may be an expression whose value can be used as an indirect dirhandle, u
the real dirhandle name.

connect SOCKET,NAME
Attempts to connect to a remote socket, just as the connect system call does. Returns TR
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type
socket. See the examples in Sockets: Client/Server Communication in perlipc.
216 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

e

lly

ally
 useful
guys

e an
‘t all

ord:
continue BLOCK
Actually a flow control statement rather than a function. If there is a continue BLOCK
attached to a BLOCK (typically in a while or foreach), it is always executed just before th
conditional is about to be evaluated again, just like the third part of a for loop in C. Thus it can
be used to increment a loop variable, even when the loop has been continued via thenext
statement (which is similar to the C continue statement).

last , next , or redo may appear within a continue block. last and redo will behave as
if they had been executed within the main block. So will next , but since it will execute a
continue block, it may be more entertaining.

 while (EXPR) {
redo always comes here
do_something;

 } continue {
next always comes here
do_something_else;
then back the top to re−check EXPR

 }
 ### last always comes here

Omitting the continue section is semantically equivalent to using an empty one, logica
enough. In that case, next goes directly back to check the condition at the top of the loop.

cos EXPR
Returns the cosine of EXPR (expressed in radians). If EXPR is omitted, takes cosine of $_.

For the inverse cosine operation, you may use the POSIX::acos() function, or use this
relation:

 sub acos { atan2(sqrt(1 − $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT
Encrypts a string exactly like the crypt(3) function in the C library (assuming that you actu
have a version there that has not been extirpated as a potential munition). This can prove
for checking the password file for lousy passwords, amongst other things. Only the
wearing white hats should do this.

Note that crypt() is intended to be a one−way function, much like breaking eggs to mak
omelette. There is no (known) corresponding decrypt function. As a result, this function isn
that useful for cryptography. (For that, see your nearby CPAN mirror.)

Here‘s an example that makes sure that whoever runs this program knows their own passw

 $pwd = (getpwuid($<))[1];
 $salt = substr($pwd, 0, 2);

 system "stty −echo";
 print "Password: ";
 chop($word = <STDIN>);
 print "\n";
 system "stty echo";

 if (crypt($word, $salt) ne $pwd) {
die "Sorry...\n";

 } else {
print "ok\n";

 }
18−Oct−1998 Version 5.005_02 217

perlfunc Perl Programmers Reference Guide perlfunc

s the

 (as
ay
ad

them.
 entry

e

dbm

value

d

s

e key
Of course, typing in your own password to whoever asks you for it is unwise.

dbmclose HASH
[This function has been superseded by the untie() function.]

Breaks the binding between a DBM file and a hash.

dbmopen HASH,DBNAME,MODE
[This function has been superseded by the tie() function.]

This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a hash. HASH i
name of the hash. (Unlike normal open() , the first argument is NOT a filehandle, even though
it looks like one). DBNAME is the name of the database (without the .dir or .pag extension if
any). If the database does not exist, it is created with protection specified by MODE
modified by the umask()). If your system supports only the older DBM functions, you m
perform only one dbmopen() in your program. In older versions of Perl, if your system h
neither DBM nor ndbm, calling dbmopen() produced a fatal error; it now falls back to
sdbm(3).

If you don‘t have write access to the DBM file, you can only read hash variables, not set
If you want to test whether you can write, either use file tests or try setting a dummy hash
inside an eval() , which will trap the error.

Note that functions such as keys() and values() may return huge lists when used on larg
DBM files. You may prefer to use the each() function to iterate over large DBM files.
Example:

 # print out history file offsets
 dbmopen(%HIST,’/usr/lib/news/history’,0666);
 while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";
 }
 dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various
approaches, as well as DB_File for a particularly rich implementation.

defined EXPR
defined Returns a Boolean value telling whether EXPR has a value other than the undefined

undef . If EXPR is not present, $_ will be checked.

Many operations return undef to indicate failure, end of file, system error, uninitialize
variable, and other exceptional conditions. This function allows you to distinguish undef from
other values. (A simple Boolean test will not distinguish among undef , zero, the empty string,
and "0" , which are all equally false.) Note that since undef is a valid scalar, its presence
doesn‘t necessarily indicate an exceptional condition: pop() returns undef when its argument
is an empty array, or when the element to return happens to be undef .

You may also use defined() to check whether a subroutine exists, by saying defined
&func without parentheses. On the other hand, use of defined() upon aggregates (hashe
and arrays) is not guaranteed to produce intuitive results, and should probably be avoided.

When used on a hash element, it tells you whether the value is defined, not whether th
exists in the hash. Use /exists for the latter purpose.

Examples:

 print if defined $switch{’D’};
 print "$val\n" while defined($val = pop(@ary));
 die "Can’t readlink $sym: $!"

unless defined($value = readlink $sym);
218 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

e

 it
long.
it‘s an

ple

hat
defined
fined.

efined
 saves
l way

en

rns the
eleting
 the
n

ookup
 sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
 $debugging = 0 unless defined $debugging;

Note: Many folks tend to overuse defined() , and then are surprised to discover that th
number and "" (the zero−length string) are, in fact, defined values. For example, if you say

 "ab" =~ /a(.*)b/;

The pattern match succeeds, and $1 is defined, despite the fact that it matched "nothing". But
didn‘t really match nothing—rather, it matched something that happened to be characters
 This is all very above−board and honest. When a function returns an undefined value,
admission that it couldn‘t give you an honest answer. So you should use defined() only
when you‘re questioning the integrity of what you‘re trying to do. At other times, a sim
comparison to or "" is what you want.

Currently, using defined() on an entire array or hash reports whether memory for t
aggregate has ever been allocated. So an array you set to the empty list appears un
initially, and one that once was full and that you then set to the empty list still appears de
You should instead use a simple test for size:

 if (@an_array) { print "has array elements\n" }
 if (%a_hash) { print "has hash members\n" }

Using undef() on these, however, does clear their memory and then report them as not d
anymore, but you shouldn‘t do that unless you don‘t plan to use them again, because it
time when you load them up again to have memory already ready to be filled. The norma
to free up space used by an aggregate is to assign the empty list.

This counterintuitive behavior of defined() on aggregates may be changed, fixed, or brok
in a future release of Perl.

See also /undef, /exists, /ref.

delete EXPR
Deletes the specified key(s) and their associated values from a hash. For each key, retu
deleted value associated with that key, or the undefined value if there was no such key. D
from $ENV{} modifies the environment. Deleting from a hash tied to a DBM file deletes
entry from the DBM file. (But deleting from a tie() d hash doesn‘t necessarily retur
anything.)

The following deletes all the values of a hash:

 foreach $key (keys %HASH) {
delete $HASH{$key};

 }

And so does this:

 delete @HASH{keys %HASH}

(But both of these are slower than just assigning the empty list, or using undef() .) Note that
the EXPR can be arbitrarily complicated as long as the final operation is a hash element l
or hash slice:

 delete $ref−>[$x][$y]{$key};
 delete @{$ref−>[$x][$y]}{$key1, $key2, @morekeys};

die LIST Outside an eval() , prints the value of LIST to STDERR and exits with the current value of $!
(errno). If $! is , exits with the value of ($? >> 8) (backtick ‘command‘ status). If ($?
>> 8) is , exits with 255 . Inside an eval(), the error message is stuffed into $@ and the
eval() is terminated with the undefined value. This makes die() the way to raise an
exception.
18−Oct−1998 Version 5.005_02 219

perlfunc Perl Programmers Reference Guide perlfunc

t line
g

 is

can

ands
fore

ipt. Its

error
e

to do
Equivalent examples:

 die "Can’t cd to spool: $!\n" unless chdir ’/usr/spool/news’;
 chdir ’/usr/spool/news’ or die "Can’t cd to spool: $!\n"

If the value of EXPR does not end in a newline, the current script line number and inpu
number (if any) are also printed, and a newline is supplied. Hint: sometimes appendin",
stopped" to your message will cause it to make better sense when the string "at foo line
123" is appended. Suppose you are running script "canasta".

 die "/etc/games is no good";
 die "/etc/games is no good, stopped";

produce, respectively

 /etc/games is no good at canasta line 123.
 /etc/games is no good, stopped at canasta line 123.

See also exit() and warn() .

If LIST is empty and $@ already contains a value (typically from a previous eval) that value
reused after appending "\t...propagated" . This is useful for propagating exceptions:

 eval { ... };
 die unless $@ =~ /Expected exception/;

If $@ is empty then the string "Died" is used.

You can arrange for a callback to be run just before the die() does its deed, by setting the
$SIG{__DIE__} hook. The associated handler will be called with the error text and
change the error message, if it sees fit, by calling die() again. See $SIG{expr} for details
on setting %SIG entries, and "eval BLOCK" for some examples.

Note that the $SIG{__DIE__} hook is called even inside eval() ed blocks/strings. If one
wants the hook to do nothing in such situations, put

die @_ if $^S;

as the first line of the handler (see $^S).

do BLOCK
Not really a function. Returns the value of the last command in the sequence of comm
indicated by BLOCK. When modified by a loop modifier, executes the BLOCK once be
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do SUBROUTINE(LIST)
A deprecated form of subroutine call. See perlsub.

do EXPR Uses the value of EXPR as a filename and executes the contents of the file as a Perl scr
primary use is to include subroutines from a Perl subroutine library.

 do ’stat.pl’;

is just like

 scalar eval ‘cat stat.pl‘;

except that it‘s more efficient and concise, keeps track of the current filename for
messages, and searches all the −I libraries if the file isn‘t in the current directory (see also th
@INC array in Predefined Names). It is also different in how code evaluated with do
FILENAME doesn‘t see lexicals in the enclosing scope like eval STRING does. It‘s the same,
however, in that it does reparse the file every time you call it, so you probably don‘t want
this inside a loop.
220 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

m.

 be

t the

g
p.
 the

to an

 next
he key
If do cannot read the file, it returns undef and sets $! to the error. If do can read the file but
cannot compile it, it returns undef and sets an error message in $@. If the file is successfully
compiled, do returns the value of the last expression evaluated.

Note that inclusion of library modules is better done with the use() and require()
operators, which also do automatic error checking and raise an exception if there‘s a proble

You might like to use do to read in a program configuration file. Manual error checking can
done this way:

 # read in config files: system first, then user
 for $file ("/share/prog/defaults.rc",
 "$ENV{HOME}/.someprogrc") {

unless ($return = do $file) {
 warn "couldn’t parse $file: $@" if $@;
 warn "couldn’t do $file: $!" unless defined $return;
 warn "couldn’t run $file" unless $return;
}

 }

dump LABEL
This causes an immediate core dump. Primarily this is so that you can use the undump program
to turn your core dump into an executable binary after having initialized all your variables a
beginning of the program. When the new binary is executed it will begin by executing a goto
LABEL (with all the restrictions that goto suffers). Think of it as a goto with an intervenin
core dump and reincarnation. If LABEL is omitted, restarts the program from the to
WARNING: Any files opened at the time of the dump will NOT be open any more when
program is reincarnated, with possible resulting confusion on the part of Perl. See also −u option
in perlrun.

Example:

 #!/usr/bin/perl
 require ’getopt.pl’;
 require ’stat.pl’;
 %days = (

’Sun’ => 1,
’Mon’ => 2,
’Tue’ => 3,
’Wed’ => 4,
’Thu’ => 5,
’Fri’ => 6,
’Sat’ => 7,

);

 dump QUICKSTART if $ARGV[0] eq ’−d’;

 QUICKSTART:
 Getopt(’f’);

This operator is largely obsolete, partly because it‘s very hard to convert a core file in
executable, and because the real perl−to−C compiler has superseded it.

each HASH
When called in list context, returns a 2−element list consisting of the key and value for the
element of a hash, so that you can iterate over it. When called in scalar context, returns t
for only the "next" element in the hash. (Note: Keys may be "0" or "" , which are logically
false; you may wish to avoid constructs like while ($k = each %foo) {} for this
reason.)
18−Oct−1998 Version 5.005_02 221

perlfunc Perl Programmers Reference Guide perlfunc

ll array

le

you

ent

t
 that

f you

 the

se

 Perl
 first
m, so

at the
Entries are returned in an apparently random order. When the hash is entirely read, a nu
is returned in list context (which when assigned produces a FALSE () value), and undef in
scalar context. The next call to each() after that will start iterating again. There is a sing
iterator for each hash, shared by all each() , keys() , and values() function calls in the
program; it can be reset by reading all the elements from the hash, or by evaluating keys HASH
or values HASH . If you add or delete elements of a hash while you‘re iterating over it,
may get entries skipped or duplicated, so don‘t.

The following prints out your environment like the printenv(1) program, only in a differ
order:

 while (($key,$value) = each %ENV) {
print "$key=$value\n";

 }

See also keys() and values() .

eof FILEHANDLE
eof ()
eof Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is no

open. FILEHANDLE may be an expression whose value gives the real filehandle. (Note
this function actually reads a character and then ungetc() s it, so isn‘t very useful in an
interactive context.) Do not read from a terminal file (or call eof(FILEHANDLE) on it) after
end−of−file is reached. Filetypes such as terminals may lose the end−of−file condition i
do.

An eof without an argument uses the last file read as argument. Using eof() with empty
parentheses is very different. It indicates the pseudo file formed of the files listed on
command line, i.e., eof() is reasonable to use inside a while (<>) loop to detect the end of
only the last file. Use eof(ARGV) or eof without the parentheses to test EACH file in a while
(<>) loop. Examples:

 # reset line numbering on each input file
 while (<>) {

next if /^\s*#/; # skip comments
print "$.\t$_";

 } continue {
close ARGV if eof; # Not eof()!

 }

 # insert dashes just before last line of last file
 while (<>) {

if (eof()) { # check for end of current file
 print "−−−−−−−−−−−−−−\n";
 close(ARGV); # close or break; is needed if we

are reading from the terminal
}
print;

 }

Practical hint: you almost never need to use eof in Perl, because the input operators return fal
values when they run out of data, or if there was an error.

eval EXPR
eval BLOCK

In the first form, the return value of EXPR is parsed and executed as if it were a little
program. The value of the expression (which is itself determined within scalar context) is
parsed, and if there weren‘t any errors, executed in the context of the current Perl progra
that any variable settings or subroutine and format definitions remain afterwards. Note th
222 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

.

 code
t Perl
(see
.

e the
ession
ext of

e

r a

time
rned

ny

n:
value is parsed every time the eval executes. If EXPR is omitted, evaluates $_. This form is
typically used to delay parsing and subsequent execution of the text of EXPR until run time

In the second form, the code within the BLOCK is parsed only once—at the same time the
surrounding the eval itself was parsed—and executed within the context of the curren
program. This form is typically used to trap exceptions more efficiently than the first
below), while also providing the benefit of checking the code within BLOCK at compile time

The final semicolon, if any, may be omitted from the value of EXPR or within the BLOCK.

In both forms, the value returned is the value of the last expression evaluated insid
mini−program; a return statement may be also used, just as with subroutines. The expr
providing the return value is evaluated in void, scalar, or list context, depending on the cont
the eval itself. See /wantarray for more on how the evaluation context can be determined.

If there is a syntax error or runtime error, or a die() statement is executed, an undefined valu
is returned by eval() , and $@ is set to the error message. If there was no error, $@ is
guaranteed to be a null string. Beware that using eval() neither silences perl from printing
warnings to STDERR, nor does it stuff the text of warning messages into $@. To do either of
those, you have to use the $SIG{__WARN__} facility. See /warn and perlvar.

Note that, because eval() traps otherwise−fatal errors, it is useful for determining whethe
particular feature (such as socket() or symlink()) is implemented. It is also Perl‘s
exception trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn‘t vary, you may use the eval−BLOCK form to trap run−
errors without incurring the penalty of recompiling each time. The error, if any, is still retu
in $@. Examples:

 # make divide−by−zero nonfatal
 eval { $answer = $a / $b; }; warn $@ if $@;

 # same thing, but less efficient
 eval ’$answer = $a / $b’; warn $@ if $@;

 # a compile−time error
 eval { $answer = }; # WRONG

 # a run−time error
 eval ’$answer =’; # sets $@

When using the eval{} form as an exception trap in libraries, you may wish not to trigger a
__DIE__ hooks that user code may have installed. You can use the local
$SIG{__DIE__} construct for this purpose, as shown in this example:

 # a very private exception trap for divide−by−zero
 eval { local $SIG{’__DIE__’}; $answer = $a / $b; };
 warn $@ if $@;

This is especially significant, given that __DIE__ hooks can call die() again, which has the
effect of changing their error messages:

 # __DIE__ hooks may modify error messages
 {
 local $SIG{’__DIE__’} =
 sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
 eval { die "foo lives here" };
 print $@ if $@; # prints "bar lives here"
 }

With an eval() , you should be especially careful to remember what‘s being looked at whe
18−Oct−1998 Version 5.005_02 223

perlfunc Perl Programmers Reference Guide perlfunc

ight be
 code

l
time.)
is

es

 of

 calls
h one
 entire

ent, it

 are
as an
 of

ks and

s
 That
e in
 eval $x; # CASE 1
 eval "$x"; # CASE 2

 eval ’$x’; # CASE 3
 eval { $x }; # CASE 4

 eval "\$$x++"; # CASE 5
 $$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the variable$x.
(Although case 2 has misleading double quotes making the reader wonder what else m
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the
‘$x’, which does nothing but return the value of $x. (Case 4 is preferred for purely visua
reasons, but it also has the advantage of compiling at compile−time instead of at run−
Case 5 is a place where normally you WOULD like to use double quotes, except that in th
particular situation, you can just use symbolic references instead, as in case 6.

exec LIST
exec PROGRAM LIST

The exec() function executes a system command AND NEVER RETURNS − use system()
instead of exec() if you want it to return. It fails and returns FALSE only if the command do
not exist and it is executed directly instead of via your system‘s command shell (see below).

Since it‘s a common mistake to use exec() instead of system() , Perl warns you if there is a
following statement which isn‘t die() , warn() , or exit() (if −w is set − but you always
do that). If you really want to follow an exec() with some other statement, you can use one
these styles to avoid the warning:

 exec (’foo’) or print STDERR "couldn’t exec foo: $!";
 { exec (’foo’) }; print STDERR "couldn’t exec foo: $!";

If there is more than one argument in LIST, or if LIST is an array with more than one value,
execvp(3) with the arguments in LIST. If there is only one scalar argument or an array wit
element in it, the argument is checked for shell metacharacters, and if there are any, the
argument is passed to the system‘s command shell for parsing (this is /bin/sh −c on Unix
platforms, but varies on other platforms). If there are no shell metacharacters in the argum
is split into words and passed directly to execvp() , which is more efficient. Note: exec()
and system() do not flush your output buffer, so you may need to set $| to avoid lost output.
Examples:

 exec ’/bin/echo’, ’Your arguments are: ’, @ARGV;
 exec "sort $outfile | uniq";

If you don‘t really want to execute the first argument, but want to lie to the program you
executing about its own name, you can specify the program you actually want to run
"indirect object" (without a comma) in front of the LIST. (This always forces interpretation
the LIST as a multivalued list, even if there is only a single scalar in the list.) Example:

 $shell = ’/bin/csh’;
 exec $shell ’−sh’; # pretend it’s a login shell

or, more directly,

 exec {’/bin/csh’} ’−sh’; # pretend it’s a login shell

When the arguments get executed via the system shell, results will be subject to its quir
capabilities. See ‘STRING‘ in perlop for details.

Using an indirect object with exec() or system() is also more secure. This usage force
interpretation of the arguments as a multivalued list, even if the list had just one argument.
way you‘re safe from the shell expanding wildcards or splitting up words with whitespac
224 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

lled

 value

esn‘t

h key

ested,

that

s

ant

ves

st like
them.

 @args = ("echo surprise");

 system @args; # subject to shell escapes
 # if @args == 1
 system { $args[0] } @args; # safe even with one−arg list

The first version, the one without the indirect object, ran the echo program, passing it
"surprise" an argument. The second version didn‘t—it tried to run a program literally ca
"echo surprise", didn‘t find it, and set $? to a non−zero value indicating failure.

Note that exec() will not call your END blocks, nor will it call any DESTROY methods in your
objects.

exists EXPR
Returns TRUE if the specified hash key exists in its hash array, even if the corresponding
is undefined.

 print "Exists\n" if exists $array{$key};
 print "Defined\n" if defined $array{$key};
 print "True\n" if $array{$key};

A hash element can be TRUE only if it‘s defined, and defined if it exists, but the reverse do
necessarily hold true.

Note that the EXPR can be arbitrarily complicated as long as the final operation is a has
lookup:

 if (exists $ref−>{"A"}{"B"}{$key}) { ... }

Although the last element will not spring into existence just because its existence was t
intervening ones will. Thus $ref−>{"A"} $ref−>{"B"} will spring into existence due to
the existence test for a $key element. This autovivification may be fixed in a later release.

exit EXPR
Evaluates EXPR and exits immediately with that value. (Actually, it calls any defined END
routines first, but the END routines may not abort the exit. Likewise any object destructors
need to be called are called before exit.) Example:

 $ans = <STDIN>;
 exit 0 if $ans =~ /^[Xx]/;

See also die() . If EXPR is omitted, exits with status. The only universally portable value
for EXPR are for success and 1 for error; all other values are subject to unpredictable
interpretation depending on the environment in which the Perl program is running.

You shouldn‘t use exit() to abort a subroutine if there‘s any chance that someone might w
to trap whatever error happened. Use die() instead, which can be trapped by an eval() .

All END{} blocks are run at exit time. See perlsub for details.

exp EXPR
exp Returns e (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gi

exp($_).

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl(2) function. You‘ll probably have to say

 use Fcntl;

first to get the correct constant definitions. Argument processing and value return works ju
ioctl() below. For example:
18−Oct−1998 Version 5.005_02 225

perlfunc Perl Programmers Reference Guide perlfunc

n

ent

 for
n,

 on
tl(2)

ly

es.
se
ing.

th
bolic

ock’
_UN

then
rn

t.

 that
nts.
ing

d
r
 the
 use Fcntl;
 fcntl($filehandle, F_GETFL, $packed_return_buffer)

or die "can’t fcntl F_GETFL: $!";

You don‘t have to check for defined() on the return from fnctl() . Like ioctl() , it
maps a return from the system call into " but true" in Perl. This string is true in boolea
context and in numeric context. It is also exempt from the normal −w warnings on improper
numeric conversions.

Note that fcntl() will produce a fatal error if used on a machine that doesn‘t implem
fcntl(2).

fileno FILEHANDLE
Returns the file descriptor for a filehandle. This is useful for constructing bitmaps
select() and low−level POSIX tty−handling operations. If FILEHANDLE is an expressio
the value is taken as an indirect filehandle, generally its name.

You can use this to find out whether two handles refer to the same underlying descriptor:

 if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";

 }

flock FILEHANDLE,OPERATION
Calls flock(2), or an emulation of it, on FILEHANDLE. Returns TRUE for success, FALSE
failure. Produces a fatal error if used on a machine that doesn‘t implement flock(2), fcn
locking, or lockf(3). flock() is Perl‘s portable file locking interface, although it locks on
entire files, not records.

On many platforms (including most versions or clones of Unix), locks established by flock()
are merely advisory. Such discretionary locks are more flexible, but offer fewer guarante
This means that files locked with flock() may be modified by programs that do not also u
flock() . Windows NT and OS/2 are among the platforms which enforce mandatory lock
See your local documentation for details.

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined wi
LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but you can use the sym
names if import them from the Fcntl module, either individually, or as a group using the ‘:fl
tag. LOCK_SH requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK
releases a previously requested lock. If LOCK_NB is added to LOCK_SH or LOCK_EX
flock() will return immediately rather than blocking waiting for the lock (check the retu
status to see if you got it).

To avoid the possibility of mis−coordination, Perl flushes FILEHANDLE before (un)locking i

Note that the emulation built with lockf(3) doesn‘t provide shared locks, and it requires
FILEHANDLE be open with write intent. These are the semantics that lockf(3) impleme
Most (all?) systems implement lockf(3) in terms of fcntl(2) locking, though, so the differ
semantics shouldn‘t bite too many people.

Note also that some versions of flock() cannot lock things over the network; you would nee
to use the more system−specific fcntl() for that. If you like you can force Perl to ignore you
system‘s flock(2) function, and so provide its own fcntl(2)−based emulation, by passing
switch −Ud_flock to the Configure program when you configure perl.

Here‘s a mailbox appender for BSD systems.

 use Fcntl ’:flock’; # import LOCK_* constants

 sub lock {
flock(MBOX,LOCK_EX);
226 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

ss, or

 to set

 are
s, say,
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

 }

 sub unlock {
flock(MBOX,LOCK_UN);

 }

 open(MBOX, ">>/usr/spool/mail/$ENV{’USER’}")
 or die "Can’t open mailbox: $!";

 lock();
 print MBOX $msg,"\n\n";
 unlock();

See also DB_File for other flock() examples.

fork Does a fork(2) system call. Returns the child pid to the parent process, to the child proce
undef if the fork is unsuccessful.

Note: unflushed buffers remain unflushed in both processes, which means you may need
$| ($AUTOFLUSH in English) or call the autoflush() method of IO::Handle to avoid
duplicate output.

If you fork() without ever waiting on your children, you will accumulate zombies:

 $SIG{CHLD} = sub { wait };

There‘s also the double−fork trick (error checking on fork() returns omitted);

 unless ($pid = fork) {
unless (fork) {
 exec "what you really wanna do";
 die "no exec";
 # ... or ...
 ## (some_perl_code_here)
 exit 0;
}
exit 0;

 }
 waitpid($pid,0);

See also perlipc for more examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and STDOUT that
actually connected by a pipe or socket, even if you exit, then the remote server (such a
httpd or rsh) won‘t think you‘re done. You should reopen those to /dev/null if it‘s any issue.

format Declare a picture format for use by the write() function. For example:

 format Something =
Test: @<<<<<<<< @||||| @>>>>>
 $str, $%, ’$’ . int($num)

 .

 $str = "widget";
 $num = $cost/$quantity;
 $~ = ’Something’;
 write;

See perlform for many details and examples.
18−Oct−1998 Version 5.005_02 227

perlfunc Perl Programmers Reference Guide perlfunc

e
 the

ad

re

ecord

alue
 is

. For

IX
n

urrent
formline PICTURE,LIST
This is an internal function used by format s, though you may call it, too. It formats (se
perlform) a list of values according to the contents of PICTURE, placing the output into
format output accumulator, $^A (or $ACCUMULATOR in English). Eventually, when a
write() is done, the contents of $^A are written to some filehandle, but you could also re
$^A yourself and then set $^A back to "" . Note that a format typically does one formline()
per line of form, but the formline() function itself doesn‘t care how many newlines a
embedded in the PICTURE. This means that the ~ and ~~ tokens will treat the entire PICTURE
as a single line. You may therefore need to use multiple formlines to implement a single r
format, just like the format compiler.

Be careful if you put double quotes around the picture, because an "@" character may be taken to
mean the beginning of an array name. formline() always returns TRUE. See perlform for
other examples.

getc FILEHANDLE
getc Returns the next character from the input file attached to FILEHANDLE, or the undefined v

at end of file, or if there was an error. If FILEHANDLE is omitted, reads from STDIN. This
not particularly efficient. It cannot be used to get unbuffered single−characters, however
that, try something more like:

 if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

 }
 else {

system "stty", ’−icanon’, ’eol’, "\001";
 }

 $key = getc(STDIN);

 if ($BSD_STYLE) {
system "stty −cbreak </dev/tty >/dev/tty 2>&1";

 }
 else {

system "stty", ’icanon’, ’eol’, ’^@’; # ASCII null
 }
 print "\n";

Determination of whether $BSD_STYLE should be set is left as an exercise to the reader.

The POSIX::getattr() function can do this more portably on systems purporting POS
compliance. See also the Term::ReadKey module from your nearest CPAN site; details o
CPAN can be found on CPAN.

getlogin Implements the C library function of the same name, which on most systems returns the c
login from /etc/utmp, if any. If null, use getpwuid() .

 $login = getlogin || getpwuid($<) || "Kilroy";

Do not consider getlogin() for authentication: it is not as secure as getpwuid() .

getpeername SOCKET
Returns the packed sockaddr address of other end of the SOCKET connection.

 use Socket;
 $hersockaddr = getpeername(SOCK);
 ($port, $iaddr) = unpack_sockaddr_in($hersockaddr);
 $herhostname = gethostbyaddr($iaddr, AF_INET);
 $herstraddr = inet_ntoa($iaddr);
228 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

rrent
oesn‘t
at the

In list
getpgrp PID
Returns the current process group for the specified PID. Use a PID of to get the cu
process group for the current process. Will raise an exception if used on a machine that d
implement getpgrp(2). If PID is omitted, returns process group of current process. Note th
POSIX version of getpgrp() does not accept a PID argument, so only PID==0 is truly
portable.

getppid Returns the process id of the parent process.

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or a user. (See getpriority(2).) Will
raise a fatal exception if used on a machine that doesn‘t implement getpriority(2).

getpwnam NAME
getgrnam NAME
gethostbyname NAME
getnetbyname NAME
getprotobyname NAME
getpwuid UID
getgrgid GID
getservbyname NAME,PROTO
gethostbyaddr ADDR,ADDRTYPE
getnetbyaddr ADDR,ADDRTYPE
getprotobynumber NUMBER
getservbyport PORT,PROTO
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostent STAYOPEN
setnetent STAYOPEN
setprotoent STAYOPEN
setservent STAYOPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent

These routines perform the same functions as their counterparts in the system library.
context, the return values from the various get routines are as follows:

 ($name,$passwd,$uid,$gid,
 $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
 ($name,$passwd,$gid,$members) = getgr*
 ($name,$aliases,$addrtype,$length,@addrs) = gethost*
 ($name,$aliases,$addrtype,$net) = getnet*
 ($name,$aliases,$proto) = getproto*
 ($name,$aliases,$port,$proto) = getserv*

(If the entry doesn‘t exist you get a null list.)
18−Oct−1998 Version 5.005_02 229

perlfunc Perl Programmers Reference Guide perlfunc

se you
 For

e
r.

ut the

r the
your

the

st
main,

lue,

m

se a
In scalar context, you get the name, unless the function was a lookup by name, in which ca
get the other thing, whatever it is. (If the entry doesn‘t exist you get the undefined value.)
example:

 $uid = getpwnam($name);
 $name = getpwuid($num);
 $name = getpwent();
 $gid = getgrnam($name);
 $name = getgrgid($num;
 $name = getgrent();
 #etc.

In getpw*() the fields $quota, $comment, and $expire are special cases in the sens
that in many systems they are unsupported. If the $quota is unsupported, it is an empty scala
If it is supported, it usually encodes the disk quota. If the $comment field is unsupported, it is
an empty scalar. If it is supported it usually encodes some administrative comment abo
user. In some systems the $quota field may be $change or $age, fields that have to do
with password aging. In some systems the $comment field may be $class. The $expire
field, if present, encodes the expiration period of the account or the password. Fo
availability and the exact meaning of these fields in your system, please consult
getpwnam(3) documentation and your pwd.h file. You can also find out from within Perl which
meaning your $quota and $comment fields have and whether you have the $expire field
by using the Config module and the values d_pwquota , d_pwage , d_pwchange ,
d_pwcomment , and d_pwexpire .

The $members value returned by getgr*() is a space separated list of the login names of
members of the group.

For the gethost*() functions, if the h_errno variable is supported in C, it will be returned
to you via $? if the function call fails. The @addrs value returned by a successful call is a li
of the raw addresses returned by the corresponding system library call. In the Internet do
each address is four bytes long and you can unpack it by saying something like:

 ($a,$b,$c,$d) = unpack(’C4’,$addr[0]);

If you get tired of remembering which element of the return list contains which return va
by−name interfaces are also provided in modules: File::stat , Net::hostent ,
Net::netent , Net::protoent , Net::servent , Time::gmtime ,
Time::localtime , and User::grent . These override the normal built−in, replacing the
with versions that return objects with the appropriate names for each field. For example:

 use File::stat;
 use User::pwent;
 $is_his = (stat($filename)−>uid == pwent($whoever)−>uid);

Even though it looks like they‘re the same method calls (uid), they aren‘t, becau
File::stat object is different from a User::pwent object.

getsockname SOCKET
Returns the packed sockaddr address of this end of the SOCKET connection.

 use Socket;
 $mysockaddr = getsockname(SOCK);
 ($port, $myaddr) = unpack_sockaddr_in($mysockaddr);

getsockopt SOCKET,LEVEL,OPTNAME
Returns the socket option requested, or undef if there is an error.
230 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

n

ed for

s that

e
IX

locale

may

ere.
e or a
t out
he
struct

This
re

r the
r
(except
ne.)
glob EXPR
glob Returns the value of EXPR with filename expansions such as the standard Unix shell /bin/sh

would do. This is the internal function implementing the <*.c> operator, but you can use it
directly. If EXPR is omitted, $_ is used. The <*.c> operator is discussed in more detail i
I/O Operators in perlop.

gmtime EXPR
Converts a time as returned by the time function to a 9−element array with the time localiz
the standard Greenwich time zone. Typically used as follows:

 # 0 1 2 3 4 5 6 7 8
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

 gmtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this mean
$mon has the range 0..11 and $wday has the range 0..6 with sunday as day . Also,
$year is the number of years since 1900, that is, $year is 123 in year 2023, not simply the
last two digits of the year.

If EXPR is omitted, does gmtime(time()) .

In scalar context, returns the ctime(3) value:

 $now_string = gmtime; # e.g., "Thu Oct 13 04:54:34 1994"

Also see the timegm() function provided by the Time::Local module, and the strftime(3)
function available via the POSIX module.

This scalar value is not locale dependent, see perllocale, but instead a Perl builtin. Also see th
Time::Local module, and the strftime(3) and mktime(3) function available via the POS
module. To get somewhat similar but locale dependent date strings, set up your
environment variables appropriately (please see perllocale) and try for example:

 use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that the %a and %b, the short forms of the day of the week and the month of the year,
not necessarily be three characters wide.

goto LABEL
goto EXPR
goto &NAME

The goto−LABEL form finds the statement labeled with LABEL and resumes execution th
It may not be used to go into any construct that requires initialization, such as a subroutin
foreach loop. It also can‘t be used to go into a construct that is optimized away, or to ge
of a block or subroutine given to sort() . It can be used to go almost anywhere else within t
dynamic scope, including out of subroutines, but it‘s usually better to use some other con
such as last or die() . The author of Perl has never felt the need to use this form of goto (in
Perl, that is—C is another matter).

The goto−EXPR form expects a label name, whose scope will be resolved dynamically.
allows for computed goto s per FORTRAN, but isn‘t necessarily recommended if you‘
optimizing for maintainability:

 goto ("FOO", "BAR", "GLARCH")[$i];

The goto−&NAME form is highly magical, and substitutes a call to the named subroutine fo
currently running subroutine. This is used by AUTOLOAD subroutines that wish to load anothe
subroutine and then pretend that the other subroutine had been called in the first place
that any modifications to @_ in the current subroutine are propagated to the other subrouti
After the goto , not even caller() will be able to tell that this routine was called first.
18−Oct−1998 Version 5.005_02 231

perlfunc Perl Programmers Reference Guide perlfunc

s not

ted to

ts of
not a
a for
ed by

s that

or

. If
ue is

 point

t

t‘s
 to

rather
efore
grep BLOCK LIST
grep EXPR,LIST

This is similar in spirit to, but not the same as, grep(1) and its relatives. In particular, it i
limited to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value consisting of those elements for which the expression evalua
TRUE. In a scalar context, returns the number of times the expression was TRUE.

 @foo = grep(!/^#/, @bar); # weed out comments

or equivalently,

 @foo = grep {!/^#/} @bar; # weed out comments

Note that, because $_ is a reference into the list value, it can be used to modify the elemen
the array. While this is useful and supported, it can cause bizarre results if the LIST is
named array. Similarly, grep returns aliases into the original list, much like the way that
loop‘s index variable aliases the list elements. That is, modifying an element of a list return
grep (for example, in a foreach , map() or another grep()) actually modifies the element in
the original list.

See also /map for an array composed of the results of the BLOCK or EXPR.

hex EXPR
hex Interprets EXPR as a hex string and returns the corresponding value. (To convert string

might start with either 0 or 0x see /oct.) If EXPR is omitted, uses $_.

 print hex ’0xAf’; # prints ’175’
 print hex ’aF’; # same

import There is no builtin import() function. It is just an ordinary method (subroutine) defined (
inherited) by modules that wish to export names to another module. The use() function calls
the import() method for the package used. See also /use() , perlmod, and Exporter.

index STR,SUBSTR,POSITION
index STR,SUBSTR

Returns the position of the first occurrence of SUBSTR in STR at or after POSITION
POSITION is omitted, starts searching from the beginning of the string. The return val
based at (or whatever you‘ve set the $[variable to—but don‘t do that). If the substring is not
found, returns one less than the base, ordinarily −1.

int EXPR
int Returns the integer portion of EXPR. If EXPR is omitted, uses $_. You should not use this for

rounding, because it truncates towards , and because machine representations of floating
numbers can sometimes produce counterintuitive results. Usually sprintf() or printf() ,
or the POSIX::floor or POSIX::ceil functions, would serve you better.

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements the ioctl(2) function. You‘ll probably have to say

 require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph

first to get the correct function definitions. If ioctl.ph doesn‘t exist or doesn‘t have the correc
definitions you‘ll have to roll your own, based on your C header files such as <sys/ioctl.h>.
(There is a Perl script called h2ph that comes with the Perl kit that may help you in this, but i
nontrivial.) SCALAR will be read and/or written depending on the FUNCTION—a pointer
the string value of SCALAR will be passed as the third argument of the actual ioctl() call.
(If SCALAR has no string value but does have a numeric value, that value will be passed
than a pointer to the string value. To guarantee this to be TRUE, add a to the scalar b
232 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

of

ne the

XPR,

ns the
 order
en

c

using it.) The pack() and unpack() functions are useful for manipulating the values
structures used by ioctl() . The following example sets the erase character to DEL.

 require ’ioctl.ph’;
 $getp = &TIOCGETP;
 die "NO TIOCGETP" if $@ || !$getp;
 $sgttyb_t = "ccccs"; # 4 chars and a short
 if (ioctl(STDIN,$getp,$sgttyb)) {

@ary = unpack($sgttyb_t,$sgttyb);
$ary[2] = 127;
$sgttyb = pack($sgttyb_t,@ary);
ioctl(STDIN,&TIOCSETP,$sgttyb)
 || die "Can’t ioctl: $!";

 }

The return value of ioctl() (and fcntl()) is as follows:

if OS returns: then Perl returns:
 −1 undefined value
 0 string "0 but true"
anything else that number

Thus Perl returns TRUE on success and FALSE on failure, yet you can still easily determi
actual value returned by the operating system:

 ($retval = ioctl(...)) || ($retval = −1);
 printf "System returned %d\n", $retval;

The special string " but true" is excempt from −w complaints about improper numeric
conversions.

join EXPR,LIST
Joins the separate strings of LIST into a single string with fields separated by the value of E
and returns the string. Example:

 $_ = join(’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell);

See /split.

keys HASH
Returns a list consisting of all the keys of the named hash. (In a scalar context, retur
number of keys.) The keys are returned in an apparently random order, but it is the same
as either the values() or each() function produces (given that the hash has not be
modified). As a side effect, it resets HASH‘s iterator.

Here is yet another way to print your environment:

 @keys = keys %ENV;
 @values = values %ENV;
 while ($#keys >= 0) {

print pop(@keys), ’=’, pop(@values), "\n";
 }

or how about sorted by key:

 foreach $key (sort(keys %ENV)) {
print $key, ’=’, $ENV{$key}, "\n";

 }

To sort an array by value, you‘ll need to use a sort() function. Here‘s a descending numeri
sort of a hash by its values:
18−Oct−1998 Version 5.005_02 233

perlfunc Perl Programmers Reference Guide perlfunc

iven
 (This

nds

 send.

es.
t
 use a

its
sing

e

ction

LSE
 foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

 }

As an lvalue keys() allows you to increase the number of hash buckets allocated for the g
hash. This can gain you a measure of efficiency if you know the hash is going to get big.
is similar to pre−extending an array by assigning a larger number to $#array.) If you say

 keys %hash = 200;

then %hash will have at least 200 buckets allocated for it—256 of them, in fact, since it rou
up to the next power of two. These buckets will be retained even if you do %hash = () , use
undef %hash if you want to free the storage while %hash is still in scope. You can‘t shrink
the number of buckets allocated for the hash using keys() in this way (but you needn‘t worry
about doing this by accident, as trying has no effect).

kill LIST Sends a signal to a list of processes. The first element of the list must be the signal to
Returns the number of processes successfully signaled.

 $cnt = kill 1, $child1, $child2;
 kill 9, @goners;

Unlike in the shell, in Perl if the SIGNAL is negative, it kills process groups instead of process
 (On System V, a negative PROCESS number will also kill process groups, but that‘s no
portable.) That means you usually want to use positive not negative signals. You may also
signal name in quotes. See Signals in perlipc for details.

last LABEL
last The last command is like the break statement in C (as used in loops); it immediately ex

the loop in question. If the LABEL is omitted, the command refers to the innermost enclo
loop. The continue block, if any, is not executed:

 LINE: while (<STDIN>) {
last LINE if /^$/; # exit when done with header
#...

 }

See also /continue for an illustration of how last , next , and redo work.

lc EXPR
lc Returns an lowercased version of EXPR. This is the internal function implementing th\L

escape in double−quoted strings. Respects current LC_CTYPE locale if use locale in force.
See perllocale.

If EXPR is omitted, uses $_.

lcfirst EXPR
lcfirst Returns the value of EXPR with the first character lowercased. This is the internal fun

implementing the \l escape in double−quoted strings. Respects current LC_CTYPE locale if
use locale in force. See perllocale.

If EXPR is omitted, uses $_.

length EXPR
length Returns the length in bytes of the value of EXPR. If EXPR is omitted, returns length of $_.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns TRUE for success, FA
otherwise.
234 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

ALSE

than

ed for

s that

e
IX

locale

may

re

CK or
 in the
listen SOCKET,QUEUESIZE
Does the same thing that the listen system call does. Returns TRUE if it succeeded, F
otherwise. See example in Sockets: Client/Server Communication in perlipc.

local EXPR
A local modifies the listed variables to be local to the enclosing block, file, or eval. If more
one value is listed, the list must be placed in parentheses. See
"Temporary Values via local() " for details, including issues with tied arrays and hashes.

You really probably want to be using my() instead, because local() isn‘t what most people
think of as "local". See "Private Variables via my() " for details.

localtime EXPR
Converts a time as returned by the time function to a 9−element array with the time analyz
the local time zone. Typically used as follows:

 # 0 1 2 3 4 5 6 7 8
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this mean
$mon has the range 0..11 and $wday has the range 0..6 with sunday as day . Also,
$year is the number of years since 1900, that is, $year is 123 in year 2023, and not simply
the last two digits of the year.

If EXPR is omitted, uses the current time (localtime(time)).

In scalar context, returns the ctime(3) value:

 $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value is not locale dependent, see perllocale, but instead a Perl builtin. Also see th
Time::Local module, and the strftime(3) and mktime(3) function available via the POS
module. To get somewhat similar but locale dependent date strings, set up your
environment variables appropriately (please see perllocale) and try for example:

 use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;

Note that the %a and %b, the short forms of the day of the week and the month of the year,
not necessarily be three characters wide.

log EXPR
log Returns the natural logarithm (base e) of EXPR. If EXPR is omitted, returns log of $_.

lstat FILEHANDLE
lstat EXPR
lstat Does the same thing as the stat() function (including setting the special _ filehandle) but stats

a symbolic link instead of the file the symbolic link points to. If symbolic links a
unimplemented on your system, a normal stat() is done.

If EXPR is omitted, stats $_.

m// The match operator. See perlop.

map BLOCK LIST
map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value composed of the results of each such evaluation. Evaluates BLO
EXPR in a list context, so each element of LIST may produce zero, one, or more elements
returned value.
18−Oct−1998 Version 5.005_02 235

perlfunc Perl Programmers Reference Guide perlfunc

ts of
not a

ich

(as
s

efined

eue ID.

D into
d, the
 the
e also

, or
 See

p:
 @chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And

 %hash = map { getkey($_) => $_ } @array;

is just a funny way to write

 %hash = ();
 foreach $_ (@array) {

$hash{getkey($_)} = $_;
 }

Note that, because $_ is a reference into the list value, it can be used to modify the elemen
the array. While this is useful and supported, it can cause bizarre results if the LIST is
named array. See also /grep for an array composed of those items of the original list for wh
the BLOCK or EXPR evaluates to true.

mkdir FILENAME,MODE
Creates the directory specified by FILENAME, with permissions specified by MODE
modified by umask). If it succeeds it returns TRUE, otherwise it returns FALSE and set$!
(errno).

msgctl ID,CMD,ARG
Calls the System V IPC function msgctl(2). You‘ll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a variable
which will hold the returned msqid_ds structure. Returns like ioctl() : the undefined value
for error, " but true" for zero, or the actual return value otherwise. See also IPC::SysV and
IPC::Semaphore::Msg documentation.

msgget KEY,FLAGS
Calls the System V IPC function msgget(2). Returns the message queue id, or the und
value if there is an error. See also IPC::SysV and IPC::SysV::Msg documentation.

msgsnd ID,MSG,FLAGS
Calls the System V IPC function msgsnd to send the message MSG to the message qu
MSG must begin with the long integer message type, which may be created with pack("l",
$type). Returns TRUE if successful, or FALSE if there is an error. See also IPC::SysV
and IPC::SysV::Msg documentation.

msgrcv ID,VAR,SIZE,TYPE,FLAGS
Calls the System V IPC function msgrcv to receive a message from message queue I
variable VAR with a maximum message size of SIZE. Note that if a message is receive
message type will be the first thing in VAR, and the maximum length of VAR is SIZE plus
size of the message type. Returns TRUE if successful, or FALSE if there is an error. Se
IPC::SysV and IPC::SysV::Msg documentation.

my EXPR
A my() declares the listed variables to be local (lexically) to the enclosing block, file
eval() . If more than one value is listed, the list must be placed in parentheses.
"Private Variables via my() " for details.

next LABEL
next The next command is like the continue statement in C; it starts the next iteration of the loo

 LINE: while (<STDIN>) {
next LINE if /^#/; # discard comments
236 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

on
op.

ens to
tal,

ings

. If
d. If

s the

ns
name
 can
the

ince

pond to

 to

n
s

t files

ines

d, so

re are
#...
 }

Note that if there were a continue block on the above, it would get executed even
discarded lines. If the LABEL is omitted, the command refers to the innermost enclosing lo

See also /continue for an illustration of how last , next , and redo work.

no Module LIST
See the /use function, which no is the opposite of.

oct EXPR
oct Interprets EXPR as an octal string and returns the corresponding value. (If EXPR happ

start off with 0x , interprets it as a hex string instead.) The following will handle decimal, oc
and hex in the standard Perl or C notation:

 $val = oct($val) if $val =~ /^0/;

If EXPR is omitted, uses $_. This function is commonly used when a string such as 644 needs
to be converted into a file mode, for example. (Although perl will automatically convert str
into numbers as needed, this automatic conversion assumes base 10.)

open FILEHANDLE,EXPR
open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with FILEHANDLE
FILEHANDLE is an expression, its value is used as the name of the real filehandle wante
EXPR is omitted, the scalar variable of the same name as the FILEHANDLE contain
filename. (Note that lexical variables—those declared with my() —will not work for this
purpose; so if you‘re using my() , specify EXPR in your call to open.)

If the filename begins with ‘<’ or nothing, the file is opened for input. If the filename begi
with ‘>’ , the file is truncated and opened for output, being created if necessary. If the file
begins with ‘>>’ , the file is opened for appending, again being created if necessary. You
put a ‘+’ in front of the ‘>’ or ‘<’ to indicate that you want both read and write access to
file; thus ‘+<’ is almost always preferred for read/write updates—the ‘+>’ mode would
clobber the file first. You can‘t usually use either read−write mode for updating textfiles, s
they have variable length records. See the −i switch in perlrun for a better approach.

The prefix and the filename may be separated with spaces. These various prefixes corres
the fopen(3) modes of ‘r’ , ‘r+’ , ‘w’ , ‘w+’ , ‘a’ , and ‘a+’ .

If the filename begins with ‘|’ , the filename is interpreted as a command to which output is
be piped, and if the filename ends with a ‘|’ , the filename is interpreted See "Using open()
for IPC" for more examples of this. (You are not allowed to open() to a command that pipes
both in and out, but see IPC::Open2, IPC::Open3, and Bidirectional Communication in perlipc
for alternatives.)

Opening ‘−’ opens STDIN and opening ‘>−’ opens STDOUT. Open returns nonzero upo
success, the undefined value otherwise. If the open() involved a pipe, the return value happen
to be the pid of the subprocess.

If you‘re unfortunate enough to be running Perl on a system that distinguishes between tex
and binary files (modern operating systems don‘t care), then you should check out /binmode for
tips for dealing with this. The key distinction between systems that need binmode() and those
that don‘t is their text file formats. Systems like Unix, MacOS, and Plan9, which delimit l
with a single character, and which encode that character in C as "\n" , do not need
binmode() . The rest need it.

When opening a file, it‘s usually a bad idea to continue normal execution if the request faile
open() is frequently used in connection with die() . Even if die() won‘t do what you want
(say, in a CGI script, where you want to make a nicely formatted error message (but the
18−Oct−1998 Version 5.005_02 237

perlfunc Perl Programmers Reference Guide perlfunc

from
tually

meric)

e into
estores
modules that can help with that problem)) you should always check the return value
opening a file. The infrequent exception is when working with an unopened filehandle is ac
what you want to do.

Examples:

 $ARTICLE = 100;
 open ARTICLE or die "Can’t find article $ARTICLE: $!\n";
 while (<ARTICLE>) {...

 open(LOG, ’>>/usr/spool/news/twitlog’); # (log is reserved)
 # if the open fails, output is discarded

 open(DBASE, ’+<dbase.mine’) # open for update
or die "Can’t open ’dbase.mine’ for update: $!";

 open(ARTICLE, "caesar <$article |") # decrypt article
or die "Can’t start caesar: $!";

 open(EXTRACT, "|sort >/tmp/Tmp$$") # $$ is our process id
or die "Can’t start sort: $!";

 # process argument list of files along with any includes

 foreach $file (@ARGV) {
process($file, ’fh00’);

 }

 sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, $filename)) {
 print STDERR "Can’t open $filename: $!\n";
 return;
}

local $_;
while (<$input>) { # note use of indirection
 if (/^#include "(.*)"/) {

process($1, $input);
next;

 }
 #... # whatever
}

 }

You may also, in the Bourne shell tradition, specify an EXPR beginning with ‘>&’, in which
case the rest of the string is interpreted as the name of a filehandle (or file descriptor, if nu
to be duped and opened. You may use & after >, >>, <, +>, +>>, and +<. The mode you
specify should match the mode of the original filehandle. (Duping a filehandle does not tak
account any existing contents of stdio buffers.) Here is a script that saves, redirects, and r
STDOUT and STDERR:

 #!/usr/bin/perl
 open(OLDOUT, ">&STDOUT");
 open(OLDERR, ">&STDERR");

 open(STDOUT, ">foo.out") || die "Can’t redirect stdout";
 open(STDERR, ">&STDOUT") || die "Can’t dup stdout";

 select(STDERR); $| = 1; # make unbuffered
238 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

ithin
he
 the

i/o
pen
uch as

racters.

 both

eturns

ormal
sed to

ading

e
our
 select(STDOUT); $| = 1; # make unbuffered

 print STDOUT "stdout 1\n"; # this works for
 print STDERR "stderr 1\n"; # subprocesses too

 close(STDOUT);
 close(STDERR);

 open(STDOUT, ">&OLDOUT");
 open(STDERR, ">&OLDERR");

 print STDOUT "stdout 2\n";
 print STDERR "stderr 2\n";

If you specify ‘<&=N’, where N is a number, then Perl will do an equivalent of C‘s fdopen()
of that file descriptor; this is more parsimonious of file descriptors. For example:

 open(FILEHANDLE, "<&=$fd")

If you open a pipe on the command ‘−’ , i.e., either ‘|−’ or ‘−|’ , then there is an implicit fork
done, and the return value of open is the pid of the child within the parent process, and w
the child process. (Use defined($pid) to determine whether the open was successful.) T
filehandle behaves normally for the parent, but i/o to that filehandle is piped from/to
STDOUT/STDIN of the child process. In the child process the filehandle isn‘t opened—
happens from/to the new STDOUT or STDIN. Typically this is used like the normal piped o
when you want to exercise more control over just how the pipe command gets executed, s
when you are running setuid, and don‘t want to have to scan shell commands for metacha
The following pairs are more or less equivalent:

 open(FOO, "|tr ’[a−z]’ ’[A−Z]’");
 open(FOO, "|−") || exec ’tr’, ’[a−z]’, ’[A−Z]’;

 open(FOO, "cat −n ’$file’|");
 open(FOO, "−|") || exec ’cat’, ’−n’, $file;

See Safe Pipe Opens in perlipc for more examples of this.

NOTE: On any operation that may do a fork, any unflushed buffers remain unflushed in
processes, which means you may need to set $| to avoid duplicate output.

Closing any piped filehandle causes the parent process to wait for the child to finish, and r
the status value in $?.

The filename passed to open will have leading and trailing whitespace deleted, and the n
redirection characters honored. This property, known as "magic open", can often be u
good effect. A user could specify a filename of "rsh cat file |" , or you could change certain
filenames as needed:

 $filename =~ s/(.*\.gz)\s*$/gzip −dc < $1|/;
 open(FH, $filename) or die "Can’t open $filename: $!";

However, to open a file with arbitrary weird characters in it, it‘s necessary to protect any le
and trailing whitespace:

 $file =~ s#^(\s)#./$1#;
 open(FOO, "< $file\0");

If you want a "real" C open() (see open(2) on your system), then you should use th
sysopen() function, which involves no such magic. This is another way to protect y
filenames from interpretation. For example:

 use IO::Handle;
 sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
18−Oct−1998 Version 5.005_02 239

perlfunc Perl Programmers Reference Guide perlfunc

as
e of
er you

ir

tring
r and
or die "sysopen $path: $!";
 $oldfh = select(HANDLE); $| = 1; select($oldfh);
 print HANDLE "stuff $$\n");
 seek(HANDLE, 0, 0);
 print "File contains: ", <HANDLE>;

Using the constructor from the IO::Handle package (or one of its subclasses, such
IO::File or IO::Socket), you can generate anonymous filehandles that have the scop
whatever variables hold references to them, and automatically close whenever and howev
leave that scope:

 use IO::File;
 #...
 sub read_myfile_munged {

my $ALL = shift;
my $handle = new IO::File;
open($handle, "myfile") or die "myfile: $!";
$first = <$handle>
 or return (); # Automatically closed here.
mung $first or die "mung failed"; # Or here.
return $first, <$handle> if $ALL; # Or here.
$first; # Or here.

 }

See /seek() for some details about mixing reading and writing.

opendir DIRHANDLE,EXPR
Opens a directory named EXPR for processing by readdir() , telldir() , seekdir() ,
rewinddir() , and closedir() . Returns TRUE if successful. DIRHANDLEs have the
own namespace separate from FILEHANDLEs.

ord EXPR
ord Returns the numeric ascii value of the first character of EXPR. If EXPR is omitted, uses$_.

For the reverse, see /chr.

pack TEMPLATE,LIST
Takes an array or list of values and packs it into a binary structure, returning the s
containing the structure. The TEMPLATE is a sequence of characters that give the orde
type of values, as follows:

 A An ascii string, will be space padded.
 a An ascii string, will be null padded.
 b A bit string (ascending bit order, like vec()).
 B A bit string (descending bit order).
 h A hex string (low nybble first).
 H A hex string (high nybble first).

 c A signed char value.
 C An unsigned char value.

 s A signed short value.
 S An unsigned short value.

 (This ’short’ is _exactly_ 16 bits, which may differ from
 what a local C compiler calls ’short’.)

 i A signed integer value.
 I An unsigned integer value.

 (This ’integer’ is _at_least_ 32 bits wide. Its exact
 size depends on what a local C compiler calls ’int’,
240 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

xcept
s

lls or

g.
ly get

ding
ine
ard
acked
th use
art of
 and
(i.e.,
 and may even be larger than the ’long’ described in
 the next item.)

 l A signed long value.
 L An unsigned long value.

 (This ’long’ is _exactly_ 32 bits, which may differ from
 what a local C compiler calls ’long’.)

 n A short in "network" (big−endian) order.
 N A long in "network" (big−endian) order.
 v A short in "VAX" (little−endian) order.
 V A long in "VAX" (little−endian) order.

 (These ’shorts’ and ’longs’ are _exactly_ 16 bits and
 exactly 32 bits, respectively.)

 f A single−precision float in the native format.
 d A double−precision float in the native format.

 p A pointer to a null−terminated string.
 P A pointer to a structure (fixed−length string).

 u A uuencoded string.

 w A BER compressed integer. Its bytes represent an unsigned
integer in base 128, most significant digit first, with as

 few digits as possible. Bit eight (the high bit) is set
 on each byte except the last.

 x A null byte.
 X Back up a byte.
 @ Null fill to absolute position.

Each letter may optionally be followed by a number giving a repeat count. With all types e
"a" , "A" , "b" , "B" , "h" , "H" , and "P" the pack function will gobble up that many value
from the LIST. A * for the repeat count means to use however many items are left. The"a"
and "A" types gobble just one value, but pack it as a string of length count, padding with nu
spaces as necessary. (When unpacking, "A" strips trailing spaces and nulls, but "a" does not.)
Likewise, the "b" and "B" fields pack a string that many bits long. The "h" and "H" fields
pack a string that many nybbles long. The "p" type packs a pointer to a null− terminated strin
You are responsible for ensuring the string is not a temporary value (which can potential
deallocated before you get around to using the packed result). The "P" packs a pointer to a
structure of the size indicated by the length. A NULL pointer is created if the correspon
value for "p" or "P" is undef . Real numbers (floats and doubles) are in the native mach
format only; due to the multiplicity of floating formats around, and the lack of a stand
"network" representation, no facility for interchange has been made. This means that p
floating point data written on one machine may not be readable on another − even if bo
IEEE floating point arithmetic (as the endian−ness of the memory representation is not p
the IEEE spec). Note that Perl uses doubles internally for all numeric calculation,
converting from double into float and thence back to double again will lose precision
unpack("f", pack("f", $foo)) will not in general equal $foo).

Examples:

 $foo = pack("cccc",65,66,67,68);
 # foo eq "ABCD"
 $foo = pack("c4",65,66,67,68);
 # same thing

 $foo = pack("ccxxcc",65,66,67,68);
 # foo eq "AB\0\0CD"
18−Oct−1998 Version 5.005_02 241

perlfunc Perl Programmers Reference Guide perlfunc

ckage
scope
s
e used

mpiler
es by

fully
s.

See

 a loop
t Perl‘s

 to

s the
 $foo = pack("s2",1,2);
 # "\1\0\2\0" on little−endian
 # "\0\1\0\2" on big−endian

 $foo = pack("a4","abcd","x","y","z");
 # "abcd"

 $foo = pack("aaaa","abcd","x","y","z");
 # "axyz"

 $foo = pack("a14","abcdefg");
 # "abcdefg\0\0\0\0\0\0\0"

 $foo = pack("i9pl", gmtime);
 # a real struct tm (on my system anyway)

 sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, −32)));

 }

The same template may generally also be used in the unpack function.

package
package NAMESPACE

Declares the compilation unit as being in the given namespace. The scope of the pa
declaration is from the declaration itself through the end of the enclosing block (the same
as the local() operator). All further unqualified dynamic identifiers will be in thi
namespace. A package statement affects only dynamic variables—including those you‘v
local() on—but not lexical variables created with my() . Typically it would be the first
declaration in a file to be included by the require or use operator. You can switch into a
package in more than one place; it merely influences which symbol table is used by the co
for the rest of that block. You can refer to variables and filehandles in other packag
prefixing the identifier with the package name and a double colon: $Package::Variable.
If the package name is null, the main package as assumed. That is, $::sail is equivalent to
$main::sail.

If NAMESPACE is omitted, then there is no current package, and all identifiers must be
qualified or lexicals. This is stricter than use strict , since it also extends to function name

See Packages in perlmod for more information about packages, modules, and classes.
perlsub for other scoping issues.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that if you set up
of piped processes, deadlock can occur unless you are very careful. In addition, note tha
pipes use stdio buffering, so you may need to set $| to flush your WRITEHANDLE after each
command, depending on the application.

See IPC::Open2, IPC::Open3, and Bidirectional Communication in perlipc for examples of such
things.

pop ARRAY
pop Pops and returns the last value of the array, shortening the array by 1. Has a similar effect

 $tmp = $ARRAY[$#ARRAY−−];

If there are no elements in the array, returns the undefined value. If ARRAY is omitted, pop
@ARGV array in the main program, and the @_ array in subroutines, just like shift() .
242 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

Such

ssful.
me of
: If
erator
ed,

tput
e print
u call
llow
sis to
.

use

as the
in

ieve.

If
pe
rns

ength
pos SCALAR
pos Returns the offset of where the last m//g search left off for the variable is in question ($_ is

used when the variable is not specified). May be modified to change that offset.
modification will also influence the \G zero−width assertion in regular expressions. See perlre
and perlop.

print FILEHANDLE LIST
print LIST
print Prints a string or a comma−separated list of strings. Returns TRUE if succe

FILEHANDLE may be a scalar variable name, in which case the variable contains the na
or a reference to the filehandle, thus introducing one level of indirection. (NOTE
FILEHANDLE is a variable and the next token is a term, it may be misinterpreted as an op
unless you interpose a + or put parentheses around the arguments.) If FILEHANDLE is omitt
prints by default to standard output (or to the last selected output channel—see /select). If LIST
is also omitted, prints $_ to the currently selected output channel. To set the default ou
channel to something other than STDOUT use the select operation. Note that, becaus
takes a LIST, anything in the LIST is evaluated in list context, and any subroutine that yo
will have one or more of its expressions evaluated in list context. Also be careful not to fo
the print keyword with a left parenthesis unless you want the corresponding right parenthe
terminate the arguments to the print—interpose a + or put parentheses around all the arguments

Note that if you‘re storing FILEHANDLES in an array or other expression, you will have to
a block returning its value instead:

 print { $files[$i] } "stuff\n";
 print { $OK ? STDOUT : STDERR } "stuff\n";

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

Equivalent to print FILEHANDLE sprintf(FORMAT, LIST) , except that $\ (the
output record separator) is not appended. The first argument of the list will be interpreted
printf() format. If use locale is in effect, the character used for the decimal point
formatted real numbers is affected by the LC_NUMERIC locale. See perllocale.

Don‘t fall into the trap of using a printf() when a simple print() would do. The
print() is more efficient and less error prone.

prototype FUNCTION
Returns the prototype of a function as a string (or undef if the function has no prototype).
FUNCTION is a reference to, or the name of, the function whose prototype you want to retr

If FUNCTION is a string starting with CORE:: , the rest is taken as a name for Perl builtin.
builtin is not overridable (such as qw//) or its arguments cannot be expressed by a prototy
(such as system()) − in other words, the builtin does not behave like a Perl function − retu
undef . Otherwise, the string describing the equivalent prototype is returned.

push ARRAY,LIST
Treats ARRAY as a stack, and pushes the values of LIST onto the end of ARRAY. The l
of ARRAY increases by the length of LIST. Has the same effect as

 for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

 }

but is more efficient. Returns the new number of elements in the array.

q/STRING/
18−Oct−1998 Version 5.005_02 243

perlfunc Perl Programmers Reference Guide perlfunc

is, all
d

e

XPR.

 then

ied
as

y be
 call is
l, see

ns an

le line
f lines

fatal
qq/STRING/
qr/STRING/
qx/STRING/
qw/STRING/

Generalized quotes. See perlop.

quotemeta EXPR
quotemeta

Returns the value of EXPR with all non−alphanumeric characters backslashed. (That
characters not matching /[A−Za−z_0−9]/ will be preceded by a backslash in the returne
string, regardless of any locale settings.) This is the internal function implementing th\Q
escape in double−quoted strings.

If EXPR is omitted, uses $_.

rand EXPR
rand Returns a random fractional number greater than or equal to and less than the value of E

(EXPR should be positive.) If EXPR is omitted, the value 1 is used. Automatically calls
srand() unless srand() has already been called. See also srand() .

(Note: If your rand function consistently returns numbers that are too large or too small,
your version of Perl was probably compiled with the wrong number of RANDBITS.)

read FILEHANDLE,SCALAR,LENGTH,OFFSET
read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specif
FILEHANDLE. Returns the number of bytes actually read, at end of file, or undef if there w
an error. SCALAR will be grown or shrunk to the length actually read. An OFFSET ma
specified to place the read data at some other place than the beginning of the string. This
actually implemented in terms of stdio‘s fread(3) call. To get a true read(2) system cal
sysread() .

readdir DIRHANDLE
Returns the next directory entry for a directory opened by opendir() . If used in list context,
returns all the rest of the entries in the directory. If there are no more entries, retur
undefined value in scalar context or a null list in list context.

If you‘re planning to filetest the return values out of a readdir() , you‘d better prepend the
directory in question. Otherwise, because we didn‘t chdir() there, it would have been testing
the wrong file.

 opendir(DIR, $some_dir) || die "can’t opendir $some_dir: $!";
 @dots = grep { /^\./ && −f "$some_dir/$_" } readdir(DIR);
 closedir DIR;

readline EXPR
Reads from the filehandle whose typeglob is contained in EXPR. In scalar context, a sing
is read and returned. In list context, reads until end−of−file is reached and returns a list o
(however you‘ve defined lines with $/ or $INPUT_RECORD_SEPARATOR). This is the
internal function implementing the <EXPR> operator, but you can use it directly. The <EXPR>
operator is discussed in more detail in I/O Operators in perlop.

 $line = <STDIN>;
 $line = readline(*STDIN); # same thing

readlink EXPR
readlink Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a

error. If there is some system error, returns the undefined value and sets $! (errno). If EXPR is
omitted, uses $_.
244 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

and is
 list

n

riable

ALAR
call of

The
 the
lie to

,
nce to.

returned
readpipe EXPR
EXPR is executed as a system command. The collected standard output of the comm
returned. In scalar context, it comes back as a single (potentially multi−line) string. In
context, returns a list of lines (however you‘ve defined lines with $/ or
$INPUT_RECORD_SEPARATOR). This is the internal function implementing the qx/EXPR/
operator, but you can use it directly. The qx/EXPR/ operator is discussed in more detail i
I/O Operators in perlop.

recv SOCKET,SCALAR,LEN,FLAGS
Receives a message on a socket. Attempts to receive LENGTH bytes of data into va
SCALAR from the specified SOCKET filehandle. Actually does a C recvfrom() , so that it
can return the address of the sender. Returns the undefined value if there‘s an error. SC
will be grown or shrunk to the length actually read. Takes the same flags as the system
the same name. See UDP: Message Passing in perlipc for examples.

redo LABEL
redo The redo command restarts the loop block without evaluating the conditional again.

continue block, if any, is not executed. If the LABEL is omitted, the command refers to
innermost enclosing loop. This command is normally used by programs that want to
themselves about what was just input:

 # a simpleminded Pascal comment stripper
 # (warning: assumes no { or } in strings)
 LINE: while (<STDIN>) {

while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
if (s|{.*| |) {
 $front = $_;
 while (<STDIN>) {

if (/}/) { # end of comment?
 s|^|$front\{|;
 redo LINE;
}

 }
}
print;

 }

See also /continue for an illustration of how last , next , and redo work.

ref EXPR
ref Returns a TRUE value if EXPR is a reference, FALSE otherwise. If EXPR is not specified$_

will be used. The value returned depends on the type of thing the reference is a refere
Builtin types include:

 REF
 SCALAR
 ARRAY
 HASH
 CODE
 GLOB

If the referenced object has been blessed into a package, then that package name is
instead. You can think of ref() as a typeof() operator.

 if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

 }
18−Oct−1998 Version 5.005_02 245

perlfunc Perl Programmers Reference Guide perlfunc

file is

eturn
o it‘s

dules
 if (!ref($r)) {
print "r is not a reference at all.\n";

 }

See also perlref.

rename OLDNAME,NEWNAME
Changes the name of a file. Returns 1 for success, otherwise. Will not work across file
system boundaries.

require EXPR
require Demands some semantics specified by EXPR, or by $_ if EXPR is not supplied. If EXPR is

numeric, demands that the current version of Perl ($] or $PERL_VERSION) be equal or
greater than EXPR.

Otherwise, demands that a library file be included if it hasn‘t already been included. The
included via the do−FILE mechanism, which is essentially just a variety of eval() . Has
semantics similar to the following subroutine:

 sub require {
my($filename) = @_;
return 1 if $INC{$filename};
my($realfilename,$result);
ITER: {
 foreach $prefix (@INC) {

$realfilename = "$prefix/$filename";
if (−f $realfilename) {
 $result = do $realfilename;
 last ITER;
}

 }
 die "Can’t find $filename in \@INC";
}
die $@ if $@;
die "$filename did not return true value" unless $result;
$INC{$filename} = $realfilename;
return $result;

 }

Note that the file will not be included twice under the same specified name. The file must r
TRUE as the last statement to indicate successful execution of any initialization code, s
customary to end such a file with "1; " unless you‘re sure it‘ll return TRUE otherwise. But it‘s
better just to put the "1; ", in case you add more statements.

If EXPR is a bareword, the require assumes a ".pm" extension and replaces ":: " with "/" in the
filename for you, to make it easy to load standard modules. This form of loading of mo
does not risk altering your namespace.

In other words, if you try this:

 require Foo::Bar; # a splendid bareword

The require function will actually look for the "Foo/Bar.pm" file in the directories specified in
the @INC array.

But if you try this:

 $class = ’Foo::Bar’;
 require $class; # $class is not a bareword
 #or
246 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

racters
rs are

turns 1.

t they
. See

f
used,

 in a

n the

r. In
f those

alue is
verted
e time

R in
 require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the "Foo::Bar" file in the @INC array and will complain
about not finding "Foo::Bar" there. In this case you can do:

 eval "require $class";

For a yet−more−powerful import facility, see /use and perlmod.

reset EXPR
reset Generally used in a continue block at the end of a loop to clear variables and reset ??

searches so that they work again. The expression is interpreted as a list of single cha
(hyphens allowed for ranges). All variables and arrays beginning with one of those lette
reset to their pristine state. If the expression is omitted, one−match searches (?pattern?) are
reset to match again. Resets only variables or searches in the current package. Always re
 Examples:

 reset ’X’; # reset all X variables
 reset ’a−z’; # reset lower case variables
 reset; # just reset ?? searches

Resetting "A−Z" is not recommended because you‘ll wipe out your @ARGV and @INC arrays
and your %ENV hash. Resets only package variables—lexical variables are unaffected, bu
clean themselves up on scope exit anyway, so you‘ll probably want to use them instead
/my.

return EXPR
return Returns from a subroutine, eval() , or do FILE with the value given in EXPR. Evaluation o

EXPR may be in list, scalar, or void context, depending on how the return value will be
and the context may vary from one execution to the next (see wantarray()). If no EXPR is
given, returns an empty list in list context, an undefined value in scalar context, or nothing
void context.

(Note that in the absence of a return, a subroutine, eval, or do FILE will automatically retur
value of the last expression evaluated.)

reverse LIST
In list context, returns a list value consisting of the elements of LIST in the opposite orde
scalar context, concatenates the elements of LIST, and returns a string value consisting o
bytes, but in the opposite order.

 print reverse <>; # line tac, last line first

 undef $/; # for efficiency of <>
 print scalar reverse <>; # byte tac, last line tsrif

This operator is also handy for inverting a hash, although there are some caveats. If a v
duplicated in the original hash, only one of those can be represented as a key in the in
hash. Also, this has to unwind one hash and build a whole new one, which may take som
on a large hash.

 %by_name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory for the readdir() routine on
DIRHANDLE.

rindex STR,SUBSTR,POSITION
rindex STR,SUBSTR

Works just like index except that it returns the position of the LAST occurrence of SUBST
STR. If POSITION is specified, returns the last occurrence at or before that position.
18−Oct−1998 Version 5.005_02 247

perlfunc Perl Programmers Reference Guide perlfunc

rns

cause
e the

 are

tants

riting.
of

d

o

ething

e
s the

ut, if

tput
rmdir FILENAME
rmdir Deletes the directory specified by FILENAME if that directory is empty. If it succeeds it retu

TRUE, otherwise it returns FALSE and sets $! (errno). If FILENAME is omitted, uses $_.

s/// The substitution operator. See perlop.

scalar EXPR
Forces EXPR to be interpreted in scalar context and returns the value of EXPR.

 @counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in list context be
it‘s in practice never needed. If you really wanted to do so, however, you could us
construction @{[(some expression)]} , but usually a simple (some expression)
suffices.

seek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE‘s position, just like the fseek() call of stdio() . FILEHANDLE may
be an expression whose value gives the name of the filehandle. The values for WHENCE
to set the new position to POSITION, 1 to set it to the current position plus POSITION, and 2 to
set it to EOF plus POSITION (typically negative). For WHENCE you may use the cons
SEEK_SET, SEEK_CUR, and SEEK_END from either the IO::Seekable or the POSIX
module. Returns 1 upon success, otherwise.

If you want to position file for sysread() or syswrite() , don‘t use seek() — buffering
makes its effect on the file‘s system position unpredictable and non−portable. Use sysseek()
instead.

On some systems you have to do a seek whenever you switch between reading and w
Amongst other things, this may have the effect of calling stdio‘s clearerr(3). A WHENCE 1
(SEEK_CUR) is useful for not moving the file position:

 seek(TEST,0,1);

This is also useful for applications emulating tail −f . Once you hit EOF on your read, an
then sleep for a while, you might have to stick in a seek() to reset things. The seek()
doesn‘t change the current position, but it does clear the end−of−file condition on the handle, s
that the next <FILE> makes Perl try again to read something. We hope.

If that doesn‘t work (some stdios are particularly cantankerous), then you may need som
more like this:

 for (;;) {
for ($curpos = tell(FILE); $_ = <FILE>;

 $curpos = tell(FILE)) {
 # search for some stuff and put it into files
}
sleep($for_a_while);
seek(FILE, $curpos, 0);

 }

seekdir DIRHANDLE,POS
Sets the current position for the readdir() routine on DIRHANDLE. POS must be a valu
returned by telldir() . Has the same caveats about possible directory compaction a
corresponding system library routine.

select FILEHANDLE
select Returns the currently selected filehandle. Sets the current default filehandle for outp

FILEHANDLE is supplied. This has two effects: first, a write() or a print() without a
filehandle will default to this FILEHANDLE. Second, references to variables related to ou
248 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

ore

ndle.

ng to

 using

ay be

ve to
will refer to this output channel. For example, if you have to set the top of form format for m
than one output channel, you might do the following:

 select(REPORT1);
 $^ = ’report1_top’;
 select(REPORT2);
 $^ = ’report2_top’;

FILEHANDLE may be an expression whose value gives the name of the actual fileha
Thus:

 $oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferri
write the last example as:

 use IO::Handle;
 STDERR−>autoflush(1);

select RBITS,WBITS,EBITS,TIMEOUT
This calls the select(2) system call with the bit masks specified, which can be constructed
fileno() and vec() , along these lines:

 $rin = $win = $ein = ’’;
 vec($rin,fileno(STDIN),1) = 1;
 vec($win,fileno(STDOUT),1) = 1;
 $ein = $rin | $win;

If you want to select on many filehandles you might wish to write a subroutine:

 sub fhbits {
my(@fhlist) = split(’ ’,$_[0]);
my($bits);
for (@fhlist) {
 vec($bits,fileno($_),1) = 1;
}
$bits;

 }
 $rin = fhbits(’STDIN TTY SOCK’);

The usual idiom is:

 ($nfound,$timeleft) =
 select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this

 $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not bother to return anything useful in $timeleft, so calling select() in
scalar context just returns $nfound.

Any of the bit masks can also be undef. The timeout, if specified, is in seconds, which m
fractional. Note: not all implementations are capable of returning the$timeleft. If not, they
always return $timeleft equal to the supplied $timeout.

You can effect a sleep of 250 milliseconds this way:

 select(undef, undef, undef, 0.25);

WARNING : One should not attempt to mix buffered I/O (like read() or <FH>) with
select() , except as permitted by POSIX, and even then only on POSIX systems. You ha
use sysread() instead.
18−Oct−1998 Version 5.005_02 249

perlfunc Perl Programmers Reference Guide perlfunc

ust
eturns
ue

alue if

ng and
 can be

ful, or

ame. On
s a C
error.

ce a
itted,

,

 Will

ay be

ving
RAY
the
semctl ID,SEMNUM,CMD,ARG
Calls the System V IPC function semctl() . You‘ll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT or GETALL, then ARG m
be a variable which will hold the returned semid_ds structure or semaphore value array. R
like ioctl() : the undefined value for error, " but true" for zero, or the actual return val
otherwise. See also IPC::SysV and IPC::Semaphore documentation.

semget KEY,NSEMS,FLAGS
Calls the System V IPC function semget. Returns the semaphore id, or the undefined v
there is an error. See also IPC::SysV and IPC::SysV::Semaphore documentation.

semop KEY,OPSTRING
Calls the System V IPC function semop to perform semaphore operations such as signali
waiting. OPSTRING must be a packed array of semop structures. Each semop structure
generated with pack("sss", $semnum, $semop, $semflag). The number of
semaphore operations is implied by the length of OPSTRING. Returns TRUE if success
FALSE if there is an error. As an example, the following code waits on semaphore $semnum of
semaphore id $semid:

 $semop = pack("sss", $semnum, −1, 0);
 die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace −1 with 1. See also IPC::SysV and
IPC::SysV::Semaphore documentation.

send SOCKET,MSG,FLAGS,TO
send SOCKET,MSG,FLAGS

Sends a message on a socket. Takes the same flags as the system call of the same n
unconnected sockets you must specify a destination to send TO, in which case it doe
sendto() . Returns the number of characters sent, or the undefined value if there is an
See UDP: Message Passing in perlipc for examples.

setpgrp PID,PGRP
Sets the current process group for the specified PID, for the current process. Will produ
fatal error if used on a machine that doesn‘t implement setpgrp(2). If the arguments are om
it defaults to 0,0 . Note that the POSIX version of setpgrp() does not accept any arguments
so only setpgrp 0,0 is portable.

setpriority WHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (See setpriority(2).)
produce a fatal error if used on a machine that doesn‘t implement setpriority(2).

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an error. OPTVAL m
specified as undef if you don‘t want to pass an argument.

shift ARRAY
shift Shifts the first value of the array off and returns it, shortening the array by 1 and mo

everything down. If there are no elements in the array, returns the undefined value. If AR
is omitted, shifts the @_ array within the lexical scope of subroutines and formats, and
@ARGV array at file scopes or within the lexical scopes established by the eval ‘’ , BEGIN
{} , END {} , and INIT {} constructs. See also unshift() , push() , and pop() .
Shift() and unshift() do the same thing to the left end of an array that pop() and
push() do to the right end.
250 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

r

or the

 SIZE
iable
d; if
, or

same

done
es the

 if the
ou

pending
appear
ay in a

PE,
should
in
shmctl ID,CMD,ARG
Calls the System V IPC function shmctl. You‘ll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a variable
which will hold the returned shmid_ds structure. Returns like ioctl: the undefined value fo
error, " but true" for zero, or the actual return value otherwise. See also IPC::SysV
documentation.

shmget KEY,SIZE,FLAGS
Calls the System V IPC function shmget. Returns the shared memory segment id,
undefined value if there is an error. See also IPC::SysV documentation.

shmread ID,VAR,POS,SIZE
shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at position POS for size
by attaching to it, copying in/out, and detaching from it. When reading, VAR must be a var
that will hold the data read. When writing, if STRING is too long, only SIZE bytes are use
STRING is too short, nulls are written to fill out SIZE bytes. Return TRUE if successful
FALSE if there is an error. See also IPC::SysV documentation.

shutdown SOCKET,HOW
Shuts down a socket connection in the manner indicated by HOW, which has the
interpretation as in the system call of the same name.

 shutdown(SOCKET, 0); # I/we have stopped reading data
 shutdown(SOCKET, 1); # I/we have stopped writing data
 shutdown(SOCKET, 2); # I/we have stopped using this socket

This is useful with sockets when you want to tell the other side you‘re done writing but not
reading, or vice versa. It‘s also a more insistent form of close because it also disabl
filedescriptor in any forked copies in other processes.

sin EXPR
sin Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of $_.

For the inverse sine operation, you may use the POSIX::asin() function, or use this relation:

 sub asin { atan2($_[0], sqrt(1 − $_[0] * $_[0])) }

sleep EXPR
sleep Causes the script to sleep for EXPR seconds, or forever if no EXPR. May be interrupted

process receives a signal such as SIGALRM. Returns the number of seconds actually slept. Y
probably cannot mix alarm() and sleep() calls, because sleep() is often implemented
using alarm() .

On some older systems, it may sleep up to a full second less than what you requested, de
on how it counts seconds. Most modern systems always sleep the full amount. They may
to sleep longer than that, however, because your process might not be scheduled right aw
busy multitasking system.

For delays of finer granularity than one second, you may use Perl‘s syscall() interface to
access setitimer(2) if your system supports it, or else see /select() above.

See also the POSIX module‘s sigpause() function.

socket SOCKET,DOMAIN,TYPE,PROTOCOL
Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, TY
and PROTOCOL are specified the same as for the system call of the same name. You
"use Socket; " first to get the proper definitions imported. See the example
18−Oct−1998 Version 5.005_02 251

perlfunc Perl Programmers Reference Guide perlfunc

AIN,
e. If

of a
w the

se the
e of a

 the
 to be

ators
Sockets: Client/Server Communication in perlipc.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
Creates an unnamed pair of sockets in the specified domain, of the specified type. DOM
TYPE, and PROTOCOL are specified the same as for the system call of the same nam
unimplemented, yields a fatal error. Returns TRUE if successful.

Some systems defined pipe() in terms of socketpair() , in which a call to pipe(Rdr,
Wtr) is essentially:

 use Socket;
 socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
 shutdown(Rdr, 1); # no more writing for reader
 shutdown(Wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use.

sort SUBNAME LIST
sort BLOCK LIST
sort LIST Sorts the LIST and returns the sorted list value. If SUBNAME or BLOCK is omitted, sort() s

in standard string comparison order. If SUBNAME is specified, it gives the name
subroutine that returns an integer less than, equal to, or greater than , depending on ho
elements of the array are to be ordered. (The <=> and cmp operators are extremely useful in
such routines.) SUBNAME may be a scalar variable name (unsubscripted), in which ca
value provides the name of (or a reference to) the actual subroutine to use. In plac
SUBNAME, you can provide a BLOCK as an anonymous, in−line sort subroutine.

In the interests of efficiency the normal calling code for subroutines is bypassed, with
following effects: the subroutine may not be a recursive subroutine, and the two elements
compared are passed into the subroutine not via @_ but as the package global variables $a and
$b (see example below). They are passed by reference, so don‘t modify $a and $b. And don‘t
try to declare them as lexicals either.

You also cannot exit out of the sort block or subroutine using any of the loop control oper
described in perlsyn or with goto() .

When use locale is in effect, sort LIST sorts LIST according to the current collation
locale. See perllocale.

Examples:

 # sort lexically
 @articles = sort @files;

 # same thing, but with explicit sort routine
 @articles = sort {$a cmp $b} @files;

 # now case−insensitively
 @articles = sort {uc($a) cmp uc($b)} @files;

 # same thing in reversed order
 @articles = sort {$b cmp $a} @files;

 # sort numerically ascending
 @articles = sort {$a <=> $b} @files;

 # sort numerically descending
 @articles = sort {$b <=> $a} @files;

 # sort using explicit subroutine name
 sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
252 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

s.
 }
 @sortedclass = sort byage @class;

 # this sorts the %age hash by value instead of key
 # using an in−line function
 @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

 sub backwards { $b cmp $a; }
 @harry = (’dog’,’cat’,’x’,’Cain’,’Abel’);
 @george = (’gone’,’chased’,’yz’,’Punished’,’Axed’);
 print sort @harry;

 # prints AbelCaincatdogx
 print sort backwards @harry;

 # prints xdogcatCainAbel
 print sort @george, ’to’, @harry;

 # prints AbelAxedCainPunishedcatchaseddoggonetoxyz

 # inefficiently sort by descending numeric compare using
 # the first integer after the first = sign, or the
 # whole record case−insensitively otherwise

 @new = sort {
($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]

 ||
 uc($a) cmp uc($b)

 } @old;

 # same thing, but much more efficiently;
 # we’ll build auxiliary indices instead
 # for speed
 @nums = @caps = ();
 for (@old) {

push @nums, /=(\d+)/;
push @caps, uc($_);

 }

 @new = @old[sort {
$nums[$b] <=> $nums[$a]

 ||
$caps[$a] cmp $caps[$b]

 } 0..$#old
];

 # same thing using a Schwartzian Transform (no temps)
 @new = map { $_−>[0] }
 sort { $b−>[1] <=> $a−>[1]
 ||
 $a−>[2] cmp $b−>[2]
 } map { [$_, /=(\d+)/, uc($_)] } @old;

If you‘re using strict, you MUST NOT declare $a and $b as lexicals. They are package global
That means if you‘re in the main package, it‘s

 @articles = sort {$main::b <=> $main::a} @files;

or just

 @articles = sort {$::b <=> $::a} @files;

but if you‘re in the FooPack package, it‘s
18−Oct−1998 Version 5.005_02 253

perlfunc Perl Programmers Reference Guide perlfunc

times
ults

s them
rray.

end of
 is
 hold

 are

s
ur

er
iter

plit
ial
n

arate
 @articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns inconsistent results (some
saying $x[1] is less than $x[2] and sometimes saying the opposite, for example) the res
are not well−defined.

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET

Removes the elements designated by OFFSET and LENGTH from an array, and replace
with the elements of LIST, if any. In list context, returns the elements removed from the a
In scalar context, returns the last element removed, or undef if no elements are removed. The
array grows or shrinks as necessary. If OFFSET is negative then it start that far from the
the array. If LENGTH is omitted, removes everything from OFFSET onward. If LENGTH
negative, leave that many elements off the end of the array. The following equivalences
(assuming $[== 0):

 push(@a,$x,$y) splice(@a,@a,0,$x,$y)
 pop(@a) splice(@a,−1)
 shift(@a) splice(@a,0,1)
 unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
 $a[$x] = $y splice(@a,$x,1,$y)

Example, assuming array lengths are passed before arrays:

 sub aeq { # compare two list values
my(@a) = splice(@_,0,shift);
my(@b) = splice(@_,0,shift);
return 0 unless @a == @b; # same len?
while (@a) {
 return 0 if pop(@a) ne pop(@b);
}
return 1;

 }
 if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split Splits a string into an array of strings, and returns it. By default, empty leading fields

preserved, and empty trailing ones are deleted.

If not in list context, returns the number of fields found and splits into the @_ array. (In list
context, you can force the split into @_ by using ?? as the pattern delimiters, but it still return
the list value.) The use of implicit split to @_ is deprecated, however, because it clobbers yo
subroutine arguments.

If EXPR is omitted, splits the $_ string. If PATTERN is also omitted, splits on whitespace (aft
skipping any leading whitespace). Anything matching PATTERN is taken to be a delim
separating the fields. (Note that the delimiter may be longer than one character.)

If LIMIT is specified and positive, splits into no more than that many fields (though it may s
into fewer). If LIMIT is unspecified or zero, trailing null fields are stripped (which potent
users of pop() would do well to remember). If LIMIT is negative, it is treated as if a
arbitrarily large LIMIT had been specified.

A pattern matching the null string (not to be confused with a null pattern // , which is just one
member of the set of patterns matching a null string) will split the value of EXPR into sep
characters at each point it matches that way. For example:
254 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

ber
en 4
you

tching

y at

g
e

al

rs are
 print join(’:’, split(/ */, ’hi there’));

produces the output ‘h:i:t:h:e:r:e’.

The LIMIT parameter can be used to split a line partially

 ($login, $passwd, $remainder) = split(/:/, $_, 3);

When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT one larger than the num
of variables in the list, to avoid unnecessary work. For the list above LIMIT would have be
by default. In time critical applications it behooves you not to split into more fields than
really need.

If the PATTERN contains parentheses, additional array elements are created from each ma
substring in the delimiter.

 split(/([,−])/, "1−10,20", 3);

produces the list value

 (1, ’−’, 10, ’,’, 20)

If you had the entire header of a normal Unix email message in $header, you could split it up
into fields and their values this way:

 $header =~ s/\n\s+/ /g; # fix continuation lines
 %hdrs = (UNIX_FROM => split /^(\S*?):\s*/m, $header);

The pattern /PATTERN/ may be replaced with an expression to specify patterns that var
runtime. (To do runtime compilation only once, use /$variable/o.)

As a special case, specifying a PATTERN of space (’ ’) will split on white space just as
split() with no arguments does. Thus, split(’ ’) can be used to emulate awk‘s default
behavior, whereas split(/ /) will give you as many null initial fields as there are leadin
spaces. A split() on /\s+/ is like a split(’ ’) except that any leading whitespac
produces a null first field. A split() with no arguments really does a split(’ ‘, $_)
internally.

Example:

 open(PASSWD, ’/etc/passwd’);
 while (<PASSWD>) {

($login, $passwd, $uid, $gid,
 $gcos, $home, $shell) = split(/:/);

#...
 }

(Note that $shell above will still have a newline on it. See /chop, /chomp, and /join.)

sprintf FORMAT, LIST
Returns a string formatted by the usual printf() conventions of the C library function
sprintf() . See sprintf(3) or printf(3) on your system for an explanation of the gener
principles.

Perl does its own sprintf() formatting — it emulates the C function sprintf() , but it
doesn‘t use it (except for floating−point numbers, and even then only the standard modifie
allowed). As a result, any non−standard extensions in your local sprintf() are not available
from Perl.

Perl‘s sprintf() permits the following universally−known conversions:

 %% a percent sign
 %c a character with the given number
 %s a string
18−Oct−1998 Version 5.005_02 255

perlfunc Perl Programmers Reference Guide perlfunc

ese

e
idth or

bers

ersions
 %d a signed integer, in decimal
 %u an unsigned integer, in decimal
 %o an unsigned integer, in octal
 %x an unsigned integer, in hexadecimal
 %e a floating−point number, in scientific notation
 %f a floating−point number, in fixed decimal notation
 %g a floating−point number, in %e or %f notation

In addition, Perl permits the following widely−supported conversions:

 %X like %x, but using upper−case letters
 %E like %e, but using an upper−case "E"
 %G like %g, but with an upper−case "E" (if applicable)
 %p a pointer (outputs the Perl value’s address in hexadecimal)
 %n special: *stores* the number of characters output so far
 into the next variable in the parameter list

Finally, for backward (and we do mean "backward") compatibility, Perl permits th
unnecessary but widely−supported conversions:

 %i a synonym for %d
 %D a synonym for %ld
 %U a synonym for %lu
 %O a synonym for %lo
 %F a synonym for %f

Perl permits the following universally−known flags between the % and the conversion letter:

 space prefix positive number with a space
 + prefix positive number with a plus sign
 − left−justify within the field
 0 use zeros, not spaces, to right−justify
 # prefix non−zero octal with "0", non−zero hex with "0x"
 number minimum field width
 .number "precision": digits after decimal point for
 floating−point, max length for string, minimum length
 for integer
 l interpret integer as C type "long" or "unsigned long"
 h interpret integer as C type "short" or "unsigned short"

There is also one Perl−specific flag:

 V interpret integer as Perl’s standard integer type

Where a number would appear in the flags, an asterisk ("* ") may be used instead, in which cas
Perl uses the next item in the parameter list as the given number (that is, as the field w
precision). If a field width obtained through "* " is negative, it has the same effect as the "−" flag:
left−justification.

If use locale is in effect, the character used for the decimal point in formatted real num
is affected by the LC_NUMERIC locale. See perllocale.

sqrt EXPR
sqrt Return the square root of EXPR. If EXPR is omitted, returns square root of $_.

srand EXPR
srand Sets the random number seed for the rand() operator. If EXPR is omitted, uses a

semi−random value based on the current time and process ID, among other things. In v
of Perl prior to 5.004 the default seed was just the current time() . This isn‘t a particularly
good seed, so many old programs supply their own seed value (often time ^ $$ or time ^
256 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

in
 call

raphic
erating

‘re

t once

 via

current
($$ + ($$ << 15))), but that isn‘t necessary any more.

In fact, it‘s usually not necessary to call srand() at all, because if it is not called explicitly, it is
called implicitly at the first use of the rand() operator. However, this was not the case
version of Perl before 5.004, so if your script will run under older Perl versions, it should
srand() .

Note that you need something much more random than the default seed for cryptog
purposes. Checksumming the compressed output of one or more rapidly changing op
system status programs is the usual method. For example:

 srand (time ^ $$ ^ unpack "%L*", ‘ps axww | gzip‘);

If you‘re particularly concerned with this, see the Math::TrulyRandom module in CPAN.

Do not call srand() multiple times in your program unless you know exactly what you
doing and why you‘re doing it. The point of the function is to "seed" the rand() function so
that rand() can produce a different sequence each time you run your program. Just do i
at the top of your program, or you won‘t get random numbers out of rand() !

Frequently called programs (like CGI scripts) that simply use

 time ^ $$

for a seed can fall prey to the mathematical property that

 a^b == (a+1)^(b+1)

one−third of the time. So don‘t do that.

stat FILEHANDLE
stat EXPR
stat Returns a 13−element list giving the status info for a file, either the file opened

FILEHANDLE, or named by EXPR. If EXPR is omitted, it stats $_. Returns a null list if the
stat fails. Typically used as follows:

 ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
 $atime,$mtime,$ctime,$blksize,$blocks)
 = stat($filename);

Not all fields are supported on all filesystem types. Here are the meaning of the fields:

 0 dev device number of filesystem
 1 ino inode number
 2 mode file mode (type and permissions)
 3 nlink number of (hard) links to the file
 4 uid numeric user ID of file’s owner
 5 gid numeric group ID of file’s owner
 6 rdev the device identifier (special files only)
 7 size total size of file, in bytes
 8 atime last access time since the epoch
 9 mtime last modify time since the epoch
 10 ctime inode change time (NOT creation time!) since the epoch
 11 blksize preferred block size for file system I/O
 12 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1970 GMT.)

If stat is passed the special filehandle consisting of an underline, no stat is done, but the
contents of the stat structure from the last stat or filetest are returned. Example:

 if (−x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";
18−Oct−1998 Version 5.005_02 257

perlfunc Perl Programmers Reference Guide perlfunc

, if

n
ng on
aracter
h and
trings
 only
he
ade,

rest
rograms

ing a

he
 first

tire
er
than
 }

(This works on machines only for which the device number is negative under NFS.)

In scalar context, stat() returns a boolean value indicating success or failure, and
successful, sets the information associated with the special filehandle _.

study SCALAR
study Takes extra time to study SCALAR ($_ if unspecified) in anticipation of doing many patter

matches on the string before it is next modified. This may or may not save time, dependi
the nature and number of patterns you are searching on, and on the distribution of ch
frequencies in the string to be searched — you probably want to compare run times wit
without it to see which runs faster. Those loops which scan for many short constant s
(including the constant parts of more complex patterns) will benefit most. You may have
one study() active at a time — if you study a different scalar the first is "unstudied". (T
way study() works is this: a linked list of every character in the string to be searched is m
so we know, for example, where all the ‘k’ characters are. From each search string, the ra
character is selected, based on some static frequency tables constructed from some C p
and English text. Only those places that contain this "rarest" character are examined.)

For example, here is a loop that inserts index producing entries before any line contain
certain pattern:

 while (<>) {
study;
print ".IX foo\n" if /\bfoo\b/;
print ".IX bar\n" if /\bbar\b/;
print ".IX blurfl\n" if /\bblurfl\b/;
...
print;

 }

In searching for /\bfoo\b/ , only those locations in $_ that contain "f" will be looked at,
because "f" is rarer than "o" . In general, this is a big win except in pathological cases. T
only question is whether it saves you more time than it took to build the linked list in the
place.

Note that if you have to look for strings that you don‘t know till runtime, you can build an en
loop as a string and eval() that to avoid recompiling all your patterns all the time. Togeth
with undefining $/ to input entire files as one record, this can be very fast, often faster
specialized programs like fgrep(1). The following scans a list of files (@files) for a list of
words (@words), and prints out the names of those files that contain a match:

 $search = ’while (<>) { study;’;
 foreach $word (@words) {

$search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
 }
 $search .= "}";
 @ARGV = @files;
 undef $/;
 eval $search; # this screams
 $/ = "\n"; # put back to normal input delimiter
 foreach $file (sort keys(%seen)) {

print $file, "\n";
 }

sub BLOCK
258 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

tion
. See

u‘ve

tring.

rned.

 If
thing
h you

4th
 in one

e. To

nts as
ts are
If not,
ing is
‘t use

e not
em to

actice

fails,
rn

e

f
 avoid
sub NAME
sub NAME BLOCK

This is subroutine definition, not a real function per se. With just a NAME (and possibly
prototypes), it‘s just a forward declaration. Without a NAME, it‘s an anonymous func
declaration, and does actually return a value: the CODE ref of the closure you just created
perlsub and perlref for details.

substr EXPR,OFFSET,LEN,REPLACEMENT
substr EXPR,OFFSET,LEN
substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at offset , or whatever yo
set $[to (but don‘t do that). If OFFSET is negative (or more precisely, less than $[), starts
that far from the end of the string. If LEN is omitted, returns everything to the end of the s
If LEN is negative, leaves that many characters off the end of the string.

If you specify a substring that is partly outside the string, the part within the string is retu
If the substring is totally outside the string a warning is produced.

You can use the substr() function as an lvalue, in which case EXPR must be an lvalue.
you assign something shorter than LEN, the string will shrink, and if you assign some
longer than LEN, the string will grow to accommodate it. To keep the string the same lengt
may need to pad or chop your value using sprintf() .

An alternative to using substr() as an lvalue is to specify the replacement string as the
argument. This allows you to replace parts of the EXPR and return what was there before
operation.

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename. Returns 1 for success,
otherwise. On systems that don‘t support symbolic links, produces a fatal error at run tim
check for that, use eval:

 $symlink_exists = eval { symlink("",""); 1 };

syscall LIST
Calls the system call specified as the first element of the list, passing the remaining eleme
arguments to the system call. If unimplemented, produces a fatal error. The argumen
interpreted as follows: if a given argument is numeric, the argument is passed as an int.
the pointer to the string value is passed. You are responsible to make sure a str
pre−extended long enough to receive any result that might be written into a string. You can
a string literal (or other read−only string) as an argument to syscall() because Perl has to
assume that any string pointer might be written through. If your integer arguments ar
literals and have never been interpreted in a numeric context, you may need to add to th
force them to look like numbers. This emulates the syswrite() function (or vice versa):

 require ’syscall.ph’; # may need to run h2ph
 $s = "hi there\n";
 syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your system call, which in pr
should usually suffice.

Syscall returns whatever value returned by the system call it calls. If the system call
syscall() returns −1 and sets $! (errno). Note that some system calls can legitimately retu
−1. The proper way to handle such calls is to assign $!=0; before the call and check the valu
of $! if syscall returns −1.

There‘s a problem with syscall(&SYS_pipe): it returns the file number of the read end o
the pipe it creates. There is no way to retrieve the file number of the other end. You can
18−Oct−1998 Version 5.005_02 259

perlfunc Perl Programmers Reference Guide perlfunc

LE.
nted.

ey are
st
means
;

the

urrent

sks of
e
ld be
r
ore

 of

ied
inds
lly
s an
f the

an the
wards
n the
s

o, so

of the
this problem by using pipe() instead.

sysopen FILEHANDLE,FILENAME,MODE
sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with FILEHAND
If FILEHANDLE is an expression, its value is used as the name of the real filehandle wa
This function calls the underlying operating system‘s open() function with the parameters
FILENAME, MODE, PERMS.

The possible values and flag bits of the MODE parameter are system−dependent; th
available via the standard module Fcntl . For historical reasons, some values work on almo
every system supported by perl: zero means read−only, one means write−only, and two
read/write. We know that these values do not work under OS/390 Unix and on the Macintosh
you probably don‘t want to use them in new code.

If the file named by FILENAME does not exist and the open() call creates it (typically because
MODE includes the O_CREAT flag), then the value of PERMS specifies the permissions of
newly created file. If you omit the PERMS argument to sysopen() , Perl uses the octal value
0666 . These permission values need to be in octal, and are modified by your process‘s c
umask. The umask value is a number representing disabled permissions bits—if your umask
were 027 (group can‘t write; others can‘t read, write, or execute), then passing sysopen()
0666 would create a file with mode 0640 (0666 &~ 027 is 0640).

If you find this umask() talk confusing, here‘s some advice: supply a creation mode of 0666
for regular files and one of 0777 for directories (in mkdir()) and executable files. This gives
users the freedom of choice: if they want protected files, they might choose process uma
022 , 027 , or even the particularly antisocial mask of 077 . Programs should rarely if ever mak
policy decisions better left to the user. The exception to this is when writing files that shou
kept private: mail files, web browser cookies, .rhosts files, and so on. In short, seldom if eve
use 0644 as argument to sysopen() because that takes away the user‘s option to have a m
permissive umask. Better to omit it.

The IO::File module provides a more object−oriented approach, if you‘re into that kind
thing.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specif
FILEHANDLE, using the system call read(2). It bypasses stdio, so mixing this with other k
of reads, print() , write() , seek() , or tell() can cause confusion because stdio usua
buffers data. Returns the number of bytes actually read, at end of file, or undef if there wa
error. SCALAR will be grown or shrunk so that the last byte actually read is the last byte o
scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other th
beginning. A negative OFFSET specifies placement at that many bytes counting back
from the end of the string. A positive OFFSET greater than the length of SCALAR results i
string being padded to the required size with "\0" bytes before the result of the read i
appended.

sysseek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE‘s system position using the system call lseek(2). It bypasses stdi
mixing this with reads (other than sysread()), print() , write() , seek() , or tell()
may cause confusion. FILEHANDLE may be an expression whose value gives the name
filehandle. The values for WHENCE are to set the new position to POSITION, 1 to set the it
to the current position plus POSITION, and 2 to set it to EOF plus POSITION (typically
negative). For WHENCE, you may use the constants SEEK_SET, SEEK_CUR, and SEEK_END
from either the IO::Seekable or the POSIX module.
260 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

as the
u

nt
ending
array
ments
ed for
mmand

If
ctly to

e

he

bject to

ads

r the

n the
 the

set.

ose
 last
Returns the new position, or the undefined value on failure. A position of zero is returned
string " but true"; thus sysseek() returns TRUE on success and FALSE on failure, yet yo
can still easily determine the new position.

system LIST
system PROGRAM LIST

Does exactly the same thing as "exec LIST " except that a fork is done first, and the pare
process waits for the child process to complete. Note that argument processing varies dep
on the number of arguments. If there is more than one argument in LIST, or if LIST is an
with more than one value, starts the program given by the first element of the list with argu
given by the rest of the list. If there is only one scalar argument, the argument is check
shell metacharacters, and if there are any, the entire argument is passed to the system‘s co
shell for parsing (this is /bin/sh −c on Unix platforms, but varies on other platforms).
there are no shell metacharacters in the argument, it is split into words and passed dire
execvp() , which is more efficient.

The return value is the exit status of the program as returned by the wait() call. To get the
actual exit value divide by 256. See also /exec. This is NOT what you want to use to capture th
output from a command, for that you should use merely backticks or qx// , as described in
‘STRING‘ in perlop.

Like exec() , system() allows you to lie to a program about its name if you use t
"system PROGRAM LIST " syntax. Again, see /exec.

Because system() and backticks block SIGINT and SIGQUIT , killing the program they‘re
running doesn‘t actually interrupt your program.

 @args = ("command", "arg1", "arg2");
 system(@args) == 0

 or die "system @args failed: $?"

You can check all the failure possibilities by inspecting $? like this:

 $exit_value = $? >> 8;
 $signal_num = $? & 127;
 $dumped_core = $? & 128;

When the arguments get executed via the system shell, results and return codes will be su
its quirks and capabilities. See ‘STRING‘ in perlop and /exec for details.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
syswrite FILEHANDLE,SCALAR,LENGTH

Attempts to write LENGTH bytes of data from variable SCALAR to the specified
FILEHANDLE, using the system call write(2). It bypasses stdio, so mixing this with re
(other than sysread()) , print() , write() , seek() , or tell() may cause confusion
because stdio usually buffers data. Returns the number of bytes actually written, or undef if
there was an error. If the LENGTH is greater than the available data in the SCALAR afte
OFFSET, only as much data as is available will be written.

An OFFSET may be specified to write the data from some part of the string other tha
beginning. A negative OFFSET specifies writing that many bytes counting backwards from
end of the string. In the case the SCALAR is empty you can use OFFSET but only zero off

tell FILEHANDLE
tell Returns the current position for FILEHANDLE. FILEHANDLE may be an expression wh

value gives the name of the actual filehandle. If FILEHANDLE is omitted, assumes the file
read.
18−Oct−1998 Version 5.005_02 261

perlfunc Perl Programmers Reference Guide perlfunc

about

r the
ame
to the

e

to
telldir DIRHANDLE
Returns the current position of the readdir() routines on DIRHANDLE. Value may be given
to seekdir() to access a particular location in a directory. Has the same caveats
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds a variable to a package class that will provide the implementation fo
variable. VARIABLE is the name of the variable to be enchanted. CLASSNAME is the n
of a class implementing objects of correct type. Any additional arguments are passed
"new() " method of the class (meaning TIESCALAR, TIEARRAY, or TIEHASH). Typically
these are arguments such as might be passed to the dbm_open() function of C. The object
returned by the "new() " method is also returned by the tie() function, which would be
useful if you want to access other methods in CLASSNAME.

Note that functions such as keys() and values() may return huge lists when used on larg
objects, like DBM files. You may prefer to use the each() function to iterate over such.
Example:

 # print out history file offsets
 use NDBM_File;
 tie(%HIST, ’NDBM_File’, ’/usr/lib/news/history’, 1, 0);
 while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";
 }
 untie(%HIST);

A class implementing a hash should have the following methods:

 TIEHASH classname, LIST
 DESTROY this
 FETCH this, key
 STORE this, key, value
 DELETE this, key
 EXISTS this, key
 FIRSTKEY this
 NEXTKEY this, lastkey

A class implementing an ordinary array should have the following methods:

 TIEARRAY classname, LIST
 DESTROY this
 FETCH this, key
 STORE this, key, value
 [others TBD]

A class implementing a scalar should have the following methods:

 TIESCALAR classname, LIST
 DESTROY this
 FETCH this,
 STORE this, value

Unlike dbmopen() , the tie() function will not use or require a module for you—you need
do that explicitly yourself. See DB_File or the Config module for interesting tie()
implementations.

For further details see perltie, tied VARIABLE.
262 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

nally
ue if

 be the
70 for

and the

gth.
ssful,

e

ction
le if

itted,

 and

 array

 or
n
t you
meter.
tied VARIABLE
Returns a reference to the object underlying VARIABLE (the same value that was origi
returned by the tie() call that bound the variable to a package.) Returns the undefined val
VARIABLE isn‘t tied to a package.

time Returns the number of non−leap seconds since whatever time the system considers to
epoch (that‘s 00:00:00, January 1, 1904 for MacOS, and 00:00:00 UTC, January 1, 19
most other systems). Suitable for feeding to gmtime() and localtime() .

times Returns a four−element list giving the user and system times, in seconds, for this process
children of this process.

 ($user,$system,$cuser,$csystem) = times;

tr/// The transliteration operator. Same as y/// . See perlop.

truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified len
Produces a fatal error if truncate isn‘t implemented on your system. Returns TRUE if succe
the undefined value otherwise.

uc EXPR
uc Returns an uppercased version of EXPR. This is the internal function implementing th\U

escape in double−quoted strings. Respects current LC_CTYPE locale if use locale in force.
See perllocale.

If EXPR is omitted, uses $_.

ucfirst EXPR
ucfirst Returns the value of EXPR with the first character uppercased. This is the internal fun

implementing the \u escape in double−quoted strings. Respects current LC_CTYPE loca
use locale in force. See perllocale.

If EXPR is omitted, uses $_.

umask EXPR
umask Sets the umask for the process to EXPR and returns the previous value. If EXPR is om

merely returns the current umask.

If umask(2) is not implemented on your system and you are trying to restrict access for yourself
(i.e., (EXPR & 0700) 0), produces a fatal error at run time. If umask(2) is not implemented
you are not trying to restrict access for yourself, returns undef .

Remember that a umask is a number, usually given in octal; it is not a string of octal digits. See
also /oct, if all you have is a string.

undef EXPR
undef Undefines the value of EXPR, which must be an lvalue. Use only on a scalar value, an

(using "@"), a hash (using "%"), a subroutine (using "&"), or a typeglob (using "<*"). (Saying
undef $hash{$key} will probably not do what you expect on most predefined variables
DBM list values, so don‘t do that; see delete.) Always returns the undefined value. You ca
omit the EXPR, in which case nothing is undefined, but you still get an undefined value tha
could, for instance, return from a subroutine, assign to a variable or pass as a para
Examples:

 undef $foo;
 undef $bar{’blurfl’}; # Compare to: delete $bar{’blurfl’};
 undef @ary;
 undef %hash;
 undef &mysub;
18−Oct−1998 Version 5.005_02 263

perlfunc Perl Programmers Reference Guide perlfunc

mage

s it
value

−bit
. For

ay.

 stay in
 undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
 return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
 select undef, undef, undef, 0.25;
 ($a, $b, undef, $c) = &foo; # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST
unlink Deletes a list of files. Returns the number of files successfully deleted.

 $cnt = unlink ’a’, ’b’, ’c’;
 unlink @goners;
 unlink <*.bak>;

Note: unlink() will not delete directories unless you are superuser and the −U flag is supplied
to Perl. Even if these conditions are met, be warned that unlinking a directory can inflict da
on your filesystem. Use rmdir() instead.

If LIST is omitted, uses $_.

unpack TEMPLATE,EXPR
Unpack() does the reverse of pack() : it takes a string representing a structure and expand
out into a list value, returning the array value. (In scalar context, it returns merely the first
produced.) The TEMPLATE has the same format as in the pack() function. Here‘s a
subroutine that does substring:

 sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

 }

and then there‘s

 sub ordinal { unpack("c",$_[0]); } # same as ord()

In addition, you may prefix a field with a %<number> to indicate that you want a <number>
checksum of the items instead of the items themselves. Default is a 16−bit checksum
example, the following computes the same number as the System V sum program:

 while (<>) {
$checksum += unpack("%16C*", $_);

 }
 $checksum %= 65536;

The following efficiently counts the number of set bits in a bit vector:

 $setbits = unpack("%32b*", $selectmask);

untie VARIABLE
Breaks the binding between a variable and a package. (See tie() .)

unshift ARRAY,LIST
Does the opposite of a shift() . Or the opposite of a push() , depending on how you look at
it. Prepends list to the front of the array, and returns the new number of elements in the arr

 unshift(ARGV, ’−e’) unless $ARGV[0] =~ /^−/;

Note the LIST is prepended whole, not one element at a time, so the prepended elements
the same order. Use reverse() to do the reverse.

use Module LIST
264 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

liasing

dule
age is
t Perl
der

nt its
heir

tly

fault
 than
r

ed this

e (like
ge
use Module
use Module VERSION LIST
use VERSION

Imports some semantics into the current package from the named module, generally by a
certain subroutine or variable names into your package. It is exactly equivalent to

 BEGIN { require Module; import Module LIST; }

except that Module must be a bareword.

If the first argument to use is a number, it is treated as a version number instead of a mo
name. If the version of the Perl interpreter is less than VERSION, then an error mess
printed and Perl exits immediately. This is often useful if you need to check the curren
version before use ing library modules that have changed in incompatible ways from ol
versions of Perl. (We try not to do this more than we have to.)

The BEGIN forces the require and import() to happen at compile time. The require
makes sure the module is loaded into memory if it hasn‘t been yet. The import() is not a
builtin—it‘s just an ordinary static method call into the "Module " package to tell the module to
import the list of features back into the current package. The module can impleme
import() method any way it likes, though most modules just choose to derive t
import() method via inheritance from the Exporter class that is defined in the Exporter
module. See Exporter. If no import() method can be found then the error is currently silen
ignored. This may change to a fatal error in a future version.

If you don‘t want your namespace altered, explicitly supply an empty list:

 use Module ();

That is exactly equivalent to

 BEGIN { require Module }

If the VERSION argument is present between Module and LIST, then the use will call the
VERSION method in class Module with the given version as an argument. The de
VERSION method, inherited from the Universal class, croaks if the given version is larger
the value of the variable $Module::VERSION. (Note that there is not a comma afte
VERSION!)

Because this is a wide−open interface, pragmas (compiler directives) are also implement
way. Currently implemented pragmas are:

 use integer;
 use diagnostics;
 use sigtrap qw(SEGV BUS);
 use strict qw(subs vars refs);
 use subs qw(afunc blurfl);

Some of these these pseudo−modules import semantics into the current block scop
strict or integer , unlike ordinary modules, which import symbols into the current packa
(which are effective through the end of the file).

There‘s a corresponding "no" command that unimports meanings imported by use , i.e., it calls
unimport Module LIST instead of import() .

 no integer;
 no strict ’refs’;

If no unimport() method can be found the call fails with a fatal error.

See perlmod for a list of standard modules and pragmas.
18−Oct−1998 Version 5.005_02 265

perlfunc Perl Programmers Reference Guide perlfunc

ments
s the
o the

ns the
 same

ide

it field
 in the

ian or

ess, or
utime LIST
Changes the access and modification times on each file of a list of files. The first two ele
of the list must be the NUMERICAL access and modification times, in that order. Return
number of files successfully changed. The inode modification time of each file is set t
current time. This code has the same effect as the "touch " command if the files already exist:

 #!/usr/bin/perl
 $now = time;
 utime $now, $now, @ARGV;

values HASH
Returns a list consisting of all the values of the named hash. (In a scalar context, retur
number of values.) The values are returned in an apparently random order, but it is the
order as either the keys() or each() function would produce on the same hash. As a s
effect, it resets HASH‘s iterator. See also keys() , each() , and sort() .

vec EXPR,OFFSET,BITS
Treats the string in EXPR as a vector of unsigned integers, and returns the value of the b
specified by OFFSET. BITS specifies the number of bits that are reserved for each entry
bit vector. This must be a power of two from 1 to 32. vec() may also be assigned to, in which
case parentheses are needed to give the expression the correct precedence as in

 vec($image, $max_x * $x + $y, 8) = 3;

Vectors created with vec() can also be manipulated with the logical operators | , &, and ̂ ,
which will assume a bit vector operation is desired when both operands are strings.

The following code will build up an ASCII string saying ‘PerlPerlPerl’ . The comments
show the string after each step. Note that this code works in the same way on big−end
little−endian machines.

 my $foo = ’’;
 vec($foo, 0, 32) = 0x5065726C; # ’Perl’
 vec($foo, 2, 16) = 0x5065; # ’PerlPe’
 vec($foo, 3, 16) = 0x726C; # ’PerlPerl’
 vec($foo, 8, 8) = 0x50; # ’PerlPerlP’
 vec($foo, 9, 8) = 0x65; # ’PerlPerlPe’
 vec($foo, 20, 4) = 2; # ’PerlPerlPe’ . "\x02"
 vec($foo, 21, 4) = 7; # ’PerlPerlPer’
 # ’r’ is "\x72"
 vec($foo, 45, 2) = 3; # ’PerlPerlPer’ . "\x0c"
 vec($foo, 93, 1) = 1; # ’PerlPerlPer’ . "\x2c"
 vec($foo, 94, 1) = 1; # ’PerlPerlPerl’
 # ’l’ is "\x6c"

To transform a bit vector into a string or array of 0‘s and 1‘s, use these:

 $bits = unpack("b*", $vector);
 @bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the * .

wait Waits for a child process to terminate and returns the pid of the deceased process, or −1 if there
are no child processes. The status is returned in $?.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased proc
−1 if there is no such child process. The status is returned in $?. If you say
266 Version 5.005_02 18−Oct−1998

perlfunc Perl Programmers Reference Guide perlfunc

e on
or a
l by
d by the

lue.
ntext

 is
t

to a
s that
s

lled

mat
as the
 use POSIX ":sys_wait_h";
 #...
 waitpid(−1,&WNOHANG);

then you can do a non−blocking wait for any process. Non−blocking wait is availabl
machines supporting either the waitpid(2) or wait4(2) system calls. However, waiting f
particular pid with FLAGS of is implemented everywhere. (Perl emulates the system cal
remembering the status values of processes that have exited but have not been harveste
Perl script yet.)

See perlipc for other examples.

wantarray
Returns TRUE if the context of the currently executing subroutine is looking for a list va
Returns FALSE if the context is looking for a scalar. Returns the undefined value if the co
is looking for no value (void context).

 return unless defined wantarray; # don’t bother doing more
 my @a = complex_calculation();
 return wantarray ? @a : "@a";

warn LIST
Produces a message on STDERR just like die() , but doesn‘t exit or throw an exception.

If LIST is empty and $@ already contains a value (typically from a previous eval) that value
used after appending "\t...caught" to $@. This is useful for staying almost, but no
entirely similar to die() .

If $@ is empty then the string "Warning: Something‘s wrong" is used.

No message is printed if there is a $SIG{__WARN__} handler installed. It is the handler‘s
responsibility to deal with the message as it sees fit (like, for instance, converting it in
die()). Most handlers must therefore make arrangements to actually display the warning
they are not prepared to deal with, by calling warn() again in the handler. Note that this i
quite safe and will not produce an endless loop, since __WARN__ hooks are not called from
inside one.

You will find this behavior is slightly different from that of $SIG{__DIE__} handlers (which
don‘t suppress the error text, but can instead call die() again to change it).

Using a __WARN__ handler provides a powerful way to silence all warnings (even the so−ca
mandatory ones). An example:

 # wipe out *all* compile−time warnings
 BEGIN { $SIG{’__WARN__’} = sub { warn $_[0] if $DOWARN } }
 my $foo = 10;
 my $foo = 20; # no warning about duplicate my $foo,
 # but hey, you asked for it!
 # no compile−time or run−time warnings before here
 $DOWARN = 1;

 # run−time warnings enabled after here
 warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting %SIG entries, and for more examples.

write FILEHANDLE
write EXPR
write Writes a formatted record (possibly multi−line) to the specified FILEHANDLE, using the for

associated with that file. By default the format for a file is the one having the same name
filehandle, but the format for the current output channel (see the select() function) may be
18−Oct−1998 Version 5.005_02 267

perlfunc Perl Programmers Reference Guide perlfunc

rrent
pecial
en. By
 may

e

tarts

e of the
set explicitly by assigning the name of the format to the $~ variable.

Top of form processing is handled automatically: if there is insufficient room on the cu
page for the formatted record, the page is advanced by writing a form feed, a s
top−of−page format is used to format the new page header, and then the record is writt
default the top−of−page format is the name of the filehandle with "_TOP" appended, but it
be dynamically set to the format of your choice by assigning the name to the $^ variable while
the filehandle is selected. The number of lines remaining on the current page is in variabl$−,
which can be set to to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which s
out as STDOUT but may be changed by the select() operator. If the FILEHANDLE is an
EXPR, then the expression is evaluated and the resulting string is used to look up the nam
FILEHANDLE at run time. For more on formats, see perlform.

Note that write is NOT the opposite of read() . Unfortunately.

y/// The transliteration operator. Same as tr/// . See perlop.
268 Version 5.005_02 18−Oct−1998

perlvar Perl Programmers Reference Guide perlvar

monics,
 to say

ckage.

ad (and
r this

optional
plied,

riable,

ed as
NAME
perlvar − Perl predefined variables

DESCRIPTION

Predefined Names
The following names have special meaning to Perl. Most punctuation names have reasonable mne
or analogues in one of the shells. Nevertheless, if you wish to use long variable names, you just need

 use English;

at the top of your program. This will alias all the short names to the long names in the current pa
Some even have medium names, generally borrowed from awk.

To go a step further, those variables that depend on the currently selected filehandle may inste
preferably) be set by calling an object method on the FileHandle object. (Summary lines below fo
contain the word HANDLE.) First you must say

 use FileHandle;

after which you may use either

 method HANDLE EXPR

or more safely,

 HANDLE−>method(EXPR)

Each of the methods returns the old value of the FileHandle attribute. The methods each take an
EXPR, which if supplied specifies the new value for the FileHandle attribute in question. If not sup
most of the methods do nothing to the current value, except for autoflush() , which will assume a 1 for
you, just to be different.

A few of these variables are considered "read−only". This means that if you try to assign to this va
either directly or indirectly through a reference, you‘ll raise a run−time exception.

The following list is ordered by scalar variables first, then the arrays, then the hashes (except $^M was added
in the wrong place). This is somewhat obscured by the fact that %ENV and %SIG are list
$ENV{expr} and $SIG{expr}.

$ARG
$_ The default input and pattern−searching space. The following pairs are equivalent:

 while (<>) {...} # equivalent in only while!
 while (defined($_ = <>)) {...}

 /^Subject:/
 $_ =~ /^Subject:/

 tr/a−z/A−Z/
 $_ =~ tr/a−z/A−Z/

 chop
 chop($_)

Here are the places where Perl will assume $_ even if you don‘t use it:

 Various unary functions, including functions like ord() and int() , as well as the all file
tests (−f , −d) except for −t , which defaults to STDIN.

 Various list functions like print() and unlink() .
18−Oct−1998 Version 5.005_02 269

perlvar Perl Programmers Reference Guide perlvar

s

atched,
ic: like

 within

unting
ic:

nting

h of a

rings
strings

n of
 The pattern matching operations m// , s/// , and tr/// when used without an =~
operator.

 The default iterator variable in a foreach loop if no other variable is supplied.

 The implicit iterator variable in the grep() and map() functions.

 The default place to put an input record when a <FH> operation‘s result is tested by itself a
the sole criterion of a while test. Note that outside of a while test, this will not happen.

(Mnemonic: underline is understood in certain operations.)

$<digits >
Contains the subpattern from the corresponding set of parentheses in the last pattern m
not counting patterns matched in nested blocks that have been exited already. (Mnemon
\digits.) These variables are all read−only.

$MATCH
$& The string matched by the last successful pattern match (not counting any matches hidden

a BLOCK or eval() enclosed by the current BLOCK). (Mnemonic: like & in some editors.)
This variable is read−only.

$PREMATCH
$‘ The string preceding whatever was matched by the last successful pattern match (not co

any matches hidden within a BLOCK or eval enclosed by the current BLOCK). (Mnemon‘
often precedes a quoted string.) This variable is read−only.

$POSTMATCH
$’ The string following whatever was matched by the last successful pattern match (not cou

any matches hidden within a BLOCK or eval() enclosed by the current BLOCK).
(Mnemonic: ’ often follows a quoted string.) Example:

 $_ = ’abcdefghi’;
 /def/;
 print "$‘:$&:$’\n"; # prints abc:def:ghi

This variable is read−only.

$LAST_PAREN_MATCH
$+ The last bracket matched by the last search pattern. This is useful if you don‘t know whic

set of alternative patterns matched. For example:

 /Version: (.*)|Revision: (.*)/ && ($rev = $+);

(Mnemonic: be positive and forward looking.) This variable is read−only.

$MULTILINE_MATCHING
$* Set to 1 to do multi−line matching within a string, 0 to tell Perl that it can assume that st

contain a single line, for the purpose of optimizing pattern matches. Pattern matches on
containing multiple newlines can produce confusing results when "$*" is 0. Default is 0.
(Mnemonic: * matches multiple things.) Note that this variable influences the interpretatio
only "^ " and "$". A literal newline can be searched for even when $* == 0 .

Use of "$*" is deprecated in modern Perls, supplanted by the /s and /m modifiers on pattern
matching.

input_line_number HANDLE EXPR
$INPUT_LINE_NUMBER
$NR
$. The current input line number for the last file handle from which you read (or performed a seek

or tell on). An explicit close on a filehandle resets the line number. Because "<>" never does
an explicit close, line numbers increase across ARGV files (but see examples under eof()).
270 Version 5.005_02 18−Oct−1998

perlvar Perl Programmers Reference Guide perlvar

le".

paces
or to

wline.

rtable
being

 a
 full
et the

nt to
O, so

ected
y the
e).
red
ch as
. This

 out

t is
Localizing $. has the effect of also localizing Perl‘s notion of "the last read filehand
(Mnemonic: many programs use "." to mean the current line number.)

input_record_separator HANDLE EXPR
$INPUT_RECORD_SEPARATOR
$RS
$/ The input record separator, newline by default. Works like awk‘s RS variable, including treating

empty lines as delimiters if set to the null string. (Note: An empty line cannot contain any s
or tabs.) You may set it to a multi−character string to match a multi−character delimiter,
undef to read to end of file. Note that setting it to "\n\n" means something slightly different
than setting it to "" , if the file contains consecutive empty lines. Setting it to "" will treat two
or more consecutive empty lines as a single empty line. Setting it to "\n\n" will blindly
assume that the next input character belongs to the next paragraph, even if it‘s a ne
(Mnemonic: / is used to delimit line boundaries when quoting poetry.)

 undef $/;
 $_ = <FH>; # whole file now here
 s/\n[\t]+/ /g;

Remember: the value of $/ is a string, not a regexp. AWK has to be better for something :−)

Setting $/ to a reference to an integer, scalar containing an integer, or scalar that‘s conve
to an integer will attempt to read records instead of lines, with the maximum record size
the referenced integer. So this:

 $/ = \32768; # or \"32768", or \$var_containing_32768
 open(FILE, $myfile);
 $_ = <FILE>;

will read a record of no more than 32768 bytes from FILE. If you‘re not reading from
record−oriented file (or your OS doesn‘t have record−oriented files), then you‘ll likely get a
chunk of data with every read. If a record is larger than the record size you‘ve set, you‘ll g
record back in pieces.

On VMS, record reads are done with the equivalent of sysread , so it‘s best not to mix record
and non−record reads on the same file. (This is likely not a problem, as any file you‘d wa
read in record mode is proably usable in line mode) Non−VMS systems perform normal I/
it‘s safe to mix record and non−record reads of a file.

autoflush HANDLE EXPR
$OUTPUT_AUTOFLUSH
$| If set to nonzero, forces a flush right away and after every write or print on the currently sel

output channel. Default is 0 (regardless of whether the channel is actually buffered b
system or not; $| tells you only whether you‘ve asked Perl explicitly to flush after each writ
Note that STDOUT will typically be line buffered if output is to the terminal and block buffe
otherwise. Setting this variable is useful primarily when you are outputting to a pipe, su
when you are running a Perl script under rsh and want to see the output as it‘s happening
has no effect on input buffering. (Mnemonic: when you want your pipes to be piping hot.)

output_field_separator HANDLE EXPR
$OUTPUT_FIELD_SEPARATOR
$OFS
$, The output field separator for the print operator. Ordinarily the print operator simply prints

the comma−separated fields you specify. To get behavior more like awk, set this variable as you
would set awk‘s OFS variable to specify what is printed between fields. (Mnemonic: wha
printed when there is a , in your print statement.)
18−Oct−1998 Version 5.005_02 271

perlvar Perl Programmers Reference Guide perlvar

s out
umed.

tring

t as

e
 is

d

 page

 is 60.

onic:
output_record_separator HANDLE EXPR
$OUTPUT_RECORD_SEPARATOR
$ORS
$\ The output record separator for the print operator. Ordinarily the print operator simply print

the comma−separated fields you specify, with no trailing newline or record separator ass
To get behavior more like awk, set this variable as you would set awk‘s ORS variable to specify
what is printed at the end of the print. (Mnemonic: you set "$\" instead of adding \n at the end
of the print. Also, it‘s just like $/, but it‘s what you get "back" from Perl.)

$LIST_SEPARATOR
$" This is like "$," except that it applies to array values interpolated into a double−quoted s

(or similar interpreted string). Default is a space. (Mnemonic: obvious, I think.)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multidimensional array emulation. If you refer to a hash elemen

 $foo{$a,$b,$c}

it really means

 $foo{join($;, $a, $b, $c)}

But don‘t put

 @foo{$a,$b,$c} # a slice−−note the @

which means

 ($foo{$a},$foo{$b},$foo{$c})

Default is "\034", the same as SUBSEP in awk. Note that if your keys contain binary data ther
might not be any safe value for "$;". (Mnemonic: comma (the syntactic subscript separator)
a semi−semicolon. Yeah, I know, it‘s pretty lame, but "$," is already taken for something more
important.)

Consider using "real" multidimensional arrays.

$OFMT
$# The output format for printed numbers. This variable is a half−hearted attempt to emulate awk‘s

OFMT variable. There are times, however, when awk and Perl have differing notions of what is
in fact numeric. The initial value is %.ng, where n is the value of the macro DBL_DIG from
your system‘s float.h. This is different from awk‘s default OFMT setting of %.6g, so you nee
to set "$#" explicitly to get awk‘s value. (Mnemonic: # is the number sign.)

Use of "$#" is deprecated.

format_page_number HANDLE EXPR
$FORMAT_PAGE_NUMBER
$% The current page number of the currently selected output channel. (Mnemonic: % is

number in nroff .)

format_lines_per_page HANDLE EXPR
$FORMAT_LINES_PER_PAGE
$= The current page length (printable lines) of the currently selected output channel. Default

(Mnemonic: = has horizontal lines.)

format_lines_left HANDLE EXPR
$FORMAT_LINES_LEFT
$− The number of lines left on the page of the currently selected output channel. (Mnem

lines_on_page − lines_printed.)
272 Version 5.005_02 18−Oct−1998

perlvar Perl Programmers Reference Guide perlvar

 name

ault is

ields
onic:

k

e

 (This

s the
format_name HANDLE EXPR
$FORMAT_NAME
$~ The name of the current report format for the currently selected output channel. Default is

of the filehandle. (Mnemonic: brother to "$^".)

format_top_name HANDLE EXPR
$FORMAT_TOP_NAME
$^ The name of the current top−of−page format for the currently selected output channel. Def

name of the filehandle with _TOP appended. (Mnemonic: points to top of page.)

format_line_break_characters HANDLE EXPR
$FORMAT_LINE_BREAK_CHARACTERS
$: The current set of characters after which a string may be broken to fill continuation f

(starting with ^) in a format. Default is " \n−", to break on whitespace or hyphens. (Mnem
a "colon" in poetry is a part of a line.)

format_formfeed HANDLE EXPR
$FORMAT_FORMFEED
$^L What formats output to perform a form feed. Default is \f.

$ACCUMULATOR
$^A The current value of the write() accumulator for format() lines. A format contains

formline() commands that put their result into $^A. After calling its format, write()
prints out the contents of $^A and empties. So you never actually see the contents of $^A unless
you call formline() yourself and then look at it. See perlform and formline() .

$CHILD_ERROR
$? The status returned by the last pipe close, backtick (‘‘) command, or system() operator.

Note that this is the status word returned by the wait() system call (or else is made up to loo
like it). Thus, the exit value of the subprocess is actually ($? >> 8), and $? & 127 gives
which signal, if any, the process died from, and $? & 128 reports whether there was a cor
dump. (Mnemonic: similar to sh and ksh.)

Additionally, if the h_errno variable is supported in C, its value is returned via $? if any of
the gethost*() functions fail.

Note that if you have installed a signal handler for SIGCHLD, the value of $? will usually be
wrong outside that handler.

Inside an END subroutine $? contains the value that is going to be given to exit() . You can
modify $? in an END subroutine to change the exit status of the script.

Under VMS, the pragma use vmsish ‘status’ makes $? reflect the actual VMS exit
status, instead of the default emulation of POSIX status.

Also see Error Indicators.

$OS_ERROR
$ERRNO
$! If used in a numeric context, yields the current value of errno, with all the usual caveats.

means that you shouldn‘t depend on the value of $! to be anything in particular unless you‘ve
gotten a specific error return indicating a system error.) If used in a string context, yield
corresponding system error string. You can assign to $! to set errno if, for instance, you want
"$!" to return the string for error n, or you want to set the exit value for the die() operator.
(Mnemonic: What just went bang?)

Also see Error Indicators.
18−Oct−1998 Version 5.005_02 273

perlvar Perl Programmers Reference Guide perlvar

ore

ctly

all
st

ormal

routine

ultiple
r is the

 the
s

$EXTENDED_OS_ERROR
$^E Error information specific to the current operating system. At the moment, this differs from$!

under only VMS, OS/2, and Win32 (and for MacPerl). On all other platforms, $^E is always
just the same as $!.

Under VMS, $^E provides the VMS status value from the last system error. This is m
specific information about the last system error than that provided by $!. This is particularly
important when $! is set to EVMSERR.

Under OS/2, $^E is set to the error code of the last call to OS/2 API either via CRT, or dire
from perl.

Under Win32, $^E always returns the last error information reported by the Win32 c
GetLastError() which describes the last error from within the Win32 API. Mo
Win32−specific code will report errors via $^E. ANSI C and UNIX−like calls set errno and
so most portable Perl code will report errors via $!.

Caveats mentioned in the description of $! generally apply to $^E, also. (Mnemonic: Extra
error explanation.)

Also see Error Indicators.

$EVAL_ERROR
$@ The Perl syntax error message from the last eval() command. If null, the last eval() parsed

and executed correctly (although the operations you invoked may have failed in the n
fashion). (Mnemonic: Where was the syntax error "at"?)

Note that warning messages are not collected in this variable. You can, however, set up a
to process warnings by setting $SIG{__WARN__} as described below.

Also see Error Indicators.

$PROCESS_ID
$PID
$$ The process number of the Perl running this script. (Mnemonic: same as shells.)

$REAL_USER_ID
$UID
$< The real uid of this process. (Mnemonic: it‘s the uid you came FROM, if you‘re running setuid.)

$EFFECTIVE_USER_ID
$EUID
$ The effective uid of this process. Example:

 $< = $>; # set real to effective uid
 ($<,$>) = ($>,$<); # swap real and effective uid

(Mnemonic: it‘s the uid you went TO, if you‘re running setuid.) Note: "$<" and "$>" can be
swapped only on machines supporting setreuid() .

$REAL_GROUP_ID
$GID
$(The real gid of this process. If you are on a machine that supports membership in m

groups simultaneously, gives a space separated list of groups you are in. The first numbe
one returned by getgid() , and the subsequent ones by getgroups() , one of which may be
the same as the first number.

However, a value assigned to "$(" must be a single number used to set the real gid. So
value given by "$(" should not be assigned back to "$(" without being forced numeric, such a
by adding zero.
274 Version 5.005_02 18−Oct−1998

perlvar Perl Programmers Reference Guide perlvar

ultiple
r is the

first

o

ing
ng

rating
more
ou‘re

t is 0,

the

rmine
ic: Is

d to

ll be

r

(Mnemonic: parentheses are used to GROUP things. The real gid is the group you LEFT, if
you‘re running setgid.)

$EFFECTIVE_GROUP_ID
$EGID
$) The effective gid of this process. If you are on a machine that supports membership in m

groups simultaneously, gives a space separated list of groups you are in. The first numbe
one returned by getegid() , and the subsequent ones by getgroups() , one of which may
be the same as the first number.

Similarly, a value assigned to "$)" must also be a space−separated list of numbers. The
number is used to set the effective gid, and the rest (if any) are passed to setgroups() . To
get the effect of an empty list for setgroups() , just repeat the new effective gid; that is, t
force an effective gid of 5 and an effectively empty setgroups() list, say $) = "5 5" .

(Mnemonic: parentheses are used to GROUP things. The effective gid is the group that‘s RIGHT
for you, if you‘re running setgid.)

Note: "$<", "$>", "$(" and "$)" can be set only on machines that support the correspond
set[re][ug]id() routine. "$(" and "$)" can be swapped only on machines supporti
setregid() .

$PROGRAM_NAME
$0 Contains the name of the file containing the Perl script being executed. On some ope

systems assigning to "$0" modifies the argument area that the ps(1) program sees. This is
useful as a way of indicating the current program state than it is for hiding the program y
running. (Mnemonic: same as sh and ksh.)

$[The index of the first element in an array, and of the first character in a substring. Defaul
but you could set it to 1 to make Perl behave more like awk (or Fortran) when subscripting and
when evaluating the index() and substr() functions. (Mnemonic: [begins subscripts.)

As of Perl 5, assignment to "$[" is treated as a compiler directive, and cannot influence
behavior of any other file. Its use is discouraged.

$PERL_VERSION
$] The version + patchlevel / 1000 of the Perl interpreter. This variable can be used to dete

whether the Perl interpreter executing a script is in the right range of versions. (Mnemon
this version of perl in the right bracket?) Example:

 warn "No checksumming!\n" if $] < 3.019;

See also the documentation of use VERSION and require VERSION for a convenient way
to fail if the Perl interpreter is too old.

$DEBUGGING
$^D The current value of the debugging flags. (Mnemonic: value of −D switch.)

$SYSTEM_FD_MAX
$^F The maximum system file descriptor, ordinarily 2. System file descriptors are passe

exec() ed processes, while higher file descriptors are not. Also, during an open() , system
file descriptors are preserved even if the open() fails. (Ordinary file descriptors are closed
before the open() is attempted.) Note that the close−on−exec status of a file descriptor wi
decided according to the value of $^F at the time of the open, not the time of the exec.

$^H The current set of syntax checks enabled by use strict and other block scoped compile
hints. See the documentation of strict for more details.

$INPLACE_EDIT
$^I The current value of the inplace−edit extension. Use undef to disable inplace editing.

(Mnemonic: value of −i switch.)
18−Oct−1998 Version 5.005_02 275

perlvar Perl Programmers Reference Guide perlvar

ay
t

n

e is no

during

t to

a new

.

ished
,

). The

 that

$^M By default, running out of memory it is not trappable. However, if compiled for this, Perl m
use the contents of $^M as an emergency pool after die() ing with this message. Suppose tha
your Perl were compiled with −DPERL_EMERGENCY_SBRK and used Perl‘s malloc. The

 $^M = ’a’ x (1<<16);

would allocate a 64K buffer for use when in emergency. See the INSTALL file for information
on how to enable this option. As a disincentive to casual use of this advanced feature, ther
English long name for this variable.

$OSNAME
$^O The name of the operating system under which this copy of Perl was built, as determined

the configuration process. The value is identical to $Config{‘osname‘}.

$PERLDB
$^P The internal variable for debugging support. Different bits mean the following (subjec

change):

0x01 Debug subroutine enter/exit.

0x02 Line−by−line debugging.

0x04 Switch off optimizations.

0x08 Preserve more data for future interactive inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single−step on.

Note that some bits may be relevent at compile−time only, some at run−time only. This is
mechanism and the details may change.

$^R The result of evaluation of the last successful (?{ code }) regular expression assertion
(Excluding those used as switches.) May be written to.

$^S Current state of the interpreter. Undefined if parsing of the current module/eval is not fin
(may happen in $SIG{__DIE__} and $SIG{__WARN__} handlers). True if inside an eval
otherwise false.

$BASETIME
$^T The time at which the script began running, in seconds since the epoch (beginning of 1970

values returned by the −M , −A, and −C filetests are based on this value.

$WARNING
$^W The current value of the warning switch, either TRUE or FALSE. (Mnemonic: related to the−w

switch.)

$EXECUTABLE_NAME
$^X The name that the Perl binary itself was executed as, from C‘s argv[0] .

$ARGV contains the name of the current file when reading from <>.

@ARGV The array @ARGV contains the command line arguments intended for the script. Note
$#ARGV is the generally number of arguments minus one, because $ARGV[0] is the first
argument, NOT the command name. See "$0" for the command name.

@INC The array @INC contains the list of places to look for Perl scripts to be evaluated by thedo
EXPR, require , or use constructs. It initially consists of the arguments to any −I command
line switches, followed by the default Perl library, probably /usr/local/lib/perl, followed by ".",
to represent the current directory. If you need to modify this at runtime, you should use theuse
lib pragma to get the machine−dependent library properly loaded also:
276 Version 5.005_02 18−Oct−1998

perlvar Perl Programmers Reference Guide perlvar

. The
uded.

re are

 it‘s a
 then
. See

is
used

ported
to be

d by
ning
ses the
rnings
 use lib ’/mypath/libdir/’;
 use SomeMod;

@_ Within a subroutine the array @_ contains the parameters passed to that subroutine. See perlsub.

%INC The hash %INC contains entries for each filename that has been included via do or require .
The key is the filename you specified, and the value is the location of the file actually found
require command uses this array to determine whether a given file has already been incl

%ENV $ENV{expr}
The hash %ENV contains your current environment. Setting a value in ENV changes the
environment for child processes.

%SIG $SIG{expr}
The hash %SIG is used to set signal handlers for various signals. Example:

 sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig−−shutting down\n";
close(LOG);
exit(0);

 }

 $SIG{’INT’} = \&handler;
 $SIG{’QUIT’} = \&handler;
 ...
 $SIG{’INT’} = ’DEFAULT’; # restore default action
 $SIG{’QUIT’} = ’IGNORE’; # ignore SIGQUIT

The %SIG array contains values for only the signals actually set within the Perl script. He
some other examples:

 $SIG{"PIPE"} = Plumber; # SCARY!!
 $SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not recommended)
 $SIG{"PIPE"} = \&Plumber; # just fine; assume current Plumber
 $SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??

The one marked scary is problematic because it‘s a bareword, which means sometimes
string representing the function, and sometimes it‘s going to call the subroutine call right
and there! Best to be sure and quote it or take a reference to it. *Plumber works too
perlsub.

If your system has the sigaction() function then signal handlers are installed using it. Th
means you get reliable signal handling. If your system has the SA_RESTART flag it is
when signals handlers are installed. This means that system calls for which it is sup
continue rather than returning when a signal arrives. If you want your system calls
interrupted by signal delivery then do something like this:

 use POSIX ’:signal_h’;

 my $alarm = 0;
 sigaction SIGALRM, new POSIX::SigAction sub { $alarm = 1 }
 or die "Error setting SIGALRM handler: $!\n";

See POSIX.

Certain internal hooks can be also set using the %SIG hash. The routine indicate
$SIG{__WARN__} is called when a warning message is about to be printed. The war
message is passed as the first argument. The presence of a __WARN__ hook cau
ordinary printing of warnings to STDERR to be suppressed. You can use this to save wa
in a variable, or turn warnings into fatal errors, like this:
18−Oct−1998 Version 5.005_02 277

perlvar Perl Programmers Reference Guide perlvar

e
routine
 unless

d to
sistent
gfault.
treme

ine
arp

ay
en the
the Perl

−time

ay have
 local $SIG{__WARN__} = sub { die $_[0] };
 eval $proggie;

The routine indicated by $SIG{__DIE__} is called when a fatal exception is about to b
thrown. The error message is passed as the first argument. When a __DIE__ hook
returns, the exception processing continues as it would have in the absence of the hook,
the hook routine itself exits via a goto , a loop exit, or a die() . The __DIE__ handler is
explicitly disabled during the call, so that you can die from a __DIE__ handler. Similarly for
__WARN__.

Note that the $SIG{__DIE__} hook is called even inside eval() ed blocks/strings. See die
and $^S for how to circumvent this.

Note that __DIE__ /__WARN__ handlers are very special in one respect: they may be calle
report (probable) errors found by the parser. In such a case the parser may be in incon
state, so any attempt to evaluate Perl code from such a handler will probably result in a se
This means that calls which result/may−result in parsing Perl should be used with ex
causion, like this:

 require Carp if defined $^S;
 Carp::confess("Something wrong") if defined &Carp::confess;
 die "Something wrong, but could not load Carp to give backtrace...
 To see backtrace try starting Perl with −MCarp switch";

Here the first line will load Carp unless it is the parser who called the handler. The second l
will print backtrace and die if Carp was available. The third line will be executed only if C
was not available.

See die, warn and eval for additional info.

Error Indicators
The variables $@, $! , $^E , and $? contain information about different types of error conditions that m
appear during execution of Perl script. The variables are shown ordered by the "distance" betwe
subsystem which reported the error and the Perl process, and correspond to errors detected by
interpreter, C library, operating system, or an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expression:

 eval ’
 open PIPE, "/cdrom/install |";

 @res = <PIPE>;
 close PIPE or die "bad pipe: $?, $!";
’;

After execution of this statement all 4 variables may have been set.

$@ is set if the string to be eval −ed did not compile (this may happen if open or close were imported
with bad prototypes), or if Perl code executed during evaluation die() d (either implicitly, say, if open
was imported from module Fatal, or the die after close was triggered). In these cases the value of $@ is
the compile error, or Fatal error (which will interpolate $!!), or the argument to die (which will
interpolate $! and $?!).

When the above expression is executed, open() , <PIPE> , and close are translated to C run−time library
calls. $! is set if one of these calls fails. The value is a symbolic indicator chosen by the C run
library, say No such file or directory .

On some systems the above C library calls are further translated to calls to the kernel. The kernel m
set more verbose error indicator that one of the handful of standard C errors. In such cases $^E contains
this verbose error indicator, which may be, say, CDROM tray not closed . On systems where C library
calls are identical to system calls $^E is a duplicate of $!.
278 Version 5.005_02 18−Oct−1998

perlvar Perl Programmers Reference Guide perlvar

rast to
Finally, $? may be set to non− value if the external program /cdrom/install fails. Upper bits of the
particular value may reflect specific error conditions encountered by this program (this is
program−dependent), lower−bits reflect mode of failure (segfault, completion, etc.). Note that in cont
$@, $!, and $^E, which are set only if error condition is detected, the variable $? is set on each wait or
pipe close , overwriting the old value.

For more details, see the individual descriptions at $@, $! , $^E , and $? .
18−Oct−1998 Version 5.005_02 279

perlsub Perl Programmers Reference Guide perlsub

e in the
e
ing a

e single
ys or

s use
 scalar
e, but

e

lement
ied or
ssigned

ill be
call. If
e in a

 will be

ails on

 file), see
NAME
perlsub − Perl subroutines

SYNOPSIS
To declare subroutines:

 sub NAME; # A "forward" declaration.
 sub NAME(PROTO); # ditto, but with prototypes

 sub NAME BLOCK # A declaration and a definition.
 sub NAME(PROTO) BLOCK # ditto, but with prototypes

To define an anonymous subroutine at runtime:

 $subref = sub BLOCK; # no proto
 $subref = sub (PROTO) BLOCK; # with proto

To import subroutines:

 use PACKAGE qw(NAME1 NAME2 NAME3);

To call subroutines:

 NAME(LIST); # & is optional with parentheses.
 NAME LIST; # Parentheses optional if predeclared/imported.
 &NAME; # Makes current @_ visible to called subroutine.

DESCRIPTION
Like many languages, Perl provides for user−defined subroutines. These may be located anywher
main program, loaded in from other files via the do , require , or use keywords, or even generated on th
fly using eval or anonymous subroutines (closures). You can even call a function indirectly us
variable containing its name or a CODE reference to it.

The Perl model for function call and return values is simple: all functions are passed as parameters on
flat list of scalars, and all functions likewise return to their caller one single flat list of scalars. Any arra
hashes in these call and return lists will collapse, losing their identities—but you may alway
pass−by−reference instead to avoid this. Both call and return lists may contain as many or as few
elements as you‘d like. (Often a function without an explicit return statement is called a subroutin
there‘s really no difference from the language‘s perspective.)

Any arguments passed to the routine come in as the array @_. Thus if you called a function with two
arguments, those would be stored in $_[0] and $_[1]. The array @_ is a local array, but its elements ar
aliases for the actual scalar parameters. In particular, if an element $_[0] is updated, the corresponding
argument is updated (or an error occurs if it is not updatable). If an argument is an array or hash e
which did not exist when the function was called, that element is created only when (and if) it is modif
if a reference to it is taken. (Some earlier versions of Perl created the element whether or not it was a
to.) Note that assigning to the whole array @_ removes the aliasing, and does not update any arguments.

The return value of the subroutine is the value of the last expression evaluated. Alternatively, a return
statement may be used to exit the subroutine, optionally specifying the returned value, which w
evaluated in the appropriate context (list, scalar, or void) depending on the context of the subroutine
you specify no return value, the subroutine will return an empty list in a list context, an undefined valu
scalar context, or nothing in a void context. If you return one or more arrays and/or hashes, these
flattened together into one large indistinguishable list.

Perl does not have named formal parameters, but in practice all you do is assign to a my() list of these. Any
variables you use in the function that aren‘t declared private are global variables. For the gory det
creating private variables, see "Private Variables via my() " and "Temporary Values via local() ". To
create protected environments for a set of functions in a separate package (and probably a separate
Packages in perlmod.
280 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

ies the

d you

rs
Example:

 sub max {
my $max = shift(@_);
foreach $foo (@_) {
 $max = $foo if $max < $foo;
}
return $max;

 }
 $bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

 # get a line, combining continuation lines
 # that start with whitespace

 sub get_line {
$thisline = $lookahead; # GLOBAL VARIABLES!!
LINE: while (defined($lookahead = <STDIN>)) {
 if ($lookahead =~ /^[\t]/) {

$thisline .= $lookahead;
 }
 else {

last LINE;
 }
}
$thisline;

 }

 $lookahead = <STDIN>; # get first line
 while ($_ = get_line()) {

...
 }

Use array assignment to a local list to name your formal arguments:

 sub maybeset {
my($key, $value) = @_;
$Foo{$key} = $value unless $Foo{$key};

 }

This also has the effect of turning call−by−reference into call−by−value, because the assignment cop
values. Otherwise a function is free to do in−place modifications of @_ and change its caller‘s values.

 upcase_in($v1, $v2); # this changes $v1 and $v2
 sub upcase_in {

for (@_) { tr/a−z/A−Z/ }
 }

You aren‘t allowed to modify constants in this way, of course. If an argument were actually literal an
tried to change it, you‘d take a (presumably fatal) exception. For example, this won‘t work:

 upcase_in("frederick");

It would be much safer if the upcase_in() function were written to return a copy of its paramete
instead of changing them in place:

 ($v3, $v4) = upcase($v1, $v2); # this doesn’t
 sub upcase {

return unless defined wantarray; # void context, do nothing
my @parms = @_;
18−Oct−1998 Version 5.005_02 281

perlsub Perl Programmers Reference Guide perlsub

erl will
ple

 here is

e

ing the

g on
way to

se names
alled

ional

 All
agical
for (@parms) { tr/a−z/A−Z/ }
 return wantarray ? @parms : $parms[0];
 }

Notice how this (unprototyped) function doesn‘t care whether it was passed real scalars or arrays. P
see everything as one big long flat @_ parameter list. This is one of the ways where Perl‘s sim
argument−passing style shines. The upcase() function would work perfectly well without changing the
upcase() definition even if we fed it things like this:

 @newlist = upcase(@list1, @list2);
 @newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

 (@a, @b) = upcase(@list1, @list2);

Because like its flat incoming parameter list, the return list is also flat. So all you have managed to do
stored everything in @a and made @b an empty list. See Pass by Reference for alternatives.

A subroutine may be called using the "&" prefix. The "&" is optional in modern Perls, and so are th
parentheses if the subroutine has been predeclared. (Note, however, that the "&" is NOT optional when
you‘re just naming the subroutine, such as when it‘s used as an argument to defined() or undef() . Nor
is it optional when you want to do an indirect subroutine call with a subroutine name or reference us
&$subref() or &{$subref}() constructs. See perlref for more on that.)

Subroutines may be called recursively. If a subroutine is called using the "&" form, the argument list is
optional, and if omitted, no @_ array is set up for the subroutine: the @_ array at the time of the call is visible
to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

 &foo(1,2,3); # pass three arguments
 foo(1,2,3); # the same

 foo(); # pass a null list
 &foo(); # the same

 &foo; # foo() get current args, like foo(@_) !!
 foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the "&" form make the argument list optional, but it also disables any prototype checkin
the arguments you do provide. This is partly for historical reasons, and partly for having a convenient
cheat if you know what you‘re doing. See the section on Prototypes below.

Function whose names are in all upper case are reserved to the Perl core, just as are modules who
are in all lower case. A function in all capitals is a loosely−held convention meaning it will be c
indirectly by the run−time system itself. Functions that do special, pre−defined things are BEGIN, END,
AUTOLOAD, and DESTROY—plus all the functions mentioned in perltie. The 5.005 release adds INIT to
this list.

Private Variables via my()
Synopsis:

 my $foo; # declare $foo lexically local
 my (@wid, %get); # declare list of variables local
 my $foo = "flurp"; # declare $foo lexical, and init it
 my @oof = @bar; # declare @oof lexical, and init it

A "my" declares the listed variables to be confined (lexically) to the enclosing block, condit
(if/unless/elsif/else), loop (for/foreach/while/until/continue), subroutine, eval ,
or do/require/use ‘d file. If more than one value is listed, the list must be placed in parentheses.
listed elements must be legal lvalues. Only alphanumeric identifiers may be lexically scoped—m
builtins like $/ must currently be local ize with "local " instead.
282 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

d from

l

as the

 (If
 used

les in
o

trolled
Unlike dynamic variables created by the "local " operator, lexical variables declared with "my" are totally
hidden from the outside world, including any called subroutines (even if it‘s the same subroutine calle
itself or elsewhere—every call gets its own copy).

This doesn‘t mean that a my() variable declared in a statically enclosing lexical scope would be invisible.
Only the dynamic scopes are cut off. For example, the bumpx() function below has access to the lexica
$x variable because both the my and the sub occurred at the same scope, presumably the file scope.

 my $x = 10;
 sub bumpx { $x++ }

(An eval() , however, can see the lexical variables of the scope it is being evaluated in so long
names aren‘t hidden by declarations within the eval() itself. See perlref.)

The parameter list to my() may be assigned to if desired, which allows you to initialize your variables.
no initializer is given for a particular variable, it is created with the undefined value.) Commonly this is
to name the parameters to a subroutine. Examples:

 $arg = "fred"; # "global" variable
 $n = cube_root(27);
 print "$arg thinks the root is $n\n";
 fred thinks the root is 3

 sub cube_root {
my $arg = shift; # name doesn’t matter
$arg **= 1/3;
return $arg;

 }

The "my" is simply a modifier on something you might assign to. So when you do assign to the variab
its argument list, the "my" doesn‘t change whether those variables are viewed as a scalar or an array. S

 my ($foo) = <STDIN>; # WRONG?
 my @FOO = <STDIN>;

both supply a list context to the right−hand side, while

 my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:

 my $foo, $bar = 1; # WRONG

That has the same effect as

 my $foo;
 $bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,

 my $x = $x;

can be used to initialize the new $x with the value of the old $x, and the expression

 my $x = 123 and $x == 123

is false unless the old $x happened to have the value 123 .

Lexical scopes of control structures are not bounded precisely by the braces that delimit their con
blocks; control expressions are part of the scope, too. Thus in the loop

 while (defined(my $line = <>)) {
 $line = lc $line;
 } continue {
 print $line;
18−Oct−1998 Version 5.005_02 283

perlsub Perl Programmers Reference Guide perlsub

 the

s.

s

implicit

lexical
 inner

it; the

 the
ical:

e fully

 the
uires
 }

the scope of $line extends from its declaration throughout the rest of the loop construct (including
continue clause), but not beyond it. Similarly, in the conditional

 if ((my $answer = <STDIN>) =~ /^yes$/i) {
 user_agrees();
 } elsif ($answer =~ /^no$/i) {
 user_disagrees();
 } else {

chomp $answer;
 die "’$answer’ is neither ’yes’ nor ’no’";
 }

the scope of $answer extends from its declaration throughout the rest of the conditional (including elsif
and else clauses, if any), but not beyond it.

(None of the foregoing applies to if/unless or while/until modifiers appended to simple statement
 Such modifiers are not control structures and have no effect on scoping.)

The foreach loop defaults to scoping its index variable dynamically (in the manner of local ; see below).
 However, if the index variable is prefixed with the keyword "my", then it is lexically scoped instead. Thu
in the loop

 for my $i (1, 2, 3) {
 some_function();
 }

the scope of $i extends to the end of the loop, but not beyond it, and so the value of $i is unavailable in
some_function() .

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching
references to package variables, if you say

 use strict ’vars’;

then any variable reference from there to the end of the enclosing block must either refer to a
variable, or must be fully qualified with the package name. A compilation error results otherwise. An
block may countermand this with "no strict ‘vars’ ".

A my() has both a compile−time and a run−time effect. At compile time, the compiler takes notice of
principle usefulness of this is to quiet "use strict ‘vars’ ". The actual initialization is delayed until
run time, so it gets executed appropriately; every time through a loop, for example.

Variables declared with "my" are not part of any package and are therefore never fully qualified with
package name. In particular, you‘re not allowed to try to make a package variable (or other global) lex

 my $pack::var; # ERROR! Illegal syntax
 my $_; # also illegal (currently)

In fact, a dynamic variable (also known as package or global variables) are still accessible using th
qualified :: notation even while a lexical of the same name is also visible:

 package main;
 local $x = 10;
 my $x = 20;
 print "$x and $::x\n";

That will print out 20 and 10 .

You may declare "my" variables at the outermost scope of a file to hide any such identifiers totally from
outside world. This is similar to C‘s static variables at the file level. To do this with a subroutine req
the use of a closure (anonymous function with lexical access). If a block (such as an eval() , function, or
284 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

clare a

 see the

f some

auto,

e their
ng as
uldn‘t
matic

pointer to
ism for
reate
 static

e

ey are
he file.
package) wants to create a private subroutine that cannot be called from outside that block, it can de
lexical variable containing an anonymous sub reference:

 my $secret_version = ’1.001−beta’;
 my $secret_sub = sub { print $secret_version };
 &$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can
subroutine, because its name is not in any package‘s symbol table. Remember that it‘s not REALLY called
$some_pack::secret_version or anything; it‘s just $secret_version, unqualified and
unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table o
package to be found.

Peristent Private Variables
Just because a lexical variable is lexically (also called statically) scoped to its enclosing block, eval , or do
FILE, this doesn‘t mean that within a function it works like a C static. It normally works more like a C
but with implicit garbage collection.

Unlike local variables in C or C++, Perl‘s lexical variables don‘t necessarily get recycled just becaus
scope has exited. If something more permanent is still aware of the lexical, it will stick around. So lo
something else references a lexical, that lexical won‘t be freed—which is as it should be. You wo
want memory being free until you were done using it, or kept around once you were done. Auto
garbage collection takes care of this for you.

This means that you can pass back or save away references to lexical variables, whereas to return a
a C auto is a grave error. It also gives us a way to simulate C‘s function statics. Here‘s a mechan
giving a function private variables with both lexical scoping and a static lifetime. If you do want to c
something like C‘s static variables, just enclose the whole function in an extra block, and put the
variable outside the function but in the block.

 {
my $secret_val = 0;
sub gimme_another {
 return ++$secret_val;
}

 }
 # $secret_val now becomes unreachable by the outside
 # world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file via require or use , then this is probably just fine.
If it‘s all in the main program, you‘ll need to arrange for the my() to be executed early, either by putting th
whole block above your main program, or more likely, placing merely a BEGIN sub around it to make sure it
gets executed before your program starts to run:

 sub BEGIN {
my $secret_val = 0;
sub gimme_another {
 return ++$secret_val;
}

 }

See Package Constructors and Destructors in perlmod about the BEGIN function.

If declared at the outermost scope, the file scope, then lexicals work someone like C‘s file statics. Th
available to all functions in that same file declared below them, but are inaccessible from outside of t
This is sometimes used in modules to create private variables for the whole module.
18−Oct−1998 Version 5.005_02 285

perlsub Perl Programmers Reference Guide perlsub

s
e Perl
ue

g
ping

nts
ent list

t called
ssigned

ular
rs to a

f Perl
ims the
Temporary Values via local()
NOTE: In general, you should be using "my" instead of "local ", because it‘s faster and safer. Exception
to this include the global punctuation variables, filehandles and formats, and direct manipulation of th
symbol table itself. Format variables often use "local " though, as do other variables whose current val
must be visible to called subroutines.

Synopsis:

 local $foo; # declare $foo dynamically local
 local (@wid, %get); # declare list of variables local
 local $foo = "flurp"; # declare $foo dynamic, and init it
 local @oof = @bar; # declare @oof dynamic, and init it

 local *FH; # localize $FH, @FH, %FH, &FH ...
 local *merlyn = *randal; # now $merlyn is really $randal, plus
 # @merlyn is really @randal, etc
 local *merlyn = ’randal’; # SAME THING: promote ’randal’ to *randal
 local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local() modifies its listed variables to be "local" to the enclosing block, eval , or do FILE —and to
any subroutine called from within that block. A local() just gives temporary values to global (meanin
package) variables. It does not create a local variable. This is known as dynamic scoping. Lexical sco
is done with "my", which works more like C‘s auto declarations.

If more than one variable is given to local() , they must be placed in parentheses. All listed eleme
must be legal lvalues. This operator works by saving the current values of those variables in its argum
on a hidden stack and restoring them upon exiting the block, subroutine, or eval. This means tha
subroutines can also reference the local variable, but not the global one. The argument list may be a
to if desired, which allows you to initialize your local variables. (If no initializer is given for a partic
variable, it is created with an undefined value.) Commonly this is used to name the paramete
subroutine. Examples:

 for $i (0 .. 9) {
$digits{$i} = $i;

 }
 # assume this function uses global %digits hash
 parse_num();

 # now temporarily add to %digits hash
 if ($base12) {

(NOTE: not claiming this is efficient!)
local %digits = (%digits, ’t’ => 10, ’e’ => 11);
parse_num(); # parse_num gets this new %digits!

 }
 # old %digits restored here

Because local() is a run−time command, it gets executed every time through a loop. In releases o
previous to 5.0, this used more stack storage each time until the loop was exited. Perl now recla
space each time through, but it‘s still more efficient to declare your variables outside the loop.

A local is simply a modifier on an lvalue expression. When you assign to a local ized variable, the
local doesn‘t change whether its list is viewed as a scalar or an array. So

 local($foo) = <STDIN>;
 local @FOO = <STDIN>;

both supply a list context to the right−hand side, while

 local $foo = <STDIN>;
286 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

ehind"

f
a tied

ed in
supplies a scalar context.

A note about local() and composite types is in order. Something like local(%foo) works by
temporarily placing a brand new hash in the symbol table. The old hash is left alone, but is hidden "b
the new one.

This means the old variable is completely invisible via the symbol table (i.e. the hash entry in the *foo
typeglob) for the duration of the dynamic scope within which the local() was seen. This has the effect o
allowing one to temporarily occlude any magic on composite types. For instance, this will briefly alter
hash to some other implementation:

 tie %ahash, ’APackage’;
 [...]
 {
 local %ahash;
 tie %ahash, ’BPackage’;
 [..called code will see %ahash tied to ’BPackage’..]
 {
 local %ahash;
 [..%ahash is a normal (untied) hash here..]
 }
 }
 [..%ahash back to its initial tied self again..]

As another example, a custom implementation of %ENV might look like this:

 {
 local %ENV;
 tie %ENV, ’MyOwnEnv’;
 [..do your own fancy %ENV manipulation here..]
 }
 [..normal %ENV behavior here..]

It‘s also worth taking a moment to explain what happens when you local ize a member of a composite type
(i.e. an array or hash element). In this case, the element is local ized by name. This means that when the
scope of the local() ends, the saved value will be restored to the hash element whose key was nam
the local() , or the array element whose index was named in the local() . If that element was deleted
while the local() was in effect (e.g. by a delete() from a hash or a shift() of an array), it will
spring back into existence, possibly extending an array and filling in the skipped elements with undef . For
instance, if you say

 %hash = (’This’ => ’is’, ’a’ => ’test’);
 @ary = (0..5);
 {
 local($ary[5]) = 6;
 local($hash{’a’}) = ’drill’;
 while (my $e = pop(@ary)) {
 print "$e . . .\n";
 last unless $e > 3;
 }
 if (@ary) {
 $hash{’only a’} = ’test’;
 delete $hash{’a’};
 }
 }
 print join(’ ’, map { "$_ $hash{$_}" } sort keys %hash),".\n";
 print "The array has ",scalar(@ary)," elements: ",
 join(’, ’, map { defined $_ ? $_ : ’undef’ } @ary),"\n";
18−Oct−1998 Version 5.005_02 287

perlsub Perl Programmers Reference Guide perlsub

erence
sm is

 that the
 to all
,
ters on

ncluding
hatever

sing this
 all
 to
).

single
ut the

 are

it
Perl will print

 6 . . .
 4 . . .
 3 . . .
 This is a test only a test.
 The array has 6 elements: 0, 1, 2, undef, undef, 5

Passing Symbol Table Entries (typeglobs)
[Note: The mechanism described in this section was originally the only way to simulate pass−by−ref
in older versions of Perl. While it still works fine in modern versions, the new reference mechani
generally easier to work with. See below.]

Sometimes you don‘t want to pass the value of an array to a subroutine but rather the name of it, so
subroutine can modify the global copy of it rather than working with a local copy. In perl you can refer
objects of a particular name by prefixing the name with a star: *foo . This is often known as a "typeglob"
because the star on the front can be thought of as a wildcard match for all the funny prefix charac
variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of that name, i
any filehandle, format, or subroutine. When assigned to, it causes the name mentioned to refer to w
"* " value was assigned to it. Example:

 sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
 $elem *= 2;
}

 }
 doubleary(*foo);
 doubleary(*bar);

Note that scalars are already passed by reference, so you can modify scalar arguments without u
mechanism by referring explicitly to $_[0] etc. You can modify all the elements of an array by passing
the elements as scalars, but you have to use the * mechanism (or the equivalent reference mechanism)
push , pop , or change the size of an array. It will certainly be faster to pass the typeglob (or reference

Even if you don‘t want to modify an array, this mechanism is useful for passing multiple arrays in a
LIST, because normally the LIST mechanism will merge all the array values so that you can‘t extract o
individual arrays. For more on typeglobs, see Typeglobs and Filehandles in perldata.

When to Still Use local()
Despite the existence of my() , there are still three places where the local() operator still shines. In fact,
in these three places, you must use local instead of my.

1. You need to give a global variable a temporary value, especially $_.
The global variables, like @ARGV or the punctuation variables, must be local ized with local() .
This block reads in /etc/motd, and splits it up into chunks separated by lines of equal signs, which
placed in @Fields .

 {
local @ARGV = ("/etc/motd");

 local $/ = undef;
 local $_ = <>;

@Fields = split /^\s*=+\s*$/;
 }

It particular, it‘s important to local ize $_ in any routine that assigns to it. Look out for implic
assignments in while conditionals.
288 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

 what is

asion

 them
o that,
ou

:
2. You need to create a local file or directory handle or a local function.
A function that needs a filehandle of its own must use local() uses local() on complete
typeglob. This can be used to create new symbol table entries:

 sub ioqueue {
 local (*READER, *WRITER); # not my!
 pipe (READER, WRITER); or die "pipe: $!";
 return (*READER, *WRITER);
 }
 ($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to create
effectively a local function, or at least, a local alias.

 {
 local *grow = \&shrink; # only until this block exists
 grow(); # really calls shrink()

move(); # if move() grow()s, it shrink()s too
 }
 grow(); # get the real grow() again

See Function Templates in perlref for more about manipulating functions by name in this way.

3. You want to temporarily change just one element of an array or hash.
You can local ize just one element of an aggregate. Usually this is done on dynamics:

 {
local $SIG{INT} = ’IGNORE’;
funct(); # uninterruptible

 }
 # interruptibility automatically restored here

But it also works on lexically declared aggregates. Prior to 5.005, this operation could on occ
misbehave.

Pass by Reference
If you want to pass more than one array or hash into a function—or return them from it—and have
maintain their integrity, then you‘re going to have to use an explicit pass−by−reference. Before you d
you need to understand references as detailed in perlref. This section may not make much sense to y
otherwise.

Here are a few simple examples. First, let‘s pass in several arrays to a function and have it pop all of then,
return a new list of all their former last elements:

 @tailings = popmany (\@a, \@b, \@c, \@d);

 sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
 push @retlist, pop @$aref;
}
return @retlist;

 }

Here‘s how you might write a function that returns a list of keys occurring in all the hashes passed to it

 @common = inter(\%foo, \%bar, \%joe);
18−Oct−1998 Version 5.005_02 289

perlsub Perl Programmers Reference Guide perlsub

a hash?
lling

 nice to
ents in

ork if
 sub inter {
my ($k, $href, %seen); # locals
foreach $href (@_) {
 while ($k = each %$href) {

$seen{$k}++;
 }
}
return grep { $seen{$_} == @_ } keys %seen;

 }

So far, we‘re using just the normal list return mechanism. What happens if you want to pass or return
 Well, if you‘re using only one of them, or you don‘t mind them concatenating, then the normal ca
convention is ok, although a little expensive.

Where people get into trouble is here:

 (@a, @b) = func(@c, @d);
or
 (%a, %b) = func(%c, %d);

That syntax simply won‘t work. It sets just @a or %a and clears the @b or %b. Plus the function didn‘t get
passed into two separate arrays or hashes: it got one long list in @_, as always.

If you can arrange for everyone to deal with this through references, it‘s cleaner code, although not so
look at. Here‘s a function that takes two array references as arguments, returning the two array elem
order of how many elements they have in them:

 ($aref, $bref) = func(\@c, \@d);
 print "@$aref has more than @$bref\n";
 sub func {

my ($cref, $dref) = @_;
if (@$cref > @$dref) {
 return ($cref, $dref);
} else {
 return ($dref, $cref);
}

 }

It turns out that you can actually do this also:

 (*a, *b) = func(\@c, \@d);
 print "@a has more than @b\n";
 sub func {

local (*c, *d) = @_;
if (@c > @d) {
 return (\@c, \@d);
} else {
 return (\@d, \@c);
}

 }

Here we‘re using the typeglobs to do symbol table aliasing. It‘s a tad subtle, though, and also won‘t w
you‘re using my() variables, because only globals (well, and local() s) are in the symbol table.

If you‘re passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references would be better because they‘ll still work properly under use strict ‘refs’ .
For example:

 splutter(*STDOUT);
 sub splutter {
290 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

d
o the

en it
ve no

inate at

re the

ith that
n

my $fh = shift;
print $fh "her um well a hmmm\n";

 }

 $rec = get_rec(*STDIN);
 sub get_rec {

my $fh = shift;
return scalar <$fh>;

 }

Another way to do this is using *HANDLE{IO} , see perlref for usage and caveats.

If you‘re planning on generating new filehandles, you could do this:

 sub openit {
my $name = shift;
local *FH;
return open (FH, $path) ? *FH : undef;

 }

Although that will actually produce a small memory leak. See the bottom of open() for a somewhat
cleaner way using the IO::Handle package.

Prototypes
As of the 5.002 release of perl, if you declare

 sub mypush (\@@)

then mypush() takes arguments exactly like push() does. The declaration of the function to be calle
must be visible at compile time. The prototype affects only the interpretation of new−style calls t
function, where new−style is defined as not using the & character. In other words, if you call it like a builtin
function, then it behaves like a builtin function. If you call it like an old−fashioned subroutine, th
behaves like an old−fashioned subroutine. It naturally falls out from this rule that prototypes ha
influence on subroutine references like \&foo or on indirect subroutine calls like &{$subref}.

Method calls are not influenced by prototypes either, because the function to be called is indeterm
compile time, because it depends on inheritance.

Because the intent is primarily to let you define subroutines that work like builtin commands, here a
prototypes for some other functions that parse almost exactly like the corresponding builtins.

 Declared as Called as

 sub mylink ($$) mylink $old, $new
 sub myvec ($$$) myvec $var, $offset, 1
 sub myindex ($$;$) myindex &getstring, "substr"
 sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) − $off, $off
 sub myreverse (@) myreverse $a, $b, $c
 sub myjoin ($@) myjoin ":", $a, $b, $c
 sub mypop (\@) mypop @array
 sub mysplice (\@$$@) mysplice @array, @array, 0, @pushme
 sub mykeys (\%) mykeys %{$hashref}
 sub myopen (*;$) myopen HANDLE, $name
 sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
 sub mygrep (&@) mygrep { /foo/ } $a, $b, $c
 sub myrand ($) myrand 42
 sub mytime () mytime

Any backslashed prototype character represents an actual argument that absolutely must start w
character. The value passed to the subroutine (as part of @_) will be a reference to the actual argument give
in the subroutine call, obtained by applying \ to that argument.
18−Oct−1998 Version 5.005_02 291

perlsub Perl Programmers Reference Guide perlsub

 table

s

ut of
 current
els the
t of the
asy to

e you
ple, if
Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all the rest of
the arguments, and forces list context. An argument represented by $ forces scalar context. An & requires
an anonymous subroutine, which, if passed as the first argument, does not require the "sub " keyword or a
subsequent comma. A * does whatever it has to do to turn the argument into a reference to a symbol
entry.

A semicolon separates mandatory arguments from optional arguments. (It is redundant before @ or %.)

Note how the last three examples above are treated specially by the parser. mygrep() is parsed as a true list
operator, myrand() is parsed as a true unary operator with unary precedence the same as rand() , and
mytime() is truly without arguments, just like time() . That is, if you say

 mytime +2;

you‘ll get mytime() + 2 , not mytime(2) , which is how it would be parsed without the prototype.

The interesting thing about & is that you can generate new syntax with it:

 sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if ($@) {
 local $_ = $@;
 &$catch;
}

 }
 sub catch (&) { $_[0] }

 try {
die "phooey";

 } catch {
/phooey/ and print "unphooey\n";

 };

That prints "unphooey" . (Yes, there are still unresolved issues having to do with the visibility of @_. I‘m
ignoring that question for the moment. (But note that if we make @_ lexically scoped, those anonymou
subroutines can act like closures... (Gee, is this sounding a little Lispish? (Never mind.))))

And here‘s a reimplementation of grep :

 sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {
 push(@result, $_) if &$code;
}
@result;

 }

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left o
prototypes for the express purpose of someday in the future adding named, formal parameters. The
mechanism‘s main goal is to let module writers provide better diagnostics for module users. Larry fe
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the mea
module, nor make it harder to read. The line noise is visually encapsulated into a small pill that‘s e
swallow.

It‘s probably best to prototype new functions, not retrofit prototyping into older ones. That‘s becaus
must be especially careful about silent impositions of differing list versus scalar contexts. For exam
you decide that a function should take just one parameter, like this:
292 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

it

t

place.

nd
n it will

e this
idered
 using
t it isn‘t
 by
 sub func ($) {
my $n = shift;
print "you gave me $n\n";

 }

and someone has been calling it with an array or expression returning a list:

 func(@foo);
 func(split /:/);

Then you‘ve just supplied an automatic scalar() in front of their argument, which can be more than a b
surprising. The old @foo which used to hold one thing doesn‘t get passed in. Instead, the func() now
gets passed in 1, that is, the number of elements in @foo. And the split() gets called in a scalar contex
and starts scribbling on your @_ parameter list.

This is all very powerful, of course, and should be used only in moderation to make the world a better

Constant Functions
Functions with a prototype of () are potential candidates for inlining. If the result after optimization a
constant folding is either a constant or a lexically−scoped scalar which has no other references, the
be used in place of function calls made without & or do . Calls made using & or do are never inlined. (See
constant.pm for an easy way to declare most constants.)

The following functions would all be inlined:

 sub pi () { 3.14159 } # Not exact, but close.
 sub PI () { 4 * atan2 1, 1 } # As good as it gets,

and it’s inlined, too!
 sub ST_DEV () { 0 }
 sub ST_INO () { 1 }

 sub FLAG_FOO () { 1 << 8 }
 sub FLAG_BAR () { 1 << 9 }
 sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }

 sub OPT_BAZ () { not (0x1B58 & FLAG_MASK) }
 sub BAZ_VAL () {

if (OPT_BAZ) {
 return 23;
}
else {
 return 42;
}

 }

 sub N () { int(BAZ_VAL) / 3 }
 BEGIN {

my $prod = 1;
for (1..N) { $prod *= $_ }
sub N_FACTORIAL () { $prod }

 }

If you redefine a subroutine that was eligible for inlining, you‘ll get a mandatory warning. (You can us
warning to tell whether or not a particular subroutine is considered constant.) The warning is cons
severe enough not to be optional because previously compiled invocations of the function will still be
the old value of the function. If you need to be able to redefine the subroutine you need to ensure tha
inlined, either by dropping the () prototype (which changes the calling semantics, so beware) or
thwarting the inlining mechanism in some other way, such as

 sub not_inlined () {
18−Oct−1998 Version 5.005_02 293

perlsub Perl Programmers Reference Guide perlsub

good
y on a

good
port

ckage

emantics

quests
 builtin
 special
 23 if $];
 }

Overriding Builtin Functions
Many builtin functions may be overridden, though this should be tried only occasionally and for
reason. Typically this might be done by a package attempting to emulate missing builtin functionalit
non−Unix system.

Overriding may be done only by importing the name from a module—ordinary predeclaration isn‘t
enough. However, the subs pragma (compiler directive) lets you, in effect, predeclare subs via the im
syntax, and these names may then override the builtin ones:

 use subs ’chdir’, ’chroot’, ’chmod’, ’chown’;
 chdir $somewhere;
 sub chdir { ... }

To unambiguously refer to the builtin form, one may precede the builtin name with the special pa
qualifier CORE:: . For example, saying CORE::open() will always refer to the builtin open() , even if
the current package has imported some other subroutine called &open() from elsewhere.

Library modules should not in general export builtin names like "open " or "chdir " as part of their default
@EXPORT list, because these may sneak into someone else‘s namespace and change the s
unexpectedly. Instead, if the module adds the name to the @EXPORT_OK list, then it‘s possible for a user to
import the name explicitly, but not implicitly. That is, they could say

 use Module ’open’;

and it would import the open override, but if they said

 use Module;

they would get the default imports without the overrides.

The foregoing mechanism for overriding builtins is restricted, quite deliberately, to the package that re
the import. There is a second method that is sometimes applicable when you wish to override a
everywhere, without regard to namespace boundaries. This is achieved by importing a sub into the
namespace CORE::GLOBAL:: . Here is an example that quite brazenly replaces the glob operator with
something that understands regular expressions.

 package REGlob;
 require Exporter;
 @ISA = ’Exporter’;
 @EXPORT_OK = ’glob’;

 sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =~ s/^GLOBAL_// ? ’CORE::GLOBAL’ : caller(0));
$pkg−>export($where, $sym, @_);

 }

 sub glob {
my $pat = shift;
my @got;
local(*D);
if (opendir D, ’.’) { @got = grep /$pat/, readdir D; closedir D; }
@got;

 }
 1;
294 Version 5.005_02 18−Oct−1998

perlsub Perl Programmers Reference Guide perlsub

lly, this

r list
, and
ple of

g that
doesn‘t

 of the

..

cute

 should

:

calls as

ee the
n

And here‘s how it could be (ab)used:

 #use REGlob ’GLOBAL_glob’; # override glob() in ALL namespaces
 package Foo;
 use REGlob ’glob’; # override glob() in Foo:: only
 print for <^[a−z_]+\.pm\$>; # show all pragmatic modules

Note that the initial comment shows a contrived, even dangerous example. By overriding glob globally,
you would be forcing the new (and subversive) behavior for the glob operator for every namespace,
without the complete cognizance or cooperation of the modules that own those namespaces. Natura
should be done with extreme caution—if it must be done at all.

The REGlob example above does not implement all the support needed to cleanly override perl‘s glob
operator. The builtin glob has different behaviors depending on whether it appears in a scalar o
context, but our REGlob doesn‘t. Indeed, many perl builtins have such context sensitive behaviors
these must be adequately supported by a properly written override. For a fully functional exam
overriding glob , study the implementation of File::DosGlob in the standard library.

Autoloading
If you call a subroutine that is undefined, you would ordinarily get an immediate fatal error complainin
the subroutine doesn‘t exist. (Likewise for subroutines being used as methods, when the method
exist in any base class of the class package.) If, however, there is an AUTOLOAD subroutine defined in the
package or packages that were searched for the original subroutine, then that AUTOLOAD subroutine is called
with the arguments that would have been passed to the original subroutine. The fully qualified name
original subroutine magically appears in the $AUTOLOAD variable in the same package as the AUTOLOAD
routine. The name is not passed as an ordinary argument because, er, well, just because, that‘s why.

Most AUTOLOAD routines will load in a definition for the subroutine in question using eval, and then exe
that subroutine using a special form of "goto" that erases the stack frame of the AUTOLOAD routine without a
trace. (See the standard AutoLoader module, for example.) But an AUTOLOAD routine can also just
emulate the routine and never define it. For example, let‘s pretend that a function that wasn‘t defined
just call system() with those arguments. All you‘d do is this:

 sub AUTOLOAD {
my $program = $AUTOLOAD;
$program =~ s/.*:://;
system($program, @_);

 }
 date();
 who(’am’, ’i’);
 ls(’−l’);

In fact, if you predeclare the functions you want to call that way, you don‘t even need the parentheses

 use subs qw(date who ls);
 date;
 who "am", "i";
 ls −l;

A more complete example of this is the standard Shell module, which can treat undefined subroutine
calls to Unix programs.

Mechanisms are available for modules writers to help split the modules up into autoloadable files. S
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules i
SelfLoader, and the document on adding C functions to perl code in perlxs.

SEE ALSO
See perlref for more about references and closures. See perlxs if you‘d like to learn about calling C
subroutines from perl. See perlmod to learn about bundling up your functions in separate files.
18−Oct−1998 Version 5.005_02 295

perlmod Perl Programmers Reference Guide perlmod

 other‘s
default
 unit as
ugh the

age

he
nces
s and
colon:

n part

parator,
hioned

e fully

other

re
at, if
be

s more
method

r

 the

).

truct
NAME
perlmod − Perl modules (packages and symbol tables)

DESCRIPTION

Packages
Perl provides a mechanism for alternative namespaces to protect packages from stomping on each
variables. In fact, there‘s really no such thing as a global variable in Perl (although some identifiers
to the main package instead of the current one). The package statement declares the compilation
being in the given namespace. The scope of the package declaration is from the declaration itself thro
end of the enclosing block, eval , sub , or end of file, whichever comes first (the same scope as the my()
and local() operators). All further unqualified dynamic identifiers will be in this namespace. A pack
statement only affects dynamic variables—including those you‘ve used local() on—but not lexical
variables created with my() . Typically it would be the first declaration in a file to be included by t
require or use operator. You can switch into a package in more than one place; it merely influe
which symbol table is used by the compiler for the rest of that block. You can refer to variable
filehandles in other packages by prefixing the identifier with the package name and a double
$Package::Variable. If the package name is null, the main package is assumed. That is, $::sail
is equivalent to $main::sail.

The old package delimiter was a single quote, but double colon is now the preferred delimiter, i
because it‘s more readable to humans, and in part because it‘s more readable to emacs macros. It also makes
C++ programmers feel like they know what‘s going on—as opposed to using the single quote as se
which was there to make Ada programmers feel like they knew what‘s going on. Because the old−fas
syntax is still supported for backwards compatibility, if you try to use a string like "This is $owner‘s
house" , you‘ll be accessing $owner::s; that is, the $s variable in package owner , which is probably
not what you meant. Use braces to disambiguate, as in "This is ${owner}‘s house" .

Packages may be nested inside other packages: $OUTER::INNER::var. This implies nothing about the
order of name lookups, however. All symbols are either local to the current package, or must b
qualified from the outer package name down. For instance, there is nowhere within package OUTER that
$INNER::var refers to $OUTER::INNER::var. It would treat package INNER as a totally separate
global package.

Only identifiers starting with letters (or underscore) are stored in a package‘s symbol table. All
symbols are kept in package main , including all of the punctuation variables like $_. In addition, when
unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC, and SIG a
forced to be in package main , even when used for other purposes than their builtin one. Note also th
you have a package called m, s , or y , then you can‘t use the qualified form of an identifier because it will
interpreted instead as a pattern match, a substitution, or a transliteration.

(Variables beginning with underscore used to be forced into package main, but we decided it wa
useful for package writers to be able to use leading underscore to indicate private variables and
names. $_ is still global though.)

Eval() ed strings are compiled in the package in which the eval() was compiled. (Assignments to
$SIG{}, however, assume the signal handler specified is in the main package. Qualify the signal handle
name if you wish to have a signal handler in a package.) For an example, examine perldb.pl in the Perl
library. It initially switches to the DB package so that the debugger doesn‘t interfere with variables in
script you are trying to debug. At various points, however, it temporarily switches back to the main
package to evaluate various expressions in the context of the main package (or wherever you came from
See perldebug.

The special symbol __PACKAGE__ contains the current package, but cannot (easily) be used to cons
variables.

See perlsub for other scoping issues related to my() and local() , and perlref regarding closures.
296 Version 5.005_02 18−Oct−1998

perlmod Perl Programmers Reference Guide perlmod

pended.
d

l table

e,

rrays.

n‘t want

_hash
o have

tant
 one

ol

Symbol Tables
The symbol table for a package happens to be stored in the hash of that name with two colons ap
The main symbol table‘s name is thus %main:: , or %:: for short. Likewise symbol table for the neste
package mentioned earlier is named %OUTER::INNER:: .

The value in each entry of the hash is what you are referring to when you use the *name typeglob notation.
In fact, the following have the same effect, though the first is more efficient because it does the symbo
lookups at compile time:

 local *main::foo = *main::bar;
 local $main::{foo} = $main::{bar};

You can use this to print out all the variables in a package, for instance. The standard dumpvar.pl library
and the CPAN module Devel::Symdump make use of this.

Assignment to a typeglob performs an aliasing operation, i.e.,

 *dick = *richard;

causes variables, subroutines, formats, and file and directory handles accessible via the identifier richard
also to be accessible via the identifier dick . If you want to alias only a particular variable or subroutin
you can assign a reference instead:

 *dick = \$richard;

Which makes $richard and $dick the same variable, but leaves @richard and @dick as separate a
Tricky, eh?

This mechanism may be used to pass and return cheap references into or from subroutines if you wo
to copy the whole thing. It only works when assigning to dynamic variables, not lexicals.

 %some_hash = (); # can’t be my()
 *some_hash = fn(\%another_hash);
 sub fn {

local *hashsym = shift;
now use %hashsym normally, and you
will affect the caller’s %another_hash
my %nhash = (); # do what you want
return \%nhash;

 }

On return, the reference will overwrite the hash slot in the symbol table specified by the *some
typeglob. This is a somewhat tricky way of passing around references cheaply when you won‘t want t
to remember to dereference variables explicitly.

Another use of symbol tables is for making "constant" scalars.

 *PI = \3.14159265358979;

Now you cannot alter $PI, which is probably a good thing all in all. This isn‘t the same as a cons
subroutine, which is subject to optimization at compile−time. This isn‘t. A constant subroutine is
prototyped to take no arguments and to return a constant expression. See perlsub for details on these. The
use constant pragma is a convenient shorthand for these.

You can say *foo{PACKAGE} and *foo{NAME} to find out what name and package the *foo symb
table entry comes from. This may be useful in a subroutine that gets passed typeglobs as arguments:

 sub identify_typeglob {
 my $glob = shift;
 print ’You gave me ’, *{$glob}{PACKAGE}, ’::’, *{$glob}{NAME}, "\n";
 }
 identify_typeglob *foo;
18−Oct−1998 Version 5.005_02 297

perlmod Perl Programmers Reference Guide perlmod

, see

hese are

, even

s

n‘t ever

 if it is

have
out

a

st), both
r

es to act
isting the

usable.
f any
rough
ittle of

d start
 identify_typeglob *bar::baz;

This prints

 You gave me main::foo
 You gave me bar::baz

The *foo{THING} notation can also be used to obtain references to the individual elements of *foo
perlref.

Package Constructors and Destructors
There are two special subroutine definitions that function as package constructors and destructors. T
the BEGIN and END routines. The sub is optional for these routines.

A BEGIN subroutine is executed as soon as possible, that is, the moment it is completely defined
before the rest of the containing file is parsed. You may have multiple BEGIN blocks within a file—they
will execute in order of definition. Because a BEGIN block executes immediately, it can pull in definition
of subroutines and such from other files in time to be visible to the rest of the file. Once a BEGIN has run, it
is immediately undefined and any code it used is returned to Perl‘s memory pool. This means you ca
explicitly call a BEGIN.

An END subroutine is executed as late as possible, that is, when the interpreter is being exited, even
exiting as a result of a die() function. (But not if it‘s polymorphing into another program via exec , or
being blown out of the water by a signal—you have to trap that yourself (if you can).) You may
multiple END blocks within a file—they will execute in reverse order of definition; that is: last in, first
(LIFO).

Inside an END subroutine, $? contains the value that the script is going to pass to exit() . You can modify
$? to change the exit value of the script. Beware of changing $? by accident (e.g. by running something vi
system).

Note that when you use the −n and −p switches to Perl, BEGIN and END work just as they do in awk, as a
degenerate case. As currently implemented (and subject to change, since its inconvenient at be
BEGIN and END blocks are run when you use the −c switch for a compile−only syntax check, although you
main code is not.

Perl Classes
There is no special class syntax in Perl, but a package may function as a class if it provides subroutin
as methods. Such a package may also derive some of its methods from another class (package) by l
other package name in its global @ISA array (which must be a package global, not a lexical).

For more on this, see perltoot and perlobj.

Perl Modules
A module is just a package that is defined in a library file of the same name, and is designed to be re
It may do this by providing a mechanism for exporting some of its symbols into the symbol table o
package using it. Or it may function as a class definition and make its semantics available implicitly th
method calls on the class and its objects, without explicit exportation of any symbols. Or it can do a l
both.

For example, to start a normal module called Some::Module, create a file called Some/Module.pm an
with this template:

 package Some::Module; # assumes Some/Module.pm

 use strict;

 BEGIN {
 use Exporter ();
 use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
298 Version 5.005_02 18−Oct−1998

perlmod Perl Programmers Reference Guide perlmod
 # set the version for version checking
 $VERSION = 1.00;
 # if using RCS/CVS, this may be preferred
 $VERSION = do { my @r = (q$Revision: 2.21 $ =~ /\d+/g); sprintf "%d."."%02d"

 @ISA = qw(Exporter);
 @EXPORT = qw(&func1 &func2 &func4);
 %EXPORT_TAGS = (); # eg: TAG => [qw!name1 name2!],

 # your exported package globals go here,
 # as well as any optionally exported functions
 @EXPORT_OK = qw($Var1 %Hashit &func3);
 }
 use vars @EXPORT_OK;

 # non−exported package globals go here
 use vars qw(@more $stuff);

 # initalize package globals, first exported ones
 $Var1 = ’’;
 %Hashit = ();

 # then the others (which are still accessible as $Some::Module::stuff)
 $stuff = ’’;
 @more = ();

 # all file−scoped lexicals must be created before
 # the functions below that use them.

 # file−private lexicals go here
 my $priv_var = ’’;
 my %secret_hash = ();

 # here’s a file−private function as a closure,
 # callable as &$priv_func; it cannot be prototyped.
 my $priv_func = sub {
 # stuff goes here.
 };

 # make all your functions, whether exported or not;
 # remember to put something interesting in the {} stubs
 sub func1 {} # no prototype
 sub func2() {} # proto’d void
 sub func3($$) {} # proto’d to 2 scalars

 # this one isn’t exported, but could be called!
 sub func4(\%) {} # proto’d to 1 hash ref

 END { } # module clean−up code here (global destructor)

Then go on to declare and use your variables in functions without any qualifications. See Exporter and the
perlmodlib for details on mechanics and style issues in module creation.

Perl modules are included into your program by saying

 use Module;

or

 use Module LIST;

This is exactly equivalent to
18−Oct−1998 Version 5.005_02 299

perlmod Perl Programmers Reference Guide perlmod

ut

mpiler

ch as
 does

 the
 as a
 as list

 two
case,

ining
ssible

ded
r of the
y.
st
 BEGIN { require Module; import Module; }

or

 BEGIN { require Module; import Module LIST; }

As a special case

 use Module ();

is exactly equivalent to

 BEGIN { require Module; }

All Perl module files have the extension .pm. use assumes this so that you don‘t have to spell o
"Module.pm" in quotes. This also helps to differentiate new modules from old .pl and .ph files. Module
names are also capitalized unless they‘re functioning as pragmas, "Pragmas" are in effect co
directives, and are sometimes called "pragmatic modules" (or even "pragmata" if you‘re a classicist).

The two statements:

 require SomeModule;
 require "SomeModule.pm";

differ from each other in two ways. In the first case, any double colons in the module name, su
Some::Module , are translated into your system‘s directory separator, usually "/". The second case
not, and would have to be specified literally. The other difference is that seeing the first require clues in
the compiler that uses of indirect object notation involving "SomeModule", as in $ob = purge
SomeModule , are method calls, not function calls. (Yes, this really can make a difference.)

Because the use statement implies a BEGIN block, the importation of semantics happens at the moment
use statement is compiled, before the rest of the file is compiled. This is how it is able to function
pragma mechanism, and also how modules are able to declare subroutines that are then visible
operators for the rest of the current file. This will not work if you use require instead of use . With
require you can get into this problem:

 require Cwd; # make Cwd:: accessible
 $here = Cwd::getcwd();

 use Cwd; # import names from Cwd::
 $here = getcwd();

 require Cwd; # make Cwd:: accessible
 $here = getcwd(); # oops! no main::getcwd()

In general, use Module () is recommended over require Module , because it determines module
availability at compile time, not in the middle of your program‘s execution. An exception would be if
modules each tried to use each other, and each also called a function from that other module. In that
it‘s easy to use require s instead.

Perl packages may be nested inside other package names, so we can have package names conta:: .
But if we used that package name directly as a filename it would makes for unwieldy or impo
filenames on some systems. Therefore, if a module‘s name is, say, Text::Soundex , then its definition is
actually found in the library file Text/Soundex.pm.

Perl modules always have a .pm file, but there may also be dynamically linked executables or autoloa
subroutine definitions associated with the module. If so, these will be entirely transparent to the use
module. It is the responsibility of the .pm file to load (or arrange to autoload) any additional functionalit
The POSIX module happens to do both dynamic loading and autoloading, but the user can say juuse
POSIX to get it all.

For more information on writing extension modules, see perlxstut and perlguts.
300 Version 5.005_02 18−Oct−1998

perlmod Perl Programmers Reference Guide perlmod

tions of

nd
SEE ALSO
See perlmodlib for general style issues related to building Perl modules and classes as well as descrip
the standard library and CPAN, Exporter for how Perl‘s standard import/export mechanism works, perltoot
for an in−depth tutorial on creating classes, perlobj for a hard−core reference document on objects, a
perlsub for an explanation of functions and scoping.
18−Oct−1998 Version 5.005_02 301

perlref Perl Programmers Reference Guide perlref

ad to be
w not
s to any
alars, you
s, and so

 thing
ential or

ect,
, but
 class

ystem
ic
onfusing

ess an
ithout

cing or
doesn‘t
ncing

the

ference
 some

kslash
ol table
e

 itself a
ed later
NAME
perlref − Perl references and nested data structures

DESCRIPTION
Before release 5 of Perl it was difficult to represent complex data structures, because all references h
symbolic—and even then it was difficult to refer to a variable instead of a symbol table entry. Perl no
only makes it easier to use symbolic references to variables, but also lets you have "hard" reference
piece of data or code. Any scalar may hold a hard reference. Because arrays and hashes contain sc
can now easily build arrays of arrays, arrays of hashes, hashes of arrays, arrays of hashes of function
on.

Hard references are smart—they keep track of reference counts for you, automatically freeing the
referred to when its reference count goes to zero. (Note: the reference counts for values in self−refer
cyclic data structures may not go to zero without a little help; see
Two−Phased Garbage Collection in perlobj for a detailed explanation.) If that thing happens to be an obj
the object is destructed. See perlobj for more about objects. (In a sense, everything in Perl is an object
we usually reserve the word for references to objects that have been officially "blessed" into a
package.)

Symbolic references are names of variables or other objects, just as a symbolic link in a Unix files
contains merely the name of a file. The *glob notation is a kind of symbolic reference. (Symbol
references are sometimes called "soft references", but please don‘t call them that; references are c
enough without useless synonyms.)

In contrast, hard references are more like hard links in a Unix file system: They are used to acc
underlying object without concern for what its (other) name is. When the word "reference" is used w
an adjective, as in the following paragraph, it is usually talking about a hard reference.

References are easy to use in Perl. There is just one overriding principle: Perl does no implicit referen
dereferencing. When a scalar is holding a reference, it always behaves as a simple scalar. It
magically start being an array or hash or subroutine; you have to tell it explicitly to do so, by derefere
it.

Making References
References can be created in several ways.

1. By using the backslash operator on a variable, subroutine, or value. (This works much like &
(address−of) operator in C.) Note that this typically creates ANOTHER reference to a variable,
because there‘s already a reference to the variable in the symbol table. But the symbol table re
might go away, and you‘ll still have the reference that the backslash returned. Here are
examples:

 $scalarref = \$foo;
 $arrayref = \@ARGV;
 $hashref = \%ENV;
 $coderef = \&handler;
 $globref = *foo;

It isn‘t possible to create a true reference to an IO handle (filehandle or dirhandle) using the bac
operator. The most you can get is a reference to a typeglob, which is actually a complete symb
entry. But see the explanation of the *foo{THING} syntax below. However, you can still use typ
globs and globrefs as though they were IO handles.

2. A reference to an anonymous array can be created using square brackets:

 $arrayref = [1, 2, [’a’, ’b’, ’c’]];

Here we‘ve created a reference to an anonymous array of three elements whose final element is
reference to another anonymous array of three elements. (The multidimensional syntax describ
302 Version 5.005_02 18−Oct−1998

perlref Perl Programmers Reference Guide perlref

tead it‘s

icated a
values
perators

 may

monic

e these

 the

cuted

n an

e an
n it‘s

ell as
 can

to do
can be used to access this. For example, after the above, $arrayref−>[2][1] would have the
value "b".)

Note that taking a reference to an enumerated list is not the same as using square brackets—ins
the same as creating a list of references!

 @list = (\$a, \@b, \%c);
 @list = \($a, @b, %c); # same thing!

As a special case, \(@foo) returns a list of references to the contents of @foo, not a reference to
@foo itself. Likewise for %foo .

3. A reference to an anonymous hash can be created using curly brackets:

 $hashref = {
’Adam’ => ’Eve’,
’Clyde’ => ’Bonnie’,

 };

Anonymous hash and array composers like these can be intermixed freely to produce as compl
structure as you want. The multidimensional syntax described below works for these too. The
above are literals, but variables and expressions would work just as well, because assignment o
in Perl (even within local() or my()) are executable statements, not compile−time declarations.

Because curly brackets (braces) are used for several other things including BLOCKs, you
occasionally have to disambiguate braces at the beginning of a statement by putting a + or a return
in front so that Perl realizes the opening brace isn‘t starting a BLOCK. The economy and mne
value of using curlies is deemed worth this occasional extra hassle.

For example, if you wanted a function to make a new hash and return a reference to it, you hav
options:

 sub hashem { { @_ } } # silently wrong
 sub hashem { +{ @_ } } # ok
 sub hashem { return { @_ } } # ok

On the other hand, if you want the other meaning, you can do this:

 sub showem { { @_ } } # ambiguous (currently ok, but may change)
 sub showem { {; @_ } } # ok
 sub showem { { return @_ } } # ok

Note how the leading +{ and {; always serve to disambiguate the expression to mean either
HASH reference, or the BLOCK.

4. A reference to an anonymous subroutine can be created by using sub without a subname:

 $coderef = sub { print "Boink!\n" };

Note the presence of the semicolon. Except for the fact that the code inside isn‘t exe
immediately, a sub {} is not so much a declaration as it is an operator, like do{} or eval{} .
(However, no matter how many times you execute that particular line (unless you‘re i
eval("...")), $coderef will still have a reference to the SAME anonymous subroutine.)

Anonymous subroutines act as closures with respect to my() variables, that is, variables visible
lexically within the current scope. Closure is a notion out of the Lisp world that says if you defin
anonymous function in a particular lexical context, it pretends to run in that context even whe
called outside of the context.

In human terms, it‘s a funny way of passing arguments to a subroutine when you define it as w
when you call it. It‘s useful for setting up little bits of code to run later, such as callbacks. You
even do object−oriented stuff with it, though Perl already provides a different mechanism
that—see perlobj.
18−Oct−1998 Version 5.005_02 303

perlref Perl Programmers Reference Guide perlref

ct, in
use

That‘s

 have
s about

re just
 with.
 so by
ing an

ext that
ou any

ntax.
ich
You can also think of closure as a way to write a subroutine template without using eval. (In fa
version 5.000, eval was the only way to get closures. You may wish to use "require 5.001" if you
closures.)

Here‘s a small example of how closures works:

 sub newprint {
my $x = shift;
return sub { my $y = shift; print "$x, $y!\n"; };

 }
 $h = newprint("Howdy");
 $g = newprint("Greetings");

 # Time passes...

 &$h("world");
 &$g("earthlings");

This prints

 Howdy, world!
 Greetings, earthlings!

Note particularly that $x continues to refer to the value passed into newprint() despite the fact that
the "my $x" has seemingly gone out of scope by the time the anonymous subroutine runs.
what closure is all about.

This applies only to lexical variables, by the way. Dynamic variables continue to work as they
always worked. Closure is not something that most Perl programmers need trouble themselve
to begin with.

5. References are often returned by special subroutines called constructors. Perl objects a
references to a special kind of object that happens to know which package it‘s associated
Constructors are just special subroutines that know how to create that association. They do
starting with an ordinary reference, and it remains an ordinary reference even while it‘s also be
object. Constructors are often named new() and called indirectly:

 $objref = new Doggie (Tail => ’short’, Ears => ’long’);

But don‘t have to be:

 $objref = Doggie−>new(Tail => ’short’, Ears => ’long’);

 use Term::Cap;
 $terminal = Term::Cap−>Tgetent({ OSPEED => 9600 });

 use Tk;
 $main = MainWindow−>new();
 $menubar = $main−>Frame(−relief => "raised",
 −borderwidth => 2)

6. References of the appropriate type can spring into existence if you dereference them in a cont
assumes they exist. Because we haven‘t talked about dereferencing yet, we can‘t show y
examples yet.

7. A reference can be created by using a special syntax, lovingly known as the *foo{THING} sy
*foo{THING} returns a reference to the THING slot in *foo (which is the symbol table entry wh
holds everything known as foo).

 $scalarref = *foo{SCALAR};
 $arrayref = *ARGV{ARRAY};
 $hashref = *ENV{HASH};
 $coderef = *handler{CODE};
304 Version 5.005_02 18−Oct−1998

perlref Perl Programmers Reference Guide perlref

dles

e of

to
tage is

 if you

ack to

, you

below.
e, the

, you
s, the
 $ioref = *STDIN{IO};
 $globref = *foo{GLOB};

All of these are self−explanatory except for *foo{IO}. It returns the IO handle, used for file han
(open), sockets (socket and socketpair), and directory handles (opendir). For compatibility with
previous versions of Perl, *foo{FILEHANDLE} is a synonym for *foo{IO}.

*foo{THING} returns undef if that particular THING hasn‘t been used yet, except in the cas
scalars. *foo{SCALAR} returns a reference to an anonymous scalar if $foo hasn‘t been used yet.
This might change in a future release.

*foo{IO} is an alternative to the *HANDLE mechanism given in
Typeglobs and Filehandles in perldata for passing filehandles into or out of subroutines, or storing in
larger data structures. Its disadvantage is that it won‘t create a new filehandle for you. Its advan
that you have no risk of clobbering more than you want to with a typeglob assignment, although
assign to a scalar instead of a typeglob, you‘re ok.

 splutter(*STDOUT);
 splutter(*STDOUT{IO});

 sub splutter {
my $fh = shift;
print $fh "her um well a hmmm\n";

 }

 $rec = get_rec(*STDIN);
 $rec = get_rec(*STDIN{IO});

 sub get_rec {
my $fh = shift;
return scalar <$fh>;

 }

Using References
That‘s it for creating references. By now you‘re probably dying to know how to use references to get b
your long−lost data. There are several basic methods.

1. Anywhere you‘d put an identifier (or chain of identifiers) as part of a variable or subroutine name
can replace the identifier with a simple scalar variable containing a reference of the correct type:

 $bar = $$scalarref;
 push(@$arrayref, $filename);
 $$arrayref[0] = "January";
 $$hashref{"KEY"} = "VALUE";
 &$coderef(1,2,3);
 print $globref "output\n";

It‘s important to understand that we are specifically NOT dereferencing $arrayref[0] or
$hashref{"KEY"} there. The dereference of the scalar variable happens BEFORE it does any key
lookups. Anything more complicated than a simple scalar variable must use methods 2 or 3
However, a "simple scalar" includes an identifier that itself uses method 1 recursively. Therefor
following prints "howdy".

 $refrefref = \\\"howdy";
 print $$$$refrefref;

2. Anywhere you‘d put an identifier (or chain of identifiers) as part of a variable or subroutine name
can replace the identifier with a BLOCK returning a reference of the correct type. In other word
previous examples could be written like this:

 $bar = ${$scalarref};
18−Oct−1998 Version 5.005_02 305

perlref Perl Programmers Reference Guide perlref

trary

f
 If they
ifference

through

rsome

vious

hen in

ook

e

s just

and.

cess the
ackage
ulation
 We do
 push(@{$arrayref}, $filename);
 ${$arrayref}[0] = "January";
 ${$hashref}{"KEY"} = "VALUE";
 &{$coderef}(1,2,3);
 $globref−>print("output\n"); # iff IO::Handle is loaded

Admittedly, it‘s a little silly to use the curlies in this case, but the BLOCK can contain any arbi
expression, in particular, subscripted expressions:

 &{ $dispatch{$index} }(1,2,3); # call correct routine

Because of being able to omit the curlies for the simple case of $$x, people often make the mistake o
viewing the dereferencing symbols as proper operators, and wonder about their precedence.
were, though, you could use parentheses instead of braces. That‘s not the case. Consider the d
below; case 0 is a short−hand version of case 1, NOT case 2:

 $$hashref{"KEY"} = "VALUE"; # CASE 0
 ${$hashref}{"KEY"} = "VALUE"; # CASE 1
 ${$hashref{"KEY"}} = "VALUE"; # CASE 2
 ${$hashref−>{"KEY"}} = "VALUE"; # CASE 3

Case 2 is also deceptive in that you‘re accessing a variable called %hashref, not dereferencing
$hashref to the hash it‘s presumably referencing. That would be case 3.

3. Subroutine calls and lookups of individual array elements arise often enough that it gets cumbe
to use method 2. As a form of syntactic sugar, the examples for method 2 may be written:

 $arrayref−>[0] = "January"; # Array element
 $hashref−>{"KEY"} = "VALUE"; # Hash element
 $coderef−>(1,2,3); # Subroutine call

The left side of the arrow can be any expression returning a reference, including a pre
dereference. Note that $array[$x] is NOT the same thing as $array−>[$x] here:

 $array[$x]−>{"foo"}−>[0] = "January";

This is one of the cases we mentioned earlier in which references could spring into existence w
an lvalue context. Before this statement, $array[$x] may have been undefined. If so, it‘s
automatically defined with a hash reference so that we can look up {"foo"} in it. Likewise
$array[$x]−>{"foo"} will automatically get defined with an array reference so that we can l
up [0] in it. This process is called autovivification.

One more thing here. The arrow is optional BETWEEN brackets subscripts, so you can shrink th
above down to

 $array[$x]{"foo"}[0] = "January";

Which, in the degenerate case of using only ordinary arrays, gives you multidimensional array
like C‘s:

 $score[$x][$y][$z] += 42;

Well, okay, not entirely like C‘s arrays, actually. C doesn‘t know how to grow its arrays on dem
Perl does.

4. If a reference happens to be a reference to an object, then there are probably methods to ac
things referred to, and you should probably stick to those methods unless you‘re in the class p
that defines the object‘s methods. In other words, be nice, and don‘t violate the object‘s encaps
without a very good reason. Perl does not enforce encapsulation. We are not totalitarians here.
expect some basic civility though.

The ref() operator may be used to determine what type of thing the reference is pointing to. See perlfunc.
306 Version 5.005_02 18−Oct−1998

perlref Perl Programmers Reference Guide perlref

tioning

x always
.

ck.

y what
a
n to be

o use
 say

 may

iables

to

bolic
The bless() operator may be used to associate the object a reference points to with a package func
as an object class. See perlobj.

A typeglob may be dereferenced the same way a reference can, because the dereference synta
indicates the kind of reference desired. So ${*foo} and ${\$foo} both indicate the same scalar variable

Here‘s a trick for interpolating a subroutine call into a string:

 print "My sub returned @{[mysub(1,2,3)]} that time.\n";

The way it works is that when the @{...} is seen in the double−quoted string, it‘s evaluated as a blo
The block creates a reference to an anonymous array containing the results of the call to mysub(1,2,3) .
So the whole block returns a reference to an array, which is then dereferenced by @{...} and stuck into the
double−quoted string. This chicanery is also useful for arbitrary expressions:

 print "That yields @{[$n + 5]} widgets\n";

Symbolic references
We said that references spring into existence as necessary if they are undefined, but we didn‘t sa
happens if a value used as a reference is already defined, but ISN‘T a hard reference. If you use it as
reference in this case, it‘ll be treated as a symbolic reference. That is, the value of the scalar is take
the NAME of a variable, rather than a direct link to a (possibly) anonymous value.

People frequently expect it to work like this. So it does.

 $name = "foo";
 $$name = 1; # Sets $foo
 ${$name} = 2; # Sets $foo
 ${$name x 2} = 3; # Sets $foofoo
 $name−>[0] = 4; # Sets $foo[0]
 @$name = (); # Clears @foo
 &$name(); # Calls &foo() (as in Perl 4)
 $pack = "THAT";
 ${"${pack}::$name"} = 5; # Sets $THAT::foo without eval

This is very powerful, and slightly dangerous, in that it‘s possible to intend (with the utmost sincerity) t
a hard reference, and accidentally use a symbolic reference instead. To protect against that, you can

 use strict ’refs’;

and then only hard references will be allowed for the rest of the enclosing block. An inner block
countermand that with

 no strict ’refs’;

Only package variables (globals, even if localized) are visible to symbolic references. Lexical var
(declared with my()) aren‘t in a symbol table, and thus are invisible to this mechanism. For example:

 local $value = 10;
 $ref = \$value;
 {

my $value = 20;
print $$ref;

 }

This will still print 10, not 20. Remember that local() affects package variables, which are all "global"
the package.

Not−so−symbolic references
A new feature contributing to readability in perl version 5.001 is that the brackets around a sym
reference behave more like quotes, just as they always have within a string. That is,
18−Oct−1998 Version 5.005_02 307

perlref Perl Programmers Reference Guide perlref

s been

t in the
ing

 to any

h to do

d:

bout

future

ormally
ey were

a hash
 $push = "pop on ";
 print "${push}over";

has always meant to print "pop on over", despite the fact that push is a reserved word. This ha
generalized to work the same outside of quotes, so that

 print ${push} . "over";

and even

 print ${ push } . "over";

will have the same effect. (This would have been a syntax error in Perl 5.000, though Perl 4 allowed i
spaceless form.) Note that this construct is not considered to be a symbolic reference when you‘re us
strict refs:

 use strict ’refs’;
 ${ bareword }; # Okay, means $bareword.
 ${ "bareword" }; # Error, symbolic reference.

Similarly, because of all the subscripting that is done using single words, we‘ve applied the same rule
bareword that is used for subscripting a hash. So now, instead of writing

 $array{ "aaa" }{ "bbb" }{ "ccc" }

you can write just

 $array{ aaa }{ bbb }{ ccc }

and not worry about whether the subscripts are reserved words. In the rare event that you do wis
something like

 $array{ shift }

you can force interpretation as a reserved word by adding anything that makes it more than a barewor

 $array{ shift() }
 $array{ +shift }
 $array{ shift @_ }

The −w switch will warn you if it interprets a reserved word as a string. But it will no longer warn you a
using lowercase words, because the string is effectively quoted.

Pseudo−hashes: Using an array as a hash
WARNING: This section describes an experimental feature. Details may change without notice in
versions.

Beginning with release 5.005 of Perl you can use an array reference in some contexts that would n
require a hash reference. This allows you to access array elements using symbolic names, as if th
fields in a structure.

For this to work, the array must contain extra information. The first element of the array has to be
reference that maps field names to array indices. Here is an example:

 $struct = [{foo => 1, bar => 2}, "FOO", "BAR"];

 $struct−>{foo}; # same as $struct−>[1], i.e. "FOO"
 $struct−>{bar}; # same as $struct−>[2], i.e. "BAR"

 keys %$struct; # will return ("foo", "bar") in some order
 values %$struct; # will return ("FOO", "BAR") in same some order

 while (my($k,$v) = each %$struct) {
 print "$k => $v\n";
 }
308 Version 5.005_02 18−Oct−1998

perlref Perl Programmers Reference Guide perlref

t fields.
ime for

en that
such as

popose
:

to a

 less
in the

nted to
rticular

 to be of
orcing

t
onymous
eir own
urs

he
Perl will raise an exception if you try to delete keys from a pseudo−hash or try to access nonexisten
For better performance, Perl can also do the translation from field names to array indices at compile t
typed object references. See fields.

Function Templates
As explained above, a closure is an anonymous function with access to the lexical variables visible wh
function was compiled. It retains access to those variables even though it doesn‘t get run until later,
in a signal handler or a Tk callback.

Using a closure as a function template allows us to generate many functions that act similarly. Sup
you wanted functions named after the colors that generated HTML font changes for the various colors

 print "Be ", red("careful"), "with that ", green("light");

The red() and green() functions would be very similar. To create these, we‘ll assign a closure
typeglob of the name of the function we‘re trying to build.

 @colors = qw(red blue green yellow orange purple violet);
 for my $name (@colors) {
 no strict ’refs’; # allow symbol table manipulation
 *$name = *{uc $name} = sub { "@_" };
 }

Now all those different functions appear to exist independently. You can call red() , RED() , blue() ,
BLUE() , green() , etc. This technique saves on both compile time and memory use, and is
error−prone as well, since syntax checks happen at compile time. It‘s critical that any variables
anonymous subroutine be lexicals in order to create a proper closure. That‘s the reasons for the my on the
loop iteration variable.

This is one of the only places where giving a prototype to a closure makes much sense. If you wa
impose scalar context on the arguments of these functions (probably not a wise idea for this pa
example), you could have written it this way instead:

 *$name = sub ($) { "$_[0]" };

However, since prototype checking happens at compile time, the assignment above happens too late
much use. You could address this by putting the whole loop of assignments within a BEGIN block, f
it to occur during compilation.

Access to lexicals that change over type—like those in the for loop above—only works with closures, no
general subroutines. In the general case, then, named subroutines do not nest properly, although an
ones do. If you are accustomed to using nested subroutines in other programming languages with th
private variables, you‘ll have to work at it a bit in Perl. The intuitive coding of this kind of thing inc
mysterious warnings about ‘‘will not stay shared‘’. For example, this won‘t work:

 sub outer {
 my $x = $_[0] + 35;
 sub inner { return $x * 19 } # WRONG
 return $x + inner();
 }

A work−around is the following:

 sub outer {
 my $x = $_[0] + 35;
 local *inner = sub { return $x * 19 };
 return $x + inner();
 }

Now inner() can only be called from within outer() , because of the temporary assignments of t
closure (anonymous subroutine). But when it does, it has normal access to the lexical variable $x from the
18−Oct−1998 Version 5.005_02 309

perlref Perl Programmers Reference Guide perlref

mally

ou‘re

s of the
scope of outer() .

This has the interesting effect of creating a function local to another function, something not nor
supported in Perl.

WARNING
You may not (usefully) use a reference as the key to a hash. It will be converted into a string:

 $x{ \$a } = $a;

If you try to dereference the key, it won‘t do a hard dereference, and you won‘t accomplish what y
attempting. You might want to do something more like

 $r = \@a;
 $x{ $r } = $r;

And then at least you can use the values() , which will be real refs, instead of the keys() , which won‘t.

The standard Tie::RefHash module provides a convenient workaround to this.

SEE ALSO
Besides the obvious documents, source code can be instructive. Some rather pathological example
use of references can be found in the t/op/ref.t regression test in the Perl source directory.

See also perldsc and perllol for how to use references to create complex data structures, and perltoot,
perlobj, and perlbot for how to use them to create objects.
310 Version 5.005_02 18−Oct−1998

perldsc Perl Programmers Reference Guide perldsc

omplex
emulate
h the
ted
cked
ly.

and all

e eye!

it
d back

c?

can be
ntation

 of data
en you
xample

llowing:

sional

 cannot

. For C
can be
NAME
perldsc − Perl Data Structures Cookbook

DESCRIPTION
The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was c
data structures. Even without direct language support, some valiant programmers did manage to
them, but it was hard work and not for the faint of heart. You could occasionally get away wit
$m{$LoL,$b} notation borrowed from awk in which the keys are actually more like a single concatena
string "LoLb", but traversal and sorting were difficult. More desperate programmers even ha
Perl‘s internal symbol table directly, a strategy that proved hard to develop and maintain—to put it mild

The 5.0 release of Perl let us have complex data structures. You may now write something like this
of a sudden, you‘d have a array with three dimensions!

 for $x (1 .. 10) {
for $y (1 .. 10) {
 for $z (1 .. 10) {

$LoL[$x][$y][$z] =
 $x ** $y + $z;

 }
}

 }

Alas, however simple this may appear, underneath it‘s a much more elaborate construct than meets th

How do you print it out? Why can‘t you say just print @LoL ? How do you sort it? How can you pass
to a function or get one of these back from a function? Is is an object? Can you save it to disk to rea
later? How do you access whole rows or columns of that matrix? Do all the values have to be numeri

As you see, it‘s quite easy to become confused. While some small portion of the blame for this
attributed to the reference−based implementation, it‘s really more due to a lack of existing docume
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts
structures you might want to develop. It should also serve as a cookbook of examples. That way, wh
need to create one of these complex data structures, you can just pinch, pilfer, or purloin a drop−in e
from here.

Let‘s look at each of these possible constructs in detail. There are separate sections on each of the fo

 arrays of arrays
 hashes of arrays
 arrays of hashes
 hashes of hashes
 more elaborate constructs

But for now, let‘s look at general issues common to all these types of data structures.

REFERENCES
The most important thing to understand about all data structures in Perl — including multidimen
arrays—is that even though they might appear otherwise, Perl @ARRAYs and %HASHes are all internally
one−dimensional. They can hold only scalar values (meaning a string, number, or a reference). They
directly contain other arrays or hashes, but instead contain references to other arrays or hashes.

You can‘t use a reference to a array or hash in quite the same way that you would a real array or hash
or C++ programmers unused to distinguishing between arrays and pointers to the same, this
confusing. If so, just think of it as the difference between a structure and a pointer to a structure.
18−Oct−1998 Version 5.005_02 311

perldsc Perl Programmers Reference Guide perldsc

e rather
eding
ss to a
rely a

ell.

imple

hing a
, like

entally
 Here‘s

at you

d an

in the
You can (and should) read more about references in the perlref(1) man page. Briefly, references ar
like pointers that know what they point to. (Objects are also a kind of reference, but we won‘t be ne
them right away—if ever.) This means that when you have something which looks to you like an acce
two−or−more−dimensional array and/or hash, what‘s really going on is that the base type is me
one−dimensional entity that contains references to the next level. It‘s just that you can use it as though it
were a two−dimensional one. This is actually the way almost all C multidimensional arrays work as w

 $list[7][12] # array of arrays
 $list[7]{string} # array of hashes
 $hash{string}[7] # hash of arrays
 $hash{string}{’another string’} # hash of hashes

Now, because the top level contains only references, if you try to print out your array in with a s
print() function, you‘ll get something that doesn‘t look very nice, like this:

 @LoL = ([2, 3], [4, 5, 7], [0]);
 print $LoL[1][2];
 7
 print @LoL;
 ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That‘s because Perl doesn‘t (ever) implicitly dereference your variables. If you want to get at the t
reference is referring to, then you have to do this yourself using either prefix typing indicators
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows, like $a−>[3],
$h−>{fred}, or even $ob−>method()−>[3] .

COMMON MISTAKES
The two most common mistakes made in constructing something like an array of arrays is either accid
counting the number of elements or else taking a reference to the same memory location repeatedly.
the case where you just get the count instead of a nested array:

 for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = @list; # WRONG!

 }

That‘s just the simple case of assigning a list to a scalar and getting its element count. If that‘s wh
really and truly want, then you might do well to consider being a tad more explicit about it, like this:

 for $i (1..10) {
@list = somefunc($i);
$counts[$i] = scalar @list;

 }

Here‘s the case of taking a reference to the same memory location again and again:

 for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = \@list; # WRONG!

 }

So, what‘s the big problem with that? It looks right, doesn‘t it? After all, I just told you that you nee
array of references, so by golly, you‘ve made me one!

Unfortunately, while this is true, it‘s still broken. All the references in @LoL refer to the very same place,
and they will therefore all hold whatever was last in @list! It‘s similar to the problem demonstrated
following C program:

 #include <pwd.h>
 main() {

struct passwd *getpwnam(), *rp, *dp;
312 Version 5.005_02 18−Oct−1998

perldsc Perl Programmers Reference Guide perldsc

 to

thing in

e
dy

at was

 how
ey‘re

tinction
mmers.
tions, I
rp = getpwnam("root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp−>pw_name, rp−>pw_name);

 }

Which will print

 daemon name is daemon
 root name is daemon

The problem is that both rp and dp are pointers to the same location in memory! In C, you‘d have
remember to malloc() yourself some new memory. In Perl, you‘ll want to use the array constructor [] or
the hash constructor {} instead. Here‘s the right way to do the preceding broken code fragments:

 for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = [@list];

 }

The square brackets make a reference to a new array with a copy of what‘s in @list at the time of the
assignment. This is what you want.

Note that this will produce something similar, but it‘s much harder to read:

 for $i (1..10) {
@list = 0 .. $i;
@{$LoL[$i]} = @list;

 }

Is it the same? Well, maybe so—and maybe not. The subtle difference is that when you assign some
square brackets, you know for sure it‘s always a brand new reference with a new copy of the data. Something
else could be going on in this new case with the @{$LoL[$i]}} dereference on the left−hand−side of th
assignment. It all depends on whether $LoL[$i] had been undefined to start with, or whether it alrea
contained a reference. If you had already populated @LoL with references, as in

 $LoL[3] = \@another_list;

Then the assignment with the indirection on the left−hand−side would use the existing reference th
already there:

 @{$LoL[3]} = @list;

Of course, this would have the "interesting" effect of clobbering @another_list. (Have you ever noticed
when a programmer says something is "interesting", that rather than meaning "intriguing", th
disturbingly more apt to mean that it‘s "annoying", "difficult", or both? :−)

So just remember always to use the array or hash constructors with [] or {} , and you‘ll be fine, although
it‘s not always optimally efficient.

Surprisingly, the following dangerous−looking construct will actually work out fine:

 for $i (1..10) {
 my @list = somefunc($i);
 $LoL[$i] = \@list;
 }

That‘s because my() is more of a run−time statement than it is a compile−time declaration per se. This
means that the my() variable is remade afresh each time through the loop. So even though it looks as
though you stored the same variable reference each time, you actually did not! This is a subtle dis
that can produce more efficient code at the risk of misleading all but the most experienced of progra
So I usually advise against teaching it to beginners. In fact, except for passing arguments to func
18−Oct−1998 Version 5.005_02 313

perldsc Perl Programmers Reference Guide perldsc

 I advise
erstood
ting

aring:
ill no

nce

s most

x data
 editing

seldom like to see the gimme−a−reference operator (backslash) used much at all in code. Instead,
beginners that they (and most of the rest of us) should try to use the much more easily und
constructors [] and {} instead of relying upon lexical (or dynamic) scoping and hidden reference−coun
to do the right thing behind the scenes.

In summary:

 $LoL[$i] = [@list]; # usually best
 $LoL[$i] = \@list; # perilous; just how my() was that list?
 @{ $LoL[$i] } = @list; # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things like @{$LoL[$i]}, the following are actually the same thing:

 $listref−>[2][2] # clear
 $$listref[2][2] # confusing

That‘s because Perl‘s precedence rules on its five prefix dereferencers (which look like someone swe$
@ * % &) make them bind more tightly than the postfix subscripting brackets or braces! This w
doubt come as a great shock to the C or C++ programmer, who is quite accustomed to using *a[i] to mean
what‘s pointed to by the i‘th element of a. That is, they first take the subscript, and only then derefere
the thing at that subscript. That‘s fine in C, but this isn‘t C.

The seemingly equivalent construct in Perl, $$listref[$i] first does the deref of $listref, making
it take $listref as a reference to an array, and then dereference that, and finally tell you the i‘th value of
the array pointed to by $LoL. If you wanted the C notion, you‘d have to write ${$LoL[$i]} to force the
$LoL[$i] to get evaluated first before the leading $ dereferencer.

WHY YOU SHOULD ALWAYS use strict
If this is starting to sound scarier than it‘s worth, relax. Perl has some features to help you avoid it
common pitfalls. The best way to avoid getting confused is to start every program like this:

 #!/usr/bin/perl −w
 use strict;

This way, you‘ll be forced to declare all your variables with my() and also disallow accidental "symbolic
dereferencing". Therefore if you‘d done this:

 my $listref = [
["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "elroy", "judy",],

];

 print $listref[2][2];

The compiler would immediately flag that as an error at compile time, because you were accidentally
accessing @listref , an undeclared variable, and it would thereby remind you to write instead:

 print $listref−>[2][2]

DEBUGGING
Before version 5.002, the standard Perl debugger didn‘t do a very nice job of printing out comple
structures. With 5.002 or above, the debugger includes several new features, including command line
as well as the x command to dump out complex data structures. For example, given the assignment to$LoL
above, here‘s the debugger output:

 DB<1> x $LoL
 $LoL = ARRAY(0x13b5a0)
 0 ARRAY(0x1f0a24)

 0 ’fred’
314 Version 5.005_02 18−Oct−1998

perldsc Perl Programmers Reference Guide perldsc

xamples
 1 ’barney’
 2 ’pebbles’
 3 ’bambam’
 4 ’dino’

 1 ARRAY(0x13b558)
 0 ’homer’
 1 ’bart’
 2 ’marge’
 3 ’maggie’

 2 ARRAY(0x13b540)
 0 ’george’
 1 ’jane’
 2 ’elroy’
 3 ’judy’

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday) here are short code e
illustrating access of various types of data structures.

LISTS OF LISTS

Declaration of a LIST OF LISTS
 @LoL = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);

Generation of a LIST OF LISTS
 # reading from file
 while (<>) {
 push @LoL, [split];
 }

 # calling a function
 for $i (1 .. 10) {
 $LoL[$i] = [somefunc($i)];
 }

 # using temp vars
 for $i (1 .. 10) {
 @tmp = somefunc($i);
 $LoL[$i] = [@tmp];
 }

 # add to an existing row
 push @{ $LoL[0] }, "wilma", "betty";

Access and Printing of a LIST OF LISTS
 # one element
 $LoL[0][0] = "Fred";

 # another element
 $LoL[1][1] =~ s/(\w)/\u$1/;

 # print the whole thing with refs
 for $aref (@LoL) {
 print "\t [@$aref],\n";
 }
18−Oct−1998 Version 5.005_02 315

perldsc Perl Programmers Reference Guide perldsc
 # print the whole thing with indices
 for $i (0 .. $#LoL) {
 print "\t [@{$LoL[$i]}],\n";
 }

 # print the whole thing one at a time
 for $i (0 .. $#LoL) {
 for $j (0 .. $#{ $LoL[$i] }) {
 print "elt $i $j is $LoL[$i][$j]\n";
 }
 }

HASHES OF LISTS

Declaration of a HASH OF LISTS
 %HoL = (
 flintstones => ["fred", "barney"],
 jetsons => ["george", "jane", "elroy"],
 simpsons => ["homer", "marge", "bart"],
);

Generation of a HASH OF LISTS
 # reading from file
 # flintstones: fred barney wilma dino
 while (<>) {
 next unless s/^(.*?):\s*//;
 $HoL{$1} = [split];
 }

 # reading from file; more temps
 # flintstones: fred barney wilma dino
 while ($line = <>) {
 ($who, $rest) = split /:\s*/, $line, 2;
 @fields = split ’ ’, $rest;
 $HoL{$who} = [@fields];
 }

 # calling a function that returns a list
 for $group ("simpsons", "jetsons", "flintstones") {
 $HoL{$group} = [get_family($group)];
 }

 # likewise, but using temps
 for $group ("simpsons", "jetsons", "flintstones") {
 @members = get_family($group);
 $HoL{$group} = [@members];
 }

 # append new members to an existing family
 push @{ $HoL{"flintstones"} }, "wilma", "betty";

Access and Printing of a HASH OF LISTS
 # one element
 $HoL{flintstones}[0] = "Fred";

 # another element
 $HoL{simpsons}[1] =~ s/(\w)/\u$1/;

 # print the whole thing
316 Version 5.005_02 18−Oct−1998

perldsc Perl Programmers Reference Guide perldsc
 foreach $family (keys %HoL) {
 print "$family: @{ $HoL{$family} }\n"
 }

 # print the whole thing with indices
 foreach $family (keys %HoL) {
 print "family: ";
 foreach $i (0 .. $#{ $HoL{$family} }) {
 print " $i = $HoL{$family}[$i]";
 }
 print "\n";
 }

 # print the whole thing sorted by number of members
 foreach $family (sort { @{$HoL{$b}} <=> @{$HoL{$a}} } keys %HoL) {
 print "$family: @{ $HoL{$family} }\n"
 }

 # print the whole thing sorted by number of members and name
 foreach $family (sort {

 @{$HoL{$b}} <=> @{$HoL{$a}}
||

 $a cmp $b
 } keys %HoL)

 {
 print "$family: ", join(", ", sort @{ $HoL{$family} }), "\n";
 }

LISTS OF HASHES

Declaration of a LIST OF HASHES
 @LoH = (
 {
 Lead => "fred",
 Friend => "barney",
 },
 {
 Lead => "george",
 Wife => "jane",
 Son => "elroy",
 },
 {
 Lead => "homer",
 Wife => "marge",
 Son => "bart",
 }
);

Generation of a LIST OF HASHES
 # reading from file
 # format: LEAD=fred FRIEND=barney
 while (<>) {
 $rec = {};
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec−>{$key} = $value;
 }
18−Oct−1998 Version 5.005_02 317

perldsc Perl Programmers Reference Guide perldsc
 push @LoH, $rec;
 }

 # reading from file
 # format: LEAD=fred FRIEND=barney
 # no temp
 while (<>) {
 push @LoH, { split /[\s+=]/ };
 }

 # calling a function that returns a key,value list, like
 # "lead","fred","daughter","pebbles"
 while (%fields = getnextpairset()) {
 push @LoH, { %fields };
 }

 # likewise, but using no temp vars
 while (<>) {
 push @LoH, { parsepairs($_) };
 }

 # add key/value to an element
 $LoH[0]{pet} = "dino";
 $LoH[2]{pet} = "santa’s little helper";

Access and Printing of a LIST OF HASHES
 # one element
 $LoH[0]{lead} = "fred";

 # another element
 $LoH[1]{lead} =~ s/(\w)/\u$1/;

 # print the whole thing with refs
 for $href (@LoH) {
 print "{ ";
 for $role (keys %$href) {
 print "$role=$href−>{$role} ";
 }
 print "}\n";
 }

 # print the whole thing with indices
 for $i (0 .. $#LoH) {
 print "$i is { ";
 for $role (keys %{ $LoH[$i] }) {
 print "$role=$LoH[$i]{$role} ";
 }
 print "}\n";
 }

 # print the whole thing one at a time
 for $i (0 .. $#LoH) {
 for $role (keys %{ $LoH[$i] }) {
 print "elt $i $role is $LoH[$i]{$role}\n";
 }
 }
318 Version 5.005_02 18−Oct−1998

perldsc Perl Programmers Reference Guide perldsc
HASHES OF HASHES

Declaration of a HASH OF HASHES
 %HoH = (
 flintstones => {

lead => "fred",
pal => "barney",

 },
 jetsons => {

lead => "george",
wife => "jane",
"his boy" => "elroy",

 },
 simpsons => {

lead => "homer",
wife => "marge",
kid => "bart",

},
);

Generation of a HASH OF HASHES
 # reading from file
 # flintstones: lead=fred pal=barney wife=wilma pet=dino
 while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $HoH{$who}{$key} = $value;
 }

 # reading from file; more temps
 while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 $rec = {};
 $HoH{$who} = $rec;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec−>{$key} = $value;
 }
 }

 # calling a function that returns a key,value hash
 for $group ("simpsons", "jetsons", "flintstones") {
 $HoH{$group} = { get_family($group) };
 }

 # likewise, but using temps
 for $group ("simpsons", "jetsons", "flintstones") {
 %members = get_family($group);
 $HoH{$group} = { %members };
 }

 # append new members to an existing family
 %new_folks = (
 wife => "wilma",
18−Oct−1998 Version 5.005_02 319

perldsc Perl Programmers Reference Guide perldsc
 pet => "dino",
);

 for $what (keys %new_folks) {
 $HoH{flintstones}{$what} = $new_folks{$what};
 }

Access and Printing of a HASH OF HASHES
 # one element
 $HoH{flintstones}{wife} = "wilma";

 # another element
 $HoH{simpsons}{lead} =~ s/(\w)/\u$1/;

 # print the whole thing
 foreach $family (keys %HoH) {
 print "$family: { ";
 for $role (keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # print the whole thing somewhat sorted
 foreach $family (sort keys %HoH) {
 print "$family: { ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # print the whole thing sorted by number of members
 foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH) {
 print "$family: { ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # establish a sort order (rank) for each role
 $i = 0;
 for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

 # now print the whole thing sorted by number of members
 foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys %HoH) {
 print "$family: { ";
 # and print these according to rank order
 for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

MORE ELABORATE RECORDS

Declaration of MORE ELABORATE RECORDS
Here‘s a sample showing how to create and use a record whose fields are of many different sorts:
320 Version 5.005_02 18−Oct−1998

perldsc Perl Programmers Reference Guide perldsc
 $rec = {
 TEXT => $string,
 SEQUENCE => [@old_values],
 LOOKUP => { %some_table },
 THATCODE => \&some_function,
 THISCODE => sub { $_[0] ** $_[1] },
 HANDLE => *STDOUT,

 };

 print $rec−>{TEXT};

 print $rec−>{LIST}[0];
 $last = pop @ { $rec−>{SEQUENCE} };

 print $rec−>{LOOKUP}{"key"};
 ($first_k, $first_v) = each %{ $rec−>{LOOKUP} };

 $answer = $rec−>{THATCODE}−>($arg);
 $answer = $rec−>{THISCODE}−>($arg1, $arg2);

 # careful of extra block braces on fh ref
 print { $rec−>{HANDLE} } "a string\n";

 use FileHandle;
 $rec−>{HANDLE}−>autoflush(1);
 $rec−>{HANDLE}−>print(" a string\n");

Declaration of a HASH OF COMPLEX RECORDS
 %TV = (
 flintstones => {
 series => "flintstones",
 nights => [qw(monday thursday friday)],
 members => [
 { name => "fred", role => "lead", age => 36, },
 { name => "wilma", role => "wife", age => 31, },
 { name => "pebbles", role => "kid", age => 4, },
],
 },

 jetsons => {
 series => "jetsons",
 nights => [qw(wednesday saturday)],
 members => [
 { name => "george", role => "lead", age => 41, },
 { name => "jane", role => "wife", age => 39, },
 { name => "elroy", role => "kid", age => 9, },
],
 },

 simpsons => {
 series => "simpsons",
 nights => [qw(monday)],
 members => [
 { name => "homer", role => "lead", age => 34, },
 { name => "marge", role => "wife", age => 37, },
 { name => "bart", role => "kid", age => 11, },
],
 },
);
18−Oct−1998 Version 5.005_02 321

perldsc Perl Programmers Reference Guide perldsc
Generation of a HASH OF COMPLEX RECORDS
 # reading from file
 # this is most easily done by having the file itself be
 # in the raw data format as shown above. perl is happy
 # to parse complex data structures if declared as data, so
 # sometimes it’s easiest to do that

 # here’s a piece by piece build up
 $rec = {};
 $rec−>{series} = "flintstones";
 $rec−>{nights} = [find_days()];

 @members = ();
 # assume this file in field=value syntax
 while (<>) {
 %fields = split /[\s=]+/;
 push @members, { %fields };
 }
 $rec−>{members} = [@members];

 # now remember the whole thing
 $TV{ $rec−>{series} } = $rec;

 ###
 # now, you might want to make interesting extra fields that
 # include pointers back into the same data structure so if
 # change one piece, it changes everywhere, like for examples
 # if you wanted a {kids} field that was an array reference
 # to a list of the kids’ records without having duplicate
 # records and thus update problems.
 ###
 foreach $family (keys %TV) {
 $rec = $TV{$family}; # temp pointer
 @kids = ();
 for $person (@{ $rec−>{members} }) {
 if ($person−>{role} =~ /kid|son|daughter/) {
 push @kids, $person;
 }
 }
 # REMEMBER: $rec and $TV{$family} point to same data!!
 $rec−>{kids} = [@kids];
 }

 # you copied the list, but the list itself contains pointers
 # to uncopied objects. this means that if you make bart get
 # older via

 $TV{simpsons}{kids}[0]{age}++;

 # then this would also change in
 print $TV{simpsons}{members}[2]{age};

 # because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
 # both point to the same underlying anonymous hash table

 # print the whole thing
 foreach $family (keys %TV) {
 print "the $family";
322 Version 5.005_02 18−Oct−1998

perldsc Perl Programmers Reference Guide perldsc

blem is
 with

empt to
 print " is on during @{ $TV{$family}{nights} }\n";
 print "its members are:\n";
 for $who (@{ $TV{$family}{members} }) {
 print " $who−>{name} ($who−>{role}), age $who−>{age}\n";
 }
 print "it turns out that $TV{$family}{lead} has ";
 print scalar (@{ $TV{$family}{kids} }), " kids named ";
 print join (", ", map { $_−>{name} } @{ $TV{$family}{kids} });
 print "\n";
 }

Database Ties
You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first pro
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems
how references are to be represented on disk. One experimental module that does partially att
address this need is the MLDBM module. Check your nearest CPAN site as described in perlmodlib for
source code to MLDBM.

SEE ALSO
perlref(1), perllol(1), perldata(1), perlobj(1)

AUTHOR
Tom Christiansen <tchrist@perl.com

Last update: Wed Oct 23 04:57:50 MET DST 1996
18−Oct−1998 Version 5.005_02 323

perllol Perl Programmers Reference Guide perllol

asy to
er data

t with

 That‘s

s because

w

 to omit
ing a

ments

 that
LoL
NAME
perlLoL − Manipulating Lists of Lists in Perl

DESCRIPTION

Declaration and Access of Lists of Lists
The simplest thing to build is a list of lists (sometimes called an array of arrays). It‘s reasonably e
understand, and almost everything that applies here will also be applicable later on with the fanci
structures.

A list of lists, or an array of an array if you would, is just a regular old array @LoL that you can get a
two subscripts, like $LoL[3][2]. Here‘s a declaration of the array:

 # assign to our array a list of list references
 @LoL = (

 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],

);

 print $LoL[2][2];
 bart

Now you should be very careful that the outer bracket type is a round one, that is, a parenthesis.
because you‘re assigning to an @list, so you need parentheses. If you wanted there not to be an @LoL, but
rather just a reference to it, you could do something more like this:

 # assign a reference to list of list references
 $ref_to_LoL = [

["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "alroy", "judy",],

];

 print $ref_to_LoL−>[2][2];

Notice that the outer bracket type has changed, and so our access syntax has also changed. That‘
unlike C, in perl you can‘t freely interchange arrays and references thereto. $ref_to_LoL is a reference to
an array, whereas @LoL is an array proper. Likewise, $LoL[2] is not an array, but an array ref. So ho
come you can write these:

 $LoL[2][2]
 $ref_to_LoL−>[2][2]

instead of having to write these:

 $LoL[2]−>[2]
 $ref_to_LoL−>[2]−>[2]

Well, that‘s because the rule is that on adjacent brackets only (whether square or curly), you are free
the pointer dereferencing arrow. But you cannot do so for the very first one if it‘s a scalar contain
reference, which means that $ref_to_LoL always needs it.

Growing Your Own
That‘s all well and good for declaration of a fixed data structure, but what if you wanted to add new ele
on the fly, or build it up entirely from scratch?

First, let‘s look at reading it in from a file. This is something like adding a row at a time. We‘ll assume
there‘s a flat file in which each line is a row and each word an element. If you‘re trying to develop an @
list containing all these, here‘s the right way to do that:
324 Version 5.005_02 18−Oct−1998

perllol Perl Programmers Reference Guide perllol

be

, which

ou

tating
 while (<>) {
@tmp = split;
push @LoL, [@tmp];

 }

You might also have loaded that from a function:

 for $i (1 .. 10) {
$LoL[$i] = [somefunc($i)];

 }

Or you might have had a temporary variable sitting around with the list in it.

 for $i (1 .. 10) {
@tmp = somefunc($i);
$LoL[$i] = [@tmp];

 }

It‘s very important that you make sure to use the [] list reference constructor. That‘s because this will
very wrong:

 $LoL[$i] = @tmp;

You see, assigning a named list like that to a scalar just counts the number of elements in @tmp
probably isn‘t what you want.

If you are running under use strict , you‘ll have to add some declarations to make it happy:

 use strict;
 my(@LoL, @tmp);
 while (<>) {

@tmp = split;
push @LoL, [@tmp];

 }

Of course, you don‘t need the temporary array to have a name at all:

 while (<>) {
push @LoL, [split];

 }

You also don‘t have to use push() . You could just make a direct assignment if you knew where y
wanted to put it:

 my (@LoL, $i, $line);
 for $i (0 .. 10) {

$line = <>;
$LoL[$i] = [split ’ ’, $line];

 }

or even just

 my (@LoL, $i);
 for $i (0 .. 10) {

$LoL[$i] = [split ’ ’, <>];
 }

You should in general be leery of using potential list functions in a scalar context without explicitly s
such. This would be clearer to the casual reader:

 my (@LoL, $i);
 for $i (0 .. 10) {

$LoL[$i] = [split ’ ’, scalar(<>)];
18−Oct−1998 Version 5.005_02 325

perllol Perl Programmers Reference Guide perllol

 like

s, it‘s

setting

ne of

r you.
 }

If you wanted to have a $ref_to_LoL variable as a reference to an array, you‘d have to do something
this:

 while (<>) {
push @$ref_to_LoL, [split];

 }

Now you can add new rows. What about adding new columns? If you‘re dealing with just matrice
often easiest to use simple assignment:

 for $x (1 .. 10) {
for $y (1 .. 10) {
 $LoL[$x][$y] = func($x, $y);
}

 }

 for $x (3, 7, 9) {
$LoL[$x][20] += func2($x);

 }

It doesn‘t matter whether those elements are already there or not: it‘ll gladly create them for you,
intervening elements to undef as need be.

If you wanted just to append to a row, you‘d have to do something a bit funnier looking:

 # add new columns to an existing row
 push @{ $LoL[0] }, "wilma", "betty";

Notice that I couldn‘t say just:

 push $LoL[0], "wilma", "betty"; # WRONG!

In fact, that wouldn‘t even compile. How come? Because the argument to push() must be a real array, not
just a reference to such.

Access and Printing
Now it‘s time to print your data structure out. How are you going to do that? Well, if you want only o
the elements, it‘s trivial:

 print $LoL[0][0];

If you want to print the whole thing, though, you can‘t say

 print @LoL; # WRONG

because you‘ll get just references listed, and perl will never automatically dereference things fo
Instead, you have to roll yourself a loop or two. This prints the whole structure, using the shell−style for()
construct to loop across the outer set of subscripts.

 for $aref (@LoL) {
print "\t [@$aref],\n";

 }

If you wanted to keep track of subscripts, you might do this:

 for $i (0 .. $#LoL) {
print "\t elt $i is [@{$LoL[$i]}],\n";

 }

or maybe even this. Notice the inner loop.

 for $i (0 .. $#LoL) {
for $j (0 .. $#{$LoL[$i]}) {
326 Version 5.005_02 18−Oct−1998

perllol Perl Programmers Reference Guide perllol

n your

some
r arrow
 write a
 print "elt $i $j is $LoL[$i][$j]\n";
}

 }

As you can see, it‘s getting a bit complicated. That‘s why sometimes is easier to take a temporary o
way through:

 for $i (0 .. $#LoL) {
$aref = $LoL[$i];
for $j (0 .. $#{$aref}) {
 print "elt $i $j is $LoL[$i][$j]\n";
}

 }

Hmm... that‘s still a bit ugly. How about this:

 for $i (0 .. $#LoL) {
$aref = $LoL[$i];
$n = @$aref − 1;
for $j (0 .. $n) {
 print "elt $i $j is $LoL[$i][$j]\n";
}

 }

Slices
If you want to get at a slice (part of a row) in a multidimensional array, you‘re going to have to do
fancy subscripting. That‘s because while we have a nice synonym for single elements via the pointe
for dereferencing, no such convenience exists for slices. (Remember, of course, that you can always
loop to do a slice operation.)

Here‘s how to do one operation using a loop. We‘ll assume an @LoL variable as before.

 @part = ();
 $x = 4;
 for ($y = 7; $y < 13; $y++) {

push @part, $LoL[$x][$y];
 }

That same loop could be replaced with a slice operation:

 @part = @{ $LoL[4] } [7..12];

but as you might well imagine, this is pretty rough on the reader.

Ah, but what if you wanted a two−dimensional slice, such as having $x run from 4..8 and $y run from 7 to
12? Hmm... here‘s the simple way:

 @newLoL = ();
 for ($startx = $x = 4; $x <= 8; $x++) {

for ($starty = $y = 7; $y <= 12; $y++) {
 $newLoL[$x − $startx][$y − $starty] = $LoL[$x][$y];
}

 }

We can reduce some of the looping through slices

 for ($x = 4; $x <= 8; $x++) {
push @newLoL, [@{ $LoL[$x] } [7..12]];

 }

If you were into Schwartzian Transforms, you would probably have selected map for that
18−Oct−1998 Version 5.005_02 327

perllol Perl Programmers Reference Guide perllol

ode, it
 @newLoL = map { [@{ $LoL[$_] } [7..12]] } 4 .. 8;

Although if your manager accused of seeking job security (or rapid insecurity) through inscrutable c
would be hard to argue. :−) If I were you, I‘d put that in a function:

 @newLoL = splice_2D(\@LoL, 4 => 8, 7 => 12);
 sub splice_2D {

my $lrr = shift; # ref to list of list refs!
my ($x_lo, $x_hi,
 $y_lo, $y_hi) = @_;

return map {
 [@{ $lrr−>[$_] } [$y_lo .. $y_hi]]
} $x_lo .. $x_hi;

 }

SEE ALSO
perldata(1), perlref(1), perldsc(1)

AUTHOR
Tom Christiansen <tchrist@perl.com

Last update: Thu Jun 4 16:16:23 MDT 1998
328 Version 5.005_02 18−Oct−1998

perlobj Perl Programmers Reference Guide perlobj

n be

r class

ely a
broutine

t
 makes
erl are

ave to
−class
 The

ns the
sed, and

lass as
NAME
perlobj − Perl objects

DESCRIPTION
First of all, you need to understand what references are in Perl. See perlref for that. Second, if you still find
the following reference work too complicated, a tutorial on object−oriented programming in Perl ca
found in perltoot.

If you‘re still with us, then here are three very simple definitions that you should find reassuring.

1. An object is simply a reference that happens to know which class it belongs to.

2. A class is simply a package that happens to provide methods to deal with object references.

3. A method is simply a subroutine that expects an object reference (or a package name, fo
methods) as the first argument.

We‘ll cover these points now in more depth.

An Object is Simply a Reference
Unlike say C++, Perl doesn‘t provide any special syntax for constructors. A constructor is mer
subroutine that returns a reference to something "blessed" into a class, generally the class that the su
is defined in. Here is a typical constructor:

 package Critter;
 sub new { bless {} }

That word new isn‘t special. You could have written a construct this way, too:

 package Critter;
 sub spawn { bless {} }

In fact, this might even be preferable, because the C++ programmers won‘t be tricked into thinking thanew
works in Perl as it does in C++. It doesn‘t. We recommend that you name your constructors whatever
sense in the context of the problem you‘re solving. For example, constructors in the Tk extension to P
named after the widgets they create.

One thing that‘s different about Perl constructors compared with those in C++ is that in Perl, they h
allocate their own memory. (The other things is that they don‘t automatically call overridden base
constructors.) The {} allocates an anonymous hash containing no key/value pairs, and returns it
bless() takes that reference and tells the object it references that it‘s now a Critter, and retur
reference. This is for convenience, because the referenced object itself knows that it has been bles
the reference to it could have been returned directly, like this:

 sub new {
my $self = {};
bless $self;
return $self;

 }

In fact, you often see such a thing in more complicated constructors that wish to call methods in the c
part of the construction:

 sub new {
my $self = {};
bless $self;
$self−>initialize();
return $self;

 }

If you care about inheritance (and you should; see Modules: Creation, Use, and Abuse in perlmod), then you
18−Oct−1998 Version 5.005_02 329

perlobj Perl Programmers Reference Guide perlobj

rence.
ssed only

 class is
ly one

urself

long to.
ing

.

 a class

d if you
@ISA
hed (depth
SA are

ed

ciency.
gain.

quested
want to use the two−arg form of bless so that your constructors may be inherited:

 sub new {
my $class = shift;
my $self = {};
bless $self, $class;
$self−>initialize();
return $self;

 }

Or if you expect people to call not just CLASS−>new() but also $obj−>new() , then use something like
this. The initialize() method used will be of whatever $class we blessed the object into:

 sub new {
my $this = shift;
my $class = ref($this) || $this;
my $self = {};
bless $self, $class;
$self−>initialize();
return $self;

 }

Within the class package, the methods will typically deal with the reference as an ordinary refe
Outside the class package, the reference is generally treated as an opaque value that may be acce
through the class‘s methods.

A constructor may re−bless a referenced object currently belonging to another class, but then the new
responsible for all cleanup later. The previous blessing is forgotten, as an object may belong to on
class at a time. (Although of course it‘s free to inherit methods from many classes.) If you find yo
having to do this, the parent class is probably misbehaving, though.

A clarification: Perl objects are blessed. References are not. Objects know which package they be
References do not. The bless() function uses the reference to find the object. Consider the follow
example:

 $a = {};
 $b = $a;
 bless $a, BLAH;
 print "\$b is a ", ref($b), "\n";

This reports $b as being a BLAH, so obviously bless() operated on the object and not on the reference

A Class is Simply a Package
Unlike say C++, Perl doesn‘t provide any special syntax for class definitions. You use a package as
by putting method definitions into the class.

There is a special array within each package called @ISA, which says where else to look for a metho
can‘t find it in the current package. This is how Perl implements inheritance. Each element of the
array is just the name of another package that happens to be a class package. The classes are searc
first) for missing methods in the order that they occur in @ISA. The classes accessible through @I
known as base classes of the current class.

All classes implicitly inherit from class UNIVERSAL as their last base class. Several commonly us
methods are automatically supplied in the UNIVERSAL class; see "Default UNIVERSAL methods" for more
details.

If a missing method is found in one of the base classes, it is cached in the current class for effi
Changing @ISA or defining new subroutines invalidates the cache and causes Perl to do the lookup a

If neither the current class, its named base classes, nor the UNIVERSAL class contains the re
method, these three places are searched all over again, this time looking for a method named AUTOLOAD().
330 Version 5.005_02 18−Oct−1998

perlobj Perl Programmers Reference Guide perlobj

kage

, this is
us hash,
t to do

ece of
with the

 little
be the
 which
o C++

a whole,
 class

d don‘t
ds follow
look up

ument

which

 defined
es.
If an AUTOLOAD is found, this method is called on behalf of the missing method, setting the pac
global $AUTOLOAD to be the fully qualified name of the method that was intended to be called.

If none of that works, Perl finally gives up and complains.

Perl classes do method inheritance only. Data inheritance is left up to the class itself. By and large
not a problem in Perl, because most classes model the attributes of their object using an anonymo
which serves as its own little namespace to be carved up by the various classes that might wan
something with the object. The only problem with this is that you can‘t sure that you aren‘t using a pi
the hash that isn‘t already used. A reasonable workaround is to prepend your fieldname in the hash
package name.

 sub bump {
my $self = shift;
$self−>{ __PACKAGE__ . ".count"}++;

 }

A Method is Simply a Subroutine
Unlike say C++, Perl doesn‘t provide any special syntax for method definition. (It does provide a
syntax for method invocation though. More on that later.) A method expects its first argument to
object (reference) or package (string) it is being invoked on. There are just two types of methods,
we‘ll call class and instance. (Sometimes you‘ll hear these called static and virtual, in honor of the tw
method types they most closely resemble.)

A class method expects a class name as the first argument. It provides functionality for the class as
not for any individual object belonging to the class. Constructors are typically class methods. Many
methods simply ignore their first argument, because they already know what package they‘re in, an
care what package they were invoked via. (These aren‘t necessarily the same, because class metho
the inheritance tree just like ordinary instance methods.) Another typical use for class methods is to
an object by name:

 sub find {
my ($class, $name) = @_;
$objtable{$name};

 }

An instance method expects an object reference as its first argument. Typically it shifts the first arg
into a "self" or "this" variable, and then uses that as an ordinary reference.

 sub display {
my $self = shift;
my @keys = @_ ? @_ : sort keys %$self;
foreach $key (@keys) {
 print "\t$key => $self−>{$key}\n";
}

 }

Method Invocation
There are two ways to invoke a method, one of which you‘re already familiar with, and the other of
will look familiar. Perl 4 already had an "indirect object" syntax that you use when you say

 print STDERR "help!!!\n";

This same syntax can be used to call either class or instance methods. We‘ll use the two methods
above, the class method to lookup an object reference and the instance method to print out its attribut

 $fred = find Critter "Fred";
 display $fred ’Height’, ’Weight’;

These could be combined into one statement by using a BLOCK in the indirect object slot:
18−Oct−1998 Version 5.005_02 331

perlobj Perl Programmers Reference Guide perlobj

eses are

ble. The
t object
ction".
C++
s, the

ing

ll your

e with

u
 having

an use
:

ther
 display {find Critter "Fred"} ’Height’, ’Weight’;

For C++ fans, there‘s also a syntax using −> notation that does exactly the same thing. The parenth
required if there are any arguments.

 $fred = Critter−>find("Fred");
 $fred−>display(’Height’, ’Weight’);

or in one statement,

 Critter−>find("Fred")−>display(’Height’, ’Weight’);

There are times when one syntax is more readable, and times when the other syntax is more reada
indirect object syntax is less cluttered, but it has the same ambiguity as ordinary list operators. Indirec
method calls are parsed using the same rule as list operators: "If it looks like a function, it is a fun
(Presuming for the moment that you think two words in a row can look like a function name.
programmers seem to think so with some regularity, especially when the first word is "new".) Thu
parentheses of

 new Critter (’Barney’, 1.5, 70)

are assumed to surround ALL the arguments of the method call, regardless of what comes after. Say

 new Critter (’Bam’ x 2), 1.4, 45

would be equivalent to

 Critter−>new(’Bam’ x 2), 1.4, 45

which is unlikely to do what you want.

There are times when you wish to specify which class‘s method to use. In this case, you can ca
method as an ordinary subroutine call, being sure to pass the requisite first argument explicitly:

 $fred = MyCritter::find("Critter", "Fred");
 MyCritter::display($fred, ’Height’, ’Weight’);

Note however, that this does not do any inheritance. If you wish merely to specify that Perl should START
looking for a method in a particular package, use an ordinary method call, but qualify the method nam
the package like this:

 $fred = Critter−>MyCritter::find("Fred");
 $fred−>MyCritter::display(’Height’, ’Weight’);

If you‘re trying to control where the method search begins and you‘re executing in the class itself, then yo
may use the SUPER pseudo class, which says to start looking in your base class‘s @ISA list without
to name it explicitly:

 $self−>SUPER::display(’Height’, ’Weight’);

Please note that the SUPER:: construct is meaningful only within the class.

Sometimes you want to call a method when you don‘t know the method name ahead of time. You c
the arrow form, replacing the method name with a simple scalar variable containing the method name

 $method = $fast ? "findfirst" : "findbest";
 $fred−>$method(@args);

Default UNIVERSAL methods
The UNIVERSAL package automatically contains the following methods that are inherited by all o
classes:

isa(CLASS)
isa returns true if its object is blessed into a subclass of CLASS
332 Version 5.005_02 18−Oct−1998

perlobj Perl Programmers Reference Guide perlobj

 check

is

hen it
t
thod.

 in any

 wish

even be
re the
t the

the object
ue, and
e

TROY
ation of
xplicitly

cts
ces to

be not

t would
ese are
isa is also exportable and can be called as a sub with two arguments. This allows the ability to
what a reference points to. Example

 use UNIVERSAL qw(isa);

 if(isa($ref, ’ARRAY’)) {
 #...
 }

can(METHOD)
can checks to see if its object has a method called METHOD, if it does then a reference to the sub
returned, if it does not then undef is returned.

VERSION([NEED])
VERSION returns the version number of the class (package). If the NEED argument is given t
will check that the current version (as defined by the $VERSION variable in the given package) no
less than NEED; it will die if this is not the case. This method is normally called as a class me
This method is called automatically by the VERSION form of use .

 use A 1.2 qw(some imported subs);
 # implies:
 A−>VERSION(1.2);

NOTE: can directly uses Perl‘s internal code for method lookup, and isa uses a very similar method and
cache−ing strategy. This may cause strange effects if the Perl code dynamically changes @ISA
package.

You may add other methods to the UNIVERSAL class via Perl or XS code. You do not need to use
UNIVERSAL in order to make these methods available to your program. This is necessary only if you
to have isa available as a plain subroutine in the current package.

Destructors
When the last reference to an object goes away, the object is automatically destroyed. (This may
after you exit, if you‘ve stored references in global variables.) If you want to capture control just befo
object is freed, you may define a DESTROY method in your class. It will automatically be called a
appropriate moment, and you can do any extra cleanup you need to do. Perl passes a reference to
under destruction as the first (and only) argument. Beware that the reference is a read−only val
cannot be modified by manipulating $_[0] within the destructor. The object itself (i.e. the thingy th
reference points to, namely ${$_[0]}, @{$_[0]}, %{$_[0]} etc.) is not similarly constrained.

If you arrange to re−bless the reference before the destructor returns, perl will again call the DES
method for the re−blessed object after the current one returns. This can be used for clean deleg
object destruction, or for ensuring that destructors in the base classes of your choosing get called. E
calling DESTROY is also possible, but is usually never needed.

Do not confuse the foregoing with how objects CONTAINED in the current one are destroyed. Such obje
will be freed and destroyed automatically when the current object is freed, provided no other referen
them exist elsewhere.

WARNING
While indirect object syntax may well be appealing to English speakers and to C++ programmers,
seduced! It suffers from two grave problems.

The first problem is that an indirect object is limited to a name, a scalar variable, or a block, because i
have to do too much lookahead otherwise, just like any other postfix dereference in the language. (Th
the same quirky rules as are used for the filehandle slot in functions like print and printf .) This can
lead to horribly confusing precedence problems, as in these next two lines:

 move $obj−>{FIELD}; # probably wrong!
 move $ary[$i]; # probably wrong!
18−Oct−1998 Version 5.005_02 333

perlobj Perl Programmers Reference Guide perlobj

n call
xample,
piled
e‘s
mbering
take

e

esign

is reason,
 your C

lly get

 the
 such

urself.

tly but
t thread
Those actually parse as the very surprising:

 $obj−>move−>{FIELD}; # Well, lookee here
 $ary−>move−>[$i]; # Didn’t expect this one, eh?

Rather than what you might have expected:

 $obj−>{FIELD}−>move(); # You should be so lucky.
 $ary[$i]−>move; # Yeah, sure.

The left side of ‘‘−>‘’ is not so limited, because it‘s an infix operator, not a postfix operator.

As if that weren‘t bad enough, think about this: Perl must guess at compile time whether name and move
above are functions or methods. Usually Perl gets it right, but when it doesn‘t it, you get a functio
compiled as a method, or vice versa. This can introduce subtle bugs that are hard to unravel. For e
calling a method new in indirect notation—as C++ programmers are so wont to do—can be miscom
into a subroutine call if there‘s already a new function in scope. You‘d end up calling the current packag
new as a subroutine, rather than the desired class‘s method. The compiler tries to cheat by reme
bareword require s, but the grief if it messes up just isn‘t worth the years of debugging it would likely
you to to track such subtle bugs down.

The infix arrow notation using ‘‘−>‘’ doesn‘t suffer from either of these disturbing ambiguities, so w
recommend you use it exclusively.

Summary
That‘s about all there is to it. Now you need just to go off and buy a book about object−oriented d
methodology, and bang your forehead with it for the next six months or so.

Two−Phased Garbage Collection
For most purposes, Perl uses a fast and simple reference−based garbage collection system. For th
there‘s an extra dereference going on at some level, so if you haven‘t built your Perl executable using
compiler‘s −O flag, performance will suffer. If you have built Perl with cc −O , then this probably won‘t
matter.

A more serious concern is that unreachable memory with a non−zero reference count will not norma
freed. Therefore, this is a bad idea:

 {
my $a;
$a = \$a;

 }

Even thought $a should go away, it can‘t. When building recursive data structures, you‘ll have to break
self−reference yourself explicitly if you don‘t care to leak. For example, here‘s a self−referential node
as one might use in a sophisticated tree structure:

 sub new_node {
my $self = shift;
my $class = ref($self) || $self;
my $node = {};
$node−>{LEFT} = $node−>{RIGHT} = $node;
$node−>{DATA} = [@_];
return bless $node => $class;

 }

If you create nodes like that, they (currently) won‘t go away unless you break their self reference yo
(In other words, this is not to be construed as a feature, and you shouldn‘t depend on it.)

Almost.

When an interpreter thread finally shuts down (usually when your program exits), then a rather cos
complete mark−and−sweep style of garbage collection is performed, and everything allocated by tha
334 Version 5.005_02 18−Oct−1998

perlobj Perl Programmers Reference Guide perlobj

e. For

le.

rate pass
selves

test the
ble,

r to the
nually
gets destroyed. This is essential to support Perl as an embedded or a multithreadable languag
example, this program demonstrates Perl‘s two−phased garbage collection:

 #!/usr/bin/perl
 package Subtle;

 sub new {
my $test;
$test = \$test;
warn "CREATING " . \$test;
return bless \$test;

 }

 sub DESTROY {
my $self = shift;
warn "DESTROYING $self";

 }

 package main;

 warn "starting program";
 {

my $a = Subtle−>new;
my $b = Subtle−>new;
$$a = 0; # break selfref
warn "leaving block";

 }

 warn "just exited block";
 warn "time to die...";
 exit;

When run as /tmp/test, the following output is produced:

 starting program at /tmp/test line 18.
 CREATING SCALAR(0x8e5b8) at /tmp/test line 7.
 CREATING SCALAR(0x8e57c) at /tmp/test line 7.
 leaving block at /tmp/test line 23.
 DESTROYING Subtle=SCALAR(0x8e5b8) at /tmp/test line 13.
 just exited block at /tmp/test line 26.
 time to die... at /tmp/test line 27.
 DESTROYING Subtle=SCALAR(0x8e57c) during global destruction.

Notice that "global destruction" bit there? That‘s the thread garbage collector reaching the unreachab

Objects are always destructed, even when regular refs aren‘t and in fact are destructed in a sepa
before ordinary refs just to try to prevent object destructors from using refs that have been them
destructed. Plain refs are only garbage−collected if the destruct level is greater than 0. You can
higher levels of global destruction by setting the PERL_DESTRUCT_LEVEL environment varia
presuming −DDEBUGGING was enabled during perl build time.

A more complete garbage collection strategy will be implemented at a future date.

In the meantime, the best solution is to create a non−recursive container class that holds a pointe
self−referential data structure. Define a DESTROY method for the containing object‘s class that ma
breaks the circularities in the self−referential structure.

SEE ALSO
A kinder, gentler tutorial on object−oriented programming in Perl can be found in perltoot. You should also
check out perlbot for other object tricks, traps, and tips, as well as perlmodlib for some style guides on
constructing both modules and classes.
18−Oct−1998 Version 5.005_02 335

perltie Perl Programmers Reference Guide perltie

e
 built
 other

ccess
atically
s calls.

 called

 a
e a

t

RE,

mething

turned.
NAME
perltie − how to hide an object class in a simple variable

SYNOPSIS
 tie VARIABLE, CLASSNAME, LIST

 $object = tied VARIABLE

 untie VARIABLE

DESCRIPTION
Prior to release 5.0 of Perl, a programmer could use dbmopen() to connect an on−disk database in th
standard Unix dbm(3x) format magically to a %HASH in their program. However, their Perl was either
with one particular dbm library or another, but not both, and you couldn‘t extend this mechanism to
packages or types of variables.

Now you can.

The tie() function binds a variable to a class (package) that will provide the implementation for a
methods for that variable. Once this magic has been performed, accessing a tied variable autom
triggers method calls in the proper class. The complexity of the class is hidden behind magic method
The method names are in ALL CAPS, which is a convention that Perl uses to indicate that they‘re
implicitly rather than explicitly—just like the BEGIN() and END() functions.

In the tie() call, VARIABLE is the name of the variable to be enchanted. CLASSNAME is the name of a
class implementing objects of the correct type. Any additional arguments in the LIST are passed to the
appropriate constructor method for that class—meaning TIESCALAR() , TIEARRAY() , TIEHASH() , or
TIEHANDLE() . (Typically these are arguments such as might be passed to the dbminit() function of
C.) The object returned by the "new" method is also returned by the tie() function, which would be useful
if you wanted to access other methods in CLASSNAME. (You don‘t actually have to return a reference to
right "type" (e.g., HASH or CLASSNAME) so long as it‘s a properly blessed object.) You can also retriev
reference to the underlying object using the tied() function.

Unlike dbmopen() , the tie() function will not use or require a module for you—you need to do tha
explicitly yourself.

Tying Scalars
A class implementing a tied scalar should define the following methods: TIESCALAR, FETCH, STO
and possibly DESTROY.

Let‘s look at each in turn, using as an example a tie class for scalars that allows the user to do so
like:

 tie $his_speed, ’Nice’, getppid();
 tie $my_speed, ’Nice’, $$;

And now whenever either of those variables is accessed, its current system priority is retrieved and re
If those variables are set, then the process‘s priority is changed!

We‘ll use Jarkko Hietaniemi <jhi@iki.fi ‘s BSD::Resource class (not included) to access the
PRIO_PROCESS, PRIO_MIN, and PRIO_MAX constants from your system, as well as the
getpriority() and setpriority() system calls. Here‘s the preamble of the class.

 package Nice;
 use Carp;
 use BSD::Resource;
 use strict;
 $Nice::DEBUG = 0 unless defined $Nice::DEBUG;
336 Version 5.005_02 18−Oct−1998

perltie Perl Programmers Reference Guide perltie

o a new

uld fail.
cks

ments
use in

s ID to

 us to

rence,
TIESCALAR classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference t
scalar (probably anonymous) that it‘s creating. For example:

 sub TIESCALAR {
 my $class = shift;
 my $pid = shift || $$; # 0 means me

 if ($pid !~ /^\d+$/) {
 carp "Nice::Tie::Scalar got non−numeric pid $pid" if $^W;
 return undef;
 }

 unless (kill 0, $pid) { # EPERM or ERSCH, no doubt
 carp "Nice::Tie::Scalar got bad pid $pid: $!" if $^W;
 return undef;
 }

 return bless \$pid, $class;
 }

This tie class has chosen to return an error rather than raising an exception if its constructor sho
 While this is how dbmopen() works, other classes may well not wish to be so forgiving. It che
the global variable $^W to see whether to emit a bit of noise anyway.

FETCH this
This method will be triggered every time the tied variable is accessed (read). It takes no argu
beyond its self reference, which is the object representing the scalar we‘re dealing with. Beca
this case we‘re using just a SCALAR ref for the tied scalar object, a simple $$self allows the
method to get at the real value stored there. In our example below, that real value is the proces
which we‘ve tied our variable.

 sub FETCH {
 my $self = shift;
 confess "wrong type" unless ref $self;
 croak "usage error" if @_;
 my $nicety;
 local($!) = 0;
 $nicety = getpriority(PRIO_PROCESS, $$self);
 if ($!) { croak "getpriority failed: $!" }
 return $nicety;
 }

This time we‘ve decided to blow up (raise an exception) if the renice fails—there‘s no place for
return an error otherwise, and it‘s probably the right thing to do.

STORE this, value
This method will be triggered every time the tied variable is set (assigned). Beyond its self refe
it also expects one (and only one) argument—the new value the user is trying to assign.

 sub STORE {
 my $self = shift;
 confess "wrong type" unless ref $self;
 my $new_nicety = shift;
 croak "usage error" if @_;

 if ($new_nicety < PRIO_MIN) {
 carp sprintf
 "WARNING: priority %d less than minimum system priority %d",
18−Oct−1998 Version 5.005_02 337

perltie Perl Programmers Reference Guide perltie

object
mory for

ging

things
sses are

CH,

 the
a

he

ccess
 $new_nicety, PRIO_MIN if $^W;
 $new_nicety = PRIO_MIN;
 }

 if ($new_nicety > PRIO_MAX) {
 carp sprintf
 "WARNING: priority %d greater than maximum system priority %d",
 $new_nicety, PRIO_MAX if $^W;
 $new_nicety = PRIO_MAX;
 }

 unless (defined setpriority(PRIO_PROCESS, $$self, $new_nicety)) {
 confess "setpriority failed: $!";
 }
 return $new_nicety;
 }

DESTROY this
This method will be triggered when the tied variable needs to be destructed. As with other
classes, such a method is seldom necessary, because Perl deallocates its moribund object‘s me
you automatically—this isn‘t C++, you know. We‘ll use a DESTROY method here for debug
purposes only.

 sub DESTROY {
 my $self = shift;
 confess "wrong type" unless ref $self;
 carp "[Nice::DESTROY pid $$self]" if $Nice::DEBUG;
 }

That‘s about all there is to it. Actually, it‘s more than all there is to it, because we‘ve done a few nice
here for the sake of completeness, robustness, and general aesthetics. Simpler TIESCALAR cla
certainly possible.

Tying Arrays
A class implementing a tied ordinary array should define the following methods: TIEARRAY, FET
STORE, FETCHSIZE, STORESIZE and perhaps DESTROY.

FETCHSIZE and STORESIZE are used to provide $#array and equivalent scalar(@array) access.

The methods POP, PUSH, SHIFT, UNSHIFT, SPLICE are required if the perl operator with
corresponding (but lowercase) name is to operate on the tied array. The Tie::Array class can be used as
base class to implement these in terms of the basic five methods above.

In addition EXTEND will be called when perl would have pre−extended allocation in a real array.

This means that tied arrays are now complete. The example below needs upgrading to illustrate this. (T
documentation in Tie::Array is more complete.)

For this discussion, we‘ll implement an array whose indices are fixed at its creation. If you try to a
anything beyond those bounds, you‘ll take an exception. For example:

 require Bounded_Array;
 tie @ary, ’Bounded_Array’, 2;
 $| = 1;
 for $i (0 .. 10) {
 print "setting index $i: ";
 $ary[$i] = 10 * $i;
 $ary[$i] = 10 * $i;
 print "value of elt $i now $ary[$i]\n";
 }
338 Version 5.005_02 18−Oct−1998

perltie Perl Programmers Reference Guide perltie

through

l
 type:

king it
ect‘s

d). It

s, even
uld
s easiest

s two
 value
The preamble code for the class is as follows:

 package Bounded_Array;
 use Carp;
 use strict;

TIEARRAY classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference
which the new array (probably an anonymous ARRAY ref) will be accessed.

In our example, just to show you that you don‘t really have to return an ARRAY reference, we‘l
choose a HASH reference to represent our object. A HASH works out well as a generic record
the {BOUND} field will store the maximum bound allowed, and the {ARRAY} field will hold the true
ARRAY ref. If someone outside the class tries to dereference the object returned (doubtless thin
an ARRAY ref), they‘ll blow up. This just goes to show you that you should respect an obj
privacy.

 sub TIEARRAY {
my $class = shift;
my $bound = shift;
confess "usage: tie(\@ary, ’Bounded_Array’, max_subscript)"
 if @_ || $bound =~ /\D/;
return bless {
 BOUND => $bound,
 ARRAY => [],
}, $class;

 }

FETCH this, index
This method will be triggered every time an individual element the tied array is accessed (rea
takes one argument beyond its self reference: the index whose value we‘re trying to fetch.

 sub FETCH {
 my($self,$idx) = @_;
 if ($idx > $self−>{BOUND}) {

confess "Array OOB: $idx > $self−>{BOUND}";
 }
 return $self−>{ARRAY}[$idx];
 }

As you may have noticed, the name of the FETCH method (et al.) is the same for all accesse
though the constructors differ in names (TIESCALAR vs TIEARRAY). While in theory you co
have the same class servicing several tied types, in practice this becomes cumbersome, and it‘
to keep them at simply one tie type per class.

STORE this, index, value
This method will be triggered every time an element in the tied array is set (written). It take
arguments beyond its self reference: the index at which we‘re trying to store something and the
we‘re trying to put there. For example:

 sub STORE {
 my($self, $idx, $value) = @_;
 print "[STORE $value at $idx]\n" if _debug;
 if ($idx > $self−>{BOUND}) {
 confess "Array OOB: $idx > $self−>{BOUND}";
 }
 return $self−>{ARRAY}[$idx] = $value;
 }
18−Oct−1998 Version 5.005_02 339

perltie Perl Programmers Reference Guide perltie

lar tie
e we‘ll

ore than
f @ary,

is the
esent in
 pairs.

f your

hash but

articular
at dot

elds, of
DESTROY this
This method will be triggered when the tied variable needs to be destructed. As with the sca
class, this is almost never needed in a language that does its own garbage collection, so this tim
just leave it out.

The code we presented at the top of the tied array class accesses many elements of the array, far m
we‘ve set the bounds to. Therefore, it will blow up once they try to access beyond the 2nd element o
as the following output demonstrates:

 setting index 0: value of elt 0 now 0
 setting index 1: value of elt 1 now 10
 setting index 2: value of elt 2 now 20
 setting index 3: Array OOB: 3 > 2 at Bounded_Array.pm line 39
 Bounded_Array::FETCH called at testba line 12

Tying Hashes
As the first Perl data type to be tied (see dbmopen()), hashes have the most complete and useful tie()
implementation. A class implementing a tied hash should define the following methods: TIEHASH
constructor. FETCH and STORE access the key and value pairs. EXISTS reports whether a key is pr
the hash, and DELETE deletes one. CLEAR empties the hash by deleting all the key and value
FIRSTKEY and NEXTKEY implement the keys() and each() functions to iterate over all the keys. And
DESTROY is called when the tied variable is garbage collected.

If this seems like a lot, then feel free to inherit from merely the standard Tie::Hash module for most o
methods, redefining only the interesting ones. See Tie::Hash for details.

Remember that Perl distinguishes between a key not existing in the hash, and the key existing in the
having a corresponding value of undef . The two possibilities can be tested with the exists() and
defined() functions.

Here‘s an example of a somewhat interesting tied hash class: it gives you a hash representing a p
user‘s dot files. You index into the hash with the name of the file (minus the dot) and you get back th
file‘s contents. For example:

 use DotFiles;
 tie %dot, ’DotFiles’;
 if ($dot{profile} =~ /MANPATH/ ||
 $dot{login} =~ /MANPATH/ ||
 $dot{cshrc} =~ /MANPATH/)
 {

print "you seem to set your MANPATH\n";
 }

Or here‘s another sample of using our tied class:

 tie %him, ’DotFiles’, ’daemon’;
 foreach $f (keys %him) {

printf "daemon dot file %s is size %d\n",
 $f, length $him{$f};

 }

In our tied hash DotFiles example, we use a regular hash for the object containing several important fi
which only the {LIST} field will be what the user thinks of as the real hash.

USER
whose dot files this object represents
340 Version 5.005_02 18−Oct−1998

perltie Perl Programmers Reference Guide perltie

e keep

through

ou‘d
HOME
where those dot files live

CLOBBER
whether we should try to change or remove those dot files

LIST the hash of dot file names and content mappings

Here‘s the start of Dotfiles.pm:

 package DotFiles;
 use Carp;
 sub whowasi { (caller(1))[3] . ’()’ }
 my $DEBUG = 0;
 sub debug { $DEBUG = @_ ? shift : 1 }

For our example, we want to be able to emit debugging info to help in tracing during development. W
also one convenience function around internally to help print out warnings; whowasi() returns the
function name that calls it.

Here are the methods for the DotFiles tied hash.

TIEHASH classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference
which the new object (probably but not necessarily an anonymous hash) will be accessed.

Here‘s the constructor:

 sub TIEHASH {
my $self = shift;
my $user = shift || $>;
my $dotdir = shift || ’’;
croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;
$user = getpwuid($user) if $user =~ /^\d+$/;
my $dir = (getpwnam($user))[7]

|| croak "@{[&whowasi]}: no user $user";
$dir .= "/$dotdir" if $dotdir;

my $node = {
 USER => $user,
 HOME => $dir,
 LIST => {},
 CLOBBER => 0,
};

opendir(DIR, $dir)
|| croak "@{[&whowasi]}: can’t opendir $dir: $!";

foreach $dot (grep /^\./ && −f "$dir/$_", readdir(DIR)) {
 $dot =~ s/^\.//;
 $node−>{LIST}{$dot} = undef;
}
closedir DIR;
return bless $node, $self;

 }

It‘s probably worth mentioning that if you‘re going to filetest the return values out of a readdir, y
better prepend the directory in question. Otherwise, because we didn‘t chdir() there, it would have
been testing the wrong file.
18−Oct−1998 Version 5.005_02 341

perltie Perl Programmers Reference Guide perltie

es one

table
Unixy

s two
 value

y‘ve
FETCH this, key
This method will be triggered every time an element in the tied hash is accessed (read). It tak
argument beyond its self reference: the key whose value we‘re trying to fetch.

Here‘s the fetch for our DotFiles example.

 sub FETCH {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $dir = $self−>{HOME};
my $file = "$dir/.$dot";

unless (exists $self−>{LIST}−>{$dot} || −f $file) {
 carp "@{[&whowasi]}: no $dot file" if $DEBUG;
 return undef;
}

if (defined $self−>{LIST}−>{$dot}) {
 return $self−>{LIST}−>{$dot};
} else {
 return $self−>{LIST}−>{$dot} = ‘cat $dir/.$dot‘;
}

 }

It was easy to write by having it call the Unix cat(1) command, but it would probably be more por
to open the file manually (and somewhat more efficient). Of course, because dot files are a
concept, we‘re not that concerned.

STORE this, key, value
This method will be triggered every time an element in the tied hash is set (written). It take
arguments beyond its self reference: the index at which we‘re trying to store something, and the
we‘re trying to put there.

Here in our DotFiles example, we‘ll be careful not to let them try to overwrite the file unless the
called the clobber() method on the original object reference returned by tie() .

 sub STORE {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $value = shift;
my $file = $self−>{HOME} . "/.$dot";
my $user = $self−>{USER};

croak "@{[&whowasi]}: $file not clobberable"
 unless $self−>{CLOBBER};

open(F, "> $file") || croak "can’t open $file: $!";
print F $value;
close(F);

 }

If they wanted to clobber something, they might say:

 $ob = tie %daemon_dots, ’daemon’;
 $ob−>clobber(1);
 $daemon_dots{signature} = "A true daemon\n";

Another way to lay hands on a reference to the underlying object is to use the tied() function, so
342 Version 5.005_02 18−Oct−1998

perltie Perl Programmers Reference Guide perltie

g the

ed
hether

st to it.

l have

r

they might alternately have set clobber using:

 tie %daemon_dots, ’daemon’;
 tied(%daemon_dots)−>clobber(1);

The clobber method is simply:

 sub clobber {
my $self = shift;
$self−>{CLOBBER} = @_ ? shift : 1;

 }

DELETE this, key
This method is triggered when we remove an element from the hash, typically by usin
delete() function. Again, we‘ll be careful to check whether they really want to clobber files.

 sub DELETE {
carp &whowasi if $DEBUG;

my $self = shift;
my $dot = shift;
my $file = $self−>{HOME} . "/.$dot";
croak "@{[&whowasi]}: won’t remove file $file"
 unless $self−>{CLOBBER};
delete $self−>{LIST}−>{$dot};
my $success = unlink($file);
carp "@{[&whowasi]}: can’t unlink $file: $!" unless $success;
$success;

 }

The value returned by DELETE becomes the return value of the call to delete() . If you want to
emulate the normal behavior of delete() , you should return whatever FETCH would have return
for this key. In this example, we have chosen instead to return a value which tells the caller w
the file was successfully deleted.

CLEAR this
This method is triggered when the whole hash is to be cleared, usually by assigning the empty li

In our example, that would remove all the user‘s dot files! It‘s such a dangerous thing that they‘l
to set CLOBBER to something higher than 1 to make it happen.

 sub CLEAR {
carp &whowasi if $DEBUG;
my $self = shift;
croak "@{[&whowasi]}: won’t remove all dot files for $self−>{USER}"
 unless $self−>{CLOBBER} > 1;
my $dot;
foreach $dot (keys %{$self−>{LIST}}) {
 $self−>DELETE($dot);
}

 }

EXISTS this, key
This method is triggered when the user uses the exists() function on a particular hash. In ou
example, we‘ll look at the {LIST} hash element for this:

 sub EXISTS {
carp &whowasi if $DEBUG;
my $self = shift;
18−Oct−1998 Version 5.005_02 343

perltie Perl Programmers Reference Guide perltie

is
ng the

rough

unless

ike

ne of

T and
es.
my $dot = shift;
return exists $self−>{LIST}−>{$dot};

 }

FIRSTKEY this
This method will be triggered when the user is going to iterate through the hash, such as via a keys()
or each() call.

 sub FIRSTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
my $a = keys %{$self−>{LIST}}; # reset each() iterator
each %{$self−>{LIST}}

 }

NEXTKEY this, lastkey
This method gets triggered during a keys() or each() iteration. It has a second argument which
the last key that had been accessed. This is useful if you‘re carrying about ordering or calli
iterator from more than one sequence, or not really storing things in a hash anywhere.

For our example, we‘re using a real hash so we‘ll do just the simple thing, but we‘ll have to go th
the LIST field indirectly.

 sub NEXTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
return each %{ $self−>{LIST} }

 }

DESTROY this
This method is triggered when a tied hash is about to go out of scope. You don‘t really need it
you‘re trying to add debugging or have auxiliary state to clean up. Here‘s a very simple function:

 sub DESTROY {
carp &whowasi if $DEBUG;

 }

Note that functions such as keys() and values() may return huge lists when used on large objects, l
DBM files. You may prefer to use the each() function to iterate over such. Example:

 # print out history file offsets
 use NDBM_File;
 tie(%HIST, ’NDBM_File’, ’/usr/lib/news/history’, 1, 0);
 while (($key,$val) = each %HIST) {
 print $key, ’ = ’, unpack(’L’,$val), "\n";
 }
 untie(%HIST);

Tying FileHandles
This is partially implemented now.

A class implementing a tied filehandle should define the following methods: TIEHANDLE, at least o
PRINT, PRINTF, WRITE, READLINE, GETC, READ, and possibly CLOSE and DESTROY.

It is especially useful when perl is embedded in some other program, where output to STDOU
STDERR may have to be redirected in some special way. See nvi and the Apache module for exampl

In our example we‘re going to create a shouting handle.

 package Shout;
344 Version 5.005_02 18−Oct−1998

perltie Perl Programmers Reference Guide perltie

of some

.

eturn

troyed.
TIEHANDLE classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference
sort. The reference can be used to hold some internal information.

 sub TIEHANDLE { print "<shout>\n"; my $i; bless \$i, shift }

WRITE this, LIST
This method will be called when the handle is written to via the syswrite function.

 sub WRITE {
$r = shift;
my($buf,$len,$offset) = @_;
print "WRITE called, \$buf=$buf, \$len=$len, \$offset=$offset";

 }

PRINT this, LIST
This method will be triggered every time the tied handle is printed to with the print() function.
Beyond its self reference it also expects the list that was passed to the print function.

 sub PRINT { $r = shift; $$r++; print join($,,map(uc($_),@_)),$\ }

PRINTF this, LIST
This method will be triggered every time the tied handle is printed to with the printf() function.
Beyond its self reference it also expects the format and list that was passed to the printf function

 sub PRINTF {
 shift;
 my $fmt = shift;
 print sprintf($fmt, @_)."\n";
 }

READ this, LIST
This method will be called when the handle is read from via the read or sysread functions.

 sub READ {
$r = shift;
my($buf,$len,$offset) = @_;
print "READ called, \$buf=$buf, \$len=$len, \$offset=$offset";

 }

READLINE this
This method will be called when the handle is read from via <HANDLE. The method should r
undef when there is no more data.

 sub READLINE { $r = shift; "PRINT called $$r times\n"; }

GETC this
This method will be called when the getc function is called.

 sub GETC { print "Don’t GETC, Get Perl"; return "a"; }

CLOSE this
This method will be called when the handle is closed via the close function.

 sub CLOSE { print "CLOSE called.\n" }

DESTROY this
As with the other types of ties, this method will be called when the tied handle is about to be des
This is useful for debugging and possibly cleaning up.
18−Oct−1998 Version 5.005_02 345

perltie Perl Programmers Reference Guide perltie

 log of
 sub DESTROY { print "</shout>\n" }

Here‘s how to use our little example:

 tie(*FOO,’Shout’);
 print FOO "hello\n";
 $a = 4; $b = 6;
 print FOO $a, " plus ", $b, " equals ", $a + $b, "\n";
 print <FOO>;

The untie Gotcha
If you intend making use of the object returned from either tie() or tied() , and if the tie‘s target class
defines a destructor, there is a subtle gotcha you must guard against.

As setup, consider this (admittedly rather contrived) example of a tie; all it does is use a file to keep a
the values assigned to a scalar.

 package Remember;

 use strict;
 use IO::File;

 sub TIESCALAR {
 my $class = shift;
 my $filename = shift;
 my $handle = new IO::File "> $filename"
 or die "Cannot open $filename: $!\n";

 print $handle "The Start\n";
 bless {FH => $handle, Value => 0}, $class;
 }

 sub FETCH {
 my $self = shift;
 return $self−>{Value};
 }

 sub STORE {
 my $self = shift;
 my $value = shift;
 my $handle = $self−>{FH};
 print $handle "$value\n";
 $self−>{Value} = $value;
 }

 sub DESTROY {
 my $self = shift;
 my $handle = $self−>{FH};
 print $handle "The End\n";
 close $handle;
 }

 1;

Here is an example that makes use of this tie:

 use strict;
 use Remember;

 my $fred;
 tie $fred, ’Remember’, ’myfile.txt’;
 $fred = 1;
346 Version 5.005_02 18−Oct−1998

perltie Perl Programmers Reference Guide perltie

t hasn‘t
luded in

LAR,
licit
irst
 more

ctor is
 buffers

ond

the tied
 $fred = 4;
 $fred = 5;
 untie $fred;
 system "cat myfile.txt";

This is the output when it is executed:

 The Start
 1
 4
 5
 The End

So far so good. Those of you who have been paying attention will have spotted that the tied objec
been used so far. So lets add an extra method to the Remember class to allow comments to be inc
the file — say, something like this:

 sub comment {
 my $self = shift;
 my $text = shift;
 my $handle = $self−>{FH};
 print $handle $text, "\n";
 }

And here is the previous example modified to use the comment method (which requires the tied object):

 use strict;
 use Remember;

 my ($fred, $x);
 $x = tie $fred, ’Remember’, ’myfile.txt’;
 $fred = 1;
 $fred = 4;
 comment $x "changing...";
 $fred = 5;
 untie $fred;
 system "cat myfile.txt";

When this code is executed there is no output. Here‘s why:

When a variable is tied, it is associated with the object which is the return value of the TIESCA
TIEARRAY, or TIEHASH function. This object normally has only one reference, namely, the imp
reference from the tied variable. When untie() is called, that reference is destroyed. Then, as in the f
example above, the object‘s destructor (DESTROY) is called, which is normal for objects that have no
valid references; and thus the file is closed.

In the second example, however, we have stored another reference to the tied object in $x. That means that
when untie() gets called there will still be a valid reference to the object in existence, so the destru
not called at that time, and thus the file is not closed. The reason there is no output is because the file
have not been flushed to disk.

Now that you know what the problem is, what can you do to avoid it? Well, the good old −w flag will spot
any instances where you call untie() and there are still valid references to the tied object. If the sec
script above is run with the −w flag, Perl prints this warning message:

 untie attempted while 1 inner references still exist

To get the script to work properly and silence the warning make sure there are no valid references to
object before untie() is called:

 undef $x;
18−Oct−1998 Version 5.005_02 347

perltie Perl Programmers Reference Guide perltie

blem is
 with
ress this
 untie $fred;

SEE ALSO
See DB_File or Config for some interesting tie() implementations.

BUGS
Tied arrays are incomplete. They are also distinctly lacking something for the $#ARRAY access (which is
hard, as it‘s an lvalue), as well as the other obvious array functions, like push() , pop() , shift() ,
unshift() , and splice() .

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first pro
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems
how references are to be represented on disk. One experimental module that does attempt to add
need partially is the MLDBM module. Check your nearest CPAN site as described in perlmodlib for source
code to MLDBM.

AUTHOR
Tom Christiansen

TIEHANDLE by Sven Verdoolaege <skimo@dns.ufsia.ac.be and Doug MacEachern <dougm@osf.org
348 Version 5.005_02 18−Oct−1998

perlbot Perl Programmers Reference Guide perlbot

the use
raged to
is not
riented

of

ly the
nyway.

hould

wed to

me

ove the

−find

 might
ng the

ne to

s are also
NAME
perlbot − Bag‘o Object Tricks (the BOT)

DESCRIPTION
The following collection of tricks and hints is intended to whet curious appetites about such things as
of instance variables and the mechanics of object and class relationships. The reader is encou
consult relevant textbooks for discussion of Object Oriented definitions and methodology. This
intended as a tutorial for object−oriented programming or as a comprehensive guide to Perl‘s object o
features, nor should it be construed as a style guide.

The Perl motto still holds: There‘s more than one way to do it.

OO SCALING TIPS

1 Do not attempt to verify the type of $self. That‘ll break if the class is inherited, when the type
$self is valid but its package isn‘t what you expect. See rule 5.

2 If an object−oriented (OO) or indirect−object (IO) syntax was used, then the object is probab
correct type and there‘s no need to become paranoid about it. Perl isn‘t a paranoid language a
If people subvert the OO or IO syntax then they probably know what they‘re doing and you s
let them do it. See rule 1.

3 Use the two−argument form of bless() . Let a subclass use your constructor. See
INHERITING A CONSTRUCTOR.

4 The subclass is allowed to know things about its immediate superclass, the superclass is allo
know nothing about a subclass.

5 Don‘t be trigger happy with inheritance. A "using", "containing", or "delegation" relationship (so
sort of aggregation, at least) is often more appropriate. See OBJECT RELATIONSHIPS,
USING RELATIONSHIP WITH SDBM, and "DELEGATION".

6 The object is the namespace. Make package globals accessible via the object. This will rem
guess work about the symbol‘s home package. See CLASS CONTEXT AND THE OBJECT.

7 IO syntax is certainly less noisy, but it is also prone to ambiguities that can cause difficult−to
bugs. Allow people to use the sure−thing OO syntax, even if you don‘t like it.

8 Do not use function−call syntax on a method. You‘re going to be bitten someday. Someone
move that method into a superclass and your code will be broken. On top of that you‘re feedi
paranoia in rule 2.

9 Don‘t assume you know the home package of a method. You‘re making it difficult for someo
override that method. See THINKING OF CODE REUSE.

INSTANCE VARIABLES
An anonymous array or anonymous hash can be used to hold instance variables. Named parameter
demonstrated.

package Foo;

sub new {
my $type = shift;
my %params = @_;
my $self = {};
$self−>{’High’} = $params{’High’};
$self−>{’Low’} = $params{’Low’};
bless $self, $type;

}

package Bar;
18−Oct−1998 Version 5.005_02 349

perlbot Perl Programmers Reference Guide perlbot

 in the
s to the
sub new {
my $type = shift;
my %params = @_;
my $self = [];
$self−>[0] = $params{’Left’};
$self−>[1] = $params{’Right’};
bless $self, $type;

}

package main;

$a = Foo−>new(’High’ => 42, ’Low’ => 11);
print "High=$a−>{’High’}\n";
print "Low=$a−>{’Low’}\n";

$b = Bar−>new(’Left’ => 78, ’Right’ => 40);
print "Left=$b−>[0]\n";
print "Right=$b−>[1]\n";

SCALAR INSTANCE VARIABLES
An anonymous scalar can be used when only one instance variable is needed.

package Foo;

sub new {
my $type = shift;
my $self;
$self = shift;
bless \$self, $type;

}

package main;

$a = Foo−>new(42);
print "a=$$a\n";

INSTANCE VARIABLE INHERITANCE
This example demonstrates how one might inherit instance variables from a superclass for inclusion
new class. This requires calling the superclass‘s constructor and adding one‘s own instance variable
new object.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self−>{’buz’} = 42;
bless $self, $type;

}

package Foo;
@ISA = qw(Bar);

sub new {
my $type = shift;
my $self = Bar−>new;
$self−>{’biz’} = 11;
bless $self, $type;

}

package main;
350 Version 5.005_02 18−Oct−1998

perlbot Perl Programmers Reference Guide perlbot

ween

rridden
ithout
$a = Foo−>new;
print "buz = ", $a−>{’buz’}, "\n";
print "biz = ", $a−>{’biz’}, "\n";

OBJECT RELATIONSHIPS
The following demonstrates how one might implement "containing" and "using" relationships bet
objects.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self−>{’buz’} = 42;
bless $self, $type;

}

package Foo;

sub new {
my $type = shift;
my $self = {};
$self−>{’Bar’} = Bar−>new;
$self−>{’biz’} = 11;
bless $self, $type;

}

package main;

$a = Foo−>new;
print "buz = ", $a−>{’Bar’}−>{’buz’}, "\n";
print "biz = ", $a−>{’biz’}, "\n";

OVERRIDING SUPERCLASS METHODS
The following example demonstrates how to override a superclass method and then call the ove
method. The SUPER pseudo−class allows the programmer to call an overridden superclass method w
actually knowing where that method is defined.

package Buz;
sub goo { print "here’s the goo\n" }

package Bar; @ISA = qw(Buz);
sub google { print "google here\n" }

package Baz;
sub mumble { print "mumbling\n" }

package Foo;
@ISA = qw(Bar Baz);

sub new {
my $type = shift;
bless [], $type;

}
sub grr { print "grumble\n" }
sub goo {

my $self = shift;
$self−>SUPER::goo();

}
sub mumble {

my $self = shift;
18−Oct−1998 Version 5.005_02 351

perlbot Perl Programmers Reference Guide perlbot

een the
$self−>SUPER::mumble();
}
sub google {

my $self = shift;
$self−>SUPER::google();

}

package main;

$foo = Foo−>new;
$foo−>mumble;
$foo−>grr;
$foo−>goo;
$foo−>google;

USING RELATIONSHIP WITH SDBM
This example demonstrates an interface for the SDBM class. This creates a "using" relationship betw
SDBM class and the new class Mydbm.

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = qw(Tie::Hash);

sub TIEHASH {
 my $type = shift;
 my $ref = SDBM_File−>new(@_);
 bless {’dbm’ => $ref}, $type;
}
sub FETCH {
 my $self = shift;
 my $ref = $self−>{’dbm’};
 $ref−>FETCH(@_);
}
sub STORE {
 my $self = shift;
 if (defined $_[0]){

my $ref = $self−>{’dbm’};
$ref−>STORE(@_);

 } else {
die "Cannot STORE an undefined key in Mydbm\n";

 }
}

package main;
use Fcntl qw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "Sdbm", O_RDWR|O_CREAT, 0640;
$foo{’bar’} = 123;
print "foo−bar = $foo{’bar’}\n";

tie %bar, "Mydbm", "Sdbm2", O_RDWR|O_CREAT, 0640;
$bar{’Cathy’} = 456;
print "bar−Cathy = $bar{’Cathy’}\n";
352 Version 5.005_02 18−Oct−1998

perlbot Perl Programmers Reference Guide perlbot

. The
romote

ethod
THINKING OF CODE REUSE
One strength of Object−Oriented languages is the ease with which old code can use new code
following examples will demonstrate first how one can hinder code reuse and then how one can p
code reuse.

This first example illustrates a class which uses a fully−qualified method call to access the "private" m
BAZ() . The second example will show that it is impossible to override the BAZ() method.

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self−>FOO::private::BAZ;

}

package FOO::private;

sub BAZ {
print "in BAZ\n";

}

package main;

$a = FOO−>new;
$a−>bar;

Now we try to override the BAZ() method. We would like FOO::bar() to call GOOP::BAZ() , but this
cannot happen because FOO::bar() explicitly calls FOO::private::BAZ() .

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self−>FOO::private::BAZ;

}

package FOO::private;

sub BAZ {
print "in BAZ\n";

}

package GOOP;
@ISA = qw(FOO);
sub new {

my $type = shift;
bless {}, $type;

}

sub BAZ {
print "in GOOP::BAZ\n";

}
18−Oct−1998 Version 5.005_02 353

perlbot Perl Programmers Reference Guide perlbot

 shows

available

ant to
 to find

look in
a ("Is it
ry. It is
package main;

$a = GOOP−>new;
$a−>bar;

To create reusable code we must modify class FOO, flattening class FOO::private. The next example
a reusable class FOO which allows the method GOOP::BAZ() to be used in place of FOO::BAZ() .

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self−>BAZ;

}

sub BAZ {
print "in BAZ\n";

}

package GOOP;
@ISA = qw(FOO);

sub new {
my $type = shift;
bless {}, $type;

}
sub BAZ {

print "in GOOP::BAZ\n";
}

package main;

$a = GOOP−>new;
$a−>bar;

CLASS CONTEXT AND THE OBJECT
Use the object to solve package and class context problems. Everything a method needs should be
via the object or should be passed as a parameter to the method.

A class will sometimes have static or global data to be used by the methods. A subclass may w
override that data and replace it with new data. When this happens the superclass may not know how
the new copy of the data.

This problem can be solved by using the object to define the context of the method. Let the method
the object for a reference to the data. The alternative is to force the method to go hunting for the dat
in my class, or in a subclass? Which subclass?"), and this can be inconvenient and will lead to hacke
better just to let the object tell the method where that data is located.

package Bar;

%fizzle = (’Password’ => ’XYZZY’);

sub new {
my $type = shift;
my $self = {};
$self−>{’fizzle’} = \%fizzle;
bless $self, $type;

}
354 Version 5.005_02 18−Oct−1998

perlbot Perl Programmers Reference Guide perlbot

tructor
sub enter {
my $self = shift;

Don’t try to guess if we should use %Bar::fizzle
or %Foo::fizzle. The object already knows which
we should use, so just ask it.

my $fizzle = $self−>{’fizzle’};

print "The word is ", $fizzle−>{’Password’}, "\n";
}

package Foo;
@ISA = qw(Bar);

%fizzle = (’Password’ => ’Rumple’);

sub new {
my $type = shift;
my $self = Bar−>new;
$self−>{’fizzle’} = \%fizzle;
bless $self, $type;

}

package main;

$a = Bar−>new;
$b = Foo−>new;
$a−>enter;
$b−>enter;

INHERITING A CONSTRUCTOR
An inheritable constructor should use the second form of bless() which allows blessing directly into a
specified class. Notice in this example that the object will be a BAR not a FOO, even though the cons
is in class FOO.

package FOO;

sub new {
my $type = shift;
my $self = {};
bless $self, $type;

}

sub baz {
print "in FOO::baz()\n";

}

package BAR;
@ISA = qw(FOO);

sub baz {
print "in BAR::baz()\n";

}

package main;

$a = BAR−>new;
$a−>baz;
18−Oct−1998 Version 5.005_02 355

perlbot Perl Programmers Reference Guide perlbot

 objects.
tionship

 The
DELEGATION
Some classes, such as SDBM_File, cannot be effectively subclassed because they create foreign
Such a class can be extended with some sort of aggregation technique such as the "using" rela
mentioned earlier or by delegation.

The following example demonstrates delegation using an AUTOLOAD() function to perform
message−forwarding. This will allow the Mydbm object to behave exactly like an SDBM_File object.
Mydbm class could now extend the behavior by adding custom FETCH() and STORE() methods, if this is
desired.

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = qw(Tie::Hash);

sub TIEHASH {
my $type = shift;
my $ref = SDBM_File−>new(@_);
bless {’delegate’ => $ref};

}

sub AUTOLOAD {
my $self = shift;

The Perl interpreter places the name of the
message in a variable called $AUTOLOAD.

DESTROY messages should never be propagated.
return if $AUTOLOAD =~ /::DESTROY$/;

Remove the package name.
$AUTOLOAD =~ s/^Mydbm:://;

Pass the message to the delegate.
$self−>{’delegate’}−>$AUTOLOAD(@_);

}

package main;
use Fcntl qw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "adbm", O_RDWR|O_CREAT, 0640;
$foo{’bar’} = 123;
print "foo−bar = $foo{’bar’}\n";
356 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

 right as
d that a

e an
de, set
ou often
. For

nstead,
to the
 when

ing
tations,

een,
er, as

is
e not

e

NAME
perldebug − Perl debugging

DESCRIPTION
First of all, have you tried using the −w switch?

The Perl Debugger
"As soon as we started programming, we found to our surprise that it wasn‘t as easy to get programs
we had thought. Debugging had to be discovered. I can remember the exact instant when I realize
large part of my life from then on was going to be spent in finding mistakes in my own programs."

 —Maurice Wilkes, 1949

If you invoke Perl with the −d switch, your script runs under the Perl source debugger. This works lik
interactive Perl environment, prompting for debugger commands that let you examine source co
breakpoints, get stack backtraces, change the values of variables, etc. This is so convenient that y
fire up the debugger all by itself just to test out Perl constructs interactively to see what they do
example:

 perl −d −e 42

In Perl, the debugger is not a separate program as it usually is in the typical compiled environment. I
the −d flag tells the compiler to insert source information into the parse trees it‘s about to hand off
interpreter. That means your code must first compile correctly for the debugger to work on it. Then
the interpreter starts up, it preloads a Perl library file containing the debugger itself.

The program will halt right before the first run−time executable statement (but see below regard
compile−time statements) and ask you to enter a debugger command. Contrary to popular expec
whenever the debugger halts and shows you a line of code, it always displays the line it‘s about to execute,
rather than the one it has just executed.

Any command not recognized by the debugger is directly executed (eval ‘d) as Perl code in the current
package. (The debugger uses the DB package for its own state information.)

Leading white space before a command would cause the debugger to think it‘s NOT a debugger command
but for Perl, so be careful not to do that.

Debugger Commands
The debugger understands the following commands:

h [command] Prints out a help message.

If you supply another debugger command as an argument to the h command, it prints out
the description for just that command. The special argument of h h produces a more
compact help listing, designed to fit together on one screen.

If the output of the h command (or any command, for that matter) scrolls past your scr
either precede the command with a leading pipe symbol so it‘s run through your pag
in

 DB> |h

You may change the pager which is used via O pager=... command.

p expr Same as print {$DB::OUT} expr in the current package. In particular, because th
is just Perl‘s own print function, this means that nested data structures and objects ar
dumped, unlike with the x command.

The DB::OUT filehandle is opened to /dev/tty, regardless of where STDOUT may b
redirected to.
18−Oct−1998 Version 5.005_02 357

perldebug Perl Programmers Reference Guide perldebug

shion.

ontrol
e

g into
ll be

ment.
uted

 or
x expr Evaluates its expression in list context and dumps out the result in a pretty−printed fa
 Nested data structures are printed out recursively, unlike the print function.

The details of printout are governed by multiple Options.

V [pkg [vars]] Display all (or some) variables in package (defaulting to the main package) using a data
pretty−printer (hashes show their keys and values so you see what‘s what, c
characters are made printable, etc.). Make sure you don‘t put the type specifier (lik$)
there, just the symbol names, like this:

 V DB filename line

Use ~pattern and !pattern for positive and negative regexps.

Nested data structures are printed out in a legible fashion, unlike the print function.

The details of printout are governed by multiple Options.

X [vars] Same as V currentpackage [vars] .

T Produce a stack backtrace. See below for details on its output.

s [expr] Single step. Executes until it reaches the beginning of another statement, descendin
subroutine calls. If an expression is supplied that includes function calls, it too wi
single−stepped.

n [expr] Next. Executes over subroutine calls, until it reaches the beginning of the next state
If an expression is supplied that includes function calls, those functions will be exec
with stops before each statement.

<CR> Repeat last n or s command.

c [line|sub] Continue, optionally inserting a one−time−only breakpoint at the specified line
subroutine.

l List next window of lines.

l min+incr List incr+1 lines starting at min .

l min−max List lines min through max. l − is synonymous to −.

l line List a single line.

l subname List first window of lines from subroutine.

− List previous window of lines.

w [line] List window (a few lines) around the current line.

. Return debugger pointer to the last−executed line and print it out.

f filename Switch to viewing a different file or eval statement. If filename is not a full filename as
found in values of %INC, it is considered as a regexp.

/pattern/ Search forwards for pattern; final / is optional.

?pattern? Search backwards for pattern; final ? is optional.

L List all breakpoints and actions.

S [[!]pattern] List subroutine names [not] matching pattern.

t Toggle trace mode (see also AutoTrace Option).

t expr Trace through execution of expr. For example:

 $ perl −de 42
 Stack dump during die enabled outside of evals.
358 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

o be
d and
lines

e as

n the

 by the
 Loading DB routines from perl5db.pl patch level 0.94
 Emacs support available.

 Enter h or ‘h h’ for help.

 main::(−e:1): 0
 DB<1> sub foo { 14 }

 DB<2> sub bar { 3 }

 DB<3> t print foo() * bar()
 main::((eval 172):3): print foo() + bar();
 main::foo((eval 168):2):
 main::bar((eval 170):2):
 42

or, with the Option frame=2 set,

 DB<4> O f=2
 frame = ’2’
 DB<5> t print foo() * bar()
 3: foo() * bar()
 entering main::foo
 2: sub foo { 14 };
 exited main::foo
 entering main::bar
 2: sub bar { 3 };
 exited main::bar
 42

b [line] [condition]
Set a breakpoint. If line is omitted, sets a breakpoint on the line that is about t
executed. If a condition is specified, it‘s evaluated each time the statement is reache
a breakpoint is taken only if the condition is true. Breakpoints may be set on only
that begin an executable statement. Conditions don‘t use if :

 b 237 $x > 30
 b 237 ++$count237 < 11
 b 33 /pattern/i

b subname [condition]
Set a breakpoint at the first line of the named subroutine.

b postpone subname [condition]
Set breakpoint at first line of subroutine after it is compiled.

b load filename
Set breakpoint at the first executed line of the file. Filename should be a full nam
found in values of %INC.

b compile subname
Sets breakpoint at the first statement executed after the subroutine is compiled.

d [line] Delete a breakpoint at the specified line. If line is omitted, deletes the breakpoint o
line that is about to be executed.

D Delete all installed breakpoints.

a [line] command
Set an action to be done before the line is executed. The sequence of steps taken
debugger is
18−Oct−1998 Version 5.005_02 359

perldebug Perl Programmers Reference Guide perldebug

ptions

hese

ning

ode,
hich
ting

,

ay

ext

the
 1. check for a breakpoint at this line
 2. print the line if necessary (tracing)
 3. do any actions associated with that line
 4. prompt user if at a breakpoint or in single−step
 5. evaluate line

For example, this will print out $foo every time line 53 is passed:

 a 53 print "DB FOUND $foo\n"

A Delete all installed actions.

W [expr] Add a global watch−expression.

W Delete all watch−expressions.

O [opt[=val]] [opt"val"] [opt?]...
Set or query values of options. val defaults to 1. opt can be abbreviated. Several o
can be listed.

recallCommand , ShellBang
The characters used to recall command or spawn shell. By default, t
are both set to ! .

pager Program to use for output of pager−piped commands (those begin
with a | character.) By default, $ENV{PAGER} will be used.

tkRunning Run Tk while prompting (with ReadLine).

signalLevel , warnLevel , dieLevel
Level of verbosity. By default the debugger is in a sane verbose m
thus it will print backtraces on all the warnings and die−messages w
are going to be printed out, and will print a message when interes
uncaught signals arrive.

To disable this behaviour, set these values to 0. If dieLevel is 2, then
the messages which will be caught by surrounding eval are also
printed.

AutoTrace Trace mode (similar to t command, but can be put into
PERLDB_OPTS).

LineInfo File or pipe to print line number info to. If it is a pipe (say
|visual_perl_db), then a short, "emacs like" message is used.

inhibit_exit
If 0, allows stepping off the end of the script.

PrintRet affects printing of return value after r command.

ornaments affects screen appearance of the command line (see Term::ReadLine).

frame affects printing messages on entry and exit from subroutines. If frame
& 2 is false, messages are printed on entry only. (Printing on exit m
be useful if inter(di)spersed with other messages.)

If frame & 4 , arguments to functions are printed as well as the cont
and caller info. If frame & 8 , overloaded stringify and tie d
FETCH are enabled on the printed arguments. If frame & 16 , the
return value from the subroutine is printed as well.

The length at which the argument list is truncated is governed by
next option:
360 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

o

otal

ile

f
of

t

bug

 or
maxTraceLen length at which the argument list is truncated when frame option‘s bit 4
is set.

The following options affect what happens with V, X, and x commands:

arrayDepth , hashDepth
Print only first N elements (‘’ for all).

compactDump , veryCompact
Change style of array and hash dump. If compactDump , short array
may be printed on one line.

globPrint Whether to print contents of globs.

DumpDBFiles Dump arrays holding debugged files.

DumpPackages
Dump symbol tables of packages.

DumpReused Dump contents of "reused" addresses.

quote , HighBit , undefPrint
Change style of string dump. Default value of quote is auto , one can
enable either double−quotish dump, or single−quotish by setting it t"
or ’ . By default, characters with high bit set are printed as is.

UsageOnly very rudimentally per−package memory usage dump. Calculates t
size of strings in variables in the package.

During startup options are initialized from $ENV{PERLDB_OPTS}. You can put
additional initialization options TTY, noTTY, ReadLine , and NonStop there.

Example rc file:

 &parse_options("NonStop=1 LineInfo=db.out AutoTrace");

The script will run without human intervention, putting trace information into the f
db.out. (If you interrupt it, you would better reset LineInfo to something "interactive"!)

TTY The TTY to use for debugging I/O.

noTTY If set, goes in NonStop mode, and would not connect to a TTY. I
interrupt (or if control goes to debugger via explicit setting
$DB::signal or $DB::single from the Perl script), connects to a
TTY specified by the TTY option at startup, or to a TTY found a
runtime using Term::Rendezvous module of your choice.

This module should implement a method new which returns an object
with two methods: IN and OUT, returning two filehandles to use for
debugging input and output correspondingly. Method new may inspect
an argument which is a value of $ENV{PERLDB_NOTTY} at startup, or
is "/tmp/perldbtty$$" otherwise.

ReadLine If false, readline support in debugger is disabled, so you can de
ReadLine applications.

NonStop If set, debugger goes into noninteractive mode until interrupted,
programmatically by setting $DB::signal or $DB::single.

Here‘s an example of using the $ENV{PERLDB_OPTS} variable:

 $ PERLDB_OPTS="N f=2" perl −d myprogram
18−Oct−1998 Version 5.005_02 361

perldebug Perl Programmers Reference Guide perldebug

h

 the

ach

−line

−line

en a
d by

en a
d by

ti−line

t. A

umber

ger,

h

will run the script myprogram without human intervention, printing out the call tree wit
entry and exit points. Note that N f=2 is equivalent to NonStop=1 frame=2 . Note
also that at the moment when this documentation was written all the options to
debugger could be uniquely abbreviated by the first letter (with exception of Dump*
options).

Other examples may include

 $ PERLDB_OPTS="N f A L=listing" perl −d myprogram

− runs script noninteractively, printing info on each entry into a subroutine and e
executed line into the file listing. (If you interrupt it, you would better reset LineInfo to
something "interactive"!)

 $ env "PERLDB_OPTS=R=0 TTY=/dev/ttyc" perl −d myprogram

may be useful for debugging a program which uses Term::ReadLine itself. Do not
forget detach shell from the TTY in the window which corresponds to /dev/ttyc, say, by
issuing a command like

 $ sleep 1000000

See "Debugger Internals" below for more details.

< [command] Set an action (Perl command) to happen before every debugger prompt. A multi
command may be entered by backslashing the newlines. If command is missing, resets
the list of actions.

<< command Add an action (Perl command) to happen before every debugger prompt. A multi
command may be entered by backslashing the newlines.

> command Set an action (Perl command) to happen after the prompt when you‘ve just giv
command to return to executing the script. A multi−line command may be entere
backslashing the newlines. If command is missing, resets the list of actions.

>> command Adds an action (Perl command) to happen after the prompt when you‘ve just giv
command to return to executing the script. A multi−line command may be entere
backslashing the newlines.

{ [command] Set an action (debugger command) to happen before every debugger prompt. A mul
command may be entered by backslashing the newlines. If command is missing, resets
the list of actions.

{{ command Add an action (debugger command) to happen before every debugger promp
multi−line command may be entered by backslashing the newlines.

! number Redo a previous command (default previous command).

! −number Redo number‘th−to−last command.

! pattern Redo last command that started with pattern. See O recallCommand , too.

!! cmd Run cmd in a subprocess (reads from DB::IN, writes to DB::OUT) See O shellBang
too.

H −number Display last n commands. Only commands longer than one character are listed. If n
is omitted, lists them all.

q or ^D Quit. ("quit" doesn‘t work for this.) This is the only supported way to exit the debug
though typing exit twice may do it too.

Set an Option inhibit_exit to 0 if you want to be able to step off the end the script.
You may also need to set $finished to 0 at some moment if you want to step throug
global destruction.
362 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

is,

gger

listed.

kets
ple, if

o has

eral
ugger

to the
R Restart the debugger by execing a new session. It tries to maintain your history across th
but internal settings and command line options may be lost.

Currently the following setting are preserved: history, breakpoints, actions, debu
Options, and the following command line options: −w, −I , and −e.

|dbcmd Run debugger command, piping DB::OUT to current pager.

||dbcmd Same as |dbcmd but DB::OUT is temporarily selected as well. Often used with
commands that would otherwise produce long output, such as

 |V main

= [alias value] Define a command alias, like

 = quit q

or list current aliases.

command Execute command as a Perl statement. A missing semicolon will be supplied.

m expr The expression is evaluated, and the methods which may be applied to the result are

m package The methods which may be applied to objects in the package are listed.

Debugger input/output

Prompt The debugger prompt is something like

 DB<8>

or even

 DB<<17>>

where that number is the command number, which you‘d use to access with the builtin csh−like
history mechanism, e.g., !17 would repeat command number 17. The number of angle brac
indicates the depth of the debugger. You could get more than one set of brackets, for exam
you‘d already at a breakpoint and then printed out the result of a function call that itself als
a breakpoint, or you step into an expression via s/n/t expression command.

Multiline commands
If you want to enter a multi−line command, such as a subroutine definition with sev
statements, or a format, you may escape the newline that would normally end the deb
command with a backslash. Here‘s an example:

 DB<1> for (1..4) { \
 cont: print "ok\n"; \
 cont: }
 ok
 ok
 ok
 ok

Note that this business of escaping a newline is specific to interactive commands typed in
debugger.

Stack backtrace
Here‘s an example of what a stack backtrace via T command might look like:

 $ = main::infested called from file ‘Ambulation.pm’ line 10
 @ = Ambulation::legs(1, 2, 3, 4) called from file ‘camel_flea’ line 7
 $ = main::pests(’bactrian’, 4) called from file ‘camel_flea’ line 4
18−Oct−1998 Version 5.005_02 363

perldebug Perl Programmers Reference Guide perldebug

ontext
tion
text

ed

s

s in
The left−hand character up there tells whether the function was called in a scalar or list c
(we bet you can tell which is which). What that says is that you were in the func
main::infested when you ran the stack dump, and that it was called in a scalar con
from line 10 of the file Ambulation.pm, but without any arguments at all, meaning it was call
as &infested. The next stack frame shows that the function Ambulation::legs was
called in a list context from the camel_flea file with four arguments. The last stack frame show
that main::pests was called in a scalar context, also from camel_flea, but from line 4.

Note that if you execute T command from inside an active use statement, the backtrace will
contain both require frame and an eval) frame.

Listing Listing given via different flavors of l command looks like this:

 DB<<13>> l
 101: @i{@i} = ();
 102:b @isa{@i,$pack} = ()
 103 if(exists $i{$prevpack} || exists $isa{$pack});
 104 }
 105
 106 next
 107==> if(exists $isa{$pack});
 108
 109:a if ($extra−− > 0) {
 110: %isa = ($pack,1);

Note that the breakable lines are marked with : , lines with breakpoints are marked by b, with
actions by a, and the next executed line is marked by ==>.

Frame listing
When frame option is set, debugger would print entered (and optionally exited) subroutine
different styles.

What follows is the start of the listing of

 env "PERLDB_OPTS=f=n N" perl −d −V

for different values of n:

1
 entering main::BEGIN
 entering Config::BEGIN
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 Package lib/Config.pm.
 entering Config::TIEHASH
 entering Exporter::import
 entering Exporter::export
 entering Config::myconfig
 entering Config::FETCH
 entering Config::FETCH
 entering Config::FETCH
 entering Config::FETCH

2
 entering main::BEGIN
 entering Config::BEGIN
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 exited Config::BEGIN
364 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug
 Package lib/Config.pm.
 entering Config::TIEHASH
 exited Config::TIEHASH
 entering Exporter::import
 entering Exporter::export
 exited Exporter::export
 exited Exporter::import
 exited main::BEGIN
 entering Config::myconfig
 entering Config::FETCH
 exited Config::FETCH
 entering Config::FETCH
 exited Config::FETCH
 entering Config::FETCH

4
 in $=main::BEGIN() from /dev/nul:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 Package lib/Config.pm.
 in $=Config::TIEHASH(’Config’) from lib/Config.pm:644
 in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/
 in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) f
 in @=Config::myconfig() from /dev/nul:0
 in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’PATCHLEVEL’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’SUBVERSION’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’osname’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’osvers’) from lib/Config.pm:574

6
 in $=main::BEGIN() from /dev/nul:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 out $=Config::BEGIN() from lib/Config.pm:0
 Package lib/Config.pm.
 in $=Config::TIEHASH(’Config’) from lib/Config.pm:644
 out $=Config::TIEHASH(’Config’) from lib/Config.pm:644
 in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/
 in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) f
 out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) f
 out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/
 out $=main::BEGIN() from /dev/nul:0
 in @=Config::myconfig() from /dev/nul:0
 in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574
 out $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574
 out $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’PATCHLEVEL’) from lib/Config.pm:574
 out $=Config::FETCH(ref(Config), ’PATCHLEVEL’) from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), ’SUBVERSION’) from lib/Config.pm:574
18−Oct−1998 Version 5.005_02 365

perldebug Perl Programmers Reference Guide perldebug

ell as
 bit 16

ed
fer
nning:
14
 in $=main::BEGIN() from /dev/nul:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 out $=Config::BEGIN() from lib/Config.pm:0
 Package lib/Config.pm.
 in $=Config::TIEHASH(’Config’) from lib/Config.pm:644
 out $=Config::TIEHASH(’Config’) from lib/Config.pm:644
 in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/
 in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) f
 out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) f
 out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/
 out $=main::BEGIN() from /dev/nul:0
 in @=Config::myconfig() from /dev/nul:0
 in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’package’) from lib/Confi
 out $=Config::FETCH(’Config=HASH(0x1aa444)’, ’package’) from lib/Confi
 in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from lib/Confi
 out $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from lib/Confi

30
 in $=CODE(0x15eca4)() from /dev/null:0
 in $=CODE(0x182528)() from lib/Config.pm:2
 Package lib/Exporter.pm.
 out $=CODE(0x182528)() from lib/Config.pm:0
 scalar context return from CODE(0x182528): undef
 Package lib/Config.pm.
 in $=Config::TIEHASH(’Config’) from lib/Config.pm:628
 out $=Config::TIEHASH(’Config’) from lib/Config.pm:628
 scalar context return from Config::TIEHASH: empty hash
 in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/
 in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) f
 out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) f
 scalar context return from Exporter::export: ’’
 out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/
 scalar context return from Exporter::import: ’’

In all the cases indentation of lines shows the call tree, if bit 2 of frame is set, then a line is
printed on exit from a subroutine as well, if bit 4 is set, then the arguments are printed as w
the caller info, if bit 8 is set, the arguments are printed even if they are tied or references, if
is set, the return value is printed as well.

When a package is compiled, a line like this

 Package lib/Carp.pm.

is printed with proper indentation.

Debugging compile−time statements
If you have any compile−time executable statements (code within a BEGIN block or a use statement), these
will NOT be stopped by debugger, although require s will (and compile−time statements can be trac
with AutoTrace option set in PERLDB_OPTS). From your own Perl code, however, you can trans
control back to the debugger using the following statement, which is harmless if the debugger is not ru

 $DB::single = 1;
366 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

ed

s. You

,

s

 or

mation
 will

es are

 an

ds

but
If you set $DB::single to the value 2, it‘s equivalent to having just typed the n command, whereas a
value of 1 means the s command. The $DB::trace variable should be set to 1 to simulate having typ
the t command.

Another way to debug compile−time code is to start debugger, set a breakpoint on load of some module
thusly

 DB<7> b load f:/perllib/lib/Carp.pm
 Will stop on load of ‘f:/perllib/lib/Carp.pm’.

and restart debugger by R command (if possible). One can use b compile subname for the same
purpose.

Debugger Customization
Most probably you do not want to modify the debugger, it contains enough hooks to satisfy most need
may change the behaviour of debugger from the debugger itself, using Options, from the command line via
PERLDB_OPTS environment variable, and from customization files.

You can do some customization by setting up a .perldb file which contains initialization code. For instance
you could make aliases like these (the last one is one people expect to be there):

 $DB::alias{’len’} = ’s/^len(.*)/p length($1)/’;
 $DB::alias{’stop’} = ’s/^stop (at|in)/b/’;
 $DB::alias{’ps’} = ’s/^ps\b/p scalar /’;
 $DB::alias{’quit’} = ’s/^quit(\s*)/exit\$/’;

One changes options from .perldb file via calls like this one;

 parse_options("NonStop=1 LineInfo=db.out AutoTrace=1 frame=2");

(the code is executed in the package DB). Note that .perldb is processed before processing PERLDB_OPTS.
If .perldb defines the subroutine afterinit , it is called after all the debugger initialization ends. .perldb
may be contained in the current directory, or in the LOGDIR/HOME directory.

If you want to modify the debugger, copy perl5db.pl from the Perl library to another name and modify it a
necessary. You‘ll also want to set your PERL5DB environment variable to say something like this:

 BEGIN { require "myperl5db.pl" }

As the last resort, one can use PERL5DB to customize debugger by directly setting internal variables
calling debugger functions.

Readline Support
As shipped, the only command line history supplied is a simplistic one that checks for leading excla
points. However, if you install the Term::ReadKey and Term::ReadLine modules from CPAN, you
have full editing capabilities much like GNU readline(3) provides. Look for these in the
modules/by−module/Term directory on CPAN.

A rudimentary command line completion is also available. Unfortunately, the names of lexical variabl
not available for completion.

Editor Support for Debugging
If you have GNU emacs installed on your system, it can interact with the Perl debugger to provide
integrated software development environment reminiscent of its interactions with C debuggers.

Perl is also delivered with a start file for making emacs act like a syntax−directed editor that understan
(some of) Perl‘s syntax. Look in the emacs directory of the Perl source distribution.

(Historically, a similar setup for interacting with vi and the X11 window system had also been available,
at the time of this writing, no debugger support for vi currently exists.)
18−Oct−1998 Version 5.005_02 367

perldebug Perl Programmers Reference Guide perldebug

nd a

ted

your

ich is

tain

The

nd
o Perl,

 The

orm

de

e is
The Perl Profiler
If you wish to supply an alternative debugger for Perl to run, just invoke your script with a colon a
package argument given to the −d flag. One of the most popular alternative debuggers for Perl is DProf, the
Perl profiler. As of this writing, DProf is not included with the standard Perl distribution, but it is expec
to be included soon, for certain values of "soon".

Meanwhile, you can fetch the Devel::Dprof module from CPAN. Assuming it‘s properly installed on
system, to profile your Perl program in the file mycode.pl, just type:

 perl −d:DProf mycode.pl

When the script terminates the profiler will dump the profile information to a file called tmon.out. A tool
like dprofpp (also supplied with the Devel::DProf package) can be used to interpret the information wh
in that profile.

Debugger support in perl
When you call the caller function (see caller) from the package DB, Perl sets the array @DB::args to con
the arguments the corresponding stack frame was called with.

If perl is run with −d option, the following additional features are enabled (cf. $^P):

 Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require ‘perl5db.pl‘} if not
present) before the first line of the application.

 The array @{"_<$filename"} is the line−by−line contents of $filename for all the compiled
files. Same for eval ed strings which contain subroutines, or which are currently executed.
$filename for eval ed strings looks like (eval 34) .

 The hash %{"_<$filename"} contains breakpoints and action (it is keyed by line number), a
individual entries are settable (as opposed to the whole hash). Only true/false is important t
though the values used by perl5db.pl have the form "$break_condition\0$action". Values
are magical in numeric context: they are zeros if the line is not breakable.

Same for evaluated strings which contain subroutines, or which are currently executed.
$filename for eval ed strings looks like (eval 34) .

 The scalar ${"_<$filename"} contains "_<$filename". Same for evaluated strings which
contain subroutines, or which are currently executed. The $filename for eval ed strings looks like
(eval 34) .

 After each require d file is compiled, but before it is executed,
DB::postponed(*{"_<$filename"}) is called (if subroutine DB::postponed exists).
Here the $filename is the expanded name of the require d file (as found in values of %INC).

 After each subroutine subname is compiled existence of $DB::postponed{subname} is
checked. If this key exists, DB::postponed(subname) is called (if subroutine
DB::postponed exists).

 A hash %DB::sub is maintained, with keys being subroutine names, values having the f
filename:startline−endline . filename has the form (eval 31) for subroutines
defined inside eval s.

 When execution of the application reaches a place that can have a breakpoint, a call to DB::DB() is
performed if any one of variables $DB::trace, $DB::single, or $DB::signal is true. (Note
that these variables are not local izable.) This feature is disabled when the control is insi
DB::DB() or functions called from it (unless $^D & (1<<30)).

 When execution of the application reaches a subroutine call, a call to &DB::sub(args) is
performed instead, with $DB::sub being the name of the called subroutine. (Unless the subroutin
compiled in the package DB.)
368 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

sible
e

e that

t

est of

,

y Perl,
Note that if &DB::sub needs some external data to be setup for it to work, no subroutine call is pos
until this is done. For the standard debugger $DB::deep (how many levels of recursion deep into th
debugger you can go before a mandatory break) gives an example of such a dependency.

The minimal working debugger consists of one line

 sub DB::DB {}

which is quite handy as contents of PERL5DB environment variable:

 env "PERL5DB=sub DB::DB {}" perl −d your−script

Another (a little bit more useful) minimal debugger can be created with the only line being

 sub DB::DB {print ++$i; scalar <STDIN>}

This debugger would print the sequential number of encountered statement, and would wait for yourCR to
continue.

The following debugger is quite functional:

 {
 package DB;
 sub DB {}
 sub sub {print ++$i, " $sub\n"; &$sub}
 }

It prints the sequential number of subroutine call and the name of the called subroutine. Not
&DB::sub should be compiled into the package DB.

Debugger Internals
At the start, the debugger reads your rc file (./.perldb or ~/.perldb under Unix), which can set importan
options. This file may define a subroutine &afterinit to be executed after the debugger is initialized.

After the rc file is read, the debugger reads environment variable PERLDB_OPTS and parses it as a rO
... line in debugger prompt.

It also maintains magical internal variables, such as @DB::dbline , %DB::dbline , which are aliases for
@{"::_<current_file"} %{"::_<current_file"} . Here current_file is the currently
selected (with the debugger‘s f command, or by flow of execution) file.

Some functions are provided to simplify customization. See "Debugger Customization" for description of
DB::parse_options(string) . The function DB::dump_trace(skip[, count]) skips the
specified number of frames, and returns a list containing info about the caller frames (all if count is
missing). Each entry is a hash with keys context ($ or @), sub (subroutine name, or info about eval)
args (undef or a reference to an array), file , and line .

The function DB::print_trace(FH, skip[, count[, short]]) prints formatted info about
caller frames. The last two functions may be convenient as arguments to <, << commands.

Other resources
You did try the −w switch, didn‘t you?

BUGS
You cannot get the stack frame information or otherwise debug functions that were not compiled b
such as C or C++ extensions.

If you alter your @_ arguments in a subroutine (such as with shift or pop, the stack backtrace will not show
the original values.
18−Oct−1998 Version 5.005_02 369

perldebug Perl Programmers Reference Guide perldebug

me a
t may

 a string
worse on
ger, a

d form
ace the

ill

t size

emory
above
 memory
Debugging Perl memory usage
Perl is very frivolous with memory. There is a saying that to estimate memory usage of Perl, assu
reasonable algorithm of allocation, and multiply your estimages by 10. This is not absolutely true, bu
give you a good grasp of what happens.

Say, an integer cannot take less than 20 bytes of memory, a float cannot take less than 24 bytes,
cannot take less than 32 bytes (all these examples assume 32−bit architectures, the result are much
64−bit architectures). If a variable is accessed in two of three different ways (which require an inte
float, or a string), the memory footprint may increase by another 20 bytes. A sloppy malloc()
implementation will make these numbers yet more.

On the opposite end of the scale, a declaration like

 sub foo;

may take (on some versions of perl) up to 500 bytes of memory.

Off−the−cuff anecdotal estimates of a code bloat give a factor around 8. This means that the compile
of reasonable (commented indented etc.) code will take approximately 8 times more than the disk sp
code takes.

There are two Perl−specific ways to analyze the memory usage: $ENV{PERL_DEBUG_MSTATS} and −DL
switch. First one is available only if perl is compiled with Perl‘s malloc() , the second one only if Perl
compiled with −DDEBUGGING (as with giving −D optimise=−g option to Configure).

Using $ENV{PERL_DEBUG_MSTATS}
If your perl is using Perl‘s malloc() , and compiled with correct switches (this is the default), then it w
print memory usage statistics after compiling your code (if $ENV{PERL_DEBUG_MSTATS} 1), and before
termination of the script (if $ENV{PERL_DEBUG_MSTATS} = 1). The report format is similar to one in
the following example:

 env PERL_DEBUG_MSTATS=2 perl −e "require Carp"
 Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)
 14216 free: 130 117 28 7 9 0 2 2 1 0 0

437 61 36 0 5
 60924 used: 125 137 161 55 7 8 6 16 2 0 1

 74 109 304 84 20
 Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.
 Memory allocation statistics after execution: (buckets 4(4)..8188(8192)
 30888 free: 245 78 85 13 6 2 1 3 2 0 1

315 162 39 42 11
 175816 used: 265 176 1112 111 26 22 11 27 2 1 1

196 178 1066 798 39
 Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail: 0+2192+0+6144.

It is possible to ask for such a statistic at arbitrary moment by usind Devel::Peek::mstats() (module
Devel::Peek is available on CPAN).

Here is the explanation of different parts of the format:

buckets SMALLEST(APPROX)..GREATEST(APPROX)
Perl‘s malloc() uses bucketed allocations. Every request is rounded up to the closest bucke
available, and a bucket of these size is taken from the pool of the buckets of this size.

The above line describes limits of buckets currently in use. Each bucket has two sizes: m
footprint, and the maximal size of user data which may be put into this bucket. Say, in the
example the smallest bucket is both sizes 4. The biggest bucket has usable size 8188, and the
footprint 8192.
370 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

buckets
ter than

tween
 of
uckets

s

ber is

ept in

 the
d gives

e

sage of
is story
With debugging Perl some buckets may have negative usable size. This means that these
cannot (and will not) be used. For greater buckets the memory footprint may be one page grea
a power of 2. In such a case the corresponding power of two is printed instead in the APPROX field
above.

Free/Used
The following 1 or 2 rows of numbers correspond to the number of buckets of each size be
SMALLEST and GREATEST. In the first row the sizes (memory footprints) of buckets are powers
two (or possibly one page greater). In the second row (if present) the memory footprints of the b
are between memory footprints of two buckets "above".

Say, with the above example the memory footprints are (with current algorith)

 free: 8 16 32 64 128 256 512 1024 2048 4096 8192
 4 12 24 48 80

With non−DEBUGGING perl the buckets starting from 128−long ones have 4−byte overhead, thu
8192−long bucket may take up to 8188−byte−long allocations.

Total sbrk(): SBRKed/SBRKs:CONTINUOUS
The first two fields give the total amount of memory perl sbrk() ed, and number of sbrk() s used.
The third number is what perl thinks about continuity of returned chunks. As far as this num
positive, malloc() will assume that it is probable that sbrk() will provide continuous memory.

The amounts sbrk() ed by external libraries is not counted.

pad: 0
The amount of sbrk() ed memory needed to keep buckets aligned.

heads: 2192
While memory overhead of bigger buckets is kept inside the bucket, for smaller buckets it is k
separate areas. This field gives the total size of these areas.

chain: 0
malloc() may want to subdivide a bigger bucket into smaller buckets. If only a part of
deceased−bucket is left non−subdivided, the rest is kept as an element of a linked list. This fiel
the total size of these chunks.

tail: 6144
To minimize amount of sbrk() s malloc() asks for more memory. This field gives the size of th
yet−unused part, which is sbrk() ed, but never touched.

Example of using −DL switch
Below we show how to analyse memory usage by

 do ’lib/auto/POSIX/autosplit.ix’;

The file in question contains a header and 146 lines similar to

 sub getcwd ;

Note: the discussion below supposes 32−bit architecture. In the newer versions of perl the memory u
the constructs discussed here is much improved, but the story discussed below is a real−life story. Th
is very terse, and assumes more than cursory knowledge of Perl internals.

Here is the itemized list of Perl allocations performed during parsing of this file:

 !!! "after" at test.pl line 3.
 Id subtot 4 8 12 16 20 24 28 32 36 40 48 56 64 72 80 80+
 0 02 13752 294 4
 0 54 5545 . . 8 124 16 . . . 1 1 3
 5 05 32 1
18−Oct−1998 Version 5.005_02 371

perldebug Perl Programmers Reference Guide perldebug

e

ument

nk

 main

der

glob

y of

e 4 big

f

 6 02 7152 149
 7 02 3600 150
 7 03 64 . −1 . 1 . . 2
 7 04 7056 7
 7 17 38404 1 . . 442 149 . . 147 .
 9 03 2078 17 249 32 2

To see this list insert two warn(‘!...’) statements around the call:

 warn(’!’);
 do ’lib/auto/POSIX/autosplit.ix’;
 warn(’!!! "after"’);

and run it with −DL option. The first warn() will print memory allocation info before the parsing of th
file, and will memorize the statistics at this point (we ignore what it prints). The second warn() will print
increments w.r.t. this memorized statistics. This is the above printout.

Different Ids on the left correspond to different subsystems of perl interpreter, they are just first arg
given to perl memory allocation API New() . To find what 9 03 means grep the perl source for 903 .
You will see that it is util.c, function savepvn() . This function is used to store a copy of existing chu
of memory. Using C debugger, one can see that it is called either directly from gv_init() , or via
sv_magic() , and gv_init() is called from gv_fetchpv() − which is called from newSUB() .

Note: to reach this place in debugger and skip all the calls to savepvn during the compilation of the
script, set a C breakpoint in Perl_warn() , continue this point is reached, then set breakpoint in
Perl_savepvn() . Note that you may need to skip a handful of Perl_savepvn() which do not
correspond to mass production of CVs (there are more 903 allocations than 146 similar lines of
lib/auto/POSIX/autosplit.ix). Note also that Perl_ prefixes are added by macroization code in perl hea
files to avoid conflicts with external libraries.

Anyway, we see that 903 ids correspond to creation of globs, twice per glob − for glob name, and
stringification magic.

Here are explanations for other Ids above:

717
is for creation of bigger XPV* structures. In the above case it creates 3 AV per subroutine, one for a
list of lexical variable names, one for a scratchpad (which contains lexical variables and targets),
and one for the array of scratchpads needed for recursion.

It also creates a GV and a CV per subroutine (all called from start_subparse()).

002 Creates C array corresponding to the AV of scratchpads, and the scratchpad itself (the first fake entr
this scratchpad is created though the subroutine itself is not defined yet).

It also creates C arrays to keep data for the stash (this is one HV, but it grows, thus there ar
allocations: the big chunks are not freeed, but are kept as additional arenas for SV allocations).

054 creates a HEK for the name of the glob for the subroutine (this name is a key in a stash).

Big allocations with this Id correspond to allocations of new arenas to keep HE.

602 creates a GP for the glob for the subroutine.

702 creates the MAGIC for the glob for the subroutine.

704 creates arenas which keep SVs.

−DL details
If Perl is run with −DL option, then warn() s which start with ‘!’ behave specially. They print a list o
categories of memory allocations, and statistics of allocations of different sizes for these categories.

If warn() string starts with
372 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

are not

mpiled

, the

atches

rter
!!!
print changed categories only, print the differences in counts of allocations;

!! print grown categories only; print the absolute values of counts, and totals;

! print nonempty categories, print the absolute values of counts and totals.

Limitations of −DL statistic
If an extension or an external library does not use Perl API to allocate memory, these allocations
counted.

Debugging regular expressions
There are two ways to enable debugging output for regular expressions.

If your perl is compiled with −DDEBUGGING, you may use the −Dr flag on the command line.

Otherwise, one can use re ‘debug’ , which has effects both at compile time, and at run time (and is not
lexically scoped).

Compile−time output
The debugging output for the compile time looks like this:

 compiling RE ‘[bc]d(ef*g)+h[ij]k$’
 size 43 first at 1
 1: ANYOF(11)
 11: EXACT <d>(13)
 13: CURLYX {1,32767}(27)
 15: OPEN1(17)
 17: EXACT <e>(19)
 19: STAR(22)
 20: EXACT <f>(0)
 22: EXACT <g>(24)
 24: CLOSE1(26)
 26: WHILEM(0)
 27: NOTHING(28)
 28: EXACT <h>(30)
 30: ANYOF(40)
 40: EXACT <k>(42)
 42: EOL(43)
 43: END(0)
 anchored ‘de’ at 1 floating ‘gh’ at 3..2147483647 (checking floating)

 stclass ‘ANYOF’ minlen 7

The first line shows the pre−compiled form of the regexp, and the second shows the size of the co
form (in arbitrary units, usually 4−byte words) and the label id of the first node which does a match.

The last line (split into two lines in the above) contains the optimizer info. In the example shown
optimizer found that the match should contain a substring de at the offset 1, and substring gh at some offset
between 3 and infinity. Moreover, when checking for these substrings (to abandon impossible m
quickly) it will check for the substring gh before checking for the substring de . The optimizer may also use
the knowledge that the match starts (at the first id) with a character class, and the match cannot be sho
than 7 chars.

The fields of interest which may appear in the last line are

anchored STRING at POS
floating STRING at POS1..POS2

see above;
18−Oct−1998 Version 5.005_02 373

perldebug Perl Programmers Reference Guide perldebug

es not

y not
d an
matching floating/anchored
which substring to check first;

minlen
the minimal length of the match;

stclass TYPE
The type of the first matching node.

noscan
which advises to not scan for the found substrings;

isall
which says that the optimizer info is in fact all that the regular expression contains (thus one do
need to enter the RE engine at all);

GPOS
if the pattern contains \G ;

plus
if the pattern starts with a repeated char (as in x+y);

implicit
if the pattern starts with .* ;

with eval
if the pattern contain eval−groups (see (?{ code }));

anchored(TYPE)
if the pattern may match only at a handful of places (with TYPE being BOL, MBOL, or GPOS, see the
table below).

If a substring is known to match at end−of−line only, it may be followed by $, as in floating ‘k‘$.

The optimizer−specific info is used to avoid entering (a slow) RE engine on strings which will definitel
match. If isall flag is set, a call to the RE engine may be avoided even when optimizer foun
appropriate place for the match.

The rest of the output contains the list of nodes of the compiled form of the RE. Each line has format

 id: TYPE OPTIONAL−INFO (next−id)

Types of nodes
Here is the list of possible types with short descriptions:

 # TYPE arg−description [num−args] [longjump−len] DESCRIPTION

 # Exit points
 END no End of program.
 SUCCEED no Return from a subroutine, basically.

 # Anchors:
 BOL no Match "" at beginning of line.
 MBOL no Same, assuming multiline.
 SBOL no Same, assuming singleline.
 EOS no Match "" at end of string.
 EOL no Match "" at end of line.
 MEOL no Same, assuming multiline.
 SEOL no Same, assuming singleline.
 BOUND no Match "" at any word boundary
374 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug
 BOUNDL no Match "" at any word boundary
 NBOUND no Match "" at any word non−boundary
 NBOUNDL no Match "" at any word non−boundary
 GPOSno Matches where last m//g left off.

 # [Special] alternatives
 ANY no Match any one character (except newline).
 SANY no Match any one character.
 ANYOF sv Match character in (or not in) this class.
 ALNUM no Match any alphanumeric character
 ALNUML no Match any alphanumeric char in locale
 NALNUM no Match any non−alphanumeric character
 NALNUML no Match any non−alphanumeric char in locale
 SPACE no Match any whitespace character
 SPACEL no Match any whitespace char in locale
 NSPACE no Match any non−whitespace character
 NSPACEL no Match any non−whitespace char in locale
 DIGIT no Match any numeric character
 NDIGIT no Match any non−numeric character

 # BRANCH The set of branches constituting a single choice are hooked
 # together with their "next" pointers, since precedence prevents
 # anything being concatenated to any individual branch. The
 # "next" pointer of the last BRANCH in a choice points to the
 # thing following the whole choice. This is also where the
 # final "next" pointer of each individual branch points; each
 # branch starts with the operand node of a BRANCH node.
 #
 BRANCH node Match this alternative, or the next...

 # BACK Normal "next" pointers all implicitly point forward; BACK
 # exists to make loop structures possible.
 # not used
 BACK no Match "", "next" ptr points backward.

 # Literals
 EXACT sv Match this string (preceded by length).
 EXACTF sv Match this string, folded (prec. by length).
 EXACTFL sv Match this string, folded in locale (w/len).

 # Do nothing
 NOTHING no Match empty string.
 # A variant of above which delimits a group, thus stops optimizations
 TAIL no Match empty string. Can jump here from outside.

 # STAR,PLUS ’?’, and complex ’*’ and ’+’, are implemented as circular
 # BRANCH structures using BACK. Simple cases (one character
 # per match) are implemented with STAR and PLUS for speed
 # and to minimize recursive plunges.
 #
 STAR node Match this (simple) thing 0 or more times.
 PLUS node Match this (simple) thing 1 or more times.

 CURLY sv 2 Match this simple thing {n,m} times.
 CURLYN no 2 Match next−after−this simple thing
 # {n,m} times, set parenths.
 CURLYM no 2 Match this medium−complex thing {n,m} times.
 CURLYX sv 2 Match this complex thing {n,m} times.
18−Oct−1998 Version 5.005_02 375

perldebug Perl Programmers Reference Guide perldebug

 means
 # This terminator creates a loop structure for CURLYX
 WHILEM no Do curly processing and see if rest matches.

 # OPEN,CLOSE,GROUPP ...are numbered at compile time.
 OPEN num 1 Mark this point in input as start of #n.
 CLOSE num 1 Analogous to OPEN.

 REF num 1 Match some already matched string
 REFF num 1 Match already matched string, folded
 REFFL num 1 Match already matched string, folded in loc.

 # grouping assertions
 IFMATCH off 1 2 Succeeds if the following matches.
 UNLESSM off 1 2 Fails if the following matches.
 SUSPEND off 1 1 "Independent" sub−RE.
 IFTHEN off 1 1 Switch, should be preceeded by switcher .
 GROUPP num 1 Whether the group matched.

 # Support for long RE
 LONGJMP off 1 1 Jump far away.
 BRANCHJ off 1 1 BRANCH with long offset.

 # The heavy worker
 EVAL evl 1 Execute some Perl code.

 # Modifiers
 MINMOD no Next operator is not greedy.
 LOGICAL no Next opcode should set the flag only.

 # This is not used yet
 RENUM off 1 1 Group with independently numbered parens.

 # This is not really a node, but an optimized away piece of a "long" node.
 # To simplify debugging output, we mark it as if it were a node
 OPTIMIZED off Placeholder for dump.

Run−time output
First of all, when doing a match, one may get no run−time output even if debugging is enabled. this
that the RE engine was never entered, all of the job was done by the optimizer.

If RE engine was entered, the output may look like this:

 Matching ‘[bc]d(ef*g)+h[ij]k$’ against ‘abcdefg__gh__’
 Setting an EVAL scope, savestack=3
 2 <ab> <cdefg__gh_> | 1: ANYOF
 3 <abc> <defg__gh_> | 11: EXACT <d>
 4 <abcd> <efg__gh_> | 13: CURLYX {1,32767}
 4 <abcd> <efg__gh_> | 26: WHILEM

0 out of 1..32767 cc=effff31c
 4 <abcd> <efg__gh_> | 15: OPEN1
 4 <abcd> <efg__gh_> | 17: EXACT <e>
 5 <abcde> <fg__gh_> | 19: STAR

 EXACT <f> can match 1 times out of 32767...
 Setting an EVAL scope, savestack=3
 6 <bcdef> <g__gh__> | 22: EXACT <g>
 7 <bcdefg> <__gh__> | 24: CLOSE1
 7 <bcdefg> <__gh__> | 26: WHILEM

 1 out of 1..32767 cc=effff31c
 Setting an EVAL scope, savestack=12
 7 <bcdefg> <__gh__> | 15: OPEN1
376 Version 5.005_02 18−Oct−1998

perldebug Perl Programmers Reference Guide perldebug

ears
 7 <bcdefg> <__gh__> | 17: EXACT <e>
 restoring \1 to 4(4)..7

 failed, try continuation...
 7 <bcdefg> <__gh__> | 27: NOTHING
 7 <bcdefg> <__gh__> | 28: EXACT <h>

 failed...
failed...

The most significant information in the output is about the particular node of the compiled RE which is
currently being tested against the target string. The format of these lines is

 STRING−OFFSET <PRE−STRING <POST−STRING |ID: TYPE

The TYPE info is indented with respect to the backtracking level. Other incidental information app
interspersed within.
18−Oct−1998 Version 5.005_02 377

perldiag Perl Programmers Reference Guide perldiag

g
 See

at. Note

 with a

 to the
ill still

. See

e. See

 loses

into a
NAME
perldiag − various Perl diagnostics

DESCRIPTION
These messages are classified as follows (listed in increasing order of desperation):

 (W) A warning (optional).
 (D) A deprecation (optional).
 (S) A severe warning (mandatory).
 (F) A fatal error (trappable).
 (P) An internal error you should never see (trappable).
 (X) A very fatal error (nontrappable).
 (A) An alien error message (not generated by Perl).

Optional warnings are enabled by using the −w switch. Warnings may be captured by settin
$SIG{__WARN__} to a reference to a routine that will be called on each warning instead of printing it.
perlvar. Trappable errors may be trapped using the eval operator. See eval.

Some of these messages are generic. Spots that vary are denoted with a %s, just as in a printf form
that some messages start with a %s! The symbols "%(−?@ sort before the letters, while [and \ sort after.

"my" variable %s can‘t be in a package
(F) Lexically scoped variables aren‘t in a package, so it doesn‘t make sense to try to declare one
package qualifier on the front. Use local() if you want to localize a package variable.

"my" variable %s masks earlier declaration in same scope
(W) A lexical variable has been redeclared in the same scope, effectively eliminating all access
previous instance. This is almost always a typographical error. Note that the earlier variable w
exist until the end of the scope or until all closure referents to it are destroyed.

"no" not allowed in expression
(F) The "no" keyword is recognized and executed at compile time, and returns no useful value
perlmod.

"use" not allowed in expression
(F) The "use" keyword is recognized and executed at compile time, and returns no useful valu
perlmod.

% may only be used in unpack
(F) You can‘t pack a string by supplying a checksum, because the checksumming process
information, and you can‘t go the other way. See unpack.

%s (...) interpreted as function
(W) You‘ve run afoul of the rule that says that any list operator followed by parentheses turns
function, with all the list operators arguments found inside the parentheses. See
Terms and List Operators (Leftward).

%s argument is not a HASH element
(F) The argument to exists() must be a hash element, such as

 $foo{$bar}
 $ref−>[12]−>{"susie"}

%s argument is not a HASH element or slice
(F) The argument to delete() must be either a hash element, such as

 $foo{$bar}
 $ref−>[12]−>{"susie"}
378 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

an its
ould

 a term
at an

s would

idn‘t

ly have

ly

ly

ly

e, or

perator
 this

a race
or a hash slice, such as

 @foo{$bar, $baz, $xyzzy}
 @{$ref−>[12]}{"susie", "queue"}

%s did not return a true value
(F) A required (or used) file must return a true value to indicate that it compiled correctly and r
initialization code correctly. It‘s traditional to end such a file with a "1;", though any true value w
do. See require.

%s found where operator expected
(S) The Perl lexer knows whether to expect a term or an operator. If it sees what it knows to be
when it was expecting to see an operator, it gives you this warning. Usually it indicates th
operator or delimiter was omitted, such as a semicolon.

%s had compilation errors
(F) The final summary message when a perl −c fails.

%s has too many errors
(F) The parser has given up trying to parse the program after 10 errors. Further error message
likely be uninformative.

%s matches null string many times
(W) The pattern you‘ve specified would be an infinite loop if the regular expression engine d
specifically check for that. See perlre.

%s never introduced
(S) The symbol in question was declared but somehow went out of scope before it could possib
been used.

%s syntax OK
(F) The final summary message when a perl −c succeeds.

%s: Command not found
(A) You‘ve accidentally run your script through csh instead of Perl. Check the #! line, or manual
feed your script into Perl yourself.

%s: Expression syntax
(A) You‘ve accidentally run your script through csh instead of Perl. Check the #! line, or manual
feed your script into Perl yourself.

%s: Undefined variable
(A) You‘ve accidentally run your script through csh instead of Perl. Check the #! line, or manual
feed your script into Perl yourself.

%s: not found
(A) You‘ve accidentally run your script through the Bourne shell instead of Perl. Check the #! lin
manually feed your script into Perl yourself.

(Missing semicolon on previous line?)
(S) This is an educated guess made in conjunction with the message "%s found where o
expected". Don‘t automatically put a semicolon on the previous line just because you saw
message.

−P not allowed for setuid/setgid script
(F) The script would have to be opened by the C preprocessor by name, which provides
condition that breaks security.
18−Oct−1998 Version 5.005_02 379

perldiag Perl Programmers Reference Guide perldiag

tdio.

 See

d. See

f your

alues.
 — the
his is

 easy

sed the
e the

me, or
t it‘s

ments
e, try
−T and −B not implemented on filehandles
(F) Perl can‘t peek at the stdio buffer of filehandles when it doesn‘t know about your kind of s
You‘ll have to use a filename instead.

−p destination: %s
(F) An error occurred during the implicit output invoked by the −p command−line switch. (This
output goes to STDOUT unless you‘ve redirected it with select() .)

500 Server error
See Server error.

?+* follows nothing in regexp
(F) You started a regular expression with a quantifier. Backslash it if you meant it literally.
perlre.

@ outside of string
(F) You had a pack template that specified an absolute position outside the string being unpacke
pack.

accept() on closed fd
(W) You tried to do an accept on a closed socket. Did you forget to check the return value o
socket() call? See accept.

Allocation too large: %lx
(X) You can‘t allocate more than 64K on an MS−DOS machine.

Applying %s to %s will act on scalar(%s)
(W) The pattern match (//), substitution (s///), and transliteration (tr///) operators work on scalar v
 If you apply one of them to an array or a hash, it will convert the array or hash to a scalar value
length of an array, or the population info of a hash — and then work on that scalar value. T
probably not what you meant to do. See grep and map for alternatives.

Arg too short for msgsnd
(F) msgsnd() requires a string at least as long as sizeof(long).

Ambiguous use of %s resolved as %s
(W)(S) You said something that may not be interpreted the way you thought. Normally it‘s pretty
to disambiguate it by supplying a missing quote, operator, parenthesis pair or declaration.

Ambiguous call resolved as CORE::%s() , qualify as such or use &
(W) A subroutine you have declared has the same name as a Perl keyword, and you have u
name without qualification for calling one or the other. Perl decided to call the builtin becaus
subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand before the subroutine na
qualify the name with its package. Alternatively, you can import the subroutine (or pretend tha
imported with the use subs pragma).

To silently interpret it as the Perl operator, use the CORE:: prefix on the operator (e.g.
CORE::log($x)) or by declaring the subroutine to be an object method (see attrs).

Args must match #! line
(F) The setuid emulator requires that the arguments Perl was invoked with match the argu
specified on the #! line. Since some systems impose a one−argument limit on the #! lin
combining switches; for example, turn −w −U into −wU.
380 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

instead.

ated.

lars or

it. An

cess of
 a string

at

overed
d. This

ry has

 to the
nvalid
ts to the

*), and
Argument "%s" isn‘t numeric%s
(W) The indicated string was fed as an argument to an operator that expected a numeric value
If you‘re fortunate the message will identify which operator was so unfortunate.

Array @%s missing the @ in argument %d of %s()
(D) Really old Perl let you omit the @ on array names in some spots. This is now heavily deprec

assertion botched: %s
(P) The malloc package that comes with Perl had an internal failure.

Assertion failed: file "%s"
(P) A general assertion failed. The file in question must be examined.

Assignment to both a list and a scalar
(F) If you assign to a conditional operator, the 2nd and 3rd arguments must either both be sca
both be lists. Otherwise Perl won‘t know which context to supply to the right side.

Attempt to free non−arena SV: 0x%lx
(P) All SV objects are supposed to be allocated from arenas that will be garbage collected on ex
SV was discovered to be outside any of those arenas.

Attempt to free nonexistent shared string
(P) Perl maintains a reference counted internal table of strings to optimize the storage and ac
hash keys and other strings. This indicates someone tried to decrement the reference count of
that can no longer be found in the table.

Attempt to free temp prematurely
(W) Mortalized values are supposed to be freed by the free_tmps() routine. This indicates that
something else is freeing the SV before the free_tmps() routine gets a chance, which means th
the free_tmps() routine will be freeing an unreferenced scalar when it does try to free it.

Attempt to free unreferenced glob pointers
(P) The reference counts got screwed up on symbol aliases.

Attempt to free unreferenced scalar
(W) Perl went to decrement the reference count of a scalar to see if it would go to 0, and disc
that it had already gone to 0 earlier, and should have been freed, and in fact, probably was free
could indicate that SvREFCNT_dec() was called too many times, or that SvREFCNT_inc() was
called too few times, or that the SV was mortalized when it shouldn‘t have been, or that memo
been corrupted.

Attempt to pack pointer to temporary value
(W) You tried to pass a temporary value (like the result of a function, or a computed expression)
"p" pack() template. This means the result contains a pointer to a location that could become i
anytime, even before the end of the current statement. Use literals or global values as argumen
"p" pack() template to avoid this warning.

Attempt to use reference as lvalue in substr
(W) You supplied a reference as the first argument to substr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first. See substr.

Bad arg length for %s, is %d, should be %d
(F) You passed a buffer of the wrong size to one of msgctl() , semctl() or shmctl() . In C
parlance, the correct sizes are, respectively, sizeof(struct msqid_ds *), sizeof(struct semid_ds
sizeof(struct shmid_ds *).
18−Oct−1998 Version 5.005_02 381

perldiag Perl Programmers Reference Guide perldiag

andle

 Index

l. In

.

ntry.

ly

 or to

at

stops
Bad filehandle: %s
(F) A symbol was passed to something wanting a filehandle, but the symbol has no fileh
associated with it. Perhaps you didn‘t do an open() , or did it in another package.

Bad free() ignored
(S) An internal routine called free() on something that had never been malloc() ed in the first
place. Mandatory, but can be disabled by setting environment variable PERL_BADFREE to 1.

This message can be quite often seen with DB_File on systems with "hard" dynamic linking, likeAIX
and OS/2 . It is a bug of Berkeley DB which is left unnoticed if DB uses forgiving system
malloc() .

Bad hash
(P) One of the internal hash routines was passed a null HV pointer.

Bad index while coercing array into hash
(F) The index looked up in the hash found as the 0‘th element of a pseudo−hash is not legal.
values must be at 1 or greater. See perlref.

Bad name after %s::
(F) You started to name a symbol by using a package prefix, and then didn‘t finish the symbo
particular, you can‘t interpolate outside of quotes, so

 $var = ’myvar’;
 $sym = mypack::$var;

is not the same as

 $var = ’myvar’;
 $sym = "mypack::$var";

Bad symbol for array
(P) An internal request asked to add an array entry to something that wasn‘t a symbol table entry

Bad symbol for filehandle
(P) An internal request asked to add a filehandle entry to something that wasn‘t a symbol table e

Bad symbol for hash
(P) An internal request asked to add a hash entry to something that wasn‘t a symbol table entry.

Badly placed () ‘s
(A) You‘ve accidentally run your script through csh instead of Perl. Check the #! line, or manual
feed your script into Perl yourself.

Bareword "%s" not allowed while "strict subs" in use
(F) With "strict subs" in use, a bareword is only allowed as a subroutine identifier, in curly braces
the left of the "=" symbol. Perhaps you need to predeclare a subroutine?

Bareword "%s" refers to nonexistent package
(W) You used a qualified bareword of the form Foo:: , but the compiler saw no other uses of th
namespace before that point. Perhaps you need to predeclare a package?

BEGIN failed—compilation aborted
(F) An untrapped exception was raised while executing a BEGIN subroutine. Compilation
immediately and the interpreter is exited.

BEGIN not safe after errors—compilation aborted
(F) Perl found a BEGIN {} subroutine (or a use directive, which implies a BEGIN {}) after one or
more compilation errors had already occurred. Since the intended environment for the BEGIN {}
382 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

 correct

 your

n‘t a

 there

y bitty
as a
e

. Note

will be

 Note

will be

s. See

 line

ut that

 the
sn‘t an
could not be guaranteed (due to the errors), and since subsequent code likely depends on its
operation, Perl just gave up.

bind() on closed fd
(W) You tried to do a bind on a closed socket. Did you forget to check the return value of
socket() call? See bind.

Bizarre copy of %s in %s
(P) Perl detected an attempt to copy an internal value that is not copiable.

Callback called exit
(F) A subroutine invoked from an external package via perl_call_sv() exited by calling exit.

Can‘t "goto" outside a block
(F) A "goto" statement was executed to jump out of what might look like a block, except that it is
proper block. This usually occurs if you tried to jump out of a sort() block or subroutine, which is a
no−no. See goto.

Can‘t "goto" into the middle of a foreach loop
(F) A "goto" statement was executed to jump into the middle of a foreach loop. You can‘t get
from here. See goto.

Can‘t "last" outside a block
(F) A "last" statement was executed to break out of the current block, except that there‘s this itt
problem called there isn‘t a current block. Note that an "if" or "else" block doesn‘t count
"loopish" block, as doesn‘t a block given to sort() . You can usually double the curlies to get th
same effect though, because the inner curlies will be considered a block that loops once. See last.

Can‘t "next" outside a block
(F) A "next" statement was executed to reiterate the current block, but there isn‘t a current block
that an "if" or "else" block doesn‘t count as a "loopish" block, as doesn‘t a block given to sort() .
You can usually double the curlies to get the same effect though, because the inner curlies
considered a block that loops once. See next.

Can‘t "redo" outside a block
(F) A "redo" statement was executed to restart the current block, but there isn‘t a current block.
that an "if" or "else" block doesn‘t count as a "loopish" block, as doesn‘t a block given to sort() .
You can usually double the curlies to get the same effect though, because the inner curlies
considered a block that loops once. See redo.

Can‘t bless non−reference value
(F) Only hard references may be blessed. This is how Perl "enforces" encapsulation of object
perlobj.

Can‘t break at that line
(S) A warning intended to only be printed while running within the debugger, indicating the
number specified wasn‘t the location of a statement that could be stopped at.

Can‘t call method "%s" in empty package "%s"
(F) You called a method correctly, and it correctly indicated a package functioning as a class, b
package doesn‘t have ANYTHING defined in it, let alone methods. See perlobj.

Can‘t call method "%s" on unblessed reference
(F) A method call must know in what package it‘s supposed to run. It ordinarily finds this out from
object reference you supply, but you didn‘t supply an object reference in this case. A reference i
object reference until it has been blessed. See perlobj.
18−Oct−1998 Version 5.005_02 383

perldiag Perl Programmers Reference Guide perldiag

 name
ackage

 name

ly

 stop

 stop

 stop

to map
 0.

bing

t have

ut still
Can‘t call method "%s" without a package or object reference
(F) You used the syntax of a method call, but the slot filled by the object reference or package
contains an expression that returns a defined value which is neither an object reference nor a p
name. Something like this will reproduce the error:

 $BADREF = 42;
 process $BADREF 1,2,3;
 $BADREF−>process(1,2,3);

Can‘t call method "%s" on an undefined value
(F) You used the syntax of a method call, but the slot filled by the object reference or package
contains an undefined value. Something like this will reproduce the error:

 $BADREF = undef;
 process $BADREF 1,2,3;
 $BADREF−>process(1,2,3);

Can‘t chdir to %s
(F) You called perl −x/foo/bar , but /foo/bar is not a directory that you can chdir to, possib
because it doesn‘t exist.

Can‘t coerce %s to integer in %s
(F) Certain types of SVs, in particular real symbol table entries (typeglobs), can‘t be forced to
being what they are. So you can‘t say things like:

 *foo += 1;

You CAN say

 $foo = *foo;
 $foo += 1;

but then $foo no longer contains a glob.

Can‘t coerce %s to number in %s
(F) Certain types of SVs, in particular real symbol table entries (typeglobs), can‘t be forced to
being what they are.

Can‘t coerce %s to string in %s
(F) Certain types of SVs, in particular real symbol table entries (typeglobs), can‘t be forced to
being what they are.

Can‘t coerce array into hash
(F) You used an array where a hash was expected, but the array has no information on how
from keys to array indices. You can do that only with arrays that have a hash reference at index

Can‘t create pipe mailbox
(P) An error peculiar to VMS. The process is suffering from exhausted quotas or other plum
problems.

Can‘t declare %s in my
(F) Only scalar, array, and hash variables may be declared as lexical variables. They mus
ordinary identifiers as names.

Can‘t do inplace edit on %s: %s
(S) The creation of the new file failed for the indicated reason.

Can‘t do inplace edit without backup
(F) You‘re on a system such as MS−DOS that gets confused if you try reading from a deleted (b
opened) file. You have to say −i.bak , or some such.
384 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

as

uldn‘t
resides
k the

ething

ind of

the
asn‘t

e #!
ystem

id. If

ave

t not
g it.
Can‘t do inplace edit: %s > 14 characters
(S) There isn‘t enough room in the filename to make a backup name for the file.

Can‘t do inplace edit: %s is not a regular file
(S) You tried to use the −i switch on a special file, such as a file in /dev, or a FIFO. The file w
ignored.

Can‘t do setegid!
(P) The setegid() call failed for some reason in the setuid emulator of suidperl.

Can‘t do seteuid!
(P) The setuid emulator of suidperl failed for some reason.

Can‘t do setuid
(F) This typically means that ordinary perl tried to exec suidperl to do setuid emulation, but co
exec it. It looks for a name of the form sperl5.000 in the same directory that the perl executable
under the name perl5.000, typically /usr/local/bin on Unix machines. If the file is there, chec
execute permissions. If it isn‘t, ask your sysadmin why he and/or she removed it.

Can‘t do waitpid with flags
(F) This machine doesn‘t have either waitpid() or wait4() , so only waitpid() without flags
is emulated.

Can‘t do {n,m} with n > m
(F) Minima must be less than or equal to maxima. If you really want your regexp to match som
0 times, just put {0}. See perlre.

Can‘t emulate −%s on #! line
(F) The #! line specifies a switch that doesn‘t make sense at this point. For example, it‘d be k
silly to put a −x on the #! line.

Can‘t exec "%s": %s
(W) An system() , exec() , or piped open call could not execute the named program for
indicated reason. Typical reasons include: the permissions were wrong on the file, the file w
found in $ENV{PATH}, the executable in question was compiled for another architecture, or th
line in a script points to an interpreter that can‘t be run for similar reasons. (Or maybe your s
doesn‘t support #! at all.)

Can‘t exec %s
(F) Perl was trying to execute the indicated program for you because that‘s what the #! line sa
that‘s not what you wanted, you may need to mention "perl" on the #! line somewhere.

Can‘t execute %s
(F) You used the −S switch, but the copies of the script to execute found in the PATH did not h
correct permissions.

Can‘t find %s on PATH, ’.’ not in PATH
(F) You used the −S switch, but the script to execute could not be found in the PATH, or at leas
with the correct permissions. The script exists in the current directory, but PATH prohibits runnin

Can‘t find %s on PATH
(F) You used the −S switch, but the script to execute could not be found in the PATH.

Can‘t find label %s
(F) You said to goto a label that isn‘t mentioned anywhere that it‘s possible for us to go to. See goto.
18−Oct−1998 Version 5.005_02 385

perldiag Perl Programmers Reference Guide perldiag

er was
esis:

before
hese

 under
name,
count.
sses it,
g the
equent
this
eturned

it arises

e for

,

t can‘t
AD

jump

es

 "my".
h the

h.
nding
Can‘t find string terminator %s anywhere before EOF
(F) Perl strings can stretch over multiple lines. This message means that the closing delimit
omitted. Because bracketed quotes count nesting levels, the following is missing its final parenth

 print q(The character ’(’ starts a side comment.);

If you‘re getting this error from a here−document, you may have included unseen whitespace
or after your closing tag. A good programmer‘s editor will have a way to help you find t
characters.

Can‘t fork
(F) A fatal error occurred while trying to fork while opening a pipeline.

Can‘t get filespec − stale stat buffer?
(S) A warning peculiar to VMS. This arises because of the difference between access checks
VMS and under the Unix model Perl assumes. Under VMS, access checks are done by file
rather than by bits in the stat buffer, so that ACLs and other protections can be taken into ac
Unfortunately, Perl assumes that the stat buffer contains all the necessary information, and pa
instead of the filespec, to the access checking routine. It will try to retrieve the filespec usin
device name and FID present in the stat buffer, but this works only if you haven‘t made a subs
call to the CRTL stat() routine, because the device name is overwritten with each call. If
warning appears, the name lookup failed, and the access checking routine gave up and r
FALSE, just to be conservative. (Note: The access checking routine knows about the Perl stat
operator and file tests, so you shouldn‘t ever see this warning in response to a Perl command;
only if some internal code takes stat buffers lightly.)

Can‘t get pipe mailbox device name
(P) An error peculiar to VMS. After creating a mailbox to act as a pipe, Perl can‘t retrieve its nam
later use.

Can‘t get SYSGEN parameter value for MAXBUF
(P) An error peculiar to VMS. Perl asked $GETSYI how big you want your mailbox buffers to be
and didn‘t get an answer.

Can‘t goto subroutine outside a subroutine
(F) The deeply magical "goto subroutine" call can only replace one subroutine call for another. I
manufacture one out of whole cloth. In general you should be calling it out of only an AUTOLO
routine anyway. See goto.

Can‘t goto subroutine from an eval−string
(F) The "goto subroutine" call can‘t be used to jump out of an eval "string". (You can use it to
out of an eval {BLOCK}, but you probably don‘t want to.)

Can‘t localize through a reference
(F) You said something like local $$ref, which Perl can‘t currently handle, because when it go
to restore the old value of whatever $ref pointed to after the scope of the local() is finished, it
can‘t be sure that $ref will still be a reference.

Can‘t localize lexical variable %s
(F) You used local on a variable name that was previously declared as a lexical variable using
This is not allowed. If you want to localize a package variable of the same name, qualify it wit
package name.

Can‘t localize pseudo−hash element
(F) You said something like local $ar−>{‘key‘}, where $ar is a reference to a pseudo−has
That hasn‘t been implemented yet, but you can get a similar effect by localizing the correspo
array element directly — local $ar−>[$ar−>[0]{‘key‘}].
386 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

ion to

ed in
re the

u just

ut that

ith an

 you

al
 a file

e file

e file

e file

 pipe
Can‘t locate auto/%s.al in @INC
(F) A function (or method) was called in a package which allows autoload, but there is no funct
autoload. Most probable causes are a misprint in a function/method name or a failure to AutoSplit
the file, say, by doing make install .

Can‘t locate %s in @INC
(F) You said to do (or require, or use) a file that couldn‘t be found in any of the libraries mention
@INC. Perhaps you need to set the PERL5LIB or PERL5OPT environment variable to say whe
extra library is, or maybe the script needs to add the library name to @INC. Or maybe yo
misspelled the name of the file. See require.

Can‘t locate object method "%s" via package "%s"
(F) You called a method correctly, and it correctly indicated a package functioning as a class, b
package doesn‘t define that particular method, nor does any of its base classes. See perlobj.

Can‘t locate package %s for @%s::ISA
(W) The @ISA array contained the name of another package that doesn‘t seem to exist.

Can‘t make list assignment to \%ENV on this system
(F) List assignment to %ENV is not supported on some systems, notably VMS.

Can‘t modify %s in %s
(F) You aren‘t allowed to assign to the item indicated, or otherwise try to change it, such as w
auto−increment.

Can‘t modify nonexistent substring
(P) The internal routine that does assignment to a substr() was handed a NULL.

Can‘t msgrcv to read−only var
(F) The target of a msgrcv must be modifiable to be used as a receive buffer.

Can‘t open %s: %s
(S) The implicit opening of a file through use of the <> filehandle, either implicitly under the −n or −p
command−line switches, or explicitly, failed for the indicated reason. Usually this is because
don‘t have read permission for a file which you named on the command line.

Can‘t open bidirectional pipe
(W) You tried to say open(CMD, "|cmd|") , which is not supported. You can try any of sever
modules in the Perl library to do this, such as IPC::Open2. Alternately, direct the pipe‘s output to
using ">", and then read it in under a different file handle.

Can‘t open error file %s as stderr
(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open th
specified after ‘2>’ or ‘2>>’ on the command line for writing.

Can‘t open input file %s as stdin
(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open th
specified after ‘<’ on the command line for reading.

Can‘t open output file %s as stdout
(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open th
specified after ‘>’ or ‘>>’ on the command line for writing.

Can‘t open output pipe (name: %s)
(P) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open the
into which to send data destined for stdout.
18−Oct−1998 Version 5.005_02 387

perldiag Perl Programmers Reference Guide perldiag

ried to
really

rite

inary

 call to

re‘s a
or the

re‘s a

 it‘s
ure.

d kind
d. This

ing to

Errno
Can‘t open perl script "%s": %s
(F) The script you specified can‘t be opened for the indicated reason.

Can‘t redefine active sort subroutine %s
(F) Perl optimizes the internal handling of sort subroutines and keeps pointers into them. You t
redefine one such sort subroutine when it was currently active, which is not allowed. If you
want to do this, you should write sort { &func } @x instead of sort func @x .

Can‘t rename %s to %s: %s, skipping file
(S) The rename done by the −i switch failed for some reason, probably because you don‘t have w
permission to the directory.

Can‘t reopen input pipe (name: %s) in binary mode
(P) An error peculiar to VMS. Perl thought stdin was a pipe, and tried to reopen it to accept b
data. Alas, it failed.

Can‘t reswap uid and euid
(P) The setreuid() call failed for some reason in the setuid emulator of suidperl.

Can‘t return outside a subroutine
(F) The return statement was executed in mainline code, that is, where there was no subroutine
return out of. See perlsub.

Can‘t stat script "%s"
(P) For some reason you can‘t fstat() the script even though you have it open already. Bizarre.

Can‘t swap uid and euid
(P) The setreuid() call failed for some reason in the setuid emulator of suidperl.

Can‘t take log of %g
(F) For ordinary real numbers, you can‘t take the logarithm of a negative number or zero. The
Math::Complex package that comes standard with Perl, though, if you really want to do that f
negative numbers.

Can‘t take sqrt of %g
(F) For ordinary real numbers, you can‘t take the square root of a negative number. The
Math::Complex package that comes standard with Perl, though, if you really want to do that.

Can‘t undef active subroutine
(F) You can‘t undefine a routine that‘s currently running. You can, however, redefine it while
running, and you can even undef the redefined subroutine while the old routine is running. Go fig

Can‘t unshift
(F) You tried to unshift an "unreal" array that can‘t be unshifted, such as the main Perl stack.

Can‘t upgrade that kind of scalar
(P) The internal sv_upgrade routine adds "members" to an SV, making it into a more specialize
of SV. The top several SV types are so specialized, however, that they cannot be interconverte
message indicates that such a conversion was attempted.

Can‘t upgrade to undef
(P) The undefined SV is the bottom of the totem pole, in the scheme of upgradability. Upgrad
undef indicates an error in the code calling sv_upgrade.

Can‘t use %%! because Errno.pm is not available
(F) The first time the %! hash is used, perl automatically loads the Errno.pm module. The
module is expected to tie the %! hash to provide symbolic names for $! errno values.
388 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

ariable.

eeded.

gument.
rt of a
ts out

is helps

se the
dibly

rackets

, which
t that.

rence):

h ".]"
 regular
Can‘t use "my %s" in sort comparison
(F) The global variables $a and $b are reserved for sort comparisons. You mentioned $a or $b in the
same line as the <=> or cmp operator, and the variable had earlier been declared as a lexical v
Either qualify the sort variable with the package name, or rename the lexical variable.

Can‘t use %s for loop variable
(F) Only a simple scalar variable may be used as a loop variable on a foreach.

Can‘t use %s ref as %s ref
(F) You‘ve mixed up your reference types. You have to dereference a reference of the type n
You can use the ref() function to test the type of the reference, if need be.

Can‘t use \1 to mean $1 in expression
(W) In an ordinary expression, backslash is a unary operator that creates a reference to its ar
The use of backslash to indicate a backreference to a matched substring is valid only as pa
regular expression pattern. Trying to do this in ordinary Perl code produces a value that prin
looking like SCALAR(0xdecaf). Use the $1 form instead.

Can‘t use bareword ("%s") as %s ref while \"strict refs\" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowed. See perlref.

Can‘t use string ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowed. See perlref.

Can‘t use an undefined value as %s reference
(F) A value used as either a hard reference or a symbolic reference must be a defined value. Th
to delurk some insidious errors.

Can‘t use global %s in "my"
(F) You tried to declare a magical variable as a lexical variable. This is not allowed, becau
magic can be tied to only one location (namely the global variable) and it would be incre
confusing to have variables in your program that looked like magical variables but weren‘t.

Can‘t use subscript on %s
(F) The compiler tried to interpret a bracketed expression as a subscript. But to the left of the b
was an expression that didn‘t look like an array reference, or anything else subscriptable.

Can‘t x= to read−only value
(F) You tried to repeat a constant value (often the undefined value) with an assignment operator
implies modifying the value itself. Perhaps you need to copy the value to a temporary, and repea

Cannot find an opnumber for "%s"
(F) A string of a form CORE::word was given to prototype() , but there is no builtin with the
name word .

Cannot resolve method ‘%s’ overloading ‘%s’ in package ‘%s’
(F|P) Error resolving overloading specified by a method name (as opposed to a subroutine refe
no such method callable via the package. If method name is ??? , this is an internal error.

Character class syntax [. .] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with "[." and ending wit
is reserved for future extensions. If you need to represent those character sequences inside a
expression character class, just quote the square brackets with the backslash: "\[." and ".\]".
18−Oct−1998 Version 5.005_02 389

perldiag Perl Programmers Reference Guide perldiag

 with
nside a
\]".

 with
nside a
=\]".

stants

ge
.

ing is
 cannot
bject

ler or

f your

Character class syntax [: :] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with "[:" and ending
":]" is reserved for future extensions. If you need to represent those character sequences i
regular expression character class, just quote the square brackets with the backslash: "\[:" and ":

Character class syntax [= =] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with "[=" and ending
"=]" is reserved for future extensions. If you need to represent those character sequences i
regular expression character class, just quote the square brackets with the backslash: "\[=" and "

chmod: mode argument is missing initial 0
(W) A novice will sometimes say

 chmod 777, $filename

not realizing that 777 will be interpreted as a decimal number, equivalent to 01411. Octal con
are introduced with a leading 0 in Perl, as in C.

Close on unopened file <%s>
(W) You tried to close a filehandle that was never opened.

Compilation failed in require
(F) Perl could not compile a file specified in a require statement. Perl uses this generic messa
when none of the errors that it encountered were severe enough to halt compilation immediately

Complex regular subexpression recursion limit (%d) exceeded
(W) The regular expression engine uses recursion in complex situations where back−track
required. Recursion depth is limited to 32766, or perhaps less in architectures where the stack
grow arbitrarily. ("Simple" and "medium" situations are handled without recursion and are not su
to a limit.) Try shortening the string under examination; looping in Perl code (e.g. with while) rather
than in the regular expression engine; or rewriting the regular expression so that it is simp
backtracks less. (See perlbook for information on Mastering Regular Expressions.)

connect() on closed fd
(W) You tried to do a connect on a closed socket. Did you forget to check the return value o
socket() call? See connect.

Constant subroutine %s redefined
(S) You redefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsub for commentary and workarounds.

Constant subroutine %s undefined
(S) You undefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsub for commentary and workarounds.

Copy method did not return a reference
(F) The method which overloads "=" is buggy. See Copy Constructor.

Corrupt malloc ptr 0x%lx at 0x%lx
(P) The malloc package that comes with Perl had an internal failure.

corrupted regexp pointers
(P) The regular expression engine got confused by what the regular expression compiler gave it.

corrupted regexp program
(P) The regular expression engine got passed a regexp program without a valid magic number.
390 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

 This
which

o

perator
eclared
kage",
ually
b foo;"

eted
his is

ter is

S or
ou‘ve
don‘t
Deep recursion on subroutine "%s"
(W) This subroutine has called itself (directly or indirectly) 100 times more than it has returned.
probably indicates an infinite recursion, unless you‘re writing strange benchmark programs, in
case it indicates something else.

Delimiter for here document is too long
(F) In a here document construct like <<FOO, the label FOO is too long for Perl to handle. You have t
be seriously twisted to write code that triggers this error.

Did you mean &%s instead?
(W) You probably referred to an imported subroutine &FOO as $FOO or some such.

Did you mean $ or @ instead of %?
(W) You probably said %hash{$key} when you meant $hash{$key} or @hash{@keys}. On the
other hand, maybe you just meant %hash and got carried away.

Died
(F) You passed die() an empty string (the equivalent of die "") or you called it with no args and
both $@ and $_ were empty.

Do you need to predeclare %s?
(S) This is an educated guess made in conjunction with the message "%s found where o
expected". It often means a subroutine or module name is being referenced that hasn‘t been d
yet. This may be because of ordering problems in your file, or because of a missing "sub", "pac
"require", or "use" statement. If you‘re referencing something that isn‘t defined yet, you don‘t act
have to define the subroutine or package before the current location. You can use an empty "su
or "package FOO;" to enter a "forward" declaration.

Don‘t know how to handle magic of type ‘%s’
(P) The internal handling of magical variables has been cursed.

do_study: out of memory
(P) This should have been caught by safemalloc() instead.

Duplicate free() ignored
(S) An internal routine called free() on something that had already been freed.

elseif should be elsif
(S) There is no keyword "elseif" in Perl because Larry thinks it‘s ugly. Your code will be interpr
as an attempt to call a method named "elseif" for the class returned by the following block. T
unlikely to be what you want.

END failed—cleanup aborted
(F) An untrapped exception was raised while executing an END subroutine. The interpre
immediately exited.

Error converting file specification %s
(F) An error peculiar to VMS. Because Perl may have to deal with file specifications in either VM
Unix syntax, it converts them to a single form when it must operate on them directly. Either y
passed an invalid file specification to Perl, or you‘ve found a case the conversion routines
handle. Drat.

%s: Eval−group in insecure regular expression
(F) Perl detected tainted data when trying to compile a regular expression that contains the (?{ ...
}) zero−width assertion, which is unsafe. See (?{ code }), and perlsec.
18−Oct−1998 Version 5.005_02 391

perldiag Perl Programmers Reference Guide perldiag

ly

 is not
ted

e just

t.

tional

tement.

control

ference
target

 RTL
ber in

do an

 you
 to

 you
 to
%s: Eval−group not allowed, use re ‘eval’
(F) A regular expression contained the (?{ ... }) zero−width assertion, but that construct is on
allowed when the use re ‘eval’ pragma is in effect. See (?{ code }).

%s: Eval−group not allowed at run time
(F) Perl tried to compile a regular expression containing the (?{ ... }) zero−width assertion at run
time, as it would when the pattern contains interpolated values. Since that is a security risk, it
allowed. If you insist, you may still do this by explicitly building the pattern from an interpola
string at run time and using that in an eval() . See (?{ code }).

Excessively long < operator
(F) The contents of a < operator may not exceed the maximum size of a Perl identifier. If you‘r
trying to glob a long list of filenames, try using the glob() operator, or put the filenames into a
variable and glob that.

Execution of %s aborted due to compilation errors
(F) The final summary message when a Perl compilation fails.

Exiting eval via %s
(W) You are exiting an eval by unconventional means, such as a goto, or a loop control statemen

Exiting pseudo−block via %s
(W) You are exiting a rather special block construct (like a sort block or subroutine) by unconven
means, such as a goto, or a loop control statement. See sort.

Exiting subroutine via %s
(W) You are exiting a subroutine by unconventional means, such as a goto, or a loop control sta

Exiting substitution via %s
(W) You are exiting a substitution by unconventional means, such as a return, a goto, or a loop
statement.

Explicit blessing to ‘’ (assuming package main)
(W) You are blessing a reference to a zero length string. This has the effect of blessing the re
into the package main. This is usually not what you want. Consider providing a default
package, e.g. bless($ref, $p or ‘MyPackage’);

Fatal VMS error at %s, line %d
(P) An error peculiar to VMS. Something untoward happened in a VMS system service or
routine; Perl‘s exit status should provide more details. The filename in "at %s" and the line num
"line %d" tell you which section of the Perl source code is distressed.

fcntl is not implemented
(F) Your machine apparently doesn‘t implement fcntl() . What is this, a PDP−11 or something?

Filehandle %s never opened
(W) An I/O operation was attempted on a filehandle that was never initialized. You need to
open() or a socket() call, or call a constructor from the FileHandle package.

Filehandle %s opened for only input
(W) You tried to write on a read−only filehandle. If you intended it to be a read−write filehandle,
needed to open it with "+<" or "+>" or "+>>" instead of with "<" or nothing. If you intended only
write the file, use ">" or ">>". See open.

Filehandle opened for only input
(W) You tried to write on a read−only filehandle. If you intended it to be a read−write filehandle,
needed to open it with "+<" or "+>" or "+>>" instead of with "<" or nothing. If you intended only
392 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

as
ackslash

r was
ackslash

hout

ck the

or the
ntheses

oped
write the file, use ">" or ">>". See open.

Final $ should be \$ or $name
(F) You must now decide whether the final $ in a string was meant to be a literal dollar sign, or w
meant to introduce a variable name that happens to be missing. So you have to put either the b
or the name.

Final @ should be \@ or @name
(F) You must now decide whether the final @ in a string was meant to be a literal "at" sign, o
meant to introduce a variable name that happens to be missing. So you have to put either the b
or the name.

Format %s redefined
(W) You redefined a format. To suppress this warning, say

 {
local $^W = 0;
eval "format NAME =...";

 }

Format not terminated
(F) A format must be terminated by a line with a solitary dot. Perl got to the end of your file wit
finding such a line.

Found = in conditional, should be ==
(W) You said

 if ($foo = 123)

when you meant

 if ($foo == 123)

(or something like that).

gdbm store returned %d, errno %d, key "%s"
(S) A warning from the GDBM_File extension that a store failed.

gethostent not implemented
(F) Your C library apparently doesn‘t implement gethostent() , probably because if it did, it‘d feel
morally obligated to return every hostname on the Internet.

get{sock,peer}name() on closed fd
(W) You tried to get a socket or peer socket name on a closed socket. Did you forget to che
return value of your socket() call?

getpwnam returned invalid UIC %#o for user "%s"
(S) A warning peculiar to VMS. The call to sys$getuai underlying the getpwnam operator
returned an invalid UIC.

Glob not terminated
(F) The lexer saw a left angle bracket in a place where it was expecting a term, so it‘s looking f
corresponding right angle bracket, and not finding it. Chances are you left some needed pare
out earlier in the line, and you really meant a "less than".

Global symbol "%s" requires explicit package name
(F) You‘ve said "use strict vars", which indicates that all variables must either be lexically sc
(using "my"), or explicitly qualified to say which package the global variable is in (using "::").
18−Oct−1998 Version 5.005_02 393

perldiag Perl Programmers Reference Guide perldiag

 some

ated.

imple

 over
slated
some
s, or it

cause

odule,
ithout

caused

g like

 put a

y.

topped

mber.

hes:
goto must have label
(F) Unlike with "next" or "last", you‘re not allowed to goto an unspecified destination. See goto.

Had to create %s unexpectedly
(S) A routine asked for a symbol from a symbol table that ought to have existed already, but for
reason it didn‘t, and had to be created on an emergency basis to prevent a core dump.

Hash %%s missing the % in argument %d of %s()
(D) Really old Perl let you omit the % on hash names in some spots. This is now heavily deprec

Identifier too long
(F) Perl limits identifiers (names for variables, functions, etc.) to about 250 characters for s
names, and somewhat more for compound names (like $A::B). You‘ve exceeded Perl‘s limits.
Future versions of Perl are likely to eliminate these arbitrary limitations.

Ill−formed logical name |%s| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate
%ENV which violates the syntactic rules governing logical names. Because it cannot be tran
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as
software packages might directly modify logical name tables and introduce nonstandard name
may indicate that a logical name table has been corrupted.

Illegal character %s (carriage return)
(F) A carriage return character was found in the input. This is an error, and not a warning, be
carriage return characters can break multi−line strings, including here documents (e.g., print
<<EOF;).

Under Unix, this error is usually caused by executing Perl code — either the main program, a m
or an eval‘d string — that was transferred over a network connection from a non−Unix system w
properly converting the text file format.

Under systems that use something other than ‘\n’ to delimit lines of text, this error can also be
by reading Perl code from a file handle that is in binary mode (as set by the binmode operator).

In either case, the Perl code in question will probably need to be converted with somethin
s/\x0D\x0A?/\n/g before it can be executed.

Illegal division by zero
(F) You tried to divide a number by 0. Either something was wrong in your logic, or you need to
conditional in to guard against meaningless input.

Illegal modulus zero
(F) You tried to divide a number by 0 to get the remainder. Most numbers don‘t take to this kindl

Illegal octal digit
(F) You used an 8 or 9 in a octal number.

Illegal octal digit ignored
(W) You may have tried to use an 8 or 9 in a octal number. Interpretation of the octal number s
before the 8 or 9.

Illegal hex digit ignored
(W) You may have tried to use a character other than 0 − 9 or A − F in a hexadecimal nu
Interpretation of the hexadecimal number stopped before the illegal character.

Illegal switch in PERL5OPT: %s
(X) The PERL5OPT environment variable may only be used to set the following switc
−[DIMUdmw] .
394 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

l @. It
, and
icate a
eday

m is

dered
 error.

of

 value,

cture

2−bit

ss
ing this

fig.sh:

run

ximum
In string, @%s now must be written as \@%s
(F) It used to be that Perl would try to guess whether you wanted an array interpolated or a litera
did this when the string was first used at runtime. Now strings are parsed at compile time
ambiguous instances of @ must be disambiguated, either by prepending a backslash to ind
literal, or by declaring (or using) the array within the program before the string (lexically). (Som
it will simply assume that an unbackslashed @ interpolates an array.)

Insecure dependency in %s
(F) You tried to do something that the tainting mechanism didn‘t like. The tainting mechanis
turned on when you‘re running setuid or setgid, or when you specify −T to turn it on explicitly. The
tainting mechanism labels all data that‘s derived directly or indirectly from the user, who is consi
to be unworthy of your trust. If any such data is used in a "dangerous" operation, you get this
See perlsec for more information.

Insecure directory in %s
(F) You can‘t use system() , exec() , or a piped open in a setuid or setgid script if $ENV{PATH}
contains a directory that is writable by the world. See perlsec.

Insecure $ENV{%s} while running %s
(F) You can‘t use system() , exec() , or a piped open in a setuid or setgid script if any
$ENV{PATH}, $ENV{IFS}, $ENV{CDPATH}, $ENV{ENV} or $ENV{BASH_ENV} are derived
from data supplied (or potentially supplied) by the user. The script must set the path to a known
using trustworthy data. See perlsec.

Integer overflow in hex number
(S) The literal hex number you have specified is too big for your architecture. On a 32−bit archite
the largest hex literal is 0xFFFFFFFF.

Integer overflow in octal number
(S) The literal octal number you have specified is too big for your architecture. On a 3
architecture the largest octal literal is 037777777777.

Internal inconsistency in tracking vforks
(S) A warning peculiar to VMS. Perl keeps track of the number of times you‘ve called fork and
exec , to determine whether the current call to exec should affect the current script or a subproce
(see exec). Somehow, this count has become scrambled, so Perl is making a guess and treat
exec as a request to terminate the Perl script and execute the specified command.

internal disaster in regexp
(P) Something went badly wrong in the regular expression parser.

internal error: glob failed
(P) Something went wrong with the external program(s) used for glob and <*.c> . This may mean
that your csh (C shell) is broken. If so, you should change all of the csh−related variables in con
 If you have tcsh, make the variables refer to it as if it were csh (e.g.
full_csh=‘/usr/bin/tcsh’); otherwise, make them all empty (except that d_csh should be
‘undef’) so that Perl will think csh is missing. In either case, after editing config.sh,
./Configure −S and rebuild Perl.

internal urp in regexp at /%s/
(P) Something went badly awry in the regular expression parser.

invalid [] range in regexp
(F) The range specified in a character class had a minimum character greater than the ma
character. See perlre.
18−Oct−1998 Version 5.005_02 395

perldiag Perl Programmers Reference Guide perldiag

k

t

if you

f you

count

 your

 valid

r on a

the

perator
Invalid conversion in %s: "%s"
(W) Perl does not understand the given format conversion. See sprintf.

Invalid type in pack: ‘%s’
(F) The given character is not a valid pack type. See pack. (W) The given character is not a valid pac
type but used to be silently ignored.

Invalid type in unpack: ‘%s’
(F) The given character is not a valid unpack type. See unpack. (W) The given character is not a valid
unpack type but used to be silently ignored.

ioctl is not implemented
(F) Your machine apparently doesn‘t implement ioctl() , which is pretty strange for a machine tha
supports C.

junk on end of regexp
(P) The regular expression parser is confused.

Label not found for "last %s"
(F) You named a loop to break out of, but you‘re not currently in a loop of that name, not even
count where you were called from. See last.

Label not found for "next %s"
(F) You named a loop to continue, but you‘re not currently in a loop of that name, not even i
count where you were called from. See last.

Label not found for "redo %s"
(F) You named a loop to restart, but you‘re not currently in a loop of that name, not even if you
where you were called from. See last.

listen() on closed fd
(W) You tried to do a listen on a closed socket. Did you forget to check the return value of
socket() call? See listen.

Method for operation %s not found in package %s during blessing
(F) An attempt was made to specify an entry in an overloading table that doesn‘t resolve to a
subroutine. See overload.

Might be a runaway multi−line %s string starting on line %d
(S) An advisory indicating that the previous error may have been caused by a missing delimite
string or pattern, because it eventually ended earlier on the current line.

Misplaced _ in number
(W) An underline in a decimal constant wasn‘t on a 3−digit boundary.

Missing $ on loop variable
(F) Apparently you‘ve been programming in csh too much. Variables are always mentioned with the$
in Perl, unlike in the shells, where it can vary from one line to the next.

Missing comma after first argument to %s function
(F) While certain functions allow you to specify a filehandle or an "indirect object" before
argument list, this ain‘t one of them.

Missing operator before %s?
(S) This is an educated guess made in conjunction with the message "%s found where o
expected". Often the missing operator is a comma.
396 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

, you‘ll

"2 =

gative,

eculiar

having

his is

 are

,

t don‘t

owed to
ure, at
Missing right bracket
(F) The lexer counted more opening curly brackets (braces) than closing ones. As a general rule
find it‘s missing near the place you were last editing.

Modification of a read−only value attempted
(F) You tried, directly or indirectly, to change the value of a constant. You didn‘t, of course, try
1", because the compiler catches that. But an easy way to do the same thing is:

 sub mod { $_[0] = 1 }
 mod(2);

Another way is to assign to a substr() that‘s off the end of the string.

Modification of non−creatable array value attempted, subscript %d
(F) You tried to make an array value spring into existence, and the subscript was probably ne
even counting from end of the array backwards.

Modification of non−creatable hash value attempted, subscript "%s"
(P) You tried to make a hash value spring into existence, and it couldn‘t be created for some p
reason.

Module name must be constant
(F) Only a bare module name is allowed as the first argument to a "use".

msg%s not implemented
(F) You don‘t have System V message IPC on your system.

Multidimensional syntax %s not supported
(W) Multidimensional arrays aren‘t written like $foo[1,2,3]. They‘re written like
$foo[1][2][3], as in C.

Name "%s::%s" used only once: possible typo
(W) Typographical errors often show up as unique variable names. If you had a good reason for
a unique name, then just mention it again somehow to suppress the message. The use vars pragma
is provided for just this purpose.

Negative length
(F) You tried to do a read/write/send/recv operation with a buffer length that is less than 0. T
difficult to imagine.

nested *?+ in regexp
(F) You can‘t quantify a quantifier without intervening parentheses. So things like ** or +* or ?*
illegal.

Note, however, that the minimal matching quantifiers, *? , +?, and ?? appear to be nested quantifiers
but aren‘t. See perlre.

No #! line
(F) The setuid emulator requires that scripts have a well−formed #! line even on machines tha
support the #! construct.

No %s allowed while running setuid
(F) Certain operations are deemed to be too insecure for a setuid or setgid script to even be all
attempt. Generally speaking there will be another way to do what you want that is, if not sec
least securable. See perlsec.

No −e allowed in setuid scripts
(F) A setuid script can‘t be specified by the user.
18−Oct−1998 Version 5.005_02 397

perldiag Perl Programmers Reference Guide perldiag

tween

ce with
stem
stants
t
upport

t the
nd.

l
ment.
 up the

because

l
each

 or a
 for

n the

‘>’ at

 or a
dout.

rd
No comma allowed after %s
(F) A list operator that has a filehandle or "indirect object" is not allowed to have a comma be
that and the following arguments. Otherwise it‘d be just another one of the arguments.

One possible cause for this is that you expected to have imported a constant to your name spa
use or import while no such importing took place, it may for example be that your operating sy
does not support that particular constant. Hopefully you did use an explicit import list for the con
you expect to see, please see use and import. While an explicit import list would probably have caugh
this error earlier it naturally does not remedy the fact that your operating system still does not s
that constant. Maybe you have a typo in the constants of the symbol import list of use or import or in
the constant name at the line where this error was triggered?

No command into which to pipe on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘|’ a
end of the command line, so it doesn‘t know where you want to pipe the output from this comma

No DB::DB routine defined
(F) The currently executing code was compiled with the −d switch, but for some reason the perl5db.p
file (or some facsimile thereof) didn‘t define a routine to be called at the beginning of each state
Which is odd, because the file should have been required automatically, and should have blown
require if it didn‘t parse right.

No dbm on this machine
(P) This is counted as an internal error, because every machine should supply dbm nowadays,
Perl comes with SDBM. See SDBM_File.

No DBsub routine
(F) The currently executing code was compiled with the −d switch, but for some reason the perl5db.p
file (or some facsimile thereof) didn‘t define a DB::sub routine to be called at the beginning of
ordinary subroutine call.

No error file after 2> or 2>> on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘2>’
‘2>>’ on the command line, but can‘t find the name of the file to which to write data destined
stderr.

No input file after < on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘<’ o
command line, but can‘t find the name of the file from which to read data for stdin.

No output file after > on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a lone
the end of the command line, so it doesn‘t know where you wanted to redirect stdout.

No output file after > or >> on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘>’
‘>>’ on the command line, but can‘t find the name of the file to which to write data destined for st

No Perl script found in input
(F) You called perl −x , but no line was found in the file beginning with #! and containing the wo
"perl".

No setregid available
(F) Configure didn‘t find anything resembling the setregid() call for your system.
398 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

 index 0

 name.
 The

dle.

ference

dicates

s like

ing else

t don‘t

ing else

ference

nt to a
No setreuid available
(F) Configure didn‘t find anything resembling the setreuid() call for your system.

No space allowed after −I
(F) The argument to −I must follow the −I immediately with no intervening space.

No such array field
(F) You tried to access an array as a hash, but the field name used is not defined. The hash at
should map all valid field names to array indices for that to work.

No such field "%s" in variable %s of type %s
(F) You tried to access a field of a typed variable where the type does not know about the field
The field names are looked up in the %FIELDS hash in the type package at compile time.
%FIELDS hash is usually set up with the ‘fields’ pragma.

No such pipe open
(P) An error peculiar to VMS. The internal routine my_pclose() tried to close a pipe which hadn‘t
been opened. This should have been caught earlier as an attempt to close an unopened filehan

No such signal: SIG%s
(W) You specified a signal name as a subscript to %SIG that was not recognized. Say kill −l in
your shell to see the valid signal names on your system.

Not a CODE reference
(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine), but found a re
to something else instead. You can use the ref() function to find out what kind of ref it really was.
See also perlref.

Not a format reference
(F) I‘m not sure how you managed to generate a reference to an anonymous format, but this in
you did, and that it didn‘t exist.

Not a GLOB reference
(F) Perl was trying to evaluate a reference to a "typeglob" (that is, a symbol table entry that look
*foo), but found a reference to something else instead. You can use the ref() function to find out
what kind of ref it really was. See perlref.

Not a HASH reference
(F) Perl was trying to evaluate a reference to a hash value, but found a reference to someth
instead. You can use the ref() function to find out what kind of ref it really was. See perlref.

Not a perl script
(F) The setuid emulator requires that scripts have a well−formed #! line even on machines tha
support the #! construct. The line must mention perl.

Not a SCALAR reference
(F) Perl was trying to evaluate a reference to a scalar value, but found a reference to someth
instead. You can use the ref() function to find out what kind of ref it really was. See perlref.

Not a subroutine reference
(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine), but found a re
to something else instead. You can use the ref() function to find out what kind of ref it really was.
See also perlref.

Not a subroutine reference in overload table
(F) An attempt was made to specify an entry in an overloading table that doesn‘t somehow poi
valid subroutine. See overload.
18−Oct−1998 Version 5.005_02 399

perldiag Perl Programmers Reference Guide perldiag

ng else

current

o be

acters.
tion.

come in

his is

fined.
dler for

rser has
ple, if
Not an ARRAY reference
(F) Perl was trying to evaluate a reference to an array value, but found a reference to somethi
instead. You can use the ref() function to find out what kind of ref it really was. See perlref.

Not enough arguments for %s
(F) The function requires more arguments than you specified.

Not enough format arguments
(W) A format specified more picture fields than the next line supplied. See perlform.

Null filename used
(F) You can‘t require the null filename, especially because on many machines that means the
directory! See require.

Null picture in formline
(F) The first argument to formline must be a valid format picture specification. It was found t
empty, which probably means you supplied it an uninitialized value. See perlform.

NULL OP IN RUN
(P) Some internal routine called run() with a null opcode pointer.

Null realloc
(P) An attempt was made to realloc NULL.

NULL regexp argument
(P) The internal pattern matching routines blew it big time.

NULL regexp parameter
(P) The internal pattern matching routines are out of their gourd.

Number too long
(F) Perl limits the representation of decimal numbers in programs to about about 250 char
You‘ve exceeded that length. Future versions of Perl are likely to eliminate this arbitrary limita
In the meantime, try using scientific notation (e.g. "1e6" instead of "1_000_000").

Odd number of elements in hash assignment
(S) You specified an odd number of elements to initialize a hash, which is odd, because hashes
key/value pairs.

Offset outside string
(F) You tried to do a read/write/send/recv operation with an offset pointing outside the buffer. T
difficult to imagine. The sole exception to this is that sysread() ing past the buffer will extend the
buffer and zero pad the new area.

oops: oopsAV
(S) An internal warning that the grammar is screwed up.

oops: oopsHV
(S) An internal warning that the grammar is screwed up.

Operation ‘%s‘: no method found, %s
(F) An attempt was made to perform an overloaded operation for which no handler was de
While some handlers can be autogenerated in terms of other handlers, there is no default han
any operation, unless fallback overloading key is specified to be true. See overload.

Operator or semicolon missing before %s
(S) You used a variable or subroutine call where the parser was expecting an operator. The pa
assumed you really meant to use an operator, but this is highly likely to be incorrect. For exam
400 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

(or

mpiled.

(or
−time

ed by

k.

t.

asn‘t a
you say "*foo *foo" it will be interpreted as if you said "*foo * ‘foo‘".

Out of memory for yacc stack
(F) The yacc parser wanted to grow its stack so it could continue parsing, but realloc() wouldn‘t
give it more memory, virtual or otherwise.

Out of memory during request for %s
(X|F) The malloc() function returned 0, indicating there was insufficient remaining memory
virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on the way perl was co
By default it is not trappable. However, if compiled for this, Perl may use the contents of $^M as an
emergency pool after die() ing with this message. In this case the error is trappable once.

Out of memory during "large" request for %s
(F) The malloc() function returned 0, indicating there was insufficient remaining memory
virtual memory) to satisfy the request. However, the request was judged large enough (compile
default is 64K), so a possibility to shut down by trapping this error is granted.

Out of memory during ridiculously large request
(F) You can‘t allocate more than 2^31+"small amount" bytes. This error is most likely to be caus
a typo in the Perl program. e.g., $arr[time] instead of $arr[$time].

page overflow
(W) A single call to write() produced more lines than can fit on a page. See perlform.

panic: ck_grep
(P) Failed an internal consistency check trying to compile a grep.

panic: ck_split
(P) Failed an internal consistency check trying to compile a split.

panic: corrupt saved stack index
(P) The savestack was requested to restore more localized values than there are in the savestac

panic: die %s
(P) We popped the context stack to an eval context, and then discovered it wasn‘t an eval contex

panic: do_match
(P) The internal pp_match() routine was called with invalid operational data.

panic: do_split
(P) Something terrible went wrong in setting up for the split.

panic: do_subst
(P) The internal pp_subst() routine was called with invalid operational data.

panic: do_trans
(P) The internal do_trans() routine was called with invalid operational data.

panic: frexp
(P) The library function frexp() failed, making printf("%f") impossible.

panic: goto
(P) We popped the context stack to a context with the specified label, and then discovered it w
context we know how to do a goto in.

panic: INTERPCASEMOD
(P) The lexer got into a bad state at a case modifier.
18−Oct−1998 Version 5.005_02 401

perldiag Perl Programmers Reference Guide perldiag

t.

es and

es and

es and

es and

n.

asn‘t a
panic: INTERPCONCAT
(P) The lexer got into a bad state parsing a string with brackets.

panic: last
(P) We popped the context stack to a block context, and then discovered it wasn‘t a block contex

panic: leave_scope clearsv
(P) A writable lexical variable became read−only somehow within the scope.

panic: leave_scope inconsistency
(P) The savestack probably got out of sync. At least, there was an invalid enum on the top of it.

panic: malloc
(P) Something requested a negative number of bytes of malloc.

panic: mapstart
(P) The compiler is screwed up with respect to the map() function.

panic: null array
(P) One of the internal array routines was passed a null AV pointer.

panic: pad_alloc
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.

panic: pad_free curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.

panic: pad_free po
(P) An invalid scratch pad offset was detected internally.

panic: pad_reset curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.

panic: pad_sv po
(P) An invalid scratch pad offset was detected internally.

panic: pad_swipe curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.

panic: pad_swipe po
(P) An invalid scratch pad offset was detected internally.

panic: pp_iter
(P) The foreach iterator got called in a non−loop context frame.

panic: realloc
(P) Something requested a negative number of bytes of realloc.

panic: restartop
(P) Some internal routine requested a goto (or something like it), and didn‘t supply the destinatio

panic: return
(P) We popped the context stack to a subroutine or eval context, and then discovered it w
subroutine or eval context.
402 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

unning

a
what

n,

rs are
an the
panic: scan_num
(P) scan_num() got called on something that wasn‘t a number.

panic: sv_insert
(P) The sv_insert() routine was told to remove more string than there was string.

panic: top_env
(P) The compiler attempted to do a goto, or something weird like that.

panic: yylex
(P) The lexer got into a bad state while processing a case modifier.

Parentheses missing around "%s" list
(W) You said something like

 my $foo, $bar = @_;

when you meant

 my ($foo, $bar) = @_;

Remember that "my" and "local" bind closer than comma.

Perl %3.3f required—this is only version %s, stopped
(F) The module in question uses features of a version of Perl more recent than the currently r
version. How long has it been since you upgraded, anyway? See require.

Permission denied
(F) The setuid emulator in suidperl decided you were up to no good.

pid %d not a child
(W) A warning peculiar to VMS. Waitpid() was asked to wait for a process which isn‘t
subprocess of the current process. While this is fine from VMS’ perspective, it‘s probably not
you intended.

POSIX getpgrp can‘t take an argument
(F) Your C compiler uses POSIX getpgrp() , which takes no argument, unlike the BSD versio
which takes a pid.

Possible attempt to put comments in qw() list
(W) qw() lists contain items separated by whitespace; as with literal strings, comment characte
not ignored, but are instead treated as literal data. (You may have used different delimiters th
parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

 @list = qw(
a # a comment

 b # another comment
);

when you should have written this:

 @list = qw(
a

 b
);

If you really want comments, build your list the old−fashioned way, with quotes and commas:

 @list = (
 ’a’, # a comment
18−Oct−1998 Version 5.005_02 403

perldiag Perl Programmers Reference Guide perldiag

rate the
re also

hem

nable
te got

 open
erator

w.

.

n || or

ifferent

ich can
l string

flow.
 ’b’, # another comment
);

Possible attempt to separate words with commas
(W) qw() lists contain items separated by whitespace; therefore commas aren‘t needed to sepa
items. (You may have used different delimiters than the parentheses shown here; braces a
frequently used.)

You probably wrote something like this:

 qw! a, b, c !;

which puts literal commas into some of the list items. Write it without commas if you don‘t want t
to appear in your data:

 qw! a b c !;

Possible memory corruption: %s overflowed 3rd argument
(F) An ioctl() or fcntl() returned more than Perl was bargaining for. Perl guesses a reaso
buffer size, but puts a sentinel byte at the end of the buffer just in case. This sentinel by
clobbered, and Perl assumes that memory is now corrupted. See ioctl.

Precedence problem: open %s should be open(%s)
(S) The old irregular construct

 open FOO || die;

is now misinterpreted as

 open(FOO || die);

because of the strict regularization of Perl 5‘s grammar into unary and list operators. (The old
was a little of both.) You must put parentheses around the filehandle, or use the new "or" op
instead of "||".

print on closed filehandle %s
(W) The filehandle you‘re printing on got itself closed sometime before now. Check your logic flo

printf on closed filehandle %s
(W) The filehandle you‘re writing to got itself closed sometime before now. Check your logic flow

Probable precedence problem on %s
(W) The compiler found a bareword where it expected a conditional, which often indicates that a
&& was parsed as part of the last argument of the previous construct, for example:

 open FOO || die;

Prototype mismatch: %s vs %s
(S) The subroutine being declared or defined had previously been declared or defined with a d
function prototype.

Range iterator outside integer range
(F) One (or both) of the numeric arguments to the range operator ".." are outside the range wh
be represented by integers internally. One possible workaround is to force Perl to use magica
increment by prepending "0" to your numbers.

Read on closed filehandle <%s>
(W) The filehandle you‘re reading from got itself closed sometime before now. Check your logic
404 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

Perl,

 your

bably

nts (for
eant to

han

 string.
 up.

ltiple

avoid

e, and
ts to
g (for

lly it‘s
Reallocation too large: %lx
(F) You can‘t allocate more than 64K on an MS−DOS machine.

Recompile perl with −DDEBUGGING to use −D switch
(F) You can‘t use the −D option unless the code to produce the desired output is compiled into
which entails some overhead, which is why it‘s currently left out of your copy.

Recursive inheritance detected in package ‘%s’
(F) More than 100 levels of inheritance were used. Probably indicates an unintended loop in
inheritance hierarchy.

Recursive inheritance detected while looking for method ‘%s’ in package ‘%s’
(F) More than 100 levels of inheritance were encountered while invoking a method. Pro
indicates an unintended loop in your inheritance hierarchy.

Reference found where even−sized list expected
(W) You gave a single reference where Perl was expecting a list with an even number of eleme
assignment to a hash). This usually means that you used the anon hash constructor when you m
use parens. In any case, a hash requires key/value pairs.

 %hash = { one => 1, two => 2, }; # WRONG
 %hash = [qw/ an anon array /]; # WRONG
 %hash = (one => 1, two => 2,); # right
 %hash = qw(one 1 two 2); # also fine

Reference miscount in sv_replace()
(W) The internal sv_replace() function was handed a new SV with a reference count of other t
1.

regexp *+ operand could be empty
(F) The part of the regexp subject to either the * or + quantifier could match an empty string.

regexp memory corruption
(P) The regular expression engine got confused by what the regular expression compiler gave it.

regexp out of space
(P) A "can‘t happen" error, because safemalloc() should have caught it earlier.

regexp too big
(F) The current implementation of regular expressions uses shorts as address offsets within a
Unfortunately this means that if the regular expression compiles to longer than 32767, it‘ll blow
Usually when you want a regular expression this big, there is a better way to do it with mu
statements. See perlre.

Reversed %s= operator
(W) You wrote your assignment operator backwards. The = must always comes last, to
ambiguity with subsequent unary operators.

Runaway format
(F) Your format contained the ~~ repeat−until−blank sequence, but it produced 200 lines at onc
the 200th line looked exactly like the 199th line. Apparently you didn‘t arrange for the argumen
exhaust themselves, either by using ^ instead of @ (for scalar variables), or by shifting or poppin
array variables). See perlform.

Scalar value @%s[%s] better written as $%s[%s]
(W) You‘ve used an array slice (indicated by @) to select a single element of an array. Genera
better to ask for a scalar value (indicated by $). The difference is that $foo[&bar] always behaves
like a scalar, both when assigning to it and when evaluating its argument, while @foo[&bar]
18−Oct−1998 Version 5.005_02 405

perldiag Perl Programmers Reference Guide perldiag

 weird

ok into
. See

lly it‘s

 weird

ok into
. See

oesn‘t

ting

r

rked

 other

.

edded

 written.
behaves like a list when you assign to it, and provides a list context to its subscript, which can do
things if you‘re expecting only one subscript.

On the other hand, if you were actually hoping to treat the array element as a list, you need to lo
how references work, because Perl will not magically convert between scalars and lists for you
perlref.

Scalar value @%s{%s} better written as $%s{%s}
(W) You‘ve used a hash slice (indicated by @) to select a single element of a hash. Genera
better to ask for a scalar value (indicated by $). The difference is that $foo{&bar} always behaves
like a scalar, both when assigning to it and when evaluating its argument, while @foo{&bar}
behaves like a list when you assign to it, and provides a list context to its subscript, which can do
things if you‘re expecting only one subscript.

On the other hand, if you were actually hoping to treat the hash element as a list, you need to lo
how references work, because Perl will not magically convert between scalars and lists for you
perlref.

Script is not setuid/setgid in suidperl
(F) Oddly, the suidperl program was invoked on a script without a setuid or setgid bit set. This d
make much sense.

Search pattern not terminated
(F) The lexer couldn‘t find the final delimiter of a // or m{} construct. Remember that bracke
delimiters count nesting level. Missing the leading $ from a variable $m may cause this error.

%sseek() on unopened file
(W) You tried to use the seek() or sysseek() function on a filehandle that was either neve
opened or has since been closed.

select not implemented
(F) This machine doesn‘t implement the select() system call.

sem%s not implemented
(F) You don‘t have System V semaphore IPC on your system.

semi−panic: attempt to dup freed string
(S) The internal newSVsv() routine was called to duplicate a scalar that had previously been ma
as free.

Semicolon seems to be missing
(W) A nearby syntax error was probably caused by a missing semicolon, or possibly some
missing operator, such as a comma.

Send on closed socket
(W) The filehandle you‘re sending to got itself closed sometime before now. Check your logic flow

Sequence (? incomplete
(F) A regular expression ended with an incomplete extension (?. See perlre.

Sequence (?#... not terminated
(F) A regular expression comment must be terminated by a closing parenthesis. Emb
parentheses aren‘t allowed. See perlre.

Sequence (?%s...) not implemented
(F) A proposed regular expression extension has the character reserved but has not yet been
See perlre.
406 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

 script
nment

erver

 have

rong

was a
Sequence (?%s...) not recognized
(F) You used a regular expression extension that doesn‘t make sense. See perlre.

Server error
Also known as "500 Server error".

This is a CGI error, not a Perl error.

You need to make sure your script is executable, is accessible by the user CGI is running the
under (which is probably not the user account you tested it under), does not rely on any enviro
variables (like PATH) from the user it isn‘t running under, and isn‘t in a location where the CGI s
can‘t find it, basically, more or less. Please see the following for more information:

http://www.perl.com/perl/faq/idiots−guide.html
http://www.perl.com/perl/faq/perl−cgi−faq.html
ftp://rtfm.mit.edu/pub/usenet/news.answers/www/cgi−faq
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://www−genome.wi.mit.edu/WWW/faqs/www−security−faq.html

setegid() not implemented
(F) You tried to assign to $), and your operating system doesn‘t support the setegid() system call
(or equivalent), or at least Configure didn‘t think so.

seteuid() not implemented
(F) You tried to assign to $>, and your operating system doesn‘t support the seteuid() system call
(or equivalent), or at least Configure didn‘t think so.

setrgid() not implemented
(F) You tried to assign to $(, and your operating system doesn‘t support the setrgid() system call
(or equivalent), or at least Configure didn‘t think so.

setruid() not implemented
(F) You tried to assign to $<, and your operating system doesn‘t support the setruid() system call
(or equivalent), or at least Configure didn‘t think so.

Setuid/gid script is writable by world
(F) The setuid emulator won‘t run a script that is writable by the world, because the world might
written on it already.

shm%s not implemented
(F) You don‘t have System V shared memory IPC on your system.

shutdown() on closed fd
(W) You tried to do a shutdown on a closed socket. Seems a bit superfluous.

SIG%s handler "%s" not defined
(W) The signal handler named in %SIG doesn‘t, in fact, exist. Perhaps you put it into the w
package?

sort is now a reserved word
(F) An ancient error message that almost nobody ever runs into anymore. But before sort
keyword, people sometimes used it as a filehandle.

Sort subroutine didn‘t return a numeric value
(F) A sort comparison routine must return a number. You probably blew it by not using <=> or cmp,
or by not using them correctly. See sort.
18−Oct−1998 Version 5.005_02 407

perldiag Perl Programmers Reference Guide perldiag

t. See

 are

er

use

ver be

mes
tion in

at

ting

te

rgument

e

Sort subroutine didn‘t return single value
(F) A sort comparison subroutine may not return a list value with more or less than one elemen
sort.

Split loop
(P) The split was looping infinitely. (Obviously, a split shouldn‘t iterate more times than there
characters of input, which is what happened.) See split.

Stat on unopened file <%s>
(W) You tried to use the stat() function (or an equivalent file test) on a filehandle that was eith
never opened or has since been closed.

Statement unlikely to be reached
(W) You did an exec() with some statement after it other than a die() . This is almost always an
error, because exec() never returns unless there was a failure. You probably wanted to
system() instead, which does return. To suppress this warning, put the exec() in a block by itself.

Stub found while resolving method ‘%s’ overloading ‘%s’ in package ‘%s’
(P) Overloading resolution over @ISA tree may be broken by importation stubs. Stubs should ne
implicitely created, but explicit calls to can may break this.

Subroutine %s redefined
(W) You redefined a subroutine. To suppress this warning, say

 {
local $^W = 0;
eval "sub name { ... }";

 }

Substitution loop
(P) The substitution was looping infinitely. (Obviously, a substitution shouldn‘t iterate more ti
than there are characters of input, which is what happened.) See the discussion of substitu
Quote and Quote−like Operators in perlop.

Substitution pattern not terminated
(F) The lexer couldn‘t find the interior delimiter of a s/// or s{}{} construct. Remember th
bracketing delimiters count nesting level. Missing the leading $ from variable $s may cause this error.

Substitution replacement not terminated
(F) The lexer couldn‘t find the final delimiter of a s/// or s{}{} construct. Remember that bracke
delimiters count nesting level. Missing the leading $ from variable $s may cause this error.

substr outside of string
(S),(W) You tried to reference a substr() that pointed outside of a string. That is, the absolu
value of the offset was larger than the length of the string. See substr. This warning is mandatory if
substr is used in an lvalue context (as the left hand side of an assignment or as a subroutine a
for example).

suidperl is no longer needed since %s
(F) Your Perl was compiled with −DSETUID_SCRIPTS_ARE_SECURE_NOW, but a version of th
setuid emulator somehow got run anyway.

syntax error
(F) Probably means you had a syntax error. Common reasons include:

 A keyword is misspelled.
408 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

ation.
ine
 Perl is
ce in a

ersion

e, or

tem
ut be

.

oing

ince

 also

ay

module

ure.

or
st that
 A semicolon is missing.
 A comma is missing.
 An opening or closing parenthesis is missing.
 An opening or closing brace is missing.
 A closing quote is missing.

Often there will be another error message associated with the syntax error giving more inform
(Sometimes it helps to turn on −w.) The error message itself often tells you where it was in the l
when it decided to give up. Sometimes the actual error is several tokens before this, because
good at understanding random input. Occasionally the line number may be misleading, and on
blue moon the only way to figure out what‘s triggering the error is to call perl −c repeatedly,
chopping away half the program each time to see if the error went away. Sort of the cybernetic v
of 20 questions.

syntax error at line %d: ‘%s’ unexpected
(A) You‘ve accidentally run your script through the Bourne shell instead of Perl. Check the #! lin
manually feed your script into Perl yourself.

System V %s is not implemented on this machine
(F) You tried to do something with a function beginning with "sem", "shm", or "msg" but that Sys
V IPC is not implemented in your machine. In some machines the functionality can exist b
unconfigured. Consult your system support.

Syswrite on closed filehandle
(W) The filehandle you‘re writing to got itself closed sometime before now. Check your logic flow

Target of goto is too deeply nested
(F) You tried to use goto to reach a label that was too deeply nested for Perl to reach. Perl is d
you a favor by refusing.

tell() on unopened file
(W) You tried to use the tell() function on a filehandle that was either never opened or has s
been closed.

Test on unopened file <%s>
(W) You tried to invoke a file test operator on a filehandle that isn‘t open. Check your logic. See
−X.

That use of $[is unsupported
(F) Assignment to $[is now strictly circumscribed, and interpreted as a compiler directive. You m
say only one of

 $[= 0;
 $[= 1;
 ...
 local $[= 0;
 local $[= 1;
 ...

This is to prevent the problem of one module changing the array base out from under another
inadvertently. See $[.

The %s function is unimplemented
The function indicated isn‘t implemented on this architecture, according to the probings of Config

The crypt() function is unimplemented due to excessive paranoia
(F) Configure couldn‘t find the crypt() function on your machine, probably because your vend
didn‘t supply it, probably because they think the U.S. Government thinks it‘s a secret, or at lea
they will continue to pretend that it is. And if you quote me on that, I will deny it.
18−Oct−1998 Version 5.005_02 409

perldiag Perl Programmers Reference Guide perldiag

ote to
d.

t), this
:

ly

he

st be

 Perl,
The stat preceding −l _ wasn‘t an lstat
(F) It makes no sense to test the current stat buffer for symbolic linkhood if the last stat that wr
the stat buffer already went past the symlink to get to the real file. Use an actual filename instea

times not implemented
(F) Your version of the C library apparently doesn‘t do times() . I suspect you‘re not running on
Unix.

Too few args to syscall
(F) There has to be at least one argument to syscall() to specify the system call to call, silly dilly.

Too late for "−T" option
(X) The #! line (or local equivalent) in a Perl script contains the −T option, but Perl was not invoked
with −T in its command line. This is an error because, by the time Perl discovers a −T in a script, it‘s
too late to properly taint everything from the environment. So Perl gives up.

If the Perl script is being executed as a command using the #! mechanism (or its local equivalen
error can usually be fixed by editing the #! line so that the −T option is a part of Perl‘s first argument
e.g. change perl −n −T to perl −T −n .

If the Perl script is being executed as perl scriptname , then the −T option must appear on the
command line: perl −T scriptname .

Too late for "−%s" option
(X) The #! line (or local equivalent) in a Perl script contains the −M or −m option. This is an error
because −M and −m options are not intended for use inside scripts. Use the use pragma instead.

Too many (‘s
Too many)‘s

(A) You‘ve accidentally run your script through csh instead of Perl. Check the #! line, or manual
feed your script into Perl yourself.

Too many args to syscall
(F) Perl supports a maximum of only 14 args to syscall() .

Too many arguments for %s
(F) The function requires fewer arguments than you specified.

trailing \ in regexp
(F) The regular expression ends with an unbackslashed backslash. Backslash it. See perlre.

Transliteration pattern not terminated
(F) The lexer couldn‘t find the interior delimiter of a tr/// or tr[][] or y/// or y[][] construct. Missing t
leading $ from variables $tr or $y may cause this error.

Transliteration replacement not terminated
(F) The lexer couldn‘t find the final delimiter of a tr/// or tr[][] construct.

truncate not implemented
(F) Your machine doesn‘t implement a file truncation mechanism that Configure knows about.

Type of arg %d to %s must be %s (not %s)
(F) This function requires the argument in that position to be of a certain type. Arrays mu
@NAME or @{EXPR}. Hashes must be %NAME or %{EXPR}. No implicit dereferencing is
allowed—use the {EXPR} forms as an explicit dereference. See perlref.

umask: argument is missing initial 0
(W) A umask of 222 is incorrect. It should be 0222, because octal literals always start with 0 in
as in C.
410 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

sions

ed and

zed.

ed and

kage?

 been

et. See

bably

ser, the
umask not implemented
(F) Your machine doesn‘t implement the umask function and you tried to use it to restrict permis
for yourself (EXPR & 0700).

Unable to create sub named "%s"
(F) You attempted to create or access a subroutine with an illegal name.

Unbalanced context: %d more PUSHes than POPs
(W) The exit code detected an internal inconsistency in how many execution contexts were enter
left.

Unbalanced saves: %d more saves than restores
(W) The exit code detected an internal inconsistency in how many values were temporarily locali

Unbalanced scopes: %d more ENTERs than LEAVEs
(W) The exit code detected an internal inconsistency in how many blocks were entered and left.

Unbalanced tmps: %d more allocs than frees
(W) The exit code detected an internal inconsistency in how many mortal scalars were allocat
freed.

Undefined format "%s" called
(F) The format indicated doesn‘t seem to exist. Perhaps it‘s really in another package? See perlform.

Undefined sort subroutine "%s" called
(F) The sort comparison routine specified doesn‘t seem to exist. Perhaps it‘s in a different pac
See sort.

Undefined subroutine &%s called
(F) The subroutine indicated hasn‘t been defined, or if it was, it has since been undefined.

Undefined subroutine called
(F) The anonymous subroutine you‘re trying to call hasn‘t been defined, or if it was, it has since
undefined.

Undefined subroutine in sort
(F) The sort comparison routine specified is declared but doesn‘t seem to have been defined y
sort.

Undefined top format "%s" called
(F) The format indicated doesn‘t seem to exist. Perhaps it‘s really in another package? See perlform.

Undefined value assigned to typeglob
(W) An undefined value was assigned to a typeglob, a la *foo = undef . This does nothing. It‘s
possible that you really mean undef *foo .

unexec of %s into %s failed!
(F) The unexec() routine failed for some reason. See your local FSF representative, who pro
put it there in the first place.

Unknown BYTEORDER
(F) There are no byte−swapping functions for a machine with this byte order.

unmatched () in regexp
(F) Unbackslashed parentheses must always be balanced in regular expressions. If you‘re a vi u
% key is valuable for finding the matching parenthesis. See perlre.
18−Oct−1998 Version 5.005_02 411

perldiag Perl Programmers Reference Guide perldiag

obably
e place

et in a

 such a
it as a

 eval).
.

e #!

e the

ome of

esn‘t

figure

or the
ntheses
Unmatched right bracket
(F) The lexer counted more closing curly brackets (braces) than opening ones, so you‘re pr
missing an opening bracket. As a general rule, you‘ll find the missing one (so to speak) near th
you were last editing.

unmatched [] in regexp
(F) The brackets around a character class must match. If you wish to include a closing brack
character class, backslash it or put it first. See perlre.

Unquoted string "%s" may clash with future reserved word
(W) You used a bareword that might someday be claimed as a reserved word. It‘s best to put
word in quotes, or capitalize it somehow, or insert an underbar into it. You might also declare
subroutine.

Unrecognized character %s
(F) The Perl parser has no idea what to do with the specified character in your Perl script (or
Perhaps you tried to run a compressed script, a binary program, or a directory as a Perl program

Unrecognized signal name "%s"
(F) You specified a signal name to the kill() function that was not recognized. Say kill −l in
your shell to see the valid signal names on your system.

Unrecognized switch: −%s (−h will show valid options)
(F) You specified an illegal option to Perl. Don‘t do that. (If you think you didn‘t do that, check th
line to see if it‘s supplying the bad switch on your behalf.)

Unsuccessful %s on filename containing newline
(W) A file operation was attempted on a filename, and that operation failed, PROBABLY becaus
filename contained a newline, PROBABLY because you forgot to chop() or chomp() it off. See
chomp.

Unsupported directory function "%s" called
(F) Your machine doesn‘t support opendir() and readdir() .

Unsupported function fork
(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors of Perl executables, s
which may support fork, some not. Try changing the name you call Perl by to perl_ , perl__ , and
so on.

Unsupported function %s
(F) This machine doesn‘t implement the indicated function, apparently. At least, Configure do
think so.

Unsupported socket function "%s" called
(F) Your machine doesn‘t support the Berkeley socket mechanism, or at least that‘s what Con
thought.

Unterminated <> operator
(F) The lexer saw a left angle bracket in a place where it was expecting a term, so it‘s looking f
corresponding right angle bracket, and not finding it. Chances are you left some needed pare
out earlier in the line, and you really meant a "less than".

Use of "$$<digit " to mean "${$}<digit " is deprecated
(D) Perl versions before 5.004 misinterpreted any type marker followed by "$" and a digit. For
example, "$$0" was incorrectly taken to mean "${$}0" instead of "${$0}". This bug is (mostly)
fixed in Perl 5.004.
412 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

t two

 And

less

there‘s

as the

etter

the
s (e.g.

, as an

r old

ord, so
e, or
y either

ter way

 0, but
However, the developers of Perl 5.004 could not fix this bug completely, because at leas
widely−used modules depend on the old meaning of "$$0" in a string. So Perl 5.004 still interprets
"$$<digit " in the old (broken) way inside strings; but it generates this message as a warning.
in Perl 5.005, this special treatment will cease.

Use of $# is deprecated
(D) This was an ill−advised attempt to emulate a poorly defined awk feature. Use an explicit
printf() or sprintf() instead.

Use of $* is deprecated
(D) This variable magically turned on multi−line pattern matching, both for you and for any luck
subroutine that you happen to call. You should use the new //m and //s modifiers now to do that
without the dangerous action−at−a−distance effects of $*.

Use of %s in printf format not supported
(F) You attempted to use a feature of printf that is accessible from only C. This usually means
a better way to do it in Perl.

Use of bare << to mean <<"" is deprecated
(D) You are now encouraged to use the explicitly quoted form if you wish to use an empty line
terminator of the here−document.

Use of implicit split to @_ is deprecated
(D) It makes a lot of work for the compiler when you clobber a subroutine‘s argument list, so it‘s b
if you assign the results of a split() explicitly to an array (or list).

Use of inherited AUTOLOAD for non−method %s() is deprecated
(D) As an (ahem) accidental feature, AUTOLOAD subroutines are looked up as methods (using
@ISA hierarchy) even when the subroutines to be autoloaded were called as plain function
Foo::bar()), not as methods (e.g. Foo−>bar() or $obj−>bar()).

This bug will be rectified in Perl 5.005, which will use method lookup only for methods’ AUTOLOADs.
 However, there is a significant base of existing code that may be using the old behavior. So
interim step, Perl 5.004 issues an optional warning when non−methods use inherited AUTOLOADs.

The simple rule is: Inheritance will not work when autoloading non−methods. The simple fix fo
code is: In any module that used to depend on inheriting AUTOLOAD for non−methods from a base
class named BaseClass , execute *AUTOLOAD = \&BaseClass::AUTOLOAD during startup.

In code that currently says use AutoLoader; @ISA = qw(AutoLoader); you should
remove AutoLoader from @ISA and change use AutoLoader; to use AutoLoader
‘AUTOLOAD‘; .

Use of reserved word "%s" is deprecated
(D) The indicated bareword is a reserved word. Future versions of perl may use it as a keyw
you‘re better off either explicitly quoting the word in a manner appropriate for its context of us
using a different name altogether. The warning can be suppressed for subroutine names b
adding a & prefix, or using a package qualifier, e.g. &our() , or Foo::our() .

Use of %s is deprecated
(D) The construct indicated is no longer recommended for use, generally because there‘s a bet
to do it, and also because the old way has bad side effects.

Use of uninitialized value
(W) An undefined value was used as if it were already defined. It was interpreted as a "" or a
maybe it was a mistake. To suppress this warning assign an initial value to your variables.
18−Oct−1998 Version 5.005_02 413

perldiag Perl Programmers Reference Guide perldiag

, such
erator.
 way
thon

ould be

when a
, which

itional
itional

 was
tine) is

f your

r
 in the

most
lled or
le as it

t you

 named
Useless use of "re" pragma
(W) You did use re; without any arguments. That isn‘t very useful.

Useless use of %s in void context
(W) You did something without a side effect in a context that does nothing with the return value
as a statement that doesn‘t return a value from a block, or the left side of a scalar comma op
Very often this points not to stupidity on your part, but a failure of Perl to parse your program the
you thought it would. For example, you‘d get this if you mixed up your C precedence with Py
precedence and said

 $one, $two = 1, 2;

when you meant to say

 ($one, $two) = (1, 2);

Another common error is to use ordinary parentheses to construct a list reference when you sh
using square or curly brackets, for example, if you say

 $array = (1,2);

when you should have said

 $array = [1,2];

The square brackets explicitly turn a list value into a scalar value, while parentheses do not. So
parenthesized list is evaluated in a scalar context, the comma is treated like C‘s comma operator
throws away the left argument, which is not what you want. See perlref for more on this.

untie attempted while %d inner references still exist
(W) A copy of the object returned from tie (or tied) was still valid when untie was called.

Value of %s can be "0"; test with defined()
(W) In a conditional expression, you used <HANDLE, <* (glob), each() , or readdir() as a
boolean value. Each of these constructs can return a value of "0"; that would make the cond
expression false, which is probably not what you intended. When using these constructs in cond
expressions, test their values with the defined operator.

Variable "%s" is not imported%s
(F) While "use strict" in effect, you referred to a global variable that you apparently thought
imported from another module, because something else of the same name (usually a subrou
exported by that module. It usually means you put the wrong funny character on the front o
variable.

Variable "%s" may be unavailable
(W) An inner (nested) anonymous subroutine is inside a named subroutine, and outside that is anothe
subroutine; and the anonymous (innermost) subroutine is referencing a lexical variable defined
outermost subroutine. For example:

 sub outermost { my $a; sub middle { sub { $a } } }

If the anonymous subroutine is called or referenced (directly or indirectly) from the outer
subroutine, it will share the variable as you would expect. But if the anonymous subroutine is ca
referenced when the outermost subroutine is not active, it will see the value of the shared variab
was before and during the *first* call to the outermost subroutine, which is probably not wha
want.

In these circumstances, it is usually best to make the middle subroutine anonymous, using the sub {}
syntax. Perl has specific support for shared variables in nested anonymous subroutines; a
subroutine in between interferes with this feature.
414 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

ter

ble as
o the
lue for

lf, then

lled or

ly

_ALL
r your
ettings.

ill use,
ssage

d also
ion has
Variable "%s" will not stay shared
(W) An inner (nested) named subroutine is referencing a lexical variable defined in an ou
subroutine.

When the inner subroutine is called, it will probably see the value of the outer subroutine‘s varia
it was before and during the *first* call to the outer subroutine; in this case, after the first call t
outer subroutine is complete, the inner and outer subroutines will no longer share a common va
the variable. In other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a lexical variable outside itse
the outer and inner subroutines will never share the given variable.

This problem can usually be solved by making the inner subroutine anonymous, using the sub {}
syntax. When inner anonymous subs that reference variables in outer subroutines are ca
referenced, they are automatically rebound to the current values of such variables.

Variable syntax
(A) You‘ve accidentally run your script through csh instead of Perl. Check the #! line, or manual
feed your script into Perl yourself.

perl: warning: Setting locale failed.
(S) The whole warning message will look something like:

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
 LC_ALL = "En_US",
 LANG = (unset)
 are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

Exactly what were the failed locale settings varies. In the above the settings were that the LC
was "En_US" and the LANG had no value. This error means that Perl detected that you and/o
system administrator have set up the so−called variable system but Perl could not use those s
This was not dead serious, fortunately: there is a "default locale" called "C" that Perl can and w
the script will be run. Before you really fix the problem, however, you will get the same error me
each time you run Perl. How to really fix the problem can be found in perllocale section LOCALE
PROBLEMS.

Warning: something‘s wrong
(W) You passed warn() an empty string (the equivalent of warn "") or you called it with no args
and $_ was empty.

Warning: unable to close filehandle %s properly
(S) The implicit close() done by an open() got an error indication on the close() . This usually
indicates your file system ran out of disk space.

Warning: Use of "%s" without parentheses is ambiguous
(S) You wrote a unary operator followed by something that looks like a binary operator that coul
have been interpreted as a term or unary operator. For instance, if you know that the rand funct
a default argument of 1.0, and you write

 rand + 5;

you may THINK you wrote the same thing as

 rand() + 5;

but in actual fact, you got

 rand(+5);
18−Oct−1998 Version 5.005_02 415

perldiag Perl Programmers Reference Guide perldiag

.

 being

being

st any

d your
ript in

routine
ent is

 value

fathered
cause
.

 was
mer,

d to
e other,
two
So put in parentheses to say what you really mean.

Write on closed filehandle
(W) The filehandle you‘re writing to got itself closed sometime before now. Check your logic flow

X outside of string
(F) You had a pack template that specified a relative position before the beginning of the string
unpacked. See pack.

x outside of string
(F) You had a pack template that specified a relative position after the end of the string
unpacked. See pack.

Xsub "%s" called in sort
(F) The use of an external subroutine as a sort comparison is not yet supported.

Xsub called in sort
(F) The use of an external subroutine as a sort comparison is not yet supported.

You can‘t use −l on a filehandle
(F) A filehandle represents an opened file, and when you opened the file it already went pa
symlink you are presumably trying to look for. Use a filename instead.

YOU HAVEN‘T DISABLED SET−ID SCRIPTS IN THE KERNEL YET!
(F) And you probably never will, because you probably don‘t have the sources to your kernel, an
vendor probably doesn‘t give a rip about what you want. Your best bet is to use the wrapsuid sc
the eg directory to put a setuid C wrapper around your script.

You need to quote "%s"
(W) You assigned a bareword as a signal handler name. Unfortunately, you already have a sub
of that name declared, which means that Perl 5 will try to call the subroutine when the assignm
executed, which is probably not what you want. (If it IS what you want, put an & in front.)

[gs]etsockopt() on closed fd
(W) You tried to get or set a socket option on a closed socket. Did you forget to check the return
of your socket() call? See getsockopt.

\1 better written as $1
(W) Outside of patterns, backreferences live on as variables. The use of backslashes is grand
on the right−hand side of a substitution, but stylistically it‘s better to use the variable form be
other Perl programmers will expect it, and it works better if there are more than 9 backreferences

‘|’ and ‘<’ may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and found that STDIN
a pipe, and that you also tried to redirect STDIN using ‘<’. Only one STDIN stream to a custo
please.

‘|’ and ‘>’ may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and thinks you trie
redirect stdout both to a file and into a pipe to another command. You need to choose one or th
though nothing‘s stopping you from piping into a program or Perl script which ‘splits’ output into
streams, such as

 open(OUT,">$ARGV[0]") or die "Can’t write to $ARGV[0]: $!";
 while (<STDIN>) {
 print;
 print OUT;
 }
 close OUT;
416 Version 5.005_02 18−Oct−1998

perldiag Perl Programmers Reference Guide perldiag

hould

,
. See

ce. It
ers, see
Got an error from DosAllocMem
(P) An error peculiar to OS/2. Most probably you‘re using an obsolete version of Perl, and this s
not happen anyway.

Malformed PERLLIB_PREFIX
(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

 prefix1;prefix2

or

 prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix of a builtin library search path
prefix2 is substituted. The error may appear if components are not found, or are too long
"PERLLIB_PREFIX" in README.os2.

PERL_SH_DIR too long
(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find the sh −shell in. See
"PERL_SH_DIR" in README.os2.

Process terminated by SIG%s
(W) This is a standard message issued by OS/2 applications, while *nix applications die in silen
is considered a feature of the OS/2 port. One can easily disable this by appropriate sighandl
Signals in perlipc. See also "Process terminated by SIGTERM/SIGINT" in README.os2.
18−Oct−1998 Version 5.005_02 417

perlform Perl Programmers Reference Guide perlform

ou code
any

ed from

an‘s

y point in
e apart
 same
 given
amed

They

which

e line.
ind of
 field;
eld is
 left
ated.

cify a
ains a
nting

ssions
 context
ressions
the first
onding
ple "#"

ns to

 out if
bitrary
NAME
perlform − Perl formats

DESCRIPTION
Perl has a mechanism to help you generate simple reports and charts. To facilitate this, Perl helps y
up your output page close to how it will look when it‘s printed. It can keep track of things like how m
lines are on a page, what page you‘re on, when to print page headers, etc. Keywords are borrow
FORTRAN: format() to declare and write() to execute; see their entries in perlfunc. Fortunately, the
layout is much more legible, more like BASIC‘s PRINT USING statement. Think of it as a poor m
nroff(1).

Formats, like packages and subroutines, are declared rather than executed, so they may occur at an
your program. (Usually it‘s best to keep them all together though.) They have their own namespac
from all the other "types" in Perl. This means that if you have a function named "Foo", it is not the
thing as having a format named "Foo". However, the default name for the format associated with a
filehandle is the same as the name of the filehandle. Thus, the default format for STDOUT is n
"STDOUT", and the default format for filehandle TEMP is named "TEMP". They just look the same.
aren‘t.

Output record formats are declared as follows:

 format NAME =
 FORMLIST
 .

If name is omitted, format "STDOUT" is defined. FORMLIST consists of a sequence of lines, each of
may be one of three types:

1. A comment, indicated by putting a ‘#’ in the first column.

2. A "picture" line giving the format for one output line.

3. An argument line supplying values to plug into the previous picture line.

Picture lines are printed exactly as they look, except for certain fields that substitute values into th
Each field in a picture line starts with either "@" (at) or "^" (caret). These lines do not undergo any k
variable interpolation. The at field (not to be confused with the array marker @) is the normal kind of
the other kind, caret fields, are used to do rudimentary multi−line text block filling. The length of the fi
supplied by padding out the field with multiple "<", ">", or "|" characters to specify, respectively,
justification, right justification, or centering. If the variable would exceed the width specified, it is trunc

As an alternate form of right justification, you may also use "#" characters (with an optional ".") to spe
numeric field. This way you can line up the decimal points. If any value supplied for these fields cont
newline, only the text up to the newline is printed. Finally, the special field "@*" can be used for pri
multi−line, nontruncated values; it should appear by itself on a line.

The values are specified on the following line in the same order as the picture fields. The expre
providing the values should be separated by commas. The expressions are all evaluated in a list
before the line is processed, so a single list expression could produce multiple list elements. The exp
may be spread out to more than one line if enclosed in braces. If so, the opening brace must be
token on the first line. If an expression evaluates to a number with a decimal part, and if the corresp
picture specifies that the decimal part should appear in the output (that is, any picture except multi
characters without an embedded "."), the character used for the decimal point is always determined by the
current LC_NUMERIC locale. This means that, if, for example, the run−time environment happe
specify a German locale, "," will be used instead of the default ".". See perllocale and "WARNINGS" for
more information.

Picture fields that begin with ^ rather than @ are treated specially. With a # field, the field is blanked
the value is undefined. For other field types, the caret enables a kind of fill mode. Instead of an ar
418 Version 5.005_02 18−Oct−1998

perlform Perl Programmers Reference Guide perlform

as much
ble is
during
in a
will
ters are

uppress
space
ds on
give the

le with
expression, the value supplied must be a scalar variable name that contains a text string. Perl puts
text as it can into the field, and then chops off the front of the string so that the next time the varia
referenced, more of the text can be printed. (Yes, this means that the variable itself is altered
execution of the write() call, and is not returned.) Normally you would use a sequence of fields
vertical stack to print out a block of text. You might wish to end the final field with the text "...", which
appear in the output if the text was too long to appear in its entirety. You can change which charac
legal to break on by changing the variable $: (that‘s $FORMAT_LINE_BREAK_CHARACTERS if you‘re
using the English module) to a list of the desired characters.

Using caret fields can produce variable length records. If the text to be formatted is short, you can s
blank lines by putting a "~" (tilde) character anywhere in the line. The tilde will be translated to a
upon output. If you put a second tilde contiguous to the first, the line will be repeated until all the fiel
the line are exhausted. (If you use a field of the at variety, the expression you supply had better not
same value every time forever!)

Top−of−form processing is by default handled by a format with the same name as the current filehand
"_TOP" concatenated to it. It‘s triggered at the top of each page. See write.

Examples:

 # a report on the /etc/passwd file
 format STDOUT_TOP =
 Passwd File
 Name Login Office Uid Gid Home
 −−
 .
 format STDOUT =
 @<<<<<<<<<<<<<<<<<< @||||||| @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<
 $name, $login, $office,$uid,$gid, $home
 .

 # a report from a bug report form
 format STDOUT_TOP =
 Bug Reports
 @<<<<<<<<<<<<<<<<<<<<<<< @||| @>>>>>>>>>>>>>>>>>>>>>>>
 $system, $%, $date
 −−
 .
 format STDOUT =
 Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $subject
 Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $index, $description
 Priority: @<<<<<<<<<< Date: @<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $priority, $date, $description
 From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $from, $description
 Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $programmer, $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
18−Oct−1998 Version 5.005_02 419

perlform Perl Programmers Reference Guide perlform

dle

t least
because
p the

hese

rm out
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<...
 $description
 .

It is possible to intermix print() s with write() s on the same output channel, but you‘ll have to han
$− ($FORMAT_LINES_LEFT) yourself.

Format Variables
The current format name is stored in the variable $~ ($FORMAT_NAME), and the current top of form
format name is in $^ ($FORMAT_TOP_NAME). The current output page number is stored in $%
($FORMAT_PAGE_NUMBER), and the number of lines on the page is in $=
($FORMAT_LINES_PER_PAGE). Whether to autoflush output on this handle is stored in $|
($OUTPUT_AUTOFLUSH). The string output before each top of page (except the first) is stored in $^L
($FORMAT_FORMFEED). These variables are set on a per−filehandle basis, so you‘ll need to select()
into a different one to affect them:

 select((select(OUTF),
 $~ = "My_Other_Format",
 $^ = "My_Top_Format"
)[0]);

Pretty ugly, eh? It‘s a common idiom though, so don‘t be too surprised when you see it. You can a
use a temporary variable to hold the previous filehandle: (this is a much better approach in general,
not only does legibility improve, you now have intermediary stage in the expression to single−ste
debugger through):

 $ofh = select(OUTF);
 $~ = "My_Other_Format";
 $^ = "My_Top_Format";
 select($ofh);

If you use the English module, you can even read the variable names:

 use English;
 $ofh = select(OUTF);
 $FORMAT_NAME = "My_Other_Format";
 $FORMAT_TOP_NAME = "My_Top_Format";
 select($ofh);

But you still have those funny select() s. So just use the FileHandle module. Now, you can access t
special variables using lowercase method names instead:

 use FileHandle;
 format_name OUTF "My_Other_Format";
 format_top_name OUTF "My_Top_Format";

Much better!

NOTES
Because the values line may contain arbitrary expressions (for at fields, not caret fields), you can fa
more sophisticated processing to other functions, like sprintf() or one of your own. For example:

 format Ident =
@<<<<<<<<<<<<<<<
&commify($n)

 .

To get a real at or caret into the field, do this:

 format Ident =
 I have an @ here.
420 Version 5.005_02 18−Oct−1998

perlform Perl Programmers Reference Guide perlform

ave to
 current

ding
 to be

ange
 "@"
 .

To center a whole line of text, do something like this:

 format Ident =
 @|||

 "Some text line"
 .

There is no builtin way to say "float this to the right hand side of the page, however wide it is." You h
specify where it goes. The truly desperate can generate their own format on the fly, based on the
number of columns, and then eval() it:

 $format = "format STDOUT = \n"
 . ’^’ . ’<’ x $cols . "\n"
 . ’$entry’ . "\n"
 . "\t^" . "<" x ($cols−8) . "~~\n"
 . ’$entry’ . "\n"
 . ".\n";
 print $format if $Debugging;
 eval $format;
 die $@ if $@;

Which would generate a format looking something like this:

 format STDOUT =
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $entry
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
 $entry
 .

Here‘s a little program that‘s somewhat like fmt(1):

 format =
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~~
 $_

 .

 $/ = ’’;
 while (<>) {
 s/\s*\n\s*/ /g;
 write;
 }

Footers
While $FORMAT_TOP_NAME contains the name of the current header format, there is no correspon
mechanism to automatically do the same thing for a footer. Not knowing how big a format is going
until you evaluate it is one of the major problems. It‘s on the TODO list.

Here‘s one strategy: If you have a fixed−size footer, you can get footers by checking
$FORMAT_LINES_LEFT before each write() and print the footer yourself if necessary.

Here‘s another strategy: Open a pipe to yourself, using open(MYSELF, "|−") (see open()) and always
write() to MYSELF instead of STDOUT. Have your child process massage its STDIN to rearr
headers and footers however you like. Not very convenient, but doable.
18−Oct−1998 Version 5.005_02 421

perlform Perl Programmers Reference Guide perlform

nfigured
o when
e left

ithin

 if a
point

o
re. See
Accessing Formatting Internals
For low−level access to the formatting mechanism. you may use formline() and access $^A (the
$ACCUMULATOR variable) directly.

For example:

 $str = formline <<’END’, 1,2,3;
 @<<< @||| @>>>
 END

 print "Wow, I just stored ‘$^A’ in the accumulator!\n";

Or to make an swrite() subroutine, which is to write() what sprintf() is to printf() , do this:

 use Carp;
 sub swrite {

croak "usage: swrite PICTURE ARGS" unless @_;
my $format = shift;
$^A = "";
formline($format,@_);
return $^A;

 }

 $string = swrite(<<’END’, 1, 2, 3);
 Check me out
 @<<< @||| @>>>
 END
 print $string;

WARNINGS
The lone dot that ends a format can also prematurely end a mail message passing through a misco
Internet mailer (and based on experience, such misconfiguration is the rule, not the exception). S
sending format code through mail, you should indent it so that the format−ending dot is not on th
margin; this will prevent SMTP cutoff.

Lexical variables (declared with "my") are not visible within a format unless the format is declared w
the scope of the lexical variable. (They weren‘t visible at all before version 5.001.)

Formats are the only part of Perl that unconditionally use information from a program‘s locale;
program‘s environment specifies an LC_NUMERIC locale, it is always used to specify the decimal
character in formatted output. Perl ignores all other aspects of locale handling unless the use locale
pragma is in effect. Formatted output cannot be controlled by use locale because the pragma is tied t
the block structure of the program, and, for historical reasons, formats exist outside that block structu
perllocale for further discussion of locale handling.
422 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

aphores)

s, the

installed
al that
l−C or
events

in your
on most
means
ump.

m
 indexed

rl
such as
use a
 that
NAME
perlipc − Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and sem

DESCRIPTION
The basic IPC facilities of Perl are built out of the good old Unix signals, named pipes, pipe open
Berkeley socket routines, and SysV IPC calls. Each is used in slightly different situations.

Signals
Perl uses a simple signal handling model: the %SIG hash contains names or references of user−
signal handlers. These handlers will be called with an argument which is the name of the sign
triggered it. A signal may be generated intentionally from a particular keyboard sequence like contro
control−Z, sent to you from another process, or triggered automatically by the kernel when special
transpire, like a child process exiting, your process running out of stack space, or hitting file size limit.

For example, to trap an interrupt signal, set up a handler like this. Do as little as you possibly can
handler; notice how all we do is set a global variable and then raise an exception. That‘s because
systems, libraries are not re−entrant; particularly, memory allocation and I/O routines are not. That
that doing nearly anything in your handler could in theory trigger a memory fault and subsequent core d

 sub catch_zap {
my $signame = shift;
$shucks++;
die "Somebody sent me a SIG$signame";

 }
 $SIG{INT} = ’catch_zap’; # could fail in modules
 $SIG{INT} = \&catch_zap; # best strategy

The names of the signals are the ones listed out by kill −l on your system, or you can retrieve them fro
the Config module. Set up an @signame list indexed by number to get the name and a %signo table
by name to get the number:

 use Config;
 defined $Config{sig_name} || die "No sigs?";
 foreach $name (split(’ ’, $Config{sig_name})) {

$signo{$name} = $i;
$signame[$i] = $name;
$i++;

 }

So to check whether signal 17 and SIGALRM were the same, do just this:

 print "signal #17 = $signame[17]\n";
 if ($signo{ALRM}) {

print "SIGALRM is $signo{ALRM}\n";
 }

You may also choose to assign the strings ‘IGNORE’ or ‘DEFAULT’ as the handler, in which case Pe
will try to discard the signal or do the default thing. Some signals can be neither trapped nor ignored,
the KILL and STOP (but not the TSTP) signals. One strategy for temporarily ignoring signals is to
local() statement, which will be automatically restored once your block is exited. (Remember
local() values are "inherited" by functions called from within that block.)

 sub precious {
local $SIG{INT} = ’IGNORE’;
&more_functions;

 }
18−Oct−1998 Version 5.005_02 423

perlipc Perl Programmers Reference Guide perlipc

−group.

ss, but

ecause
etimes
he old
‘ll see

mber of
exited
g

 sub more_functions {
interrupts still ignored, for now...

 }

Sending a signal to a negative process ID means that you send the signal to the entire Unix process
This code sends a hang−up signal to all processes in the current process group (and sets $SIG{HUP} to
IGNORE so it doesn‘t kill itself):

 {
local $SIG{HUP} = ’IGNORE’;
kill HUP => −$$;
snazzy writing of: kill(’HUP’, −$$)

 }

Another interesting signal to send is signal number zero. This doesn‘t actually affect another proce
instead checks whether it‘s alive or has changed its UID.

 unless (kill 0 => $kid_pid) {
warn "something wicked happened to $kid_pid";

 }

You might also want to employ anonymous functions for simple signal handlers:

 $SIG{INT} = sub { die "\nOutta here!\n" };

But that will be problematic for the more complicated handlers that need to reinstall themselves. B
Perl‘s signal mechanism is currently based on the signal(3) function from the C library, you may som
be so misfortunate as to run on systems where that function is "broken", that is, it behaves in t
unreliable SysV way rather than the newer, more reasonable BSD and POSIX fashion. So you
defensive people writing signal handlers like this:

 sub REAPER {
$waitedpid = wait;
loathe sysV: it makes us not only reinstate
the handler, but place it after the wait
$SIG{CHLD} = \&REAPER;

 }
 $SIG{CHLD} = \&REAPER;
 # now do something that forks...

or even the more elaborate:

 use POSIX ":sys_wait_h";
 sub REAPER {

my $child;
 while ($child = waitpid(−1,WNOHANG)) {

 $Kid_Status{$child} = $?;
}
$SIG{CHLD} = \&REAPER; # still loathe sysV

 }
 $SIG{CHLD} = \&REAPER;
 # do something that forks...

Signal handling is also used for timeouts in Unix, While safely protected within an eval{} block, you set
a signal handler to trap alarm signals and then schedule to have one delivered to you in some nu
seconds. Then try your blocking operation, clearing the alarm when it‘s done but not before you‘ve
your eval{} block. If it goes off, you‘ll use die() to jump out of the block, much as you might usin
longjmp() or throw() in other languages.

Here‘s an example:
424 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

almost

ting on
ocesses

y not be

ifo, the

the
d from
 the

t, few
 (like
 get

. If the
 eval {
 local $SIG{ALRM} = sub { die "alarm clock restart" };
 alarm 10;
 flock(FH, 2); # blocking write lock
 alarm 0;
 };
 if ($@ and $@ !~ /alarm clock restart/) { die }

For more complex signal handling, you might see the standard POSIX module. Lamentably, this is
entirely undocumented, but the t/lib/posix.t file from the Perl source distribution has some examples in it.

Named Pipes
A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes communica
the same machine. It works just like a regular, connected anonymous pipes, except that the pr
rendezvous using a filename and don‘t have to be related.

To create a named pipe, use the Unix command mknod(1) or on some systems, mkfifo(1). These ma
in your normal path.

 # system return val is backwards, so && not ||
 #
 $ENV{PATH} .= ":/etc:/usr/etc";
 if (system(’mknod’, $path, ’p’)

 && system(’mkfifo’, $path))
 {

die "mk{nod,fifo} $path failed";
 }

A fifo is convenient when you want to connect a process to an unrelated one. When you open a f
program will block until there‘s something on the other end.

For example, let‘s say you‘d like to have your .signature file be a named pipe that has a Perl program on
other end. Now every time any program (like a mailer, news reader, finger program, etc.) tries to rea
that file, the reading program will block and your program will supply the new signature. We‘ll use
pipe−checking file test −p to find out whether anyone (or anything) has accidentally removed our fifo.

 chdir; # go home
 $FIFO = ’.signature’;
 $ENV{PATH} .= ":/etc:/usr/games";

 while (1) {
unless (−p $FIFO) {
 unlink $FIFO;
 system(’mknod’, $FIFO, ’p’)

&& die "can’t mknod $FIFO: $!";
}

next line blocks until there’s a reader
open (FIFO, "> $FIFO") || die "can’t write $FIFO: $!";
print FIFO "John Smith (smith\@host.org)\n", ‘fortune −s‘;
close FIFO;
sleep 2; # to avoid dup signals

 }

WARNING
By installing Perl code to deal with signals, you‘re exposing yourself to danger from two things. Firs
system library functions are re−entrant. If the signal interrupts while Perl is executing one function
malloc(3) or printf(3)), and your signal handler then calls the same function again, you could
unpredictable behavior—often, a core dump. Second, Perl isn‘t itself re−entrant at the lowest levels
18−Oct−1998 Version 5.005_02 425

perlipc Perl Programmers Reference Guide perlipc

table

 is to do
ue, and
ve to

but
p core

tually
ess is

either

 clever

 time
ntrol of

nd that

mand
f

 better
signal interrupts Perl while Perl is changing its own internal data structures, similarly unpredic
behaviour may result.

There are two things you can do, knowing this: be paranoid or be pragmatic. The paranoid approach
as little as possible in your signal handler. Set an existing integer variable that already has a val
return. This doesn‘t help you if you‘re in a slow system call, which will just restart. That means you ha
die to longjump(3) out of the handler. Even this is a little cavalier for the true paranoiac, who avoidsdie
in a handler because the system is out to get you. The pragmatic approach is to say ‘‘I know the risks,
prefer the convenience‘’, and to do anything you want in your signal handler, prepared to clean u
dumps now and again.

To forbid signal handlers altogether would bars you from many interesting programs, including vir
everything in this manpage, since you could no longer even write SIGCHLD handlers. Their dodgin
expected to be addresses in the 5.005 release.

Using open() for IPC
Perl‘s basic open() statement can also be used for unidirectional interprocess communication by
appending or prepending a pipe symbol to the second argument to open() . Here‘s how to start something
up in a child process you intend to write to:

 open(SPOOLER, "| cat −v | lpr −h 2>/dev/null")
 || die "can’t fork: $!";

 local $SIG{PIPE} = sub { die "spooler pipe broke" };
 print SPOOLER "stuff\n";
 close SPOOLER || die "bad spool: $! $?";

And here‘s how to start up a child process you intend to read from:

 open(STATUS, "netstat −an 2>&1 |")
 || die "can’t fork: $!";

 while (<STATUS>) {
next if /^(tcp|udp)/;
print;

 }
 close STATUS || die "bad netstat: $! $?";

If one can be sure that a particular program is a Perl script that is expecting filenames in @ARGV, the
programmer can write something like this:

 % program f1 "cmd1|" − f2 "cmd2|" f3 < tmpfile

and irrespective of which shell it‘s called from, the Perl program will read from the file f1, the process cmd1,
standard input (tmpfile in this case), the f2 file, the cmd2 command, and finally the f3 file. Pretty nifty, eh?

You might notice that you could use backticks for much the same effect as opening a pipe for reading:

 print grep { !/^(tcp|udp)/ } ‘netstat −an 2>&1‘;
 die "bad netstat" if $?;

While this is true on the surface, it‘s much more efficient to process the file one line or record at a
because then you don‘t have to read the whole thing into memory at once. It also gives you finer co
the whole process, letting you to kill off the child process early if you‘d like.

Be careful to check both the open() and the close() return values. If you‘re writing to a pipe, you
should also trap SIGPIPE. Otherwise, think of what happens when you start up a pipe to a comma
doesn‘t exist: the open() will in all likelihood succeed (it only reflects the fork() ‘s success), but then
your output will fail—spectacularly. Perl can‘t know whether the command worked because your com
is actually running in a separate process whose exec() might have failed. Therefore, while readers o
bogus commands return just a quick end of file, writers to bogus command will trigger a signal they‘d
be prepared to handle. Consider:
426 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

DERR
 want to
for the
he

me as
ow for

process

tems.

nicate

hild is
der an
d
u

 open(FH, "|bogus") or die "can’t fork: $!";
 print FH "bang\n" or die "can’t write: $!";
 close FH or die "can’t close: $!";

That won‘t blow up until the close, and it will blow up with a SIGPIPE. To catch it, you could use this:

 $SIG{PIPE} = ’IGNORE’;
 open(FH, "|bogus") or die "can’t fork: $!";
 print FH "bang\n" or die "can’t write: $!";
 close FH or die "can’t close: status=$?";

Filehandles
Both the main process and any child processes it forks share the same STDIN, STDOUT, and ST
filehandles. If both processes try to access them at once, strange things can happen. You‘ll certainly
any stdio flush output buffers before forking. You may also want to close or reopen the filehandles
child. You can get around this by opening your pipe with open() , but on some systems this means that t
child process cannot outlive the parent.

Background Processes
You can run a command in the background with:

 system("cmd &");

The command‘s STDOUT and STDERR (and possibly STDIN, depending on your shell) will be the sa
the parent‘s. You won‘t need to catch SIGCHLD because of the double−fork taking place (see bel
more details).

Complete Dissociation of Child from Parent
In some cases (starting server processes, for instance) you‘ll want to complete dissociate the child
from the parent. The easiest way is to use:

 use POSIX qw(setsid);
 setsid() or die "Can’t start a new session: $!";

However, you may not be on POSIX. The following process is reported to work on most Unixish sys
Non−Unix users should check their Your_OS::Process module for other solutions.

 Open /dev/tty and use the TIOCNOTTY ioctl on it. See tty(4) for details.

 Change directory to /

 Reopen STDIN, STDOUT, and STDERR so they‘re not connected to the old tty.

 Background yourself like this:

 fork && exit;

 Ignore hangup signals in case you‘re running on a shell that doesn‘t automatically no−hup you:

 $SIG{HUP} = ’IGNORE’; # or whatever you’d like

Safe Pipe Opens
Another interesting approach to IPC is making your single program go multiprocess and commu
between (or even amongst) yourselves. The open() function will accept a file argument of either "−|" or
"|−" to do a very interesting thing: it forks a child connected to the filehandle you‘ve opened. The c
running the same program as the parent. This is useful for safely opening a file when running un
assumed UID or GID, for example. If you open a pipe to minus, you can write to the filehandle you opene
and your kid will find it in his STDIN. If you open a pipe from minus, you can read from the filehandle yo
opened whatever your kid writes to his STDOUT.

 use English;
 my $sleep_count = 0;
18−Oct−1998 Version 5.005_02 427

perlipc Perl Programmers Reference Guide perlipc

shell‘s
at‘s
er−level
 do {
$pid = open(KID_TO_WRITE, "|−");
unless (defined $pid) {
 warn "cannot fork: $!";
 die "bailing out" if $sleep_count++ > 6;
 sleep 10;
}

 } until defined $pid;

 if ($pid) { # parent
print KID_TO_WRITE @some_data;
close(KID_TO_WRITE) || warn "kid exited $?";

 } else { # child
($EUID, $EGID) = ($UID, $GID); # suid progs only
open (FILE, "> /safe/file")
 || die "can’t open /safe/file: $!";
while (<STDIN>) {
 print FILE; # child’s STDIN is parent’s KID
}
exit; # don’t forget this

 }

Another common use for this construct is when you need to execute something without the
interference. With system() , it‘s straightforward, but you can‘t use a pipe open or backticks safely. Th
because there‘s no way to stop the shell from getting its hands on your arguments. Instead, use low
control to call exec() directly.

Here‘s a safe backtick or pipe open for read:

 # add error processing as above
 $pid = open(KID_TO_READ, "−|");

 if ($pid) { # parent
while (<KID_TO_READ>) {
 # do something interesting
}
close(KID_TO_READ) || warn "kid exited $?";

 } else { # child
($EUID, $EGID) = ($UID, $GID); # suid only
exec($program, @options, @args)
 || die "can’t exec program: $!";
NOTREACHED

 }

And here‘s a safe pipe open for writing:

 # add error processing as above
 $pid = open(KID_TO_WRITE, "|−");
 $SIG{ALRM} = sub { die "whoops, $program pipe broke" };

 if ($pid) { # parent
for (@data) {
 print KID_TO_WRITE;
}
close(KID_TO_WRITE) || warn "kid exited $?";

 } else { # child
($EUID, $EGID) = ($UID, $GID);
428 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

n alien
ee the

o
hen

sing

orting

u can‘t
ould,
rate

of the

ve

or

 other
 insist
exec($program, @options, @args)
 || die "can’t exec program: $!";
NOTREACHED

 }

Note that these operations are full Unix forks, which means they may not be correctly implemented o
systems. Additionally, these are not true multithreading. If you‘d like to learn more about threading, s
modules file mentioned below in the SEE ALSO section.

Bidirectional Communication with Another Process
While this works reasonably well for unidirectional communication, what about bidirectional
communication? The obvious thing you‘d like to do doesn‘t actually work:

 open(PROG_FOR_READING_AND_WRITING, "| some program |")

and if you forget to use the −w flag, then you‘ll miss out entirely on the diagnostic message:

 Can’t do bidirectional pipe at −e line 1.

If you really want to, you can use the standard open2() library function to catch both ends. There‘s als
an open3() for tridirectional I/O so you can also catch your child‘s STDERR, but doing so would t
require an awkward select() loop and wouldn‘t allow you to use normal Perl input operations.

If you look at its source, you‘ll see that open2() uses low−level primitives like Unix pipe() and
exec() calls to create all the connections. While it might have been slightly more efficient by u
socketpair() , it would have then been even less portable than it already is. The open2() and
open3() functions are unlikely to work anywhere except on a Unix system or some other one purp
to be POSIX compliant.

Here‘s an example of using open2() :

 use FileHandle;
 use IPC::Open2;
 $pid = open2(*Reader, *Writer, "cat −u −n");
 Writer−>autoflush(); # default here, actually
 print Writer "stuff\n";
 $got = <Reader>;

The problem with this is that Unix buffering is really going to ruin your day. Even though your Writer
filehandle is auto−flushed, and the process on the other end will get your data in a timely manner, yo
usually do anything to force it to give it back to you in a similarly quick fashion. In this case, we c
because we gave cat a −u flag to make it unbuffered. But very few Unix commands are designed to ope
over pipes, so this seldom works unless you yourself wrote the program on the other end
double−ended pipe.

A solution to this is the nonstandard Comm.pl library. It uses pseudo−ttys to make your program beha
more reasonably:

 require ’Comm.pl’;
 $ph = open_proc(’cat −n’);
 for (1..10) {

print $ph "a line\n";
print "got back ", scalar <$ph>;

 }

This way you don‘t have to have control over the source code of the program you‘re using. The Comm
library also has expect() and interact() functions. Find the library (and we hope its success
IPC::Chat) at your nearest CPAN archive as detailed in the SEE ALSO section below.

The newer Expect.pm module from CPAN also addresses this kind of thing. This module requires two
modules from CPAN: IO::Pty and IO::Stty. It sets up a pseudo−terminal to interact with programs that
18−Oct−1998 Version 5.005_02 429

perlipc Perl Programmers Reference Guide perlipc

e your

le
 other
on using talking to the terminal device driver. If your system is amongst those supported, this may b
best bet.

Bidirectional Communication with Yourself
If you want, you may make low−level pipe() and fork() to stitch this together by hand. This examp
only talks to itself, but you could reopen the appropriate handles to STDIN and STDOUT and call
processes.

 #!/usr/bin/perl −w
 # pipe1 − bidirectional communication using two pipe pairs
 # designed for the socketpair−challenged
 use IO::Handle; # thousands of lines just for autoflush :−(
 pipe(PARENT_RDR, CHILD_WTR); # XXX: failure?
 pipe(CHILD_RDR, PARENT_WTR); # XXX: failure?
 CHILD_WTR−>autoflush(1);
 PARENT_WTR−>autoflush(1);

 if ($pid = fork) {
close PARENT_RDR; close PARENT_WTR;
print CHILD_WTR "Parent Pid $$ is sending this\n";
chomp($line = <CHILD_RDR>);
print "Parent Pid $$ just read this: ‘$line’\n";
close CHILD_RDR; close CHILD_WTR;
waitpid($pid,0);

 } else {
die "cannot fork: $!" unless defined $pid;
close CHILD_RDR; close CHILD_WTR;
chomp($line = <PARENT_RDR>);
print "Child Pid $$ just read this: ‘$line’\n";
print PARENT_WTR "Child Pid $$ is sending this\n";
close PARENT_RDR; close PARENT_WTR;
exit;

 }

But you don‘t actually have to make two pipe calls. If you have the socketpair() system call, it will do
this all for you.

 #!/usr/bin/perl −w
 # pipe2 − bidirectional communication using socketpair
 # "the best ones always go both ways"

 use Socket;
 use IO::Handle; # thousands of lines just for autoflush :−(
 # We say AF_UNIX because although *_LOCAL is the
 # POSIX 1003.1g form of the constant, many machines
 # still don’t have it.
 socketpair(CHILD, PARENT, AF_UNIX, SOCK_STREAM, PF_UNSPEC)

or die "socketpair: $!";

 CHILD−>autoflush(1);
 PARENT−>autoflush(1);

 if ($pid = fork) {
close PARENT;
print CHILD "Parent Pid $$ is sending this\n";
chomp($line = <CHILD>);
print "Parent Pid $$ just read this: ‘$line’\n";
close CHILD;
430 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

, as do
ly isn‘t
agrams

lls in C,
 file
ation.

e of the
etting
 the

ome
tocols
 a "\n" is
inates a

n as
thing
t you
e). We
, you‘ll

nd to
waitpid($pid,0);
 } else {

die "cannot fork: $!" unless defined $pid;
close CHILD;
chomp($line = <PARENT>);
print "Child Pid $$ just read this: ‘$line’\n";
print PARENT "Child Pid $$ is sending this\n";
close PARENT;
exit;

 }

Sockets: Client/Server Communication
While not limited to Unix−derived operating systems (e.g., WinSock on PCs provides socket support
some VMS libraries), you may not have sockets on your system, in which case this section probab
going to do you much good. With sockets, you can do both virtual circuits (i.e., TCP streams) and dat
(i.e., UDP packets). You may be able to do even more depending on your system.

The Perl function calls for dealing with sockets have the same names as the corresponding system ca
but their arguments tend to differ for two reasons: first, Perl filehandles work differently than C
descriptors. Second, Perl already knows the length of its strings, so you don‘t need to pass that inform

One of the major problems with old socket code in Perl was that it used hard−coded values for som
constants, which severely hurt portability. If you ever see code that does anything like explicitly s
$AF_INET = 2 , you know you‘re in for big trouble: An immeasurably superior approach is to use
Socket module, which more reliably grants access to various constants and functions you‘ll need.

If you‘re not writing a server/client for an existing protocol like NNTP or SMTP, you should give s
thought to how your server will know when the client has finished talking, and vice−versa. Most pro
are based on one−line messages and responses (so one party knows the other has finished when
received) or multi−line messages and responses that end with a period on an empty line ("\n.\n" term
message/response).

Internet Line Terminators
The Internet line terminator is "\015\012". Under ASCII variants of Unix, that could usually be writte
"\r\n", but under other systems, "\r\n" might at times be "\015\015\012", "\012\012\015", or some
completely different. The standards specify writing "\015\012" to be conformant (be strict in wha
provide), but they also recommend accepting a lone "\012" on input (but be lenient in what you requir
haven‘t always been very good about that in the code in this manpage, but unless you‘re on a Mac
probably be ok.

Internet TCP Clients and Servers
Use Internet−domain sockets when you want to do client−server communication that might exte
machines outside of your own system.

Here‘s a sample TCP client using Internet−domain sockets:

 #!/usr/bin/perl −w
 use strict;
 use Socket;
 my ($remote,$port, $iaddr, $paddr, $proto, $line);

 $remote = shift || ’localhost’;
 $port = shift || 2345; # random port
 if ($port =~ /\D/) { $port = getservbyname($port, ’tcp’) }
 die "No port" unless $port;
 $iaddr = inet_aton($remote) || die "no host: $remote";
 $paddr = sockaddr_in($port, $iaddr);
18−Oct−1998 Version 5.005_02 431

perlipc Perl Programmers Reference Guide perlipc

at the
terface
ress

rks) a
w client.
 $proto = getprotobyname(’tcp’);
 socket(SOCK, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
 connect(SOCK, $paddr) || die "connect: $!";
 while (defined($line = <SOCK>)) {

print $line;
 }

 close (SOCK) || die "close: $!";
 exit;

And here‘s a corresponding server to go along with it. We‘ll leave the address as INADDR_ANY so th
kernel can choose the appropriate interface on multihomed hosts. If you want sit on a particular in
(like the external side of a gateway or firewall machine), you should fill this in with your real add
instead.

 #!/usr/bin/perl −Tw
 use strict;
 BEGIN { $ENV{PATH} = ’/usr/ucb:/bin’ }
 use Socket;
 use Carp;
 $EOL = "\015\012";

 sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

 my $port = shift || 2345;
 my $proto = getprotobyname(’tcp’);
 $port = $1 if $port =~ /(\d+)/; # untaint port number

 socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
 setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
 bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
 listen(Server,SOMAXCONN) || die "listen: $!";

 logmsg "server started on port $port";

 my $paddr;

 $SIG{CHLD} = \&REAPER;

 for (; $paddr = accept(Client,Server); close Client) {
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]
at port $port";

print Client "Hello there, $name, it’s now ",
scalar localtime, $EOL;

 }

And here‘s a multithreaded version. It‘s multithreaded in that like most typical servers, it spawns (fo
slave server to handle the client request so that the master server can quickly go back to service a ne

 #!/usr/bin/perl −Tw
 use strict;
 BEGIN { $ENV{PATH} = ’/usr/ucb:/bin’ }
 use Socket;
 use Carp;
 $EOL = "\015\012";
432 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc
 sub spawn; # forward declaration
 sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

 my $port = shift || 2345;
 my $proto = getprotobyname(’tcp’);
 $port = $1 if $port =~ /(\d+)/; # untaint port number

 socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
 setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
 bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
 listen(Server,SOMAXCONN) || die "listen: $!";

 logmsg "server started on port $port";

 my $waitedpid = 0;
 my $paddr;

 sub REAPER {
$waitedpid = wait;
$SIG{CHLD} = \&REAPER; # loathe sysV
logmsg "reaped $waitedpid" . ($? ? " with exit $?" : ’’);

 }

 $SIG{CHLD} = \&REAPER;

 for ($waitedpid = 0;
 ($paddr = accept(Client,Server)) || $waitedpid;
 $waitedpid = 0, close Client)

 {
next if $waitedpid and not $paddr;
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]
at port $port";

spawn sub {
 print "Hello there, $name, it’s now ", scalar localtime, $EOL;
 exec ’/usr/games/fortune’ # XXX: ‘wrong’ line terminators

or confess "can’t exec fortune: $!";
};

 }

 sub spawn {
my $coderef = shift;

unless (@_ == 0 && $coderef && ref($coderef) eq ’CODE’) {
 confess "usage: spawn CODEREF";
}

my $pid;
if (!defined($pid = fork)) {
 logmsg "cannot fork: $!";
 return;
} elsif ($pid) {
 logmsg "begat $pid";
 return; # I’m the parent
}
18−Oct−1998 Version 5.005_02 433

perlipc Perl Programmers Reference Guide perlipc

t

bout
fill up

ike CGI
system.

ferent

u can
, and are
ow up
else I’m the child −− go spawn

open(STDIN, "<&Client") || die "can’t dup client to stdin";
open(STDOUT, ">&Client") || die "can’t dup client to stdout";
open(STDERR, ">&STDOUT") || die "can’t dup stdout to stderr";
exit &$coderef();

 }

This server takes the trouble to clone off a child version via fork() for each incoming request. That way i
can handle many requests at once, which you might not always want. Even if you don‘t fork() , the
listen() will allow that many pending connections. Forking servers have to be particularly careful a
cleaning up their dead children (called "zombies" in Unix parlance), because otherwise you‘ll quickly
your process table.

We suggest that you use the −T flag to use taint checking (see perlsec) even if we aren‘t running setuid or
setgid. This is always a good idea for servers and other programs run on behalf of someone else (l
scripts), because it lessens the chances that people from the outside will be able to compromise your

Let‘s look at another TCP client. This one connects to the TCP "time" service on a number of dif
machines and shows how far their clocks differ from the system on which it‘s being run:

 #!/usr/bin/perl −w
 use strict;
 use Socket;

 my $SECS_of_70_YEARS = 2208988800;
 sub ctime { scalar localtime(shift) }

 my $iaddr = gethostbyname(’localhost’);
 my $proto = getprotobyname(’tcp’);
 my $port = getservbyname(’time’, ’tcp’);
 my $paddr = sockaddr_in(0, $iaddr);
 my($host);

 $| = 1;
 printf "%−24s %8s %s\n", "localhost", 0, ctime(time());

 foreach $host (@ARGV) {
printf "%−24s ", $host;
my $hisiaddr = inet_aton($host) || die "unknown host";
my $hispaddr = sockaddr_in($port, $hisiaddr);
socket(SOCKET, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
connect(SOCKET, $hispaddr) || die "bind: $!";
my $rtime = ’ ’;
read(SOCKET, $rtime, 4);
close(SOCKET);
my $histime = unpack("N", $rtime) − $SECS_of_70_YEARS ;
printf "%8d %s\n", $histime − time, ctime($histime);

 }

Unix−Domain TCP Clients and Servers
That‘s fine for Internet−domain clients and servers, but what about local communications? While yo
use the same setup, sometimes you don‘t want to. Unix−domain sockets are local to the current host
often used internally to implement pipes. Unlike Internet domain sockets, Unix domain sockets can sh
in the file system with an ls(1) listing.

 % ls −l /dev/log
 srw−rw−rw− 1 root 0 Oct 31 07:23 /dev/log

You can test for these with Perl‘s −S file test:
434 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

cause
 unless (−S ’/dev/log’) {
die "something’s wicked with the print system";

 }

Here‘s a sample Unix−domain client:

 #!/usr/bin/perl −w
 use Socket;
 use strict;
 my ($rendezvous, $line);

 $rendezvous = shift || ’/tmp/catsock’;
 socket(SOCK, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";
 connect(SOCK, sockaddr_un($rendezvous)) || die "connect: $!";
 while (defined($line = <SOCK>)) {

print $line;
 }
 exit;

And here‘s a corresponding server. You don‘t have to worry about silly network terminators here be
Unix domain sockets are guaranteed to be on the localhost, and thus everything works right.

 #!/usr/bin/perl −Tw
 use strict;
 use Socket;
 use Carp;

 BEGIN { $ENV{PATH} = ’/usr/ucb:/bin’ }
 sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

 my $NAME = ’/tmp/catsock’;
 my $uaddr = sockaddr_un($NAME);
 my $proto = getprotobyname(’tcp’);

 socket(Server,PF_UNIX,SOCK_STREAM,0) || die "socket: $!";
 unlink($NAME);
 bind (Server, $uaddr) || die "bind: $!";
 listen(Server,SOMAXCONN) || die "listen: $!";

 logmsg "server started on $NAME";

 my $waitedpid;

 sub REAPER {
$waitedpid = wait;
$SIG{CHLD} = \&REAPER; # loathe sysV
logmsg "reaped $waitedpid" . ($? ? " with exit $?" : ’’);

 }

 $SIG{CHLD} = \&REAPER;

 for ($waitedpid = 0;
 accept(Client,Server) || $waitedpid;
 $waitedpid = 0, close Client)

 {
next if $waitedpid;
logmsg "connection on $NAME";
spawn sub {
 print "Hello there, it’s now ", scalar localtime, "\n";
 exec ’/usr/games/fortune’ or die "can’t exec fortune: $!";
};
18−Oct−1998 Version 5.005_02 435

perlipc Perl Programmers Reference Guide perlipc

we‘ve

ause a
socket

rom the
small,
domain

es an
 5.004
 find
 and

alhost"

a TCP
 a plain
ake a

d have

 using
tem
 in
careful
 }

As you see, it‘s remarkably similar to the Internet domain TCP server, so much so, in fact, that
omitted several duplicate functions—spawn() , logmsg() , ctime() , and REAPER()—which are
exactly the same as in the other server.

So why would you ever want to use a Unix domain socket instead of a simpler named pipe? Bec
named pipe doesn‘t give you sessions. You can‘t tell one process‘s data from another‘s. With
programming, you get a separate session for each client: that‘s why accept() takes two arguments.

For example, let‘s say that you have a long running database server daemon that you want folks f
World Wide Web to be able to access, but only if they go through a CGI interface. You‘d have a
simple CGI program that does whatever checks and logging you feel like, and then acts as a Unix−
client and connects to your private server.

TCP Clients with IO::Socket
For those preferring a higher−level interface to socket programming, the IO::Socket module provid
object−oriented approach. IO::Socket is included as part of the standard Perl distribution as of the
release. If you‘re running an earlier version of Perl, just fetch IO::Socket from CPAN, where you‘ll also
find modules providing easy interfaces to the following systems: DNS, FTP, Ident (RFC 931), NIS
NISPlus, NNTP, Ping, POP3, SMTP, SNMP, SSLeay, Telnet, and Time—just to name a few.

A Simple Client
Here‘s a client that creates a TCP connection to the "daytime" service at port 13 of the host name "loc
and prints out everything that the server there cares to provide.

 #!/usr/bin/perl −w
 use IO::Socket;
 $remote = IO::Socket::INET−>new(

Proto => "tcp",
PeerAddr => "localhost",
PeerPort => "daytime(13)",

)
 or die "cannot connect to daytime port at localhost";

 while (<$remote>) { print }

When you run this program, you should get something back that looks like this:

 Wed May 14 08:40:46 MDT 1997

Here are what those parameters to the new constructor mean:

Proto
This is which protocol to use. In this case, the socket handle returned will be connected to
socket, because we want a stream−oriented connection, that is, one that acts pretty much like
old file. Not all sockets are this of this type. For example, the UDP protocol can be used to m
datagram socket, used for message−passing.

PeerAddr
This is the name or Internet address of the remote host the server is running on. We coul
specified a longer name like "www.perl.com" , or an address like "204.148.40.9" . For
demonstration purposes, we‘ve used the special hostname "localhost" , which should always mean
the current machine you‘re running on. The corresponding Internet address for localhost is "127.1" ,
if you‘d rather use that.

PeerPort
This is the service name or port number we‘d like to connect to. We could have gotten away with
just "daytime" on systems with a well−configured system services file,[FOOTNOTE: The sys
services file is in /etc/services under Unix] but just in case, we‘ve specified the port number (13)
parentheses. Using just the number would also have worked, but constant numbers make
436 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

e way

ts to get
g to the

 If your
 as the
se
hange

e to use
ects as
imply
t, even
 of web
 doesn‘t
programmers nervous.

Notice how the return value from the new constructor is used as a filehandle in the while loop? That‘s
what‘s called an indirect filehandle, a scalar variable containing a filehandle. You can use it the sam
you would a normal filehandle. For example, you can read one line from it this way:

 $line = <$handle>;

all remaining lines from is this way:

 @lines = <$handle>;

and send a line of data to it this way:

 print $handle "some data\n";

A Webget Client
Here‘s a simple client that takes a remote host to fetch a document from, and then a list of documen
from that host. This is a more interesting client than the previous one because it first sends somethin
server before fetching the server‘s response.

 #!/usr/bin/perl −w
 use IO::Socket;
 unless (@ARGV > 1) { die "usage: $0 host document ..." }
 $host = shift(@ARGV);
 $EOL = "\015\012";
 $BLANK = $EOL x 2;
 foreach $document (@ARGV) {

$remote = IO::Socket::INET−>new(Proto => "tcp",
 PeerAddr => $host,
 PeerPort => "http(80)",

);
unless ($remote) { die "cannot connect to http daemon on $host" }
$remote−>autoflush(1);
print $remote "GET $document HTTP/1.0" . $BLANK;
while (<$remote>) { print }
close $remote;

 }

The web server handing the "http" service, which is assumed to be at its standard port, number 80.
the web server you‘re trying to connect to is at a different port (like 1080 or 8080), you should specify
named−parameter pair, PeerPort => 8080 . The autoflush method is used on the socket becau
otherwise the system would buffer up the output we sent it. (If you‘re on a Mac, you‘ll also need to c
every "\n" in your code that sends data over the network to be a "\015\012" instead.)

Connecting to the server is only the first part of the process: once you have the connection, you hav
the server‘s language. Each server on the network has its own little command language that it exp
input. The string that we send to the server starting with "GET" is in HTTP syntax. In this case, we s
request each specified document. Yes, we really are making a new connection for each documen
though it‘s the same host. That‘s the way you always used to have to speak HTTP. Recent versions
browsers may request that the remote server leave the connection open a little while, but the server
have to honor such a request.

Here‘s an example of running that program, which we‘ll call webget:

 % webget www.perl.com /guanaco.html
 HTTP/1.1 404 File Not Found
 Date: Thu, 08 May 1997 18:02:32 GMT
 Server: Apache/1.2b6
 Connection: close
18−Oct−1998 Version 5.005_02 437

perlipc Perl Programmers Reference Guide perlipc

ponse

ing up
e

rts the
rvice
very

 child
ing just
 code

y, and
 Content−type: text/html

 <HEAD><TITLE>404 File Not Found</TITLE></HEAD>
 <BODY><H1>File Not Found</H1>
 The requested URL /guanaco.html was not found on this server.<P>
 </BODY>

Ok, so that‘s not very interesting, because it didn‘t find that particular document. But a long res
wouldn‘t have fit on this page.

For a more fully−featured version of this program, you should look to the lwp−request program included
with the LWP modules from CPAN.

Interactive Client with IO::Socket
Well, that‘s all fine if you want to send one command and get one answer, but what about sett
something fully interactive, somewhat like the way telnet works? That way you can type a line, get th
answer, type a line, get the answer, etc.

This client is more complicated than the two we‘ve done so far, but if you‘re on a system that suppo
powerful fork call, the solution isn‘t that rough. Once you‘ve made the connection to whatever se
you‘d like to chat with, call fork to clone your process. Each of these two identical process has a
simple job to do: the parent copies everything from the socket to standard output, while the
simultaneously copies everything from standard input to the socket. To accomplish the same thing us
one process would be much harder, because it‘s easier to code two processes to do one thing than it is to
one process to do two things. (This keep−it−simple principle a cornerstones of the Unix philosoph
good software engineering as well, which is probably why it‘s spread to other systems.)

Here‘s the code:

 #!/usr/bin/perl −w
 use strict;
 use IO::Socket;
 my ($host, $port, $kidpid, $handle, $line);

 unless (@ARGV == 2) { die "usage: $0 host port" }
 ($host, $port) = @ARGV;

 # create a tcp connection to the specified host and port
 $handle = IO::Socket::INET−>new(Proto => "tcp",

 PeerAddr => $host,
 PeerPort => $port)

 or die "can’t connect to port $port on $host: $!";

 $handle−>autoflush(1); # so output gets there right away
 print STDERR "[Connected to $host:$port]\n";

 # split the program into two processes, identical twins
 die "can’t fork: $!" unless defined($kidpid = fork());

 # the if{} block runs only in the parent process
 if ($kidpid) {

copy the socket to standard output
while (defined ($line = <$handle>)) {
 print STDOUT $line;
}
kill("TERM", $kidpid); # send SIGTERM to child

 }
 # the else{} block runs only in the child process
 else {

copy standard input to the socket
438 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

g in

g for a

plest

server
ions. It
e

e
tricted
ntly in
 use"

til we
level

inutes

waits for a
l

ecause

e most
ered in
while (defined ($line = <STDIN>)) {
 print $handle $line;
}

 }

The kill function in the parent‘s if block is there to send a signal to our child process (current runnin
the else block) as soon as the remote server has closed its end of the connection.

If the remote server sends data a byte at time, and you need that data immediately without waitin
newline (which might not happen), you may wish to replace the while loop in the parent with the
following:

 my $byte;
 while (sysread($handle, $byte, 1) == 1) {

print STDOUT $byte;
 }

Making a system call for each byte you want to read is not very efficient (to put it mildly) but is the sim
to explain and works reasonably well.

TCP Servers with IO::Socket
As always, setting up a server is little bit more involved than running a client. The model is that the
creates a special kind of socket that does nothing but listen on a particular port for incoming connect
does this by calling the IO::Socket::INET−>new() method with slightly different arguments than th
client did.

Proto
This is which protocol to use. Like our clients, we‘ll still specify "tcp" here.

LocalPort
We specify a local port in the LocalPort argument, which we didn‘t do for the client. This is servic
name or port number for which you want to be the server. (Under Unix, ports under 1024 are res
to the superuser.) In our sample, we‘ll use port 9000, but you can use any port that‘s not curre
use on your system. If you try to use one already in used, you‘ll get an "Address already in
message. Under Unix, the netstat −a command will show which services current have servers.

Listen
The Listen parameter is set to the maximum number of pending connections we can accept un
turn away incoming clients. Think of it as a call−waiting queue for your telephone. The low−
Socket module has a special symbol for the system maximum, which is SOMAXCONN.

Reuse
The Reuse parameter is needed so that we restart our server manually without waiting a few m
to allow system buffers to clear out.

Once the generic server socket has been created using the parameters listed above, the server then
new client to connect to it. The server blocks in the accept method, which eventually an bidirectiona
connection to the remote client. (Make sure to autoflush this handle to circumvent buffering.)

To add to user−friendliness, our server prompts the user for commands. Most servers don‘t do this. B
of the prompt without a newline, you‘ll have to use the sysread variant of the interactive client above.

This server accepts one of five different commands, sending output back to the client. Note that unlik
network servers, this one only handles one incoming client at a time. Multithreaded servers are cov
Chapter 6 of the Camel as well as later in this manpage.

Here‘s the code. We‘ll

 #!/usr/bin/perl −w
 use IO::Socket;
 use Net::hostent; # for OO version of gethostbyaddr
18−Oct−1998 Version 5.005_02 439

perlipc Perl Programmers Reference Guide perlipc

ications
es will
 being
 local
ssage

ecking
st and
use
 $PORT = 9000; # pick something not in use

 $server = IO::Socket::INET−>new(Proto => ’tcp’,
 LocalPort => $PORT,
 Listen => SOMAXCONN,
 Reuse => 1);

 die "can’t setup server" unless $server;
 print "[Server $0 accepting clients]\n";

 while ($client = $server−>accept()) {
 $client−>autoflush(1);
 print $client "Welcome to $0; type help for command list.\n";
 $hostinfo = gethostbyaddr($client−>peeraddr);
 printf "[Connect from %s]\n", $hostinfo−>name || $client−>peerhost;
 print $client "Command? ";
 while (<$client>) {
 next unless /\S/; # blank line
 if (/quit|exit/i) { last; }
 elsif (/date|time/i) { printf $client "%s\n", scalar localtime; }
 elsif (/who/i) { print $client ‘who 2>&1‘; }
 elsif (/cookie/i) { print $client ‘/usr/games/fortune 2>&1‘; }
 elsif (/motd/i) { print $client ‘cat /etc/motd 2>&1‘; }
 else {
 print $client "Commands: quit date who cookie motd\n";
 }
 } continue {
 print $client "Command? ";
 }
 close $client;
 }

UDP: Message Passing
Another kind of client−server setup is one that uses not connections, but messages. UDP commun
involve much lower overhead but also provide less reliability, as there are no promises that messag
arrive at all, let alone in order and unmangled. Still, UDP offers some advantages over TCP, including
able to "broadcast" or "multicast" to a whole bunch of destination hosts at once (usually on your
subnet). If you find yourself overly concerned about reliability and start building checks into your me
system, then you probably should use just TCP to start with.

Here‘s a UDP program similar to the sample Internet TCP client given earlier. However, instead of ch
one host at a time, the UDP version will check many of them asynchronously by simulating a multica
then using select() to do a timed−out wait for I/O. To do something similar with TCP, you‘d have to
a different socket handle for each host.

 #!/usr/bin/perl −w
 use strict;
 use Socket;
 use Sys::Hostname;

 my ($count, $hisiaddr, $hispaddr, $histime,
 $host, $iaddr, $paddr, $port, $proto,
 $rin, $rout, $rtime, $SECS_of_70_YEARS);

 $SECS_of_70_YEARS = 2208988800;

 $iaddr = gethostbyname(hostname());
 $proto = getprotobyname(’udp’);
 $port = getservbyname(’time’, ’udp’);
440 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

wever,
ngst
 $paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick

 socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) || die "socket: $!";
 bind(SOCKET, $paddr) || die "bind: $!";

 $| = 1;
 printf "%−12s %8s %s\n", "localhost", 0, scalar localtime time;
 $count = 0;
 for $host (@ARGV) {

$count++;
$hisiaddr = inet_aton($host) || die "unknown host";
$hispaddr = sockaddr_in($port, $hisiaddr);
defined(send(SOCKET, 0, 0, $hispaddr)) || die "send $host: $!";

 }

 $rin = ’’;
 vec($rin, fileno(SOCKET), 1) = 1;

 # timeout after 10.0 seconds
 while ($count && select($rout = $rin, undef, undef, 10.0)) {

$rtime = ’’;
($hispaddr = recv(SOCKET, $rtime, 4, 0)) || die "recv: $!";
($port, $hisiaddr) = sockaddr_in($hispaddr);
$host = gethostbyaddr($hisiaddr, AF_INET);
$histime = unpack("N", $rtime) − $SECS_of_70_YEARS ;
printf "%−12s ", $host;
printf "%8d %s\n", $histime − time, scalar localtime($histime);
$count−−;

 }

SysV IPC
While System V IPC isn‘t so widely used as sockets, it still has some interesting uses. You can‘t, ho
effectively use SysV IPC or Berkeley mmap() to have shared memory so as to share a variable amo
several processes. That‘s because Perl would reallocate your string when you weren‘t wanting it to.

Here‘s a small example showing shared memory usage.

 use IPC::SysV qw(IPC_PRIVATE IPC_RMID S_IRWXU S_IRWXG S_IRWXO);

 $size = 2000;
 $key = shmget(IPC_PRIVATE, $size, S_IRWXU|S_IRWXG|S_IRWXO) || die "$!";
 print "shm key $key\n";

 $message = "Message #1";
 shmwrite($key, $message, 0, 60) || die "$!";
 print "wrote: ’$message’\n";
 shmread($key, $buff, 0, 60) || die "$!";
 print "read : ’$buff’\n";

 # the buffer of shmread is zero−character end−padded.
 substr($buff, index($buff, "\0")) = ’’;
 print "un" unless $buff eq $message;
 print "swell\n";

 print "deleting shm $key\n";
 shmctl($key, IPC_RMID, 0) || die "$!";

Here‘s an example of a semaphore:

 use IPC::SysV qw(IPC_CREAT);
18−Oct−1998 Version 5.005_02 441

perlipc Perl Programmers Reference Guide perlipc

 look,

to

ctions.
 $IPC_KEY = 1234;
 $key = semget($IPC_KEY, 10, 0666 | IPC_CREAT) || die "$!";
 print "shm key $key\n";

Put this code in a separate file to be run in more than one process. Call the file take:

 # create a semaphore

 $IPC_KEY = 1234;
 $key = semget($IPC_KEY, 0 , 0);
 die if !defined($key);

 $semnum = 0;
 $semflag = 0;

 # ’take’ semaphore
 # wait for semaphore to be zero
 $semop = 0;
 $opstring1 = pack("sss", $semnum, $semop, $semflag);

 # Increment the semaphore count
 $semop = 1;
 $opstring2 = pack("sss", $semnum, $semop, $semflag);
 $opstring = $opstring1 . $opstring2;

 semop($key,$opstring) || die "$!";

Put this code in a separate file to be run in more than one process. Call this file give:

 # ’give’ the semaphore
 # run this in the original process and you will see
 # that the second process continues

 $IPC_KEY = 1234;
 $key = semget($IPC_KEY, 0, 0);
 die if !defined($key);

 $semnum = 0;
 $semflag = 0;

 # Decrement the semaphore count
 $semop = −1;
 $opstring = pack("sss", $semnum, $semop, $semflag);

 semop($key,$opstring) || die "$!";

The SysV IPC code above was written long ago, and it‘s definitely clunky looking. For a more modern
see the IPC::SysV module which is included with Perl starting from Perl 5.005.

NOTES
Most of these routines quietly but politely return undef when they fail instead of causing your program
die right then and there due to an uncaught exception. (Actually, some of the new Socket conversion
functions croak() on bad arguments.) It is therefore essential to check return values from these fun
 Always begin your socket programs this way for optimal success, and don‘t forget to add −T taint checking
flag to the #! line for servers:

 #!/usr/bin/perl −Tw
 use strict;
 use sigtrap;
 use Socket;
442 Version 5.005_02 18−Oct−1998

perlipc Perl Programmers Reference Guide perlipc

ercy of
tics for
criptors

ant, the
exists;
n
here they

e Perl

 the

w−level

ess
at and
elnet,
BUGS
All these routines create system−specific portability problems. As noted elsewhere, Perl is at the m
your C libraries for much of its system behaviour. It‘s probably safest to assume broken SysV seman
signals and to stick with simple TCP and UDP socket operations; e.g., don‘t try to pass open file des
over a local UDP datagram socket if you want your code to stand a chance of being portable.

As mentioned in the signals section, because few vendors provide C libraries that are safely re−entr
prudent programmer will do little else within a handler beyond setting a numeric variable that already
or, if locked into a slow (restarting) system call, using die() to raise an exception and longjmp(3) out. I
fact, even these may in some cases cause a core dump. It‘s probably best to avoid signals except w
are absolutely inevitable. This will be addressed in a future release of Perl.

AUTHOR
Tom Christiansen, with occasional vestiges of Larry Wall‘s original version and suggestions from th
Porters.

SEE ALSO
There‘s a lot more to networking than this, but this should get you started.

For intrepid programmers, the indispensable textbook is Unix Network Programming by W. Richard Stevens
(published by Addison−Wesley). Note that most books on networking address networking from
perspective of a C programmer; translation to Perl is left as an exercise for the reader.

The IO::Socket(3) manpage describes the object library, and the Socket(3) manpage describes the lo
interface to sockets. Besides the obvious functions in perlfunc, you should also check out the modules file at
your nearest CPAN site. (See perlmodlib or best yet, the Perl FAQ for a description of what CPAN is and
where to get it.)

Section 5 of the modules file is devoted to "Networking, Device Control (modems), and Interproc
Communication", and contains numerous unbundled modules numerous networking modules, Ch
Expect operations, CGI programming, DCE, FTP, IPC, NNTP, Proxy, Ptty, RPC, SNMP, SMTP, T
Threads, and ToolTalk—just to name a few.
18−Oct−1998 Version 5.005_02 443

perlsec Perl Programmers Reference Guide perlsec

tuid or
on each
ionally,
ssibly

ode
citly by
 on
script.

table by
upported
m more

am—at
 (see
ll file
d that

en if it
ith each
NAME
perlsec − Perl security

DESCRIPTION
Perl is designed to make it easy to program securely even when running with extra privileges, like se
setgid programs. Unlike most command line shells, which are based on multiple substitution passes
line of the script, Perl uses a more conventional evaluation scheme with fewer hidden snags. Addit
because the language has more builtin functionality, it can rely less upon external (and po
untrustworthy) programs to accomplish its purposes.

Perl automatically enables a set of special security checks, called taint mode, when it detects its program
running with differing real and effective user or group IDs. The setuid bit in Unix permissions is m
04000, the setgid bit mode 02000; either or both may be set. You can also enable taint mode expli
using the −T command line flag. This flag is strongly suggested for server programs and any program run
behalf of someone else, such as a CGI script. Once taint mode is on, it‘s on for the remainder of your

While in this mode, Perl takes special precautions called taint checks to prevent both obvious and subtle
traps. Some of these checks are reasonably simple, such as verifying that path directories aren‘t wri
others; careful programmers have always used checks like these. Other checks, however, are best s
by the language itself, and it is these checks especially that contribute to making a set−id Perl progra
secure than the corresponding C program.

You may not use data derived from outside your program to affect something else outside your progr
least, not by accident. All command line arguments, environment variables, locale information
perllocale), results of certain system calls (readdir, readlink, the gecos field of getpw* calls), and a
input are marked as "tainted". Tainted data may not be used directly or indirectly in any comman
invokes a sub−shell, nor in any command that modifies files, directories, or processes. (Important
exception: If you pass a list of arguments to either system or exec , the elements of that list are NOT
checked for taintedness.) Any variable set to a value derived from tainted data will itself be tainted, ev
is logically impossible for the tainted data to alter the variable. Because taintedness is associated w
scalar value, some elements of an array can be tainted and others not.

For example:

 $arg = shift; # $arg is tainted
 $hid = $arg, ’bar’; # $hid is also tainted
 $line = <>; # Tainted
 $line = <STDIN>; # Also tainted
 open FOO, "/home/me/bar" or die $!;
 $line = <FOO>; # Still tainted
 $path = $ENV{’PATH’}; # Tainted, but see below
 $data = ’abc’; # Not tainted

 system "echo $arg"; # Insecure
 system "/bin/echo", $arg; # Secure (doesn’t use sh)
 system "echo $hid"; # Insecure
 system "echo $data"; # Insecure until PATH set

 $path = $ENV{’PATH’}; # $path now tainted

 $ENV{’PATH’} = ’/bin:/usr/bin’;
 delete @ENV{’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’};

 $path = $ENV{’PATH’}; # $path now NOT tainted
 system "echo $data"; # Is secure now!

 open(FOO, "< $arg"); # OK − read−only file
 open(FOO, "> $arg"); # Not OK − trying to write
444 Version 5.005_02 18−Oct−1998

perlsec Perl Programmers Reference Guide perlsec

ency"

ndency"
d

 renders
nt for
d value

edness.
ression

ng, or
certain
 easy to

ics, and

or at
 it
ust be
 open(FOO,"echo $arg|"); # Not OK, but...
 open(FOO,"−|")

or exec ’echo’, $arg; # OK

 $shout = ‘echo $arg‘; # Insecure, $shout now tainted

 unlink $data, $arg; # Insecure
 umask $arg; # Insecure

 exec "echo $arg"; # Insecure
 exec "echo", $arg; # Secure (doesn’t use the shell)
 exec "sh", ’−c’, $arg; # Considered secure, alas!

 @files = <*.c>; # Always insecure (uses csh)
 @files = glob(’*.c’); # Always insecure (uses csh)

If you try to do something insecure, you will get a fatal error saying something like "Insecure depend
or "Insecure $ENV{PATH}". Note that you can still write an insecure system or exec, but only by
explicitly doing something like the "considered secure" example above.

Laundering and Detecting Tainted Data
To test whether a variable contains tainted data, and whose use would thus trigger an "Insecure depe
message, check your nearby CPAN mirror for the Taint.pm module, which should become available aroun
November 1997. Or you may be able to use the following is_tainted() function.

 sub is_tainted {
return ! eval {
 join(’’,@_), kill 0;
 1;
};

 }

This function makes use of the fact that the presence of tainted data anywhere within an expression
the entire expression tainted. It would be inefficient for every operator to test every argume
taintedness. Instead, the slightly more efficient and conservative approach is used that if any tainte
has been accessed within the same expression, the whole expression is considered tainted.

But testing for taintedness gets you only so far. Sometimes you have just to clear your data‘s taint
The only way to bypass the tainting mechanism is by referencing subpatterns from a regular exp
match. Perl presumes that if you reference a substring using $1, $2, etc., that you knew what you were
doing when you wrote the pattern. That means using a bit of thought—don‘t just blindly untaint anythi
you defeat the entire mechanism. It‘s better to verify that the variable has only good characters (for
values of "good") rather than checking whether it has any bad characters. That‘s because it‘s far too
miss bad characters that you never thought of.

Here‘s a test to make sure that the data contains nothing but "word" characters (alphabetics, numer
underscores), a hyphen, an at sign, or a dot.

 if ($data =~ /^([−\@\w.]+)$/) {
$data = $1; # $data now untainted

 } else {
die "Bad data in $data"; # log this somewhere

 }

This is fairly secure because /\w+/ doesn‘t normally match shell metacharacters, nor are dot, dash,
going to mean something special to the shell. Use of /.+/ would have been insecure in theory because
lets everything through, but Perl doesn‘t check for that. The lesson is that when untainting, you m
exceedingly careful with your patterns. Laundering data using regular expression is the ONLY mechanism for
untainting dirty data, unless you use the strategy detailed below to fork a child of lesser privilege.
18−Oct−1998 Version 5.005_02 445

perlsec Perl Programmers Reference Guide perlsec

contain
 with a
ee

switches
etgid)

ose a

uid or

 to get

PATH
that the
dent on

use the
 when
ts.

values.
 opens
from
tended

 a child

process
nown

he file or
ed into

l
es: just
The example does not untaint $data if use locale is in effect, because the characters matched by \w
are determined by the locale. Perl considers that locale definitions are untrustworthy because they
data from outside the program. If you are writing a locale−aware program, and want to launder data
regular expression containing \w , put no locale ahead of the expression in the same block. S
SECURITY for further discussion and examples.

Switches On the "#!" Line
When you make a script executable, in order to make it usable as a command, the system will pass
to perl from the script‘s #! line. Perl checks that any command line switches given to a setuid (or s
script actually match the ones set on the #! line. Some Unix and Unix−like environments imp
one−switch limit on the #! line, so you may need to use something like −wU instead of −w −U under such
systems. (This issue should arise only in Unix or Unix−like environments that support #! and set
setgid scripts.)

Cleaning Up Your Path
For "Insecure $ENV{PATH}" messages, you need to set $ENV{‘PATH‘} to a known value, and each
directory in the path must be non−writable by others than its owner and group. You may be surprised
this message even if the pathname to your executable is fully qualified. This is not generated because you
didn‘t supply a full path to the program; instead, it‘s generated because you never set your
environment variable, or you didn‘t set it to something that was safe. Because Perl can‘t guarantee
executable in question isn‘t itself going to turn around and execute some other program that is depen
your PATH, it makes sure you set the PATH.

The PATH isn‘t the only environment variable which can cause problems. Because some shells may
variables IFS, CDPATH, ENV, and BASH_ENV, Perl checks that those are either empty or untainted
starting subprocesses. You may wish to add something like this to your setid and taint−checking scrip

 delete @ENV{qw(IFS CDPATH ENV BASH_ENV)}; # Make %ENV safer

It‘s also possible to get into trouble with other operations that don‘t care whether they use tainted
Make judicious use of the file tests in dealing with any user−supplied filenames. When possible, do
and such after properly dropping any special user (or group!) privileges. Perl doesn‘t prevent you
opening tainted filenames for reading, so be careful what you print out. The tainting mechanism is in
to prevent stupid mistakes, not to remove the need for thought.

Perl does not call the shell to expand wild cards when you pass system and exec explicit parameter lists
instead of strings with possible shell wildcards in them. Unfortunately, the open, glob, and backtick
functions provide no such alternate calling convention, so more subterfuge will be required.

Perl provides a reasonably safe way to open a file or pipe from a setuid or setgid program: just create
process with reduced privilege who does the dirty work for you. First, fork a child using the specialopen
syntax that connects the parent and child by a pipe. Now the child resets its ID set and any other per−
attributes, like environment variables, umasks, current working directories, back to the originals or k
safe values. Then the child process, which no longer has any special permissions, does the open or other
system call. Finally, the child passes the data it managed to access back to the parent. Because t
pipe was opened in the child while running under less privilege than the parent, it‘s not apt to be trick
doing something it shouldn‘t.

Here‘s a way to do backticks reasonably safely. Notice how the exec is not called with a string that the shel
could expand. This is by far the best way to call something that might be subjected to shell escap
never call the shell at all.

 use English;
 die "Can’t fork: $!" unless defined $pid = open(KID, "−|");
 if ($pid) { # parent

while (<KID>) {
 # do something
}
close KID;
446 Version 5.005_02 18−Oct−1998

perlsec Perl Programmers Reference Guide perlsec

 away
g bad.
meone

 evil.
nd says,
 Perl

ystem

pts, on
a race
d when
y have

able it.
it can
setgid
 special

ipt is
 script.
piled

en in C:

is
 plus a

systems,
 } else {
my @temp = ($EUID, $EGID);
$EUID = $UID;
$EGID = $GID; # initgroups() also called!
Make sure privs are really gone
($EUID, $EGID) = @temp;
die "Can’t drop privileges"

unless $UID == $EUID && $GID eq $EGID;
$ENV{PATH} = "/bin:/usr/bin";
exec ’myprog’, ’arg1’, ’arg2’
 or die "can’t exec myprog: $!";

 }

A similar strategy would work for wildcard expansion via glob , although you can use readdir instead.

Taint checking is most useful when although you trust yourself not to have written a program to give
the farm, you don‘t necessarily trust those who end up using it not to try to trick it into doing somethin
This is the kind of security checking that‘s useful for set−id programs and programs launched on so
else‘s behalf, like CGI programs.

This is quite different, however, from not even trusting the writer of the code not to try to do something
That‘s the kind of trust needed when someone hands you a program you‘ve never seen before a
"Here, run this." For that kind of safety, check out the Safe module, included standard in the
distribution. This module allows the programmer to set up special compartments in which all s
operations are trapped and namespace access is carefully controlled.

Security Bugs
Beyond the obvious problems that stem from giving special privileges to systems as flexible as scri
many versions of Unix, set−id scripts are inherently insecure right from the start. The problem is
condition in the kernel. Between the time the kernel opens the file to see which interpreter to run an
the (now−set−id) interpreter turns around and reopens the file to interpret it, the file in question ma
changed, especially if you have symbolic links on your system.

Fortunately, sometimes this kernel "feature" can be disabled. Unfortunately, there are two ways to dis
The system can simply outlaw scripts with any set−id bit set, which doesn‘t help much. Alternately,
simply ignore the set−id bits on scripts. If the latter is true, Perl can emulate the setuid and
mechanism when it notices the otherwise useless setuid/gid bits on Perl scripts. It does this via a
executable called suidperl that is automatically invoked for you if it‘s needed.

However, if the kernel set−id script feature isn‘t disabled, Perl will complain loudly that your set−id scr
insecure. You‘ll need to either disable the kernel set−id script feature, or put a C wrapper around the
A C wrapper is just a compiled program that does nothing except call your Perl program. Com
programs are not subject to the kernel bug that plagues set−id scripts. Here‘s a simple wrapper, writt

 #define REAL_PATH "/path/to/script"
 main(ac, av)

char **av;
 {

execv(REAL_PATH, av);
 }

Compile this wrapper into a binary executable and then make it rather than your script setuid or setgid.

See the program wrapsuid in the eg directory of your Perl distribution for a convenient way to do th
automatically for all your setuid Perl programs. It moves setuid scripts into files with the same name
leading dot, and then compiles a wrapper like the one above for each of them.

In recent years, vendors have begun to supply systems free of this inherent security bug. On such
18−Oct−1998 Version 5.005_02 447

perlsec Perl Programmers Reference Guide perlsec

athname
hat
d with

s
d BSD

s

.

ble in
ople on

 people

d relies
one to
ity, the

crypt
able to
able to
ne can

but a
ning
e you

and up
when the kernel passes the name of the set−id script to open to the interpreter, rather than using a p
subject to meddling, it instead passes /dev/fd/3. This is a special file already opened on the script, so t
there can be no race condition for evil scripts to exploit. On these systems, Perl should be compile
−DSETUID_SCRIPTS_ARE_SECURE_NOW. The Configure program that builds Perl tries to figure thi
out for itself, so you should never have to specify this yourself. Most modern releases of SysVr4 an
4.4 use this approach to avoid the kernel race condition.

Prior to release 5.003 of Perl, a bug in the code of suidperl could introduce a security hole in system
compiled with strict POSIX compliance.

Protecting Your Programs
There are a number of ways to hide the source to your Perl programs, with varying levels of "security"

First of all, however, you can‘t take away read permission, because the source code has to be reada
order to be compiled and interpreted. (That doesn‘t mean that a CGI script‘s source is readable by pe
the web, though.) So you have to leave the permissions at the socially friendly 0755 level. This lets
on your local system only see your source.

Some people mistakenly regard this as a security problem. If your program does insecure things, an
on people not knowing how to exploit those insecurities, it is not secure. It is often possible for some
determine the insecure things and exploit them without viewing the source. Security through obscur
name for hiding your bugs instead of fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN). But crackers might be able to de
it. You can try using the byte code compiler and interpreter described below, but crackers might be
de−compile it. You can try using the native−code compiler described below, but crackers might be
disassemble it. These pose varying degrees of difficulty to people wanting to get at your code, but no
definitively conceal it (this is true of every language, not just Perl).

If you‘re concerned about people profiting from your code, then the bottom line is that nothing
restrictive licence will give you legal security. License your software and pepper it with threate
statements like "This is unpublished proprietary software of XYZ Corp. Your access to it does not giv
permission to use it blah blah blah." You should see a lawyer to be sure your licence‘s wording will st
in court.

SEE ALSO
perlrun for its description of cleaning up environment variables.
448 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

g
es

line is

 the

d.

ould

kenizer
 the
NAME
perltrap − Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use the −w switch; see perlrun. The second biggest trap is not makin
your entire program runnable under use strict . The third biggest trap is not reading the list of chang
in this version of Perl; see perldelta.

Awk Traps
Accustomed awk users should take special note of the following:

 The English module, loaded via

 use English;

allows you to refer to special variables (like $/) with names (like $RS), as though they were in awk;
see perlvar for details.

 Semicolons are required after all simple statements in Perl (except at the end of a block). New
not a statement delimiter.

 Curly brackets are required on if s and while s.

 Variables begin with "$", "@" or "%" in Perl.

 Arrays index from 0. Likewise string positions in substr() and index() .

 You have to decide whether your array has numeric or string indices.

 Hash values do not spring into existence upon mere reference.

 You have to decide whether you want to use string or numeric comparisons.

 Reading an input line does not split it for you. You get to split it to an array yourself. And
split() operator has different arguments than awk‘s.

 The current input line is normally in $_, not $0. It generally does not have the newline strippe
($0 is the name of the program executed.) See perlvar.

 $<digit > does not refer to fields—it refers to substrings matched by the last match pattern.

 The print() statement does not add field and record separators unless you set $, and $\. You can
set $OFS and $ORS if you‘re using the English module.

 You must open your files before you print to them.

 The range operator is "..", not comma. The comma operator works as in C.

 The match operator is "=~", not "~". ("~" is the one‘s complement operator, as in C.)

 The exponentiation operator is "**", not "^". "^" is the XOR operator, as in C. (You know, one c
get the feeling that awk is basically incompatible with C.)

 The concatenation operator is ".", not the null string. (Using the null string would render /pat/
/pat/ unparsable, because the third slash would be interpreted as a division operator—the to
is in fact slightly context sensitive for operators like "/", "?", and ">". And in fact, "." itself can be
beginning of a number.)

 The next , exit , and continue keywords work differently.

 The following variables work differently:

 Awk Perl
 ARGC $#ARGV or scalar @ARGV
 ARGV[0] $0
18−Oct−1998 Version 5.005_02 449

perltrap Perl Programmers Reference Guide perltrap

se

which

 in the
 FILENAME $ARGV
 FNR $. − something
 FS(whatever you like)
 NF$#Fld, or some such
 NR$.
 OFMT $#
 OFS $,
 ORS $\
 RLENGTH length($&)
 RS$/
 RSTART length($‘)
 SUBSEP $;

 You cannot set $RS to a pattern, only a string.

 When in doubt, run the awk construct through a2p and see what it gives you.

C Traps
Cerebral C programmers should take note of the following:

 Curly brackets are required on if ‘s and while ‘s.

 You must use elsif rather than else if .

 The break and continue keywords from C become in Perl last and next , respectively. Unlike
in C, these do NOT work within a do { } while construct.

 There‘s no switch statement. (But it‘s easy to build one on the fly.)

 Variables begin with "$", "@" or "%" in Perl.

 printf() does not implement the "*" format for interpolating field widths, but it‘s trivial to u
interpolation of double−quoted strings to achieve the same effect.

 Comments begin with "#", not "/*".

 You can‘t take the address of anything, although a similar operator in Perl is the backslash,
creates a reference.

 ARGV must be capitalized. $ARGV[0] is C‘s argv[1] , and argv[0] ends up in $0.

 System calls such as link() , unlink() , rename() , etc. return nonzero for success, not 0.

 Signal handlers deal with signal names, not numbers. Use kill −l to find their names on your
system.

Sed Traps
Seasoned sed programmers should take note of the following:

 Backreferences in substitutions use "$" rather than "\".

 The pattern matching metacharacters "(", ")", and "|" do not have backslashes in front.

 The range operator is ... , rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

 The backtick operator does variable interpolation without regard to the presence of single quotes
command.

 The backtick operator does no translation of the return value, unlike csh.
450 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

ution
.

ting it

e. See

ether
lls, you

. The

n to

name

 feature
 Shells (especially csh) do several levels of substitution on each command line. Perl does substit
in only certain constructs such as double quotes, backticks, angle brackets, and search patterns

 Shells interpret scripts a little bit at a time. Perl compiles the entire program before execu
(except for BEGIN blocks, which execute at compile time).

 The arguments are available via @ARGV, not $1, $2, etc.

 The environment is not automatically made available as separate scalar variables.

Perl Traps
Practicing Perl Programmers should take note of the following:

 Remember that many operations behave differently in a list context than they do in a scalar on
perldata for details.

 Avoid barewords if you can, especially all lowercase ones. You can‘t tell by just looking at it wh
a bareword is a function or a string. By using quotes on strings and parentheses on function ca
won‘t ever get them confused.

 You cannot discern from mere inspection which builtins are unary operators (like chop() and
chdir()) and which are list operators (like print() and unlink()). (User−defined subroutines
can be only list operators, never unary ones.) See perlop.

 People have a hard time remembering that some functions default to $_, or @ARGV, or whatever,
but that others which you might expect to do not.

 The <FH> construct is not the name of the filehandle, it is a readline operation on that handle
data read is assigned to $_ only if the file read is the sole condition in a while loop:

 while (<FH>) { }
 while (defined($_ = <FH>)) { }..
 <FH>; # data discarded!

 Remember not to use "=" when you need "=~"; these two constructs are quite different:

 $x = /foo/;
 $x =~ /foo/;

 The do {} construct isn‘t a real loop that you can use loop control on.

 Use my() for local variables whenever you can get away with it (but see perlform for where you
can‘t). Using local() actually gives a local value to a global variable, which leaves you ope
unforeseen side−effects of dynamic scoping.

 If you localize an exported variable in a module, its exported value will not change. The local
becomes an alias to a new value but the external name is still an alias for the original.

Perl4 to Perl5 Traps
Practicing Perl4 Programmers should take note of the following Perl4−to−Perl5 specific traps.

They‘re crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps
Anything that‘s been fixed as a perl4 bug, removed as a perl4 feature or deprecated as a perl4
with the intent to encourage usage of some other perl5 feature.

Parsing Traps
Traps that appear to stem from the new parser.

Numerical Traps
Traps having to do with numerical or mathematical operators.
18−Oct−1998 Version 5.005_02 451

perltrap Perl Programmers Reference Guide perltrap

ng with

leton

ntly in

sed as
General data type traps
Traps involving perl standard data types.

Context Traps − scalar, list contexts
Traps related to context within lists, scalar statements/declarations.

Precedence Traps
Traps related to the precedence of parsing, evaluation, and execution of code.

General Regular Expression Traps using s///, etc.
Traps related to the use of pattern matching.

Subroutine, Signal, Sorting Traps
Traps related to the use of signals and signal handlers, general subroutines, and sorting, alo
sorting subroutines.

OS Traps
OS−specific traps.

DBM Traps
Traps specific to the use of dbmopen() , and specific dbm implementations.

Unclassified Traps
Everything else.

If you find an example of a conversion trap that is not listed here, please submit it to Bill Midd
<wjm@best.com for inclusion. Also note that at least some of these can be caught with −w.

Discontinuance, Deprecation, and BugFix traps
Anything that has been discontinued, deprecated, or fixed as a bug from perl4.

 Discontinuance
Symbols starting with "_" are no longer forced into package main, except for $_ itself (and @_, etc.).

 package test;
 $_legacy = 1;

 package main;
 print "\$_legacy is ",$_legacy,"\n";

 # perl4 prints: $_legacy is 1
 # perl5 prints: $_legacy is

 Deprecation
Double−colon is now a valid package separator in a variable name. Thus these behave differe
perl4 vs. perl5, because the packages don‘t exist.

 $a=1;$b=2;$c=3;$var=4;
 print "$a::$b::$c ";
 print "$var::abc::xyz\n";

 # perl4 prints: 1::2::3 4::abc::xyz
 # perl5 prints: 3

Given that :: is now the preferred package delimiter, it is debatable whether this should be clas
a bug or not. (The older package delimiter, ’ ,is used here)

 $x = 10 ;
 print "x=${’x}\n" ;

 # perl4 prints: x=10
452 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

 the

ys)

for any
 # perl5 prints: Can’t find string terminator "’" anywhere before EOF

You can avoid this problem, and remain compatible with perl4, if you always explicitly include
package name:

 $x = 10 ;
 print "x=${main’x}\n" ;

Also see precedence traps, for parsing $:.

 BugFix
The second and third arguments of splice() are now evaluated in scalar context (as the Camel sa
rather than list context.

 sub sub1{return(0,2) } # return a 2−element list
 sub sub2{ return(1,2,3)} # return a 3−element list
 @a1 = ("a","b","c","d","e");
 @a2 = splice(@a1,&sub1,&sub2);
 print join(’ ’,@a2),"\n";

 # perl4 prints: a b
 # perl5 prints: c d e

 Discontinuance
You can‘t do a goto into a block that is optimized away. Darn.

 goto marker1;

 for(1){
 marker1:
 print "Here I is!\n";
 }

 # perl4 prints: Here I is!
 # perl5 dumps core (SEGV)

 Discontinuance
It is no longer syntactically legal to use whitespace as the name of a variable, or as a delimiter
kind of quote construct. Double darn.

 $a = ("foo bar");
 $b = q baz ;
 print "a is $a, b is $b\n";

 # perl4 prints: a is foo bar, b is baz
 # perl5 errors: Bareword found where operator expected

 Discontinuance
The archaic while/if BLOCK BLOCK syntax is no longer supported.

 if { 1 } {
 print "True!";
 }
 else {
 print "False!";
 }

 # perl4 prints: True!
 # perl5 errors: syntax error at test.pl line 1, near "if {"
18−Oct−1998 Version 5.005_02 453

perltrap Perl Programmers Reference Guide perltrap

fore,

ray.
means
to the

iterate

use
 BugFix
The ** operator now binds more tightly than unary minus. It was documented to work this way be
but didn‘t.

 print −4**2,"\n";

 # perl4 prints: 16
 # perl5 prints: −16

 Discontinuance
The meaning of foreach{} has changed slightly when it is iterating over a list which is not an ar
 This used to assign the list to a temporary array, but no longer does so (for efficiency). This
that you‘ll now be iterating over the actual values, not over copies of the values. Modifications
loop variable can change the original values.

 @list = (’ab’,’abc’,’bcd’,’def’);
 foreach $var (grep(/ab/,@list)){
 $var = 1;
 }
 print (join(’:’,@list));

 # perl4 prints: ab:abc:bcd:def
 # perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list explicitly to a temporary array and then
over that. For example, you might need to change

 foreach $var (grep(/ab/,@list)){

to

 foreach $var (@tmp = grep(/ab/,@list)){

Otherwise changing $var will clobber the values of @list. (This most often happens when you
$_ for the loop variable, and call subroutines in the loop that don‘t properly localize $_.)

 Discontinuance
split with no arguments now behaves like split ’ ’ (which doesn‘t return an initial null field if
$_ starts with whitespace), it used to behave like split /\s+/ (which does).

 $_ = ’ hi mom’;
 print join(’:’, split);

 # perl4 prints: :hi:mom
 # perl5 prints: hi:mom

 BugFix
Perl 4 would ignore any text which was attached to an −e switch, always taking the code snippet from
the following arg. Additionally, it would silently accept an −e switch without a following arg. Both of
these behaviors have been fixed.

 perl −e’print "attached to −e"’ ’print "separate arg"’

 # perl4 prints: separate arg
 # perl5 prints: attached to −e

 perl −e

 # perl4 prints:
 # perl5 dies: No code specified for −e.
454 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

hed
e

d,
ents.

 Discontinuance
In Perl 4 the return value of push was undocumented, but it was actually the last value being pus
onto the target list. In Perl 5 the return value of push is documented, but has changed, it is th
number of elements in the resulting list.

 @x = (’existing’);
 print push(@x, ’first new’, ’second new’);

 # perl4 prints: second new
 # perl5 prints: 3

 Discontinuance
In Perl 4 (and versions of Perl 5 before 5.004), ‘\r’ characters in Perl code were silently allowe
although they could cause (mysterious!) failures in certain constructs, particularly here docum
Now, ‘\r’ characters cause an immediate fatal error. (Note: In this example, the notation\015
represents the incorrect line ending. Depending upon your text viewer, it will look different.)

 print "foo";\015
 print "bar";

 # perl4 prints: foobar
 # perl5.003 prints: foobar
 # perl5.004 dies: Illegal character \015 (carriage return)

See perldiag for full details.

 Deprecation
Some error messages will be different.

 Discontinuance
Some bugs may have been inadvertently removed. :−)

Parsing Traps
Perl4−to−Perl5 traps from having to do with parsing.

 Parsing
Note the space between . and =

 $string . = "more string";
 print $string;

 # perl4 prints: more string
 # perl5 prints: syntax error at − line 1, near ". ="

 Parsing
Better parsing in perl 5

 sub foo {}
 &foo
 print("hello, world\n");

 # perl4 prints: hello, world
 # perl5 prints: syntax error

 Parsing
"if it looks like a function, it is a function" rule.

 print
 ($foo == 1) ? "is one\n" : "is zero\n";

 # perl4 prints: is zero
18−Oct−1998 Version 5.005_02 455

perltrap Perl Programmers Reference Guide perltrap

ld not
 wary

 test

text.
 # perl5 warns: "Useless use of a constant in void context" if using −w

 Parsing
String interpolation of the $#array construct differs when braces are to used around the name.

 @ = (1..3);
 print "${#a}";

 # perl4 prints: 2
 # perl5 fails with syntax error

 @ = (1..3);
 print "$#{a}";

 # perl4 prints: {a}
 # perl5 prints: 2

Numerical Traps
Perl4−to−Perl5 traps having to do with numerical operators, operands, or output from same.

 Numerical
Formatted output and significant digits

 print 7.373504 − 0, "\n";
 printf "%20.18f\n", 7.373504 − 0;

 # Perl4 prints:
 7.375039999999996141
 7.37503999999999614

 # Perl5 prints:
 7.373504
 7.37503999999999614

 Numerical
This specific item has been deleted. It demonstrated how the auto−increment operator wou
catch when a number went over the signed int limit. Fixed in version 5.003_04. But always be
when using large integers. If in doubt:

 use Math::BigInt;

 Numerical
Assignment of return values from numeric equality tests does not work in perl5 when the
evaluates to false (0). Logical tests now return an null, instead of 0

 $p = ($test == 1);
 print $p,"\n";

 # perl4 prints: 0
 # perl5 prints:

Also see , etc." for another example of this new feature...

General data type traps
Perl4−to−Perl5 traps involving most data−types, and their usage within certain expressions and/or con

 (Arrays)
Negative array subscripts now count from the end of the array.

 @a = (1, 2, 3, 4, 5);
 print "The third element of the array is $a[3] also expressed as $a[−2] \n";

 # perl4 prints: The third element of the array is 4 also expressed as
456 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

ent to

r (but

oes to
 # perl5 prints: The third element of the array is 4 also expressed as 4

 (Arrays)
Setting $#array lower now discards array elements, and makes them impossible to recover.

 @a = (a,b,c,d,e);
 print "Before: ",join(’’,@a);
 $#a =1;
 print ", After: ",join(’’,@a);
 $#a =3;
 print ", Recovered: ",join(’’,@a),"\n";

 # perl4 prints: Before: abcde, After: ab, Recovered: abcd
 # perl5 prints: Before: abcde, After: ab, Recovered: ab

 (Hashes)
Hashes get defined before use

 local($s,@a,%h);
 die "scalar \$s defined" if defined($s);
 die "array \@a defined" if defined(@a);
 die "hash \%h defined" if defined(%h);

 # perl4 prints:
 # perl5 dies: hash %h defined

 (Globs)
glob assignment from variable to variable will fail if the assigned variable is localized subsequ
the assignment

 @a = ("This is Perl 4");
 *b = *a;
 local(@a);
 print @b,"\n";

 # perl4 prints: This is Perl 4
 # perl5 prints:

 (Globs)
Assigning undef to a glob has no effect in Perl 5. In Perl 4 it undefines the associated scala
may have other side effects including SEGVs).

 (Scalar String)
Changes in unary negation (of strings) This change effects both the return value and what it d
auto(magic)increment.

 $x = "aaa";
 print ++$x," : ";
 print −$x," : ";
 print ++$x,"\n";

 # perl4 prints: aab : −0 : 1
 # perl5 prints: aab : −aab : aac

 (Constants)
perl 4 lets you modify constants:

 $foo = "x";
 &mod($foo);
 for ($x = 0; $x < 3; $x++) {
 &mod("a");
18−Oct−1998 Version 5.005_02 457

perltrap Perl Programmers Reference Guide perltrap

hashes
 }
 sub mod {
 print "before: $_[0]";
 $_[0] = "m";
 print " after: $_[0]\n";
 }

 # perl4:
 # before: x after: m
 # before: a after: m
 # before: m after: m
 # before: m after: m

 # Perl5:
 # before: x after: m
 # Modification of a read−only value attempted at foo.pl line 12.
 # before: a

 (Scalars)
The behavior is slightly different for:

 print "$x", defined $x

 # perl 4: 1
 # perl 5: <no output, $x is not called into existence>

 (Variable Suicide)
Variable suicide behavior is more consistent under Perl 5. Perl5 exhibits the same behavior for
and scalars, that perl4 exhibits for only scalars.

 $aGlobal{ "aKey" } = "global value";
 print "MAIN:", $aGlobal{"aKey"}, "\n";
 $GlobalLevel = 0;
 &test(*aGlobal);

 sub test {
 local(*theArgument) = @_;
 local(%aNewLocal); # perl 4 != 5.001l,m
 $aNewLocal{"aKey"} = "this should never appear";
 print "SUB: ", $theArgument{"aKey"}, "\n";
 $aNewLocal{"aKey"} = "level $GlobalLevel"; # what should print
 $GlobalLevel++;
 if($GlobalLevel<4) {
 &test(*aNewLocal);
 }
 }

 # Perl4:
 # MAIN:global value
 # SUB: global value
 # SUB: level 0
 # SUB: level 1
 # SUB: level 2

 # Perl5:
 # MAIN:global value
 # SUB: global value
 # SUB: this should never appear
 # SUB: this should never appear
458 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

u can

 lets

ents.

ded to

 however,
 # SUB: this should never appear

Context Traps − scalar, list contexts

 (list context)
The elements of argument lists for formats are now evaluated in list context. This means yo
interpolate list values now.

 @fmt = ("foo","bar","baz");
 format STDOUT=
 @<<<<< @||||| @>>>>>
 @fmt;
 .
 write;

 # perl4 errors: Please use commas to separate fields in file
 # perl5 prints: foo bar baz

 (scalar context)
The caller() function now returns a false value in a scalar context if there is no caller. This
library files determine if they‘re being required.

 caller() ? (print "You rang?\n") : (print "Got a 0\n");

 # perl4 errors: There is no caller
 # perl5 prints: Got a 0

 (scalar context)
The comma operator in a scalar context is now guaranteed to give a scalar context to its argum

 @y= (’a’,’b’,’c’);
 $x = (1, 2, @y);
 print "x = $x\n";

 # Perl4 prints: x = c # Thinks list context interpolates list
 # Perl5 prints: x = 3 # Knows scalar uses length of list

 (list, builtin)
sprintf() funkiness (array argument converted to scalar array count) This test could be ad
t/op/sprintf.t

 @z = (’%s%s’, ’foo’, ’bar’);
 $x = sprintf(@z);
 if ($x eq ’foobar’) {print "ok 2\n";} else {print "not ok 2 ’$x’\n";}

 # perl4 prints: ok 2
 # perl5 prints: not ok 2

printf() works fine, though:

 printf STDOUT (@z);
 print "\n";

 # perl4 prints: foobar
 # perl5 prints: foobar

Probably a bug.

Precedence Traps
Perl4−to−Perl5 traps involving precedence order.

Perl 4 has almost the same precedence rules as Perl 5 for the operators that they both have. Perl 4
seems to have had some inconsistencies that made the behavior differ from what was documented.
18−Oct−1998 Version 5.005_02 459

perltrap Perl Programmers Reference Guide perltrap

is can

t. Perl 4
ize them

atement
 Precedence
LHS vs. RHS of any assignment operator. LHS is evaluated first in perl4, second in perl5; th
affect the relationship between side−effects in sub−expressions.

 @arr = (’left’, ’right’);
 $a{shift @arr} = shift @arr;
 print join(’ ’, keys %a);

 # perl4 prints: left
 # perl5 prints: right

 Precedence
These are now semantic errors because of precedence:

 @list = (1,2,3,4,5);
 %map = ("a",1,"b",2,"c",3,"d",4);
 $n = shift @list + 2; # first item in list plus 2
 print "n is $n, ";
 $m = keys %map + 2; # number of items in hash plus 2
 print "m is $m\n";

 # perl4 prints: n is 3, m is 6
 # perl5 errors and fails to compile

 Precedence
The precedence of assignment operators is now the same as the precedence of assignmen
mistakenly gave them the precedence of the associated operator. So you now must parenthes
in expressions like

 /foo/ ? ($a += 2) : ($a −= 2);

Otherwise

 /foo/ ? $a += 2 : $a −= 2

would be erroneously parsed as

 (/foo/ ? $a += 2 : $a) −= 2;

On the other hand,

 $a += /foo/ ? 1 : 2;

now works as a C programmer would expect.

 Precedence
 open FOO || die;

is now incorrect. You need parentheses around the filehandle. Otherwise, perl5 leaves the st
as its default precedence:

 open(FOO || die);

 # perl4 opens or dies
 # perl5 errors: Precedence problem: open FOO should be open(FOO)

 Precedence
perl4 gives the special variable, $: precedence, where perl5 treats $:: as main package

 $a = "x"; print "$::a";

 # perl 4 prints: −:a
 # perl 5 prints: x
460 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

 Thus,

ted
d unary

e scope

d when
 Precedence
perl4 had buggy precedence for the file test operators vis−a−vis the assignment operators.
although the precedence table for perl4 leads one to believe −e $foo .= "q" should parse as
((−e $foo) .= "q") , it actually parses as (−e ($foo .= "q")) . In perl5, the precedence
is as documented.

 −e $foo .= "q"

 # perl4 prints: no output
 # perl5 prints: Can’t modify −e in concatenation

 Precedence
In perl4, keys() , each() and values() were special high−precedence operators that opera
on a single hash, but in perl5, they are regular named unary operators. As documented, name
operators have lower precedence than the arithmetic and concatenation operators + − . , but the
perl4 variants of these operators actually bind tighter than + − . . Thus, for:

 %foo = 1..10;
 print keys %foo − 1

 # perl4 prints: 4
 # perl5 prints: Type of arg 1 to keys must be hash (not subtraction)

The perl4 behavior was probably more useful, if less consistent.

General Regular Expression Traps using s///, etc.
All types of RE traps.

 Regular Expression
s‘$lhs‘$rhs’ now does no interpolation on either side. It used to interpolate $lhs but not
$rhs. (And still does not match a literal ‘$’ in string)

 $a=1;$b=2;
 $string = ’1 2 $a $b’;
 $string =~ s’$a’$b’;
 print $string,"\n";

 # perl4 prints: $b 2 $a $b
 # perl5 prints: 1 2 $a $b

 Regular Expression
m//g now attaches its state to the searched string rather than the regular expression. (Once th
of a block is left for the sub, the state of the searched string is lost)

 $_ = "ababab";
 while(m/ab/g){
 &doit("blah");
 }
 sub doit{local($_) = shift; print "Got $_ "}

 # perl4 prints: blah blah blah
 # perl5 prints: infinite loop blah...

 Regular Expression
Currently, if you use the m//o qualifier on a regular expression within an anonymous sub, all
closures generated from that anonymous sub will use the regular expression as it was compile
it was used the very first time in any such closure. For instance, if you say

 sub build_match {
 my($left,$right) = @_;
18−Oct−1998 Version 5.005_02 461

perltrap Perl Programmers Reference Guide perltrap

the s‘d
 return sub { $_[0] =~ /$left stuff $right/o; };
 }

build_match() will always return a sub which matches the contents of $left and $right as
they were the first time that build_match() was called, not as they are in the current call.

This is probably a bug, and may change in future versions of Perl.

 Regular Expression
If no parentheses are used in a match, Perl4 sets $+ to the whole match, just like $&. Perl5 does not.

 "abcdef" =~ /b.*e/;
 print "\$+ = $+\n";

 # perl4 prints: bcde
 # perl5 prints:

 Regular Expression
substitution now returns the null string if it fails

 $string = "test";
 $value = ($string =~ s/foo//);
 print $value, "\n";

 # perl4 prints: 0
 # perl5 prints:

Also see Numerical Traps for another example of this new feature.

 Regular Expression
s‘lhs‘rhs‘ (using backticks) is now a normal substitution, with no backtick expansion

 $string = "";
 $string =~ s‘^‘hostname‘;
 print $string, "\n";

 # perl4 prints: <the local hostname>
 # perl5 prints: hostname

 Regular Expression
Stricter parsing of variables used in regular expressions

 s/^([^$grpc]*$grpc[optplus$rep]?)//o;

 # perl4: compiles w/o error
 # perl5: with Scalar found where operator expected ..., near "optplus"

an added component of this example, apparently from the same script, is the actual value of
string after the substitution. [$opt] is a character class in perl4 and an array subscript in perl5

 $grpc = ’a’;
 $opt = ’r’;
 $_ = ’bar’;
 s/^([^$grpc]*$grpc[$opt]?)/foo/;
 print ;

 # perl4 prints: foo
 # perl5 prints: foobar

 Regular Expression
Under perl5, m?x? matches only once, like ?x? . Under perl4, it matched repeatedly, like /x/ or
m!x! .
462 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

utines,

e by

.

 signal
 done
 $test = "once";
 sub match { $test =~ m?once?; }
 &match();
 if(&match()) {
 # m?x? matches more then once
 print "perl4\n";
 } else {
 # m?x? matches only once
 print "perl5\n";
 }

 # perl4 prints: perl4
 # perl5 prints: perl5

Subroutine, Signal, Sorting Traps
The general group of Perl4−to−Perl5 traps having to do with Signals, Sorting, and their related subro
as well as general subroutine traps. Includes some OS−Specific traps.

 (Signals)
Barewords that used to look like strings to Perl will now look like subroutine calls if a subroutin
that name is defined before the compiler sees them.

 sub SeeYa { warn"Hasta la vista, baby!" }
 $SIG{’TERM’} = SeeYa;
 print "SIGTERM is now $SIG{’TERM’}\n";

 # perl4 prints: SIGTERM is main’SeeYa
 # perl5 prints: SIGTERM is now main::1

Use −w to catch this one

 (Sort Subroutine)
reverse is no longer allowed as the name of a sort subroutine.

 sub reverse{ print "yup "; $a <=> $b }
 print sort reverse a,b,c;

 # perl4 prints: yup yup yup yup abc
 # perl5 prints: abc

 warn() won‘t let you specify a filehandle.
Although it _always_ printed to STDERR, warn() would let you specify a filehandle in perl4
With perl5 it does not.

 warn STDERR "Foo!";

 # perl4 prints: Foo!
 # perl5 prints: String found where operator expected

OS Traps

 (SysV)
Under HPUX, and some other SysV OSes, one had to reset any signal handler, within the
handler function, each time a signal was handled with perl4. With perl5, the reset is now
correctly. Any code relying on the handler _not_ being reset will have to be reworked.

Since version 5.002, Perl uses sigaction() under SysV.

 sub gotit {
 print "Got @_... ";
 }
 $SIG{’INT’} = ’gotit’;
18−Oct−1998 Version 5.005_02 463

perltrap Perl Programmers Reference Guide perltrap

write

ments,

quotes
 $| = 1;
 $pid = fork;
 if ($pid) {
 kill(’INT’, $pid);
 sleep(1);
 kill(’INT’, $pid);
 } else {
 while (1) {sleep(10);}
 }

 # perl4 (HPUX) prints: Got INT...
 # perl5 (HPUX) prints: Got INT... Got INT...

 (SysV)
Under SysV OSes, seek() on a file opened to append >> now does the right thing w.r.t. the
fopen() manpage. e.g., − When a file is opened for append, it is impossible to over
information already in the file.

 open(TEST,">>seek.test");
 $start = tell TEST ;
 foreach(1 .. 9){
 print TEST "$_ ";
 }
 $end = tell TEST ;
 seek(TEST,$start,0);
 print TEST "18 characters here";

 # perl4 (solaris) seek.test has: 18 characters here
 # perl5 (solaris) seek.test has: 1 2 3 4 5 6 7 8 9 18 characters here

Interpolation Traps
Perl4−to−Perl5 traps having to do with how things get interpolated within certain expressions, state
contexts, or whatever.

 Interpolation
@ now always interpolates an array in double−quotish strings.

 print "To: someone@somewhere.com\n";

 # perl4 prints: To:someone@somewhere.com
 # perl5 errors : In string, @somewhere now must be written as \@somewhere

 Interpolation
Double−quoted strings may no longer end with an unescaped $ or @.

 $foo = "foo$";
 $bar = "bar@";
 print "foo is $foo, bar is $bar\n";

 # perl4 prints: foo is foo$, bar is bar@
 # perl5 errors: Final $ should be \$ or $name

Note: perl5 DOES NOT error on the terminating @ in $bar

 Interpolation
Perl now sometimes evaluates arbitrary expressions inside braces that occur within double
(usually when the opening brace is preceded by $ or @).

 @www = "buz";
 $foo = "foo";
 $bar = "bar";
464 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap

 to

ed, the
ld be
 sub foo { return "bar" };
 print "|@{w.w.w}|${main’foo}|";

 # perl4 prints: |@{w.w.w}|foo|
 # perl5 prints: |buz|bar|

Note that you can use strict; to ward off such trappiness under perl5.

 Interpolation
The construct "this is $$x" used to interpolate the pid at that point, but now apparently tries
dereference $x. $$ by itself still works fine, however.

 print "this is $$x\n";

 # perl4 prints: this is XXXx (XXX is the current pid)
 # perl5 prints: this is

 Interpolation
Creation of hashes on the fly with eval "EXPR" now requires either both $‘s to be protected in
the specification of the hash name, or both curlies to be protected. If both curlies are protect
result will be compatible with perl4 and perl5. This is a very common practice, and shou
changed to use the block form of eval{} if possible.

 $hashname = "foobar";
 $key = "baz";
 $value = 1234;
 eval "\$$hashname{’$key’} = q|$value|";
 (defined($foobar{’baz’})) ? (print "Yup") : (print "Nope");

 # perl4 prints: Yup
 # perl5 prints: Nope

Changing

 eval "\$$hashname{’$key’} = q|$value|";

to

 eval "\$\$hashname{’$key’} = q|$value|";

causes the following result:

 # perl4 prints: Nope
 # perl5 prints: Yup

or, changing to

 eval "\$$hashname\{’$key’\} = q|$value|";

causes the following result:

 # perl4 prints: Yup
 # perl5 prints: Yup
 # and is compatible for both versions

 Interpolation
perl4 programs which unconsciously rely on the bugs in earlier perl versions.

 perl −e ’$bar=q/not/; print "This is $foo{$bar} perl5"’

 # perl4 prints: This is not perl5
 # perl5 prints: This is perl5
18−Oct−1998 Version 5.005_02 465

perltrap Perl Programmers Reference Guide perltrap

e script,
as the

e script,
e will
 Interpolation
You also have to be careful about array references.

 print "$foo{"

 perl 4 prints: {
 perl 5 prints: syntax error

 Interpolation
Similarly, watch out for:

 $foo = "array";
 print "\$$foo{bar}\n";

 # perl4 prints: $array{bar}
 # perl5 prints: $

Perl 5 is looking for $array{bar} which doesn‘t exist, but perl 4 is happy just to expand $foo to
"array" by itself. Watch out for this especially in eval ‘s.

 Interpolation
qq() string passed to eval

 eval qq(
 foreach \$y (keys %\$x\) {
 \$count++;
 }
);

 # perl4 runs this ok
 # perl5 prints: Can’t find string terminator ")"

DBM Traps
General DBM traps.

 DBM Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the sam
run under perl5, to fail. The build of perl5 must have been linked with the same dbm/ndbm
default for dbmopen() to function properly without tie ‘ing to an extension dbm implementation.

 dbmopen (%dbm, "file", undef);
 print "ok\n";

 # perl4 prints: ok
 # perl5 prints: ok (IFF linked with −ldbm or −lndbm)

 DBM Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the sam
run under perl5, to fail. The error generated when exceeding the limit on the key/value siz
cause perl5 to exit immediately.

 dbmopen(DB, "testdb",0600) || die "couldn’t open db! $!";
 $DB{’trap’} = "x" x 1024; # value too large for most dbm/ndbm
 print "YUP\n";

 # perl4 prints:
 dbm store returned −1, errno 28, key "trap" at − line 3.
 YUP

 # perl5 prints:
 dbm store returned −1, errno 28, key "trap" at − line 3.
466 Version 5.005_02 18−Oct−1998

perltrap Perl Programmers Reference Guide perltrap
Unclassified Traps
Everything else.

 require /do trap using returned value
If the file doit.pl has:

 sub foo {
 $rc = do "./do.pl";
 return 8;
 }
 print &foo, "\n";

And the do.pl file has the following single line:

 return 3;

Running doit.pl gives the following:

 # perl 4 prints: 3 (aborts the subroutine early)
 # perl 5 prints: 8

Same behavior if you replace do with require .

 split on empty string with LIMIT specified
$string = ’’;

 @list = split(/foo/, $string, 2)

Perl4 returns a one element list containing the empty string but Perl5 returns an empty list.

As always, if any of these are ever officially declared as bugs, they‘ll be fixed and removed.
18−Oct−1998 Version 5.005_02 467

perlstyle Perl Programmers Reference Guide perlstyle

ere are

er

g curly
e has

he same

le one.
NAME
perlstyle − Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in regards to formatting, but th
some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under the −w flag at all times. You may turn it off
explicitly for particular portions of code via the $^W variable if you must. You should also always run und
use strict or know the reason why not. The use sigtrap and even use diagnostics pragmas
may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closin
brace of a multi−line BLOCK should line up with the keyword that started the construct. Beyond that, h
other preferences that aren‘t so strong:

 4−column indent.

 Opening curly on same line as keyword, if possible, otherwise line up.

 Space before the opening curly of a multi−line BLOCK.

 One−line BLOCK may be put on one line, including curlies.

 No space before the semicolon.

 Semicolon omitted in "short" one−line BLOCK.

 Space around most operators.

 Space around a "complex" subscript (inside brackets).

 Blank lines between chunks that do different things.

 Uncuddled elses.

 No space between function name and its opening parenthesis.

 Space after each comma.

 Long lines broken after an operator (except "and" and "or").

 Space after last parenthesis matching on current line.

 Line up corresponding items vertically.

 Omit redundant punctuation as long as clarity doesn‘t suffer.

Larry has his reasons for each of these things, but he doesn‘t claim that everyone else‘s mind works t
as his does.

Here are some other more substantive style issues to think about:

 Just because you CAN do something a particular way doesn‘t mean that you SHOULD do it that way.
Perl is designed to give you several ways to do anything, so consider picking the most readab
For instance

 open(FOO,$foo) || die "Can’t open $foo: $!";

is better than

 die "Can’t open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other hand

 print "Starting analysis\n" if $verbose;
468 Version 5.005_02 18−Oct−1998

perlstyle Perl Programmers Reference Guide perlstyle

have to
e−shot

you

key in

 code

ilevel

y

nstruct
was

em.

It is

module
l
 file

le:
is better than

 $verbose && print "Starting analysis\n";

because the main point isn‘t whether the user typed −v or not.

Similarly, just because an operator lets you assume default arguments doesn‘t mean that you
make use of the defaults. The defaults are there for lazy systems programmers writing on
programs. If you want your program to be readable, consider supplying the argument.

Along the same lines, just because you CAN omit parentheses in many places doesn‘t mean that
ought to:

 return print reverse sort num values %array;
 return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the %
vi.

Even if you aren‘t in doubt, consider the mental welfare of the person who has to maintain the
after you, and who will probably put parentheses in the wrong place.

 Don‘t go through silly contortions to exit a loop at the top or the bottom, when Perl provides the last
operator so you can exit in the middle. Just "outdent" it a little to make it more visible:

 LINE:
for (;;) {
 statements;
 last LINE if $foo;
 next LINE if /^#/;
 statements;
}

 Don‘t be afraid to use loop labels—they‘re there to enhance readability as well as to allow mult
loop breaks. See the previous example.

 Avoid using grep() (or map()) or ‘backticks‘ in a void context, that is, when you just throw awa
their return values. Those functions all have return values, so use them. Otherwise use a foreach()
loop or the system() function instead.

 For portability, when using features that may not be implemented on every machine, test the co
in an eval to see if it fails. If you know what version or patchlevel a particular feature
implemented, you can test $] ($PERL_VERSION in English) to see if it will be there. The
Config module will also let you interrogate values determined by the Configure program when Perl
was installed.

 Choose mnemonic identifiers. If you can‘t remember what mnemonic means, you‘ve got a probl

 While short identifiers like $gotit are probably ok, use underscores to separate words.
generally easier to read $var_names_like_this than $VarNamesLikeThis, especially for
non−native speakers of English. It‘s also a simple rule that works consistently with
VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase
names for "pragma" modules like integer and strict . Other modules should begin with a capita
letter and use mixed case, but probably without underscores due to limitations in primitive
systems’ representations of module names as files that must fit into a few sparse bytes.

 You may find it helpful to use letter case to indicate the scope or nature of a variable. For examp

 $ALL_CAPS_HERE constants only (beware clashes with perl vars!)
 $Some_Caps_Here package−wide global/static
 $no_caps_here function scope my() or local() variables
18−Oct−1998 Version 5.005_02 469

perlstyle Perl Programmers Reference Guide perlstyle

side the

e
es or

 and to

include
VERY
re‘s a

ething
nsider
.

Function and method names seem to work best as all lowercase. E.g., $obj−>as_string() .

You can use a leading underscore to indicate that a variable or function should not be used out
package that defined it.

 If you have a really hairy regular expression, use the /x modifier and put in some whitespace to mak
it look a little less like line noise. Don‘t use slash as a delimiter when your regexp has slash
backslashes.

 Use the new "and" and "or" operators to avoid having to parenthesize list operators so much,
reduce the incidence of punctuation operators like && and || . Call your subroutines as if they were
functions or list operators to avoid excessive ampersands and parentheses.

 Use here documents instead of repeated print() statements.

 Line up corresponding things vertically, especially if it‘d be too long to fit on one line anyway.

 $IDX = $ST_MTIME;
 $IDX = $ST_ATIME if $opt_u;
 $IDX = $ST_CTIME if $opt_c;
 $IDX = $ST_SIZE if $opt_s;

 mkdir $tmpdir, 0700 or die "can’t mkdir $tmpdir: $!";
 chdir($tmpdir) or die "can’t chdir $tmpdir: $!";
 mkdir ’tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

 Always check the return codes of system calls. Good error messages should go to STDERR,
which program caused the problem, what the failed system call and arguments were, and (
IMPORTANT) should contain the standard system error message for what went wrong. He
simple but sufficient example:

 opendir(D, $dir) or die "can’t opendir $dir: $!";

 Line up your transliterations when it makes sense:

 tr [abc]
 [xyz];

 Think about reusability. Why waste brainpower on a one−shot when you might want to do som
like it again? Consider generalizing your code. Consider writing a module or object class. Co
making your code run cleanly with use strict and −w in effect. Consider giving away your code
Consider changing your whole world view. Consider... oh, never mind.

 Be consistent.

 Be nice.
470 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

ishes to
ed to
face.

B,
let Perl
nd
ap must

enient

ONC+
he
n output

ill be

to the
d so
bove.
NAME
perlxs − XS language reference manual

DESCRIPTION

Introduction
XS is a language used to create an extension interface between Perl and some C library which one w
use with Perl. The XS interface is combined with the library to create a new library which can be link
Perl. An XSUB is a function in the XS language and is the core component of the Perl application inter

The XS compiler is called xsubpp. This compiler will embed the constructs necessary to let an XSU
which is really a C function in disguise, manipulate Perl values and creates the glue necessary to
access the XSUB. The compiler uses typemaps to determine how to map C function parameters a
variables to Perl values. The default typemap handles many common C types. A supplement typem
be created to handle special structures and types for the library being linked.

See perlxstut for a tutorial on the whole extension creation process.

Note: For many extensions, Dave Beazley‘s SWIG system provides a significantly more conv
mechanism for creating the XS glue code. See http://www.cs.utah.edu/~beazley/SWIG for more information.

On The Road
Many of the examples which follow will concentrate on creating an interface between Perl and the
RPC bind library functions. The rpcb_gettime() function is used to demonstrate many features of t
XS language. This function has two parameters; the first is an input parameter and the second is a
parameter. The function also returns a status value.

bool_t rpcb_gettime(const char *host, time_t *timep);

From C this function will be called with the following statements.

 #include <rpc/rpc.h>
 bool_t status;
 time_t timep;
 status = rpcb_gettime("localhost", &timep);

If an XSUB is created to offer a direct translation between this function and Perl, then this XSUB w
used from Perl with the following code. The $status and $timep variables will contain the output of the
function.

 use RPC;
 $status = rpcb_gettime("localhost", $timep);

The following XS file shows an XS subroutine, or XSUB, which demonstrates one possible interface
rpcb_gettime() function. This XSUB represents a direct translation between C and Perl an
preserves the interface even from Perl. This XSUB will be invoked from Perl with the usage shown a
Note that the first three #include statements, for EXTERN.h, perl.h , and XSUB.h, will always be present
at the beginning of an XS file. This approach and others will be expanded later in this document.

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"
 #include <rpc/rpc.h>

 MODULE = RPC PACKAGE = RPC

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
18−Oct−1998 Version 5.005_02 471

http://www.cs.utah.edu/~beazley/SWIG

perlxs Perl Programmers Reference Guide perlxs

as the
 and

owing
e

 each

is

ess

s.

 body

store the
, each
which

ming
 OUTPUT:
 timep

Any extension to Perl, including those containing XSUBs, should have a Perl module to serve
bootstrap which pulls the extension into Perl. This module will export the extension‘s functions
variables to the Perl program and will cause the extension‘s XSUBs to be linked into Perl. The foll
module will be used for most of the examples in this document and should be used from Perl with thuse
command as shown earlier. Perl modules are explained in more detail later in this document.

 package RPC;

 require Exporter;
 require DynaLoader;
 @ISA = qw(Exporter DynaLoader);
 @EXPORT = qw(rpcb_gettime);

 bootstrap RPC;
 1;

Throughout this document a variety of interfaces to the rpcb_gettime() XSUB will be explored. The
XSUBs will take their parameters in different orders or will take different numbers of parameters. In
case the XSUB is an abstraction between Perl and the real C rpcb_gettime() function, and the XSUB
must always ensure that the real rpcb_gettime() function is called with the correct parameters. Th
abstraction will allow the programmer to create a more Perl−like interface to the C function.

The Anatomy of an XSUB
The following XSUB allows a Perl program to access a C library function called sin() . The XSUB will
imitate the C function which takes a single argument and returns a single value.

 double
 sin(x)
 double x

When using C pointers the indirection operator * should be considered part of the type and the addr
operator & should be considered part of the variable, as is demonstrated in the rpcb_gettime() function
above. See the section on typemaps for more about handling qualifiers and unary operators in C type

The function name and the return type must be placed on separate lines.

 INCORRECT CORRECT

 double sin(x) double
 double x sin(x)

 double x

The function body may be indented or left−adjusted. The following example shows a function with its
left−adjusted. Most examples in this document will indent the body.

 CORRECT

 double
 sin(x)
 double x

The Argument Stack
The argument stack is used to store the values which are sent as parameters to the XSUB and to
XSUB‘s return value. In reality all Perl functions keep their values on this stack at the same time
limited to its own range of positions on the stack. In this document the first position on that stack
belongs to the active function will be referred to as position 0 for that function.

XSUBs refer to their stack arguments with the macro ST(x), where x refers to a position in this XSUB‘s part
of the stack. Position 0 for that function would be known to the XSUB as ST(0). The XSUB‘s inco
472 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

d in the

ction.
urn
T(0)

t
tly.

not

at
y

use

ch are
ugh to
SUBs
ement
 file,

uld be
d.

ys be

f the C

FIX
parameters and outgoing return values always begin at ST(0). For many simple cases the xsubpp compiler
will generate the code necessary to handle the argument stack by embedding code fragments foun
typemaps. In more complex cases the programmer must supply the code.

The RETVAL Variable
The RETVAL variable is a magic variable which always matches the return type of the C library fun
The xsubpp compiler will supply this variable in each XSUB and by default will use it to hold the ret
value of the C library function being called. In simple cases the value of RETVAL will be placed in S
of the argument stack where it can be received by Perl as the return value of the XSUB.

If the XSUB has a return type of void then the compiler will not supply a RETVAL variable for tha
function. When using the PPCODE: directive the RETVAL variable is not needed, unless used explici

If PPCODE: directive is not used, void return value should be used only for subroutines which do
return a value, even if CODE: directive is used which sets ST(0) explicitly.

Older versions of this document recommended to use void return value in such cases. It was discovered th
this could lead to segfaults in cases when XSUB was truely void . This practice is now deprecated, and ma
be not supported at some future version. Use the return value SV * in such cases. (Currently xsubpp
contains some heuristic code which tries to disambiguate between "truely−void" and
"old−practice−declared−as−void" functions. Hence your code is at mercy of this heuristics unless you SV
* as return value.)

The MODULE Keyword
The MODULE keyword is used to start the XS code and to specify the package of the functions whi
being defined. All text preceding the first MODULE keyword is considered C code and is passed thro
the output untouched. Every XS module will have a bootstrap function which is used to hook the X
into Perl. The package name of this bootstrap function will match the value of the last MODULE stat
in the XS source files. The value of MODULE should always remain constant within the same XS
though this is not required.

The following example will start the XS code and will place all functions in a package named RPC.

 MODULE = RPC

The PACKAGE Keyword
When functions within an XS source file must be separated into packages the PACKAGE keyword sho
used. This keyword is used with the MODULE keyword and must follow immediately after it when use

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

 MODULE = RPC PACKAGE = RPCB

 [XS code in package RPCB]

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

Although this keyword is optional and in some cases provides redundant information it should alwa
used. This keyword will ensure that the XSUBs appear in the desired package.

The PREFIX Keyword
The PREFIX keyword designates prefixes which should be removed from the Perl function names. I
function is rpcb_gettime() and the PREFIX value is rpcb_ then Perl will see this function as
gettime() .

This keyword should follow the PACKAGE keyword when used. If PACKAGE is not used then PRE
should follow the MODULE keyword.
18−Oct−1998 Version 5.005_02 473

perlxs Perl Programmers Reference Guide perlxs

 made
g Perl
y

 not
sed in

his may
like the

 rather

,
ic on
xist). If

 The
d.

age is
 MODULE = RPC PREFIX = rpc_

 MODULE = RPC PACKAGE = RPCB PREFIX = rpcb_

The OUTPUT: Keyword
The OUTPUT: keyword indicates that certain function parameters should be updated (new values
visible to Perl) when the XSUB terminates or that certain values should be returned to the callin
function. For simple functions, such as the sin() function above, the RETVAL variable is automaticall
designated as an output value. In more complex functions the xsubpp compiler will need help to determine
which variables are output variables.

This keyword will normally be used to complement the CODE: keyword. The RETVAL variable is
recognized as an output variable when the CODE: keyword is present. The OUTPUT: keyword is u
this situation to tell the compiler that RETVAL really is an output variable.

The OUTPUT: keyword can also be used to indicate that function parameters are output variables. T
be necessary when a parameter has been modified within the function and the programmer would
update to be seen by Perl.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

The OUTPUT: keyword will also allow an output parameter to be mapped to a matching piece of code
than to a typemap.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep sv_setnv(ST(1), (double)timep);

xsubpp emits an automatic SvSETMAGIC() for all parameters in the OUTPUT section of the XSUB
except RETVAL. This is the usually desired behavior, as it takes care of properly invoking ‘set’ mag
output parameters (needed for hash or array element parameters that must be created if they didn‘t e
for some reason, this behavior is not desired, the OUTPUT section may contain a SETMAGIC: DISABLE
line to disable it for the remainder of the parameters in the OUTPUT section. Likewise, SETMAGIC:
ENABLE can be used to reenable it for the remainder of the OUTPUT section. See perlguts for more details
about ‘set’ magic.

The CODE: Keyword
This keyword is used in more complicated XSUBs which require special handling for the C function.
RETVAL variable is available but will not be returned unless it is specified under the OUTPUT: keywor

The following XSUB is for a C function which requires special handling of its parameters. The Perl us
given first.

 $status = rpcb_gettime("localhost", $timep);

The XSUB follows.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t timep
 CODE:
 RETVAL = rpcb_gettime(host, &timep);
474 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

e call
piler

 value.
 the
piler

ore the

maps
rammer,

 The
ything
les

hen a
ameters

. If
The
 OUTPUT:
 timep
 RETVAL

The INIT: Keyword
The INIT: keyword allows initialization to be inserted into the XSUB before the compiler generates th
to the C function. Unlike the CODE: keyword above, this keyword does not affect the way the com
handles RETVAL.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep

 INIT:
 printf("# Host is %s\n", host);

 OUTPUT:
 timep

The NO_INIT Keyword
The NO_INIT keyword is used to indicate that a function parameter is being used only as an output
The xsubpp compiler will normally generate code to read the values of all function parameters from
argument stack and assign them to C variables upon entry to the function. NO_INIT will tell the com
that some parameters will be used for output rather than for input and that they will be handled bef
function terminates.

The following example shows a variation of the rpcb_gettime() function. This function uses the timep
variable only as an output variable and does not care about its initial contents.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep = NO_INIT
 OUTPUT:
 timep

Initializing Function Parameters
Function parameters are normally initialized with their values from the argument stack. The type
contain the code segments which are used to transfer the Perl values to the C parameters. The prog
however, is allowed to override the typemaps and supply alternate (or additional) initialization code.

The following code demonstrates how to supply initialization code for function parameters.
initialization code is eval‘d within double quotes by the compiler before it is added to the output so an
which should be interpreted literally [mainly $, @, or \\] must be protected with backslashes. The variab
$var, $arg, and $type can be used as in typemaps.

 bool_t
 rpcb_gettime(host,timep)
 char *host = (char *)SvPV($arg,PL_na);
 time_t &timep = 0;
 OUTPUT:
 timep

This should not be used to supply default values for parameters. One would normally use this w
function parameter must be processed by another library function before it can be used. Default par
are covered in the next section.

If the initialization begins with =, then it is output on the same line where the input variable is declared
the initialization begins with ; or +, then it is output after all of the input variables have been declared.
= and ; cases replace the initialization normally supplied from the typemap. For the + case, the initialization
18−Oct−1998 Version 5.005_02 475

perlxs Perl Programmers Reference Guide perlxs

rameter
t−most

uld

eal

. If a
lt in a
: block.

ple is
from the typemap will preceed the initialization code included after the +. A global variable, %v, is available
for the truely rare case where information from one initialization is needed in another initialization.

 bool_t
 rpcb_gettime(host,timep)
 time_t &timep ; /*\$v{time}=@{[$v{time}=$arg]}*/
 char *host + SvOK($v{time}) ? SvPV($arg,PL_na) : NULL;
 OUTPUT:
 timep

Default Parameter Values
Default values can be specified for function parameters by placing an assignment statement in the pa
list. The default value may be a number or a string. Defaults should always be used on the righ
parameters only.

To allow the XSUB for rpcb_gettime() to have a default host value the parameters to the XSUB co
be rearranged. The XSUB will then call the real rpcb_gettime() function with the parameters in the
correct order. Perl will call this XSUB with either of the following statements.

 $status = rpcb_gettime($timep, $host);

 $status = rpcb_gettime($timep);

The XSUB will look like the code which follows. A CODE: block is used to call the r
rpcb_gettime() function with the parameters in the correct order for that function.

 bool_t
 rpcb_gettime(timep,host="localhost")
 char *host
 time_t timep = NO_INIT
 CODE:
 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

The PREINIT: Keyword
The PREINIT: keyword allows extra variables to be declared before the typemaps are expanded
variable is declared in a CODE: block then that variable will follow any typemap code. This may resu
C syntax error. To force the variable to be declared before the typemap code, place it into a PREINIT
 The PREINIT: keyword may be used one or more times within an XSUB.

The following examples are equivalent, but if the code is using complex typemaps then the first exam
safer.

 bool_t
 rpcb_gettime(timep)
 time_t timep = NO_INIT

 PREINIT:
 char *host = "localhost";
 CODE:

 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

A correct, but error−prone example.

 bool_t
 rpcb_gettime(timep)
476 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

 will

ment

yword
e used
 used
 time_t timep = NO_INIT
 CODE:

 char *host = "localhost";
 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:
 timep
 RETVAL

The SCOPE: Keyword
The SCOPE: keyword allows scoping to be enabled for a particular XSUB. If enabled, the XSUB
invoke ENTER and LEAVE automatically.

To support potentially complex type mappings, if a typemap entry used by this XSUB contains a com
like /*scope*/ then scoping will automatically be enabled for that XSUB.

To enable scoping:

 SCOPE: ENABLE

To disable scoping:

 SCOPE: DISABLE

The INPUT: Keyword
The XSUB‘s parameters are usually evaluated immediately after entering the XSUB. The INPUT: ke
can be used to force those parameters to be evaluated a little later. The INPUT: keyword can b
multiple times within an XSUB and can be used to list one or more input variables. This keyword is
with the PREINIT: keyword.

The following example shows how the input parameter timep can be evaluated late, after a PREINIT.

 bool_t
 rpcb_gettime(host,timep)
 char *host

 PREINIT:
 time_t tt;
 INPUT:

 time_t timep
 CODE:
 RETVAL = rpcb_gettime(host, &tt);

 timep = tt;
 OUTPUT:
 timep
 RETVAL

The next example shows each input parameter evaluated late.

 bool_t
 rpcb_gettime(host,timep)

 PREINIT:
 time_t tt;
 INPUT:

 char *host
 PREINIT:
 char *h;
 INPUT:

 time_t timep
 CODE:

 h = host;
 RETVAL = rpcb_gettime(h, &tt);
18−Oct−1998 Version 5.005_02 477

perlxs Perl Programmers Reference Guide perlxs

ber of

ters of

ate
either

 than
aph is

e

alues.
 timep = tt;
 OUTPUT:
 timep
 RETVAL

Variable−length Parameter Lists
XSUBs can have variable−length parameter lists by specifying an ellipsis (...) in the parameter list. This
use of the ellipsis is similar to that found in ANSI C. The programmer is able to determine the num
arguments passed to the XSUB by examining the items variable which the xsubpp compiler supplies for
all XSUBs. By using this mechanism one can create an XSUB which accepts a list of parame
unknown length.

The host parameter for the rpcb_gettime() XSUB can be optional so the ellipsis can be used to indic
that the XSUB will take a variable number of parameters. Perl should be able to call this XSUB with
of the following statements.

 $status = rpcb_gettime($timep, $host);

 $status = rpcb_gettime($timep);

The XS code, with ellipsis, follows.

 bool_t
 rpcb_gettime(timep, ...)
 time_t timep = NO_INIT

 PREINIT:
 char *host = "localhost";
 CODE:

 if(items > 1)
 host = (char *)SvPV(ST(1), PL_na);
 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:
 timep
 RETVAL

The C_ARGS: Keyword
The C_ARGS: keyword allows creating of XSUBS which have different calling sequence from Perl
from C, without a need to write CODE: or CPPCODE: section. The contents of the C_ARGS: paragr
put as the argument to the called C function without any change.

For example, suppose that C function is declared as

 symbolic nth_derivative(int n, symbolic function, int flags);

and that the default flags are kept in a global C variable default_flags . Suppose that you want to creat
an interface which is called as

 $second_deriv = $function−>nth_derivative(2);

To do this, declare the XSUB as

 symbolic
 nth_derivative(function, n)

symbolic function
int n

 C_ARGS:
n, function, default_flags

The PPCODE: Keyword
The PPCODE: keyword is an alternate form of the CODE: keyword and is used to tell the xsubpp compiler
that the programmer is supplying the code to control the argument stack for the XSUBs return v
478 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

es one
ODE:

,

r
ith the

ODE:

. See

In the

te to
Occasionally one will want an XSUB to return a list of values rather than a single value. In these cas
must use PPCODE: and then explicitly push the list of values on the stack. The PPCODE: and C
keywords are not used together within the same XSUB.

The following XSUB will call the C rpcb_gettime() function and will return its two output values
timep and status, to Perl as a single list.

 void
 rpcb_gettime(host)
 char *host

 PREINIT:
 time_t timep;
 bool_t status;
 PPCODE:
 status = rpcb_gettime(host, &timep);
 EXTEND(SP, 2);
 PUSHs(sv_2mortal(newSViv(status)));
 PUSHs(sv_2mortal(newSViv(timep)));

Notice that the programmer must supply the C code necessary to have the real rpcb_gettime() function
called and to have the return values properly placed on the argument stack.

The void return type for this function tells the xsubpp compiler that the RETVAL variable is not needed o
used and that it should not be created. In most scenarios the void return type should be used w
PPCODE: directive.

The EXTEND() macro is used to make room on the argument stack for 2 return values. The PPC
directive causes the xsubpp compiler to create a stack pointer available as SP, and it is this pointer which is
being used in the EXTEND() macro. The values are then pushed onto the stack with the PUSHs() macro.

Now the rpcb_gettime() function can be used from Perl with the following statement.

 ($status, $timep) = rpcb_gettime("localhost");

When handling output parameters with a PPCODE section, be sure to handle ‘set’ magic properly
perlguts for details about ‘set’ magic.

Returning Undef And Empty Lists
Occasionally the programmer will want to return simply undef or an empty list if a function fails rather
than a separate status value. The rpcb_gettime() function offers just this situation. If the function
succeeds we would like to have it return the time and if it fails we would like to have undef returned.
following Perl code the value of $timep will either be undef or it will be a valid time.

 $timep = rpcb_gettime("localhost");

The following XSUB uses the SV * return type as a mnemonic only, and uses a CODE: block to indica
the compiler that the programmer has supplied all the necessary code. The sv_newmortal() call will
initialize the return value to undef, making that the default return value.

 SV *
 rpcb_gettime(host)
 char * host

 PREINIT:
 time_t timep;
 bool_t x;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep))
 sv_setnv(ST(0), (double)timep);
18−Oct−1998 Version 5.005_02 479

perlxs Perl Programmers Reference Guide perlxs

e need

l
e

. When
 are
s in the

tion is
 with
otstrap

 itself.
The next example demonstrates how one would place an explicit undef in the return value, should th
arise.

 SV *
 rpcb_gettime(host)
 char * host

 PREINIT:
 time_t timep;
 bool_t x;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep)){
 sv_setnv(ST(0), (double)timep);
 }
 else{
 ST(0) = &PL_sv_undef;
 }

To return an empty list one must use a PPCODE: block and then not push return values on the stack.

 void
 rpcb_gettime(host)
 char *host

 PREINIT:
 time_t timep;
 PPCODE:
 if(rpcb_gettime(host, &timep))
 PUSHs(sv_2mortal(newSViv(timep)));
 else{
 /* Nothing pushed on stack, so an empty */
 /* list is implicitly returned. */
 }

Some people may be inclined to include an explicit return in the above XSUB, rather than letting contro
fall through to the end. In those situations XSRETURN_EMPTY should be used, instead. This will ensur
that the XSUB stack is properly adjusted. Consult API LISTING in perlguts for other XSRETURN macros.

The REQUIRE: Keyword
The REQUIRE: keyword is used to indicate the minimum version of the xsubpp compiler needed to compile
the XS module. An XS module which contains the following statement will compile with only xsubpp
version 1.922 or greater:

REQUIRE: 1.922

The CLEANUP: Keyword
This keyword can be used when an XSUB requires special cleanup procedures before it terminates
the CLEANUP: keyword is used it must follow any CODE:, PPCODE:, or OUTPUT: blocks which
present in the XSUB. The code specified for the cleanup block will be added as the last statement
XSUB.

The BOOT: Keyword
The BOOT: keyword is used to add code to the extension‘s bootstrap function. The bootstrap func
generated by the xsubpp compiler and normally holds the statements necessary to register any XSUBs
Perl. With the BOOT: keyword the programmer can tell the compiler to add extra statements to the bo
function.

This keyword may be used any time after the first MODULE keyword and should appear on a line by
The first blank line after the keyword will terminate the code block.
480 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

 When
 of the

pes are
ule to

s but

those
. Each
 BOOT:
 # The following message will be printed when the
 # bootstrap function executes.
 printf("Hello from the bootstrap!\n");

The VERSIONCHECK: Keyword
The VERSIONCHECK: keyword corresponds to xsubpp‘s −versioncheck and −noversioncheck
options. This keyword overrides the command line options. Version checking is enabled by default.
version checking is enabled the XS module will attempt to verify that its version matches the version
PM module.

To enable version checking:

 VERSIONCHECK: ENABLE

To disable version checking:

 VERSIONCHECK: DISABLE

The PROTOTYPES: Keyword
The PROTOTYPES: keyword corresponds to xsubpp‘s −prototypes and −noprototypes options.
This keyword overrides the command line options. Prototypes are enabled by default. When prototy
enabled XSUBs will be given Perl prototypes. This keyword may be used multiple times in an XS mod
enable and disable prototypes for different parts of the module.

To enable prototypes:

 PROTOTYPES: ENABLE

To disable prototypes:

 PROTOTYPES: DISABLE

The PROTOTYPE: Keyword
This keyword is similar to the PROTOTYPES: keyword above but can be used to force xsubpp to use a
specific prototype for the XSUB. This keyword overrides all other prototype options and keyword
affects only the current XSUB. Consult Prototypes for information about Perl prototypes.

 bool_t
 rpcb_gettime(timep, ...)
 time_t timep = NO_INIT

 PROTOTYPE: $;$
 PREINIT:

 char *host = "localhost";
 CODE:

 if(items > 1)
 host = (char *)SvPV(ST(1), PL_na);
 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:
 timep
 RETVAL

The ALIAS: Keyword
The ALIAS: keyword allows an XSUB to have two or more unique Perl names and to know which of
names was used when it was invoked. The Perl names may be fully−qualified with package names
alias is given an index. The compiler will setup a variable called ix which contain the index of the alias
which was used. When the XSUB is called with its declared name ix will be 0.

The following example will create aliases FOO::gettime() and BAR::getit() for this function.

 bool_t
18−Oct−1998 Version 5.005_02 481

perlxs Perl Programmers Reference Guide perlxs

s this
UBs.

nction

to use

 from
/set a
 rpcb_gettime(host,timep)
 char *host
 time_t &timep

 ALIAS:
 FOO::gettime = 1
 BAR::getit = 2
 INIT:
 printf("# ix = %d\n", ix);

 OUTPUT:
 timep

The INTERFACE: Keyword
This keyword declares the current XSUB as a keeper of the given calling signature. If some text follow
keyword, it is considered as a list of functions which have this signature, and should be attached to XS

Say, if you have 4 functions multiply() , divide() , add() , subtract() all having the signature

 symbolic f(symbolic, symbolic);

you code them all by using XSUB

 symbolic
 interface_s_ss(arg1, arg2)

symbolic arg1
symbolic arg2

 INTERFACE:
multiply divide
add subtract

The advantage of this approach comparing to ALIAS: keyword is that one can attach an extra fu
remainder() at runtime by using

 CV *mycv = newXSproto("Symbolic::remainder",
 XS_Symbolic_interface_s_ss, __FILE__, "$$");

 XSINTERFACE_FUNC_SET(mycv, remainder);

(This example supposes that there was no INTERFACE_MACRO: section, otherwise one needs
something else instead of XSINTERFACE_FUNC_SET.)

The INTERFACE_MACRO: Keyword
This keyword allows one to define an INTERFACE using a different way to extract a function pointer
an XSUB. The text which follows this keyword should give the name of macros which would extract
function pointer. The extractor macro is given return type, CV*, and XSANY.any_dptr for this CV*. The
setter macro is given cv, and the function pointer.

The default value is XSINTERFACE_FUNC and XSINTERFACE_FUNC_SET. An INTERFACE keyword
with an empty list of functions can be omitted if INTERFACE_MACRO keyword is used.

Suppose that in the previous example functions pointers for multiply() , divide() , add() ,
subtract() are kept in a global C array fp[] with offsets being multiply_off , divide_off ,
add_off , subtract_off . Then one can use

 #define XSINTERFACE_FUNC_BYOFFSET(ret,cv,f) \
((XSINTERFACE_CVT(ret,))fp[CvXSUBANY(cv).any_i32])

 #define XSINTERFACE_FUNC_BYOFFSET_set(cv,f) \
CvXSUBANY(cv).any_i32 = CAT2(f, _off)

in C section,

 symbolic
 interface_s_ss(arg1, arg2)
482 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

code.

irtual
ASE:.
E: is

ws
symbolicarg1
symbolicarg2

 INTERFACE_MACRO:
XSINTERFACE_FUNC_BYOFFSET
XSINTERFACE_FUNC_BYOFFSET_set

 INTERFACE:
multiply divide
add subtract

in XSUB section.

The INCLUDE: Keyword
This keyword can be used to pull other files into the XS module. The other files may have XS
INCLUDE: can also be used to run a command to generate the XS code to be pulled into the module.

The file Rpcb1.xsh contains our rpcb_gettime() function:

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

The XS module can use INCLUDE: to pull that file into it.

 INCLUDE: Rpcb1.xsh

If the parameters to the INCLUDE: keyword are followed by a pipe (|) then the compiler will interpret the
parameters as a command.

 INCLUDE: cat Rpcb1.xsh |

The CASE: Keyword
The CASE: keyword allows an XSUB to have multiple distinct parts with each part acting as a v
XSUB. CASE: is greedy and if it is used then all other XS keywords must be contained within a C
This means nothing may precede the first CASE: in the XSUB and anything following the last CAS
included in that case.

A CASE: might switch via a parameter of the XSUB, via the ix ALIAS: variable (see
"The ALIAS: Keyword"), or maybe via the items variable (see "Variable−length Parameter Lists"). The
last CASE: becomes the default case if it is not associated with a conditional. The following example sho
CASE switched via ix with a function rpcb_gettime() having an alias x_gettime() . When the
function is called as rpcb_gettime() its parameters are the usual (char *host, time_t
*timep) , but when the function is called as x_gettime() its parameters are reversed, (time_t
*timep, char *host) .

 long
 rpcb_gettime(a,b)
 CASE: ix == 1

 ALIAS:
 x_gettime = 1
 INPUT:
 # ’a’ is timep, ’b’ is host

 char *b
 time_t a = NO_INIT
 CODE:
 RETVAL = rpcb_gettime(b, &a);
 OUTPUT:
 a
18−Oct−1998 Version 5.005_02 483

perlxs Perl Programmers Reference Guide perlxs

 the C
ct is an

hich

ch

UP:
. The

s.

be
h. The
 RETVAL
 CASE:

 # ’a’ is host, ’b’ is timep
 char *a
 time_t &b = NO_INIT
 OUTPUT:
 b
 RETVAL

That function can be called with either of the following statements. Note the different argument lists.

$status = rpcb_gettime($host, $timep);

$status = x_gettime($timep, $host);

The & Unary Operator
The & unary operator is used to tell the compiler that it should dereference the object when it calls
function. This is used when a CODE: block is not used and the object is a not a pointer type (the obje
int or long but not a int* or long*).

The following XSUB will generate incorrect C code. The xsubpp compiler will turn this into code w
calls rpcb_gettime() with parameters (char *host, time_t timep) , but the real
rpcb_gettime() wants the timep parameter to be of type time_t* rather than time_t .

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t timep
 OUTPUT:
 timep

That problem is corrected by using the & operator. The xsubpp compiler will now turn this into code whi
calls rpcb_gettime() correctly with parameters (char *host, time_t *timep) . It does this by
carrying the & through, so the function call looks like rpcb_gettime(host, &timep).

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

Inserting Comments and C Preprocessor Directives
C preprocessor directives are allowed within BOOT:, PREINIT: INIT:, CODE:, PPCODE:, and CLEAN
blocks, as well as outside the functions. Comments are allowed anywhere after the MODULE keyword
compiler will pass the preprocessor directives through untouched and will remove the commented line

Comments can be added to XSUBs by placing a # as the first non−whitespace of a line. Care should
taken to avoid making the comment look like a C preprocessor directive, lest it be interpreted as suc
simplest way to prevent this is to put whitespace in front of the #.

If you use preprocessor directives to choose one of two versions of a function, use

 #if ... version1
 #else /* ... version2 */
 #endif

and not

 #if ... version1
 #endif
484 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

 blank

 The
ith the

.

eter

e

 #if ... version2
 #endif

because otherwise xsubpp will believe that you made a duplicate definition of the function. Also, put a
line before the #else/#endif so it will not be seen as part of the function body.

Using XS With C++
If a function is defined as a C++ method then it will assume its first argument is an object pointer.
object pointer will be stored in a variable called THIS. The object should have been created by C++ w
new() function and should be blessed by Perl with the sv_setref_pv() macro. The blessing of the
object by Perl can be handled by a typemap. An example typemap is shown at the end of this section

If the method is defined as static it will call the C++ function using the class::method() syntax. If the
method is not static the function will be called using the THIS−>method() syntax.

The next examples will use the following C++ class.

 class color {
 public:
 color();
 ~color();
 int blue();
 void set_blue(int);

 private:
 int c_blue;
 };

The XSUBs for the blue() and set_blue() methods are defined with the class name but the param
for the object (THIS, or "self") is implicit and is not listed.

 int
 color::blue()

 void
 color::set_blue(val)
 int val

Both functions will expect an object as the first parameter. The xsubpp compiler will call that object THIS
and will use it to call the specified method. So in the C++ code the blue() and set_blue() methods
will be called in the following manner.

 RETVAL = THIS−>blue();

 THIS−>set_blue(val);

If the function‘s name is DESTROY then the C++ delete function will be called and THIS will be given
as its parameter.

 void
 color::DESTROY()

The C++ code will call delete .

 delete THIS;

If the function‘s name is new then the C++ new function will be called to create a dynamic C++ object. Th
XSUB will expect the class name, which will be kept in a variable called CLASS, to be given as the first
argument.

 color *
 color::new()
18−Oct−1998 Version 5.005_02 485

perlxs Perl Programmers Reference Guide perlxs

 often
e C
erl−like

ble to

eed to
om C to

d in XS
e type

ROBJ

ject to
one can
f the

own
nsider
ct. A

 word
UB.
The C++ code will call new.

RETVAL = new color();

The following is an example of a typemap that could be used for this C++ example.

 TYPEMAP
 color * O_OBJECT

 OUTPUT
 # The Perl object is blessed into ’CLASS’, which should be a
 # char* having the name of the package for the blessing.
 O_OBJECT
 sv_setref_pv($arg, CLASS, (void*)$var);

 INPUT
 O_OBJECT
 if(sv_isobject($arg) && (SvTYPE(SvRV($arg)) == SVt_PVMG))
 $var = ($type)SvIV((SV*)SvRV($arg));
 else{
 warn(\"${Package}::$func_name() −− $var is not a blessed SV referenc
 XSRETURN_UNDEF;
 }

Interface Strategy
When designing an interface between Perl and a C library a straight translation from C to XS is
sufficient. The interface will often be very C−like and occasionally nonintuitive, especially when th
function modifies one of its parameters. In cases where the programmer wishes to create a more P
interface the following strategy may help to identify the more critical parts of the interface.

Identify the C functions which modify their parameters. The XSUBs for these functions may be a
return lists to Perl, or may be candidates to return undef or an empty list in case of failure.

Identify which values are used by only the C and XSUB functions themselves. If Perl does not n
access the contents of the value then it may not be necessary to provide a translation for that value fr
Perl.

Identify the pointers in the C function parameter lists and return values. Some pointers can be handle
with the & unary operator on the variable name while others will require the use of the * operator on th
name. In general it is easier to work with the & operator.

Identify the structures used by the C functions. In many cases it may be helpful to use the T_PT
typemap for these structures so they can be manipulated by Perl as blessed objects.

Perl Objects And C Structures
When dealing with C structures one should select either T_PTROBJ or T_PTRREF for the XS type. Both
types are designed to handle pointers to complex objects. The T_PTRREF type will allow the Perl ob
be unblessed while the T_PTROBJ type requires that the object be blessed. By using T_PTROBJ
achieve a form of type−checking because the XSUB will attempt to verify that the Perl object is o
expected type.

The following XS code shows the getnetconfigent() function which is used with ONC+ TIRPC. The
getnetconfigent() function will return a pointer to a C structure and has the C prototype sh
below. The example will demonstrate how the C pointer will become a Perl reference. Perl will co
this reference to be a pointer to a blessed object and will attempt to call a destructor for the obje
destructor will be provided in the XS source to free the memory used by getnetconfigent() .
Destructors in XS can be created by specifying an XSUB function whose name ends with the
DESTROY. XS destructors can be used to free memory which may have been malloc‘d by another XS

 struct netconfig *getnetconfigent(const char *netid);
486 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs

ng
it will
bject and

 about

t a Perl

s of
 types
 and
s of the

used
ectory.

fault

p file.
be
TROBJ

ted
A typedef will be created for struct netconfig . The Perl object will be blessed in a class matchi
the name of the C type, with the tag Ptr appended, and the name should not have embedded spaces if
be a Perl package name. The destructor will be placed in a class corresponding to the class of the o
the PREFIX keyword will be used to trim the name to the word DESTROY as Perl will expect.

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 Netconfig *
 getnetconfigent(netid)
 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void
 rpcb_DESTROY(netconf)
 Netconfig *netconf
 CODE:
 printf("Now in NetconfigPtr::DESTROY\n");
 free(netconf);

This example requires the following typemap entry. Consult the typemap section for more information
adding new typemaps for an extension.

 TYPEMAP
 Netconfig * T_PTROBJ

This example will be used with the following Perl statements.

 use RPC;
 $netconf = getnetconfigent("udp");

When Perl destroys the object referenced by $netconf it will send the object to the supplied XSUB
DESTROY function. Perl cannot determine, and does not care, that this object is a C struct and no
object. In this sense, there is no difference between the object created by the getnetconfigent()
XSUB and an object created by a normal Perl subroutine.

The Typemap
The typemap is a collection of code fragments which are used by the xsubpp compiler to map C function
parameters and values to Perl values. The typemap file may consist of three sections labeled TYPEMAP,
INPUT, and OUTPUT. The INPUT section tells the compiler how to translate Perl values into variable
certain C types. The OUTPUT section tells the compiler how to translate the values from certain C
into values Perl can understand. The TYPEMAP section tells the compiler which of the INPUT
OUTPUT code fragments should be used to map a given C type to a Perl value. Each of the section
typemap must be preceded by one of the TYPEMAP, INPUT, or OUTPUT keywords.

The default typemap in the ext directory of the Perl source contains many useful types which can be
by Perl extensions. Some extensions define additional typemaps which they keep in their own dir
These additional typemaps may reference INPUT and OUTPUT maps in the main typemap. The xsubpp
compiler will allow the extension‘s own typemap to override any mappings which are in the de
typemap.

Most extensions which require a custom typemap will need only the TYPEMAP section of the typema
The custom typemap used in the getnetconfigent() example shown earlier demonstrates what may
the typical use of extension typemaps. That typemap is used to equate a C structure with the T_P
typemap. The typemap used by getnetconfigent() is shown here. Note that the C type is separa
from the XS type with a tab and that the C unary operator * is considered to be a part of the C type name.

 TYPEMAP
 Netconfig *<tab>T_PTROBJ
18−Oct−1998 Version 5.005_02 487

perlxs Perl Programmers Reference Guide perlxs

ows:

nd

esired
Here‘s a more complicated example: suppose that you wanted struct netconfig to be blessed into the
class Net::Config . One way to do this is to use underscores (_) to separate package names, as foll

 typedef struct netconfig * Net_Config;

And then provide a typemap entry T_PTROBJ_SPECIAL that maps underscores to double−colons (::), a
declare Net_Config to be of that type:

 TYPEMAP
 Net_Config T_PTROBJ_SPECIAL

 INPUT
 T_PTROBJ_SPECIAL
 if (sv_derived_from($arg, \"${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\")) {
 IV tmp = SvIV((SV*)SvRV($arg));
 $var = ($type) tmp;
 }
 else
 croak(\"$var is not of type ${(my $ntt=$ntype)=~s/_/::/g;\$nt

 OUTPUT
 T_PTROBJ_SPECIAL
 sv_setref_pv($arg, \"${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\",
 (void*)$var);

The INPUT and OUTPUT sections substitute underscores for double−colons on the fly, giving the d
effect. This example demonstrates some of the power and versatility of the typemap facility.

EXAMPLES
File RPC.xs : Interface to some ONC+ RPC bind library functions.

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 #include <rpc/rpc.h>

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 SV *
 rpcb_gettime(host="localhost")
 char *host

 PREINIT:
 time_t timep;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep))
 sv_setnv(ST(0), (double)timep);

 Netconfig *
 getnetconfigent(netid="udp")
 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void
 rpcb_DESTROY(netconf)
 Netconfig *netconf
 CODE:
 printf("NetconfigPtr::DESTROY\n");
488 Version 5.005_02 18−Oct−1998

perlxs Perl Programmers Reference Guide perlxs
 free(netconf);

File typemap : Custom typemap for RPC.xs.

 TYPEMAP
 Netconfig * T_PTROBJ

File RPC.pm: Perl module for the RPC extension.

 package RPC;

 require Exporter;
 require DynaLoader;
 @ISA = qw(Exporter DynaLoader);
 @EXPORT = qw(rpcb_gettime getnetconfigent);

 bootstrap RPC;
 1;

File rpctest.pl : Perl test program for the RPC extension.

 use RPC;

 $netconf = getnetconfigent();
 $a = rpcb_gettime();
 print "time = $a\n";
 print "netconf = $netconf\n";

 $netconf = getnetconfigent("tcp");
 $a = rpcb_gettime("poplar");
 print "time = $a\n";
 print "netconf = $netconf\n";

XS VERSION
This document covers features supported by xsubpp 1.935.

AUTHOR
Dean Roehrich <roehrich@cray.com Jul 8, 1996
18−Oct−1998 Version 5.005_02 489

perlxstut Perl Programmers Reference Guide perlxstut

ssumed

adding
 reader

at it is
might not

ction

ES:

ed by
dd the

e:

ay have

, you
h

m and
new

aries,
un the

st", you
simply

ut a

tory
ding
NAME
perlXStut − Tutorial for XSUBs

DESCRIPTION
This tutorial will educate the reader on the steps involved in creating a Perl extension. The reader is a
to have access to perlguts and perlxs.

This tutorial starts with very simple examples and becomes more complex, with each new example
new features. Certain concepts may not be completely explained until later in the tutorial to ease the
slowly into building extensions.

VERSION CAVEAT
This tutorial tries hard to keep up with the latest development versions of Perl. This often means th
sometimes in advance of the latest released version of Perl, and that certain features described here
work on earlier versions. This section will keep track of when various features were added to Perl 5.

 In versions of Perl 5.002 prior to the gamma version, the test script in Example 1 will not fun
properly. You need to change the "use lib" line to read:

use lib ’./blib’;

 In versions of Perl 5.002 prior to version beta 3, the line in the .xs file about "PROTOTYP
DISABLE" will cause a compiler error. Simply remove that line from the file.

 In versions of Perl 5.002 prior to version 5.002b1h, the test.pl file was not automatically creat
h2xs. This means that you cannot say "make test" to run the test script. You will need to a
following line before the "use extension" statement:

use lib ’./blib’;

 In versions 5.000 and 5.001, instead of using the above line, you will need to use the following lin

BEGIN { unshift(@INC, "./blib") }

 This document assumes that the executable named "perl" is Perl version 5. Some systems m
installed Perl version 5 as "perl5".

DYNAMIC VERSUS STATIC
It is commonly thought that if a system does not have the capability to load a library dynamically
cannot build XSUBs. This is incorrect. You can build them, but you must link the XSUB‘s subroutines wit
the rest of Perl, creating a new executable. This situation is similar to Perl 4.

This tutorial can still be used on such a system. The XSUB build mechanism will check the syste
build a dynamically−loadable library if possible, or else a static library and then, optionally, a
statically−linked executable with that static library linked in.

Should you wish to build a statically−linked executable on a system which can dynamically load libr
you may, in all the following examples, where the command "make" with no arguments is executed, r
command "make perl" instead.

If you have generated such a statically−linked executable by choice, then instead of saying "make te
should say "make test_static". On systems that cannot build dynamically−loadable libraries at all,
saying "make test" is sufficient.

EXAMPLE 1
Our first extension will be very simple. When we call the routine in the extension, it will print o
well−known message and return.

Run h2xs −A −n Mytest . This creates a directory named Mytest, possibly under ext/ if that direc
exists in the current working directory. Several files will be created in the Mytest dir, inclu
MANIFEST, Makefile.PL, Mytest.pm, Mytest.xs, test.pl, and Changes.
490 Version 5.005_02 18−Oct−1998

perlxstut Perl Programmers Reference Guide perlxstut
The MANIFEST file contains the names of all the files created.

The file Makefile.PL should look something like this:

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.
WriteMakefile(
 ’NAME’ => ’Mytest’,
 ’VERSION_FROM’ => ’Mytest.pm’, # finds $VERSION
 ’LIBS’ => [’’], # e.g., ’−lm’
 ’DEFINE’ => ’’, # e.g., ’−DHAVE_SOMETHING’
 ’INC’ => ’’, # e.g., ’−I/usr/include/other’
);

The file Mytest.pm should start with something like this:

package Mytest;

require Exporter;
require DynaLoader;

@ISA = qw(Exporter DynaLoader);
Items to export into callers namespace by default. Note: do not export
names by default without a very good reason. Use EXPORT_OK instead.
Do not simply export all your public functions/methods/constants.
@EXPORT = qw(

);
$VERSION = ’0.01’;

bootstrap Mytest $VERSION;

Preloaded methods go here.

Autoload methods go after __END__, and are processed by the autosplit progr

1;
__END__
Below is the stub of documentation for your module. You better edit it!

And the Mytest.xs file should look something like this:

#ifdef __cplusplus
extern "C" {
#endif
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#ifdef __cplusplus
}
#endif

PROTOTYPES: DISABLE

MODULE = Mytest PACKAGE = Mytest

Let‘s edit the .xs file by adding this to the end of the file:

void
hello()

CODE:
printf("Hello, world!\n");
18−Oct−1998 Version 5.005_02 491

perlxstut Perl Programmers Reference Guide perlxstut

oks

d for

special

ent is

oving

t the
hem 8
Now we‘ll run "perl Makefile.PL". This will create a real Makefile, which make needs. Its output lo
something like:

% perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Mytest
%

Now, running make will produce output that looks something like this (some long lines shortene
clarity):

% make
umask 0 && cp Mytest.pm ./blib/Mytest.pm
perl xsubpp −typemap typemap Mytest.xs >Mytest.tc && mv Mytest.tc Mytest.c
cc −c Mytest.c
Running Mkbootstrap for Mytest ()
chmod 644 Mytest.bs
LD_RUN_PATH="" ld −o ./blib/PA−RISC1.1/auto/Mytest/Mytest.sl −b Mytest.o
chmod 755 ./blib/PA−RISC1.1/auto/Mytest/Mytest.sl
cp Mytest.bs ./blib/PA−RISC1.1/auto/Mytest/Mytest.bs
chmod 644 ./blib/PA−RISC1.1/auto/Mytest/Mytest.bs

Now, although there is already a test.pl template ready for us, for this example only, we‘ll create a
test script. Create a file called hello that looks like this:

#! /opt/perl5/bin/perl

use ExtUtils::testlib;

use Mytest;

Mytest::hello();

Now we run the script and we should see the following output:

% perl hello
Hello, world!
%

EXAMPLE 2
Now let‘s add to our extension a subroutine that will take a single argument and return 1 if the argum
even, 0 if the argument is odd.

Add the following to the end of Mytest.xs:

int
is_even(input)

int input
CODE:
RETVAL = (input % 2 == 0);
OUTPUT:
RETVAL

There does not need to be white space at the start of the "int input" line, but it is useful for impr
readability. The semi−colon at the end of that line is also optional.

Any white space may be between the "int" and "input". It is also okay for the four lines starting a
"CODE:" line to not be indented. However, for readability purposes, it is suggested that you indent t
spaces (or one normal tab stop).

Now rerun make to rebuild our new shared library.
492 Version 5.005_02 18−Oct−1998

perlxstut Perl Programmers Reference Guide perlxstut

ake.

te the
ests to
ange

 looks

an use

h will

 the C
nsion.

 the
ave

e

n the

rade to
ot the

 that
ath is

n sets
.

 other
e. The
kage‘s

ything
Now perform the same steps as before, generating a Makefile from the Makefile.PL file, and running m

To test that our extension works, we now need to look at the file test.pl. This file is set up to imita
same kind of testing structure that Perl itself has. Within the test script, you perform a number of t
confirm the behavior of the extension, printing "ok" when the test is correct, "not ok" when it is not. Ch
the print statement in the BEGIN block to print "1..4", and add the following code to the end of the file:

print &Mytest::is_even(0) == 1 ? "ok 2" : "not ok 2", "\n";
print &Mytest::is_even(1) == 0 ? "ok 3" : "not ok 3", "\n";
print &Mytest::is_even(2) == 1 ? "ok 4" : "not ok 4", "\n";

We will be calling the test script through the command "make test". You should see output that
something like this:

% make test
PERL_DL_NONLAZY=1 /opt/perl5.002b2/bin/perl (lots of −I arguments) test.pl
1..4
ok 1
ok 2
ok 3
ok 4
%

WHAT HAS GONE ON?
The program h2xs is the starting point for creating extensions. In later examples we‘ll see how we c
h2xs to read header files and generate templates to connect to C routines.

h2xs creates a number of files in the extension directory. The file Makefile.PL is a perl script whic
generate a true Makefile to build the extension. We‘ll take a closer look at it later.

The files <extension>.pm and <extension>.xs contain the meat of the extension. The .xs file holds
routines that make up the extension. The .pm file contains routines that tell Perl how to load your exte

Generating and invoking the Makefile created a directory blib (which stands for "build library") in
current working directory. This directory will contain the shared library that we will build. Once we h
tested it, we can install it into its final location.

Invoking the test script via "make test" did something very important. It invoked perl with all thos−I
arguments so that it could find the various files that are part of the extension.

It is very important that while you are still testing extensions that you use "make test". If you try to ru
test script all by itself, you will get a fatal error.

Another reason it is important to use "make test" to run your test script is that if you are testing an upg
an already−existing version, using "make test" insures that you use your new extension, n
already−existing version.

When Perl sees a use extension; , it searches for a file with the same name as the use‘d extension
has a .pm suffix. If that file cannot be found, Perl dies with a fatal error. The default search p
contained in the @INC array.

In our case, Mytest.pm tells perl that it will need the Exporter and Dynamic Loader extensions. It the
the @ISA and @EXPORT arrays and the $VERSION scalar; finally it tells perl to bootstrap the module
Perl will call its dynamic loader routine (if there is one) and load the shared library.

The two arrays that are set in the .pm file are very important. The @ISA array contains a list of
packages in which to search for methods (or subroutines) that do not exist in the current packag
@EXPORT array tells Perl which of the extension‘s routines should be placed into the calling pac
namespace.

It‘s important to select what to export carefully. Do NOT export method names and do NOT export an
else by default without a good reason.
18−Oct−1998 Version 5.005_02 493

perlxstut Perl Programmers Reference Guide perlxstut

ust a
K.

 each
ble.

w the
ome of

f your
 named
s.

ing to

 test.pl

stants!
As a general rule, if the module is trying to be object−oriented then don‘t export anything. If it‘s j
collection of functions then you can export any of the functions via another array, called @EXPORT_O

See perlmod for more information.

The $VERSION variable is used to ensure that the .pm file and the shared library are "in sync" with
other. Any time you make changes to the .pm or .xs files, you should increment the value of this varia

WRITING GOOD TEST SCRIPTS
The importance of writing good test scripts cannot be overemphasized. You should closely follo
"ok/not ok" style that Perl itself uses, so that it is very easy and unambiguous to determine the outc
each test case. When you find and fix a bug, make sure you add a test case for it.

By running "make test", you ensure that your test.pl script runs and uses the correct version o
extension. If you have many test cases, you might want to copy Perl‘s test style. Create a directory
"t", and ensure all your test files end with the suffix ".t". The Makefile will properly run all these test file

EXAMPLE 3
Our third extension will take one argument as its input, round off that value, and set the argument to the
rounded value.

Add the following to the end of Mytest.xs:

void
round(arg)

double arg
CODE:
if (arg > 0.0) {

arg = floor(arg + 0.5);
} else if (arg < 0.0) {

arg = ceil(arg − 0.5);
} else {

arg = 0.0;
}
OUTPUT:
arg

Edit the Makefile.PL file so that the corresponding line looks like this:

’LIBS’ => [’−lm’], # e.g., ’−lm’

Generate the Makefile and run make. Change the BEGIN block to print out "1..9" and add the follow
test.pl:

$i = −1.5; &Mytest::round($i); print $i == −2.0 ? "ok 5" : "not ok 5", "\n";
$i = −1.1; &Mytest::round($i); print $i == −1.0 ? "ok 6" : "not ok 6", "\n";
$i = 0.0; &Mytest::round($i); print $i == 0.0 ? "ok 7" : "not ok 7", "\n";
$i = 0.5; &Mytest::round($i); print $i == 1.0 ? "ok 8" : "not ok 8", "\n";
$i = 1.2; &Mytest::round($i); print $i == 1.0 ? "ok 9" : "not ok 9", "\n";

Running "make test" should now print out that all nine tests are okay.

You might be wondering if you can round a constant. To see what happens, add the following line to
temporarily:

&Mytest::round(3);

Run "make test" and notice that Perl dies with a fatal error. Perl won‘t let you change the value of con
494 Version 5.005_02 18−Oct−1998

perlxstut Perl Programmers Reference Guide perlxstut

ified an
ery

ugh the

 value
inating

t you
anted

in the

whose

es (int,

 with the
hird part

see
ed to

 to the
_setnv
WHAT‘S NEW HERE?
Two things are new here. First, we‘ve made some changes to Makefile.PL. In this case, we‘ve spec
extra library to link in, the math library libm. We‘ll talk later about how to write XSUBs that can call ev
routine in a library.

Second, the value of the function is being passed back not as the function‘s return value, but thro
same variable that was passed into the function.

INPUT AND OUTPUT PARAMETERS
You specify the parameters that will be passed into the XSUB just after you declare the function return
and name. Each parameter line starts with optional white space, and may have an optional term
semicolon.

The list of output parameters occurs after the OUTPUT: directive. The use of RETVAL tells Perl tha
wish to send this value back as the return value of the XSUB function. In Example 3, the value we w
returned was contained in the same variable we passed in, so we listed it (and not RETVAL)
OUTPUT: section.

THE XSUBPP COMPILER
The compiler xsubpp takes the XS code in the .xs file and converts it into C code, placing it in a file
suffix is .c. The C code created makes heavy use of the C functions within Perl.

THE TYPEMAP FILE
The xsubpp compiler uses rules to convert from Perl‘s data types (scalar, array, etc.) to C‘s data typ
char *, etc.). These rules are stored in the typemap file ($PERLLIB/ExtUtils/typemap). This file is
split into three parts.

The first part attempts to map various C data types to a coded flag, which has some correspondence
various Perl types. The second part contains C code which xsubpp uses for input parameters. The t
contains C code which xsubpp uses for output parameters. We‘ll talk more about the C code later.

Let‘s now take a look at a portion of the .c file created for our extension.

XS(XS_Mytest_round)
{
 dXSARGS;
 if (items != 1)

croak("Usage: Mytest::round(arg)");
 {

double arg = (double)SvNV(ST(0)); /* XXXXX */
if (arg > 0.0) {

arg = floor(arg + 0.5);
} else if (arg < 0.0) {

arg = ceil(arg − 0.5);
} else {

arg = 0.0;
}
sv_setnv(ST(0), (double)arg); /* XXXXX */

 }
 XSRETURN(1);
}

Notice the two lines marked with "XXXXX". If you check the first section of the typemap file, you‘ll
that doubles are of type T_DOUBLE. In the INPUT section, an argument that is T_DOUBLE is assign
the variable arg by calling the routine SvNV on something, then casting it to double, then assigned
variable arg. Similarly, in the OUTPUT section, once arg has its final value, it is passed to the sv
function to be passed back to the calling subroutine. These two functions are explained in perlguts; we‘ll
talk more later about what that "ST(0)" means in the section on the argument stack.
18−Oct−1998 Version 5.005_02 495

perlxstut Perl Programmers Reference Guide perlxstut

ple 3.
input

gin

ectory,

header
t the

n the
WARNING
In general, it‘s not a good idea to write extensions that modify their input parameters, as in Exam
However, to accommodate better calling pre−existing C routines, which often do modify their
parameters, this behavior is tolerated. The next example will show how to do this.

EXAMPLE 4
In this example, we‘ll now begin to write XSUBs that will interact with predefined C libraries. To be
with, we will build a small library of our own, then let h2xs write our .pm and .xs files for us.

Create a new directory called Mytest2 at the same level as the directory Mytest. In the Mytest2 dir
create another directory called mylib, and cd into that directory.

Here we‘ll create some files that will generate a test library. These will include a C source file and a
file. We‘ll also create a Makefile.PL in this directory. Then we‘ll make sure that running make a
Mytest2 level will automatically run this Makefile.PL file and the resulting Makefile.

In the testlib directory, create a file mylib.h that looks like this:

#define TESTVAL 4

extern double foo(int, long, const char*);

Also create a file mylib.c that looks like this:

#include <stdlib.h>
#include "./mylib.h"

double
foo(a, b, c)
int a;
long b;
const char * c;
{

return (a + b + atof(c) + TESTVAL);
}

And finally create a file Makefile.PL that looks like this:

use ExtUtils::MakeMaker;
$Verbose = 1;
WriteMakefile(
 NAME => ’Mytest2::mylib’,
 SKIP => [qw(all static static_lib dynamic dynamic_lib)],
 clean => {’FILES’ => ’libmylib$(LIB_EXT)’},
);

sub MY::top_targets {
’

all :: static

static :: libmylib$(LIB_EXT)

libmylib$(LIB_EXT): $(O_FILES)
$(AR) cr libmylib$(LIB_EXT) $(O_FILES)
$(RANLIB) libmylib$(LIB_EXT)

’;
}

We will now create the main top−level Mytest2 files. Change to the directory above Mytest2 and ru
following command:
496 Version 5.005_02 18−Oct−1998

perlxstut Perl Programmers Reference Guide perlxstut

 in

 it that
 pair

e line

ORT to
itself).

st char *

tory.

e end

r the
% h2xs −O −n Mytest2 ./Mytest2/mylib/mylib.h

This will print out a warning about overwriting Mytest2, but that‘s okay. Our files are stored
Mytest2/mylib, and will be untouched.

The normal Makefile.PL that h2xs generates doesn‘t know about the mylib directory. We need to tell
there is a subdirectory and that we will be generating a library in it. Let‘s add the following key−value
to the WriteMakefile call:

’MYEXTLIB’ => ’mylib/libmylib$(LIB_EXT)’,

and a new replacement subroutine too:

sub MY::postamble {
’
$(MYEXTLIB): mylib/Makefile

cd mylib && $(MAKE) $(PASTHRU)
’;
}

(Note: Most makes will require that there be a tab character that indents the line cd mylib && $(MAKE)
$(PASTHRU), similarly for the Makefile in the subdirectory.)

Let‘s also fix the MANIFEST file so that it accurately reflects the contents of our extension. The singl
that says "mylib" should be replaced by the following three lines:

mylib/Makefile.PL
mylib/mylib.c
mylib/mylib.h

To keep our namespace nice and unpolluted, edit the .pm file and change the lines setting @EXP
@EXPORT_OK (there are two: one in the line beginning "use vars" and one setting the array
Finally, in the .xs file, edit the #include line to read:

#include "mylib/mylib.h"

And also add the following function definition to the end of the .xs file:

double
foo(a,b,c)

int a
long b
const char * c
OUTPUT:
RETVAL

Now we also need to create a typemap file because the default Perl doesn‘t currently support the con
type. Create a file called typemap and place the following in it:

const char * T_PV

Now run perl on the top−level Makefile.PL. Notice that it also created a Makefile in the mylib direc
Run make and see that it does cd into the mylib directory and run make in there as well.

Now edit the test.pl script and change the BEGIN block to print "1..4", and add the following lines to th
of the script:

print &Mytest2::foo(1, 2, "Hello, world!") == 7 ? "ok 2\n" : "not ok 2\n";
print &Mytest2::foo(1, 2, "0.0") == 7 ? "ok 3\n" : "not ok 3\n";
print abs(&Mytest2::foo(0, 0, "−3.4") − 0.6) <= 0.01 ? "ok 4\n" : "not ok 4\n

(When dealing with floating−point comparisons, it is often useful not to check for equality, but rathe
difference being below a certain epsilon factor, 0.01 in this case)
18−Oct−1998 Version 5.005_02 497

perlxstut Perl Programmers Reference Guide perlxstut

dies to

in this

name
tines

tely, if
 the

ere is

on of
ne to
ut not
pecified
 library)

whose
uments

ch one
cond is
e third

m this
nt

 address
ter and
the
Run "make test" and all should be well.

WHAT HAS HAPPENED HERE?
Unlike previous examples, we‘ve now run h2xs on a real include file. This has caused some extra goo
appear in both the .pm and .xs files.

 In the .xs file, there‘s now a #include declaration with the full path to the mylib.h header file.

 There‘s now some new C code that‘s been added to the .xs file. The purpose of the constant
routine is to make the values that are #define‘d in the header file available to the Perl script (
case, by calling &main::TESTVAL). There‘s also some XS code to allow calls to the constant
routine.

 The .pm file has exported the name TESTVAL in the @EXPORT array. This could lead to
clashes. A good rule of thumb is that if the #define is going to be used by only the C rou
themselves, and not by the user, they should be removed from the @EXPORT array. Alterna
you don‘t mind using the "fully qualified name" of a variable, you could remove most or all of
items in the @EXPORT array.

 If our include file contained #include directives, these would not be processed at all by h2xs. Th
no good solution to this right now.

We‘ve also told Perl about the library that we built in the mylib subdirectory. That required the additi
only the MYEXTLIB variable to the WriteMakefile call and the replacement of the postamble subrouti
cd into the subdirectory and run make. The Makefile.PL for the library is a bit more complicated, b
excessively so. Again we replaced the postamble subroutine to insert our own code. This code s
simply that the library to be created here was a static archive (as opposed to a dynamically loadable
and provided the commands to build it.

SPECIFYING ARGUMENTS TO XSUBPP
With the completion of Example 4, we now have an easy way to simulate some real−life libraries
interfaces may not be the cleanest in the world. We shall now continue with a discussion of the arg
passed to the xsubpp compiler.

When you specify arguments in the .xs file, you are really passing three pieces of information for ea
listed. The first piece is the order of that argument relative to the others (first, second, etc). The se
the type of argument, and consists of the type declaration of the argument (e.g., int, char*, etc). Th
piece is the exact way in which the argument should be used in the call to the library function fro
XSUB. This would mean whether or not to place a "&" before the argument or not, meaning the argume
expects to be passed the address of the specified data type.

There is a difference between the two arguments in this hypothetical function:

int
foo(a,b)

char &a
char * b

The first argument to this function would be treated as a char and assigned to the variable a, and its
would be passed into the function foo. The second argument would be treated as a string poin
assigned to the variable b. The value of b would be passed into the function foo. The actual call to
function foo that xsubpp generates would look like this:

foo(&a, b);

Xsubpp will identically parse the following function argument lists:

char &a
char&a
char & a
498 Version 5.005_02 18−Oct−1998

perlxstut Perl Programmers Reference Guide perlxstut

y
 in the
unction

 It will

number
ent on
ent, and

nds to
ster if

terface
.pm file.
called

m file.
format,
ion is

ethod

 "make
k your
However, to help ease understanding, it is suggested that you place a "&" next to the variable name and awa
from the variable type), and place a "*" near the variable type, but away from the variable name (as
complete example above). By doing so, it is easy to understand exactly what will be passed to the C f
— it will be whatever is in the "last column".

You should take great pains to try to pass the function the type of variable it wants, when possible.
save you a lot of trouble in the long run.

THE ARGUMENT STACK
If we look at any of the C code generated by any of the examples except example 1, you will notice a
of references to ST(n), where n is usually 0. The "ST" is actually a macro that points to the n‘th argum
the argument stack. ST(0) is thus the first argument passed to the XSUB, ST(1) is the second argum
so on.

When you list the arguments to the XSUB in the .xs file, that tells xsubpp which argument correspo
which of the argument stack (i.e., the first one listed is the first argument, and so on). You invite disa
you do not list them in the same order as the function expects them.

EXTENDING YOUR EXTENSION
Sometimes you might want to provide some extra methods or subroutines to assist in making the in
between Perl and your extension simpler or easier to understand. These routines should live in the
Whether they are automatically loaded when the extension itself is loaded or loaded only when
depends on where in the .pm file the subroutine definition is placed.

DOCUMENTING YOUR EXTENSION
There is absolutely no excuse for not documenting your extension. Documentation belongs in the .p
This file will be fed to pod2man, and the embedded documentation will be converted to the manpage
then placed in the blib directory. It will be copied to Perl‘s man page directory when the extens
installed.

You may intersperse documentation and Perl code within the .pm file. In fact, if you want to use m
autoloading, you must do this, as the comment inside the .pm file explains.

See perlpod for more information about the pod format.

INSTALLING YOUR EXTENSION
Once your extension is complete and passes all its tests, installing it is quite simple: you simply run
install". You will either need to have write permission into the directories where Perl is installed, or as
system administrator to run the make for you.

SEE ALSO
For more information, consult perlguts, perlxs, perlmod, and perlpod.

Author
Jeff Okamoto <okamoto@corp.hp.com

Reviewed and assisted by Dean Roehrich, Ilya Zakharevich, Andreas Koenig, and Tim Bunce.

Last Changed
1996/7/10
18−Oct−1998 Version 5.005_02 499

perlguts Perl Programmers Reference Guide perlguts

r from
elow.

o hold a

s long,

aded: an

‘s

le
n return,
string‘s
t

NAME
perlguts − Perl‘s Internal Functions

DESCRIPTION
This document attempts to describe some of the internal functions of the Perl executable. It is fa
complete and probably contains many errors. Please refer any questions or comments to the author b

Variables

Datatypes
Perl has three typedefs that handle Perl‘s three main data types:

 SV Scalar Value
 AV Array Value
 HV Hash Value

Each typedef has specific routines that manipulate the various data types.

What is an "IV"?
Perl uses a special typedef IV which is a simple integer type that is guaranteed to be large enough t
pointer (as well as an integer).

Perl also uses two special typedefs, I32 and I16, which will always be at least 32−bits and 16−bit
respectively.

Working with SVs
An SV can be created and loaded with one command. There are four types of values that can be lo
integer value (IV), a double (NV), a string, (PV), and another scalar (SV).

The six routines are:

 SV* newSViv(IV);
 SV* newSVnv(double);
 SV* newSVpv(char*, int);
 SV* newSVpvn(char*, int);
 SV* newSVpvf(const char*, ...);
 SV* newSVsv(SV*);

To change the value of an *already−existing* SV, there are seven routines:

 void sv_setiv(SV*, IV);
 void sv_setuv(SV*, UV);
 void sv_setnv(SV*, double);
 void sv_setpv(SV*, char*);
 void sv_setpvn(SV*, char*, int)
 void sv_setpvf(SV*, const char*, ...);
 void sv_setpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
 void sv_setsv(SV*, SV*);

Notice that you can choose to specify the length of the string to be assigned by using sv_setpvn ,
newSVpvn, or newSVpv, or you may allow Perl to calculate the length by using sv_setpv or by
specifying 0 as the second argument to newSVpv. Be warned, though, that Perl will determine the string
length by using strlen , which depends on the string terminating with a NUL character.

The arguments of sv_setpvf are processed like sprintf , and the formatted output becomes the value.

sv_setpvfn is an analogue of vsprintf , but it allows you to specify either a pointer to a variab
argument list or the address and length of an array of SVs. The last argument points to a boolean; o
if that boolean is true, then locale−specific information has been used to format the string, and the
contents are therefore untrustworty (see perlsec). This pointer may be NULL if that information is no
important. Note that this function requires you to specify the length of the format.
500 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

 See

re is
s which
son.
 system

 not be

y for

s not

owing
The sv_set*() functions are not generic enough to operate on values that have "magic".
Magic Virtual Tables later in this document.

All SVs that contain strings should be terminated with a NUL character. If it is not NUL−terminated the
a risk of core dumps and corruptions from code which passes the string to C functions or system call
expect a NUL−terminated string. Perl‘s own functions typically add a trailing NUL for this rea
Nevertheless, you should be very careful when you pass a string stored in an SV to a C function or
call.

To access the actual value that an SV points to, you can use the macros:

 SvIV(SV*)
 SvNV(SV*)
 SvPV(SV*, STRLEN len)

which will automatically coerce the actual scalar type into an IV, double, or string.

In the SvPV macro, the length of the string returned is placed into the variable len (this is a macro, so you
do not use &len). If you do not care what the length of the data is, use the global variable PL_na .
Remember, however, that Perl allows arbitrary strings of data that may both contain NULs and might
terminated by a NUL.

If you want to know if the scalar value is TRUE, you can use:

 SvTRUE(SV*)

Although Perl will automatically grow strings for you, if you need to force Perl to allocate more memor
your SV, you can use the macro

 SvGROW(SV*, STRLEN newlen)

which will determine if more memory needs to be allocated. If so, it will call the function sv_grow . Note
that SvGROW can only increase, not decrease, the allocated memory of an SV and that it doe
automatically add a byte for the a trailing NUL (perl‘s own string functions typically do SvGROW(sv,
len + 1)).

If you have an SV and want to know what kind of data Perl thinks is stored in it, you can use the foll
macros to check the type of SV you have.

 SvIOK(SV*)
 SvNOK(SV*)
 SvPOK(SV*)

You can get and set the current length of the string stored in an SV with the following macros:

 SvCUR(SV*)
 SvCUR_set(SV*, I32 val)

You can also get a pointer to the end of the string stored in the SV with the macro:

 SvEND(SV*)

But note that these last three macros are valid only if SvPOK() is true.

If you want to append something to the end of string stored in an SV*, you can use the following functions:

 void sv_catpv(SV*, char*);
 void sv_catpvn(SV*, char*, int);
 void sv_catpvf(SV*, const char*, ...);
 void sv_catpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
 void sv_catsv(SV*, SV*);

The first function calculates the length of the string to be appended by using strlen . In the second, you
specify the length of the string yourself. The third function processes its arguments like sprintf and
18−Oct−1998 Version 5.005_02 501

perlguts Perl Programmers Reference Guide perlguts

d
 in the
ing.

 See

 undef
se a

e

ing the

e the

tands
appends the formatted output. The fourth function works like vsprintf . You can specify the address an
length of an array of SVs instead of the va_list argument. The fifth function extends the string stored
first SV with the string stored in the second SV. It also forces the second SV to be interpreted as a str

The sv_cat*() functions are not generic enough to operate on values that have "magic".
Magic Virtual Tables later in this document.

If you know the name of a scalar variable, you can get a pointer to its SV by using the following:

 SV* perl_get_sv("package::varname", FALSE);

This returns NULL if the variable does not exist.

If you want to know if this variable (or any other SV) is actually defined , you can call:

 SvOK(SV*)

The scalar undef value is stored in an SV instance called PL_sv_undef . Its address can be used
whenever an SV* is needed.

There are also the two values PL_sv_yes and PL_sv_no , which contain Boolean TRUE and FALSE
values, respectively. Like PL_sv_undef , their addresses can be used whenever an SV* is needed.

Do not be fooled into thinking that (SV *) 0 is the same as &PL_sv_undef. Take this code:

 SV* sv = (SV*) 0;
 if (I−am−to−return−a−real−value) {
 sv = sv_2mortal(newSViv(42));
 }
 sv_setsv(ST(0), sv);

This code tries to return a new SV (which contains the value 42) if it should return a real value, or
otherwise. Instead it has returned a NULL pointer which, somewhere down the line, will cau
segmentation violation, bus error, or just weird results. Change the zero to &PL_sv_undef in the first line
and all will be well.

To free an SV that you‘ve created, call SvREFCNT_dec(SV*) . Normally this call is not necessary (se
Reference Counts and Mortality).

What‘s Really Stored in an SV?
Recall that the usual method of determining the type of scalar you have is to use Sv*OK macros. Because a
scalar can be both a number and a string, usually these macros will always return TRUE and call
Sv*V macros will do the appropriate conversion of string to integer/double or integer/double to string.

If you really need to know if you have an integer, double, or string pointer in an SV, you can us
following three macros instead:

 SvIOKp(SV*)
 SvNOKp(SV*)
 SvPOKp(SV*)

These will tell you if you truly have an integer, double, or string pointer stored in your SV. The "p" s
for private.

In general, though, it‘s best to use the Sv*V macros.

Working with AVs
There are two ways to create and load an AV. The first method creates an empty AV:

 AV* newAV();

The second method both creates the AV and initially populates it with SVs:

 AV* av_make(I32 num, SV **ptr);
502 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

an

re
id a

array
he

y

alue of
ar

 a new

,

The second argument points to an array containing num SV* ‘s. Once the AV has been created, the SVs c
be destroyed, if so desired.

Once the AV has been created, the following operations are possible on AVs:

 void av_push(AV*, SV*);
 SV* av_pop(AV*);
 SV* av_shift(AV*);
 void av_unshift(AV*, I32 num);

These should be familiar operations, with the exception of av_unshift . This routine adds num elements
at the front of the array with the undef value. You must then use av_store (described below) to assign
values to these new elements.

Here are some other functions:

 I32 av_len(AV*);
 SV** av_fetch(AV*, I32 key, I32 lval);
 SV** av_store(AV*, I32 key, SV* val);

The av_len function returns the highest index value in array (just like $#array in Perl). If the array is
empty, −1 is returned. The av_fetch function returns the value at index key , but if lval is non−zero,
then av_fetch will store an undef value at that index. The av_store function stores the value val at
index key , and does not increment the reference count of val . Thus the caller is responsible for taking ca
of that, and if av_store returns NULL, the caller will have to decrement the reference count to avo
memory leak. Note that av_fetch and av_store both return SV** ‘s, not SV* ‘s as their return value.

 void av_clear(AV*);
 void av_undef(AV*);
 void av_extend(AV*, I32 key);

The av_clear function deletes all the elements in the AV* array, but does not actually delete the
itself. The av_undef function will delete all the elements in the array plus the array itself. T
av_extend function extends the array so that it contains key elements. If key is less than the current
length of the array, then nothing is done.

If you know the name of an array variable, you can get a pointer to its AV by using the following:

 AV* perl_get_av("package::varname", FALSE);

This returns NULL if the variable does not exist.

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use the arra
access functions on tied arrays.

Working with HVs
To create an HV, you use the following routine:

 HV* newHV();

Once the HV has been created, the following operations are possible on HVs:

 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);

The klen parameter is the length of the key being passed in (Note that you cannot pass 0 in as a v
klen to tell Perl to measure the length of the key). The val argument contains the SV pointer to the scal
being stored, and hash is the precomputed hash value (zero if you want hv_store to calculate it for you).
The lval parameter indicates whether this fetch is actually a part of a store operation, in which case
undefined value will be added to the HV with the supplied key and hv_fetch will return as if the value had
already existed.

Remember that hv_store and hv_fetch return SV** ‘s and not just SV*. To access the scalar value
18−Oct−1998 Version 5.005_02 503

perlguts Perl Programmers Reference Guide perlguts

value is

f

lete

ey and

h

you must first dereference the return value. However, you should check to make sure that the return
not NULL before dereferencing it.

These two functions check if a hash table entry exists, and deletes it.

 bool hv_exists(HV*, char* key, U32 klen);
 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);

If flags does not include the G_DISCARD flag then hv_delete will create and return a mortal copy o
the deleted value.

And more miscellaneous functions:

 void hv_clear(HV*);
 void hv_undef(HV*);

Like their AV counterparts, hv_clear deletes all the entries in the hash table but does not actually de
the hash table. The hv_undef deletes both the entries and the hash table itself.

Perl keeps the actual data in linked list of structures with a typedef of HE. These contain the actual k
value pointers (plus extra administrative overhead). The key is a string pointer; the value is anSV*.
However, once you have an HE*, to get the actual key and value, use the routines specified below.

 I32 hv_iterinit(HV*);
 /* Prepares starting point to traverse hash table */
 HE* hv_iternext(HV*);
 /* Get the next entry, and return a pointer to a
 structure that has both the key and value */
 char* hv_iterkey(HE* entry, I32* retlen);
 /* Get the key from an HE structure and also return
 the length of the key string */
 SV* hv_iterval(HV*, HE* entry);
 /* Return a SV pointer to the value of the HE
 structure */
 SV* hv_iternextsv(HV*, char** key, I32* retlen);
 /* This convenience routine combines hv_iternext,

 hv_iterkey, and hv_iterval. The key and retlen
 arguments are return values for the key and its
 length. The value is returned in the SV* argument */

If you know the name of a hash variable, you can get a pointer to its HV by using the following:

 HV* perl_get_hv("package::varname", FALSE);

This returns NULL if the variable does not exist.

The hash algorithm is defined in the PERL_HASH(hash, key, klen) macro:

 i = klen;
 hash = 0;
 s = key;
 while (i−−)

hash = hash * 33 + *s++;

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use the has
access functions on tied hashes.

Hash API Extensions
Beginning with version 5.004, the following functions are also supported:

 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
504 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

sh

h

ments to

e to

t

 return
 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);

 SV* hv_iterkeysv (HE* entry);

Note that these functions take SV* keys, which simplifies writing of extension code that deals with ha
structures. These functions also allow passing of SV* keys to tie functions without forcing you to stringify
the keys (unlike the previous set of functions).

They also return and accept whole hash entries (HE*), making their use more efficient (since the has
number for a particular string doesn‘t have to be recomputed every time). See API LISTING later in this
document for detailed descriptions.

The following macros must always be used to access the contents of hash entries. Note that the argu
these macros must be simple variables, since they may get evaluated more than once. See API LISTING later
in this document for detailed descriptions of these macros.

 HePV(HE* he, STRLEN len)
 HeVAL(HE* he)
 HeHASH(HE* he)
 HeSVKEY(HE* he)
 HeSVKEY_force(HE* he)
 HeSVKEY_set(HE* he, SV* sv)

These two lower level macros are defined, but must only be used when dealing with keys that are not SV*s:

 HeKEY(HE* he)
 HeKLEN(HE* he)

Note that both hv_store and hv_store_ent do not increment the reference count of the stored val ,
which is the caller‘s responsibility. If these functions return a NULL value, the caller will usually hav
decrement the reference count of val to avoid a memory leak.

References
References are a special type of scalar that point to other data types (including references).

To create a reference, use either of the following functions:

 SV* newRV_inc((SV*) thing);
 SV* newRV_noinc((SV*) thing);

The thing argument can be any of an SV*, AV*, or HV*. The functions are identical except tha
newRV_inc increments the reference count of the thing , while newRV_noinc does not. For historical
reasons, newRV is a synonym for newRV_inc .

Once you have a reference, you can use the following macro to dereference the reference:

 SvRV(SV*)

then call the appropriate routines, casting the returned SV* to either an AV* or HV*, if required.

To determine if an SV is a reference, you can use the following macro:

 SvROK(SV*)

To discover what type of value the reference refers to, use the following macro and then check the
value.

 SvTYPE(SvRV(SV*))

The most useful types that will be returned are:

 SVt_IV Scalar
 SVt_NV Scalar
 SVt_PV Scalar
18−Oct−1998 Version 5.005_02 505

perlguts Perl Programmers Reference Guide perlguts

imply a
w use the

ng

 if

 is

ject or a

use the
 SVt_RV Scalar
 SVt_PVAV Array
 SVt_PVHV Hash
 SVt_PVCV Code
 SVt_PVGV Glob (possible a file handle)
 SVt_PVMG Blessed or Magical Scalar

 See the sv.h header file for more details.

Blessed References and Class Objects
References are also used to support object−oriented programming. In the OO lexicon, an object is s
reference that has been blessed into a package (or class). Once blessed, the programmer may no
reference to access the various methods in the class.

A reference can be blessed into a package with the following function:

 SV* sv_bless(SV* sv, HV* stash);

The sv argument must be a reference. The stash argument specifies which class the reference will belo
to. See Stashes and Globs for information on converting class names into stashes.

/* Still under construction */

Upgrades rv to reference if not already one. Creates new SV for rv to point to. If classname is non−null,
the SV is blessed into the specified class. SV is returned.

SV* newSVrv(SV* rv, char* classname);

Copies integer or double into an SV whose reference is rv . SV is blessed if classname is non−null.

SV* sv_setref_iv(SV* rv, char* classname, IV iv);
SV* sv_setref_nv(SV* rv, char* classname, NV iv);

Copies the pointer value (the address, not the string!) into an SV whose reference is rv. SV is blessed
classname is non−null.

SV* sv_setref_pv(SV* rv, char* classname, PV iv);

Copies string into an SV whose reference is rv . Set length to 0 to let Perl calculate the string length. SV
blessed if classname is non−null.

SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);

Tests whether the SV is blessed into the specified class. It does not check inheritance relationships.

int sv_isa(SV* sv, char* name);

Tests whether the SV is a reference to a blessed object.

int sv_isobject(SV* sv);

Tests whether the SV is derived from the specified class. SV can be either a reference to a blessed ob
string containing a class name. This is the function implementing the UNIVERSAL::isa functionality.

bool sv_derived_from(SV* sv, char* name);

To check if you‘ve got an object derived from a specific class you have to write:

if (sv_isobject(sv) && sv_derived_from(sv, class)) { ... }

Creating New Variables
To create a new Perl variable with an undef value which can be accessed from your Perl script,
following routines, depending on the variable type.

 SV* perl_get_sv("package::varname", TRUE);
 AV* perl_get_av("package::varname", TRUE);
506 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

routines

 in the
hen it

lding a
pulated

 The
ct, it

e, you

ssed to
forget
t of the
ccess it

ng any

nctions
to be
 later"
 mortal
S. See

e same
 HV* perl_get_hv("package::varname", TRUE);

Notice the use of TRUE as the second parameter. The new variable can now be set, using the
appropriate to the data type.

There are additional macros whose values may be bitwise OR‘ed with the TRUE argument to enable certain
extra features. Those bits are:

 GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
"Name <varname> used only once: possible typo" warning.

 GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
the variable did not exist before the function was called.

If you do not specify a package name, the variable is created in the current package.

Reference Counts and Mortality
Perl uses an reference count−driven garbage collection mechanism. SVs, AVs, or HVs (xV for short
following) start their life with a reference count of 1. If the reference count of an xV ever drops to 0, t
will be destroyed and its memory made available for reuse.

This normally doesn‘t happen at the Perl level unless a variable is undef‘ed or the last variable ho
reference to it is changed or overwritten. At the internal level, however, reference counts can be mani
with the following macros:

 int SvREFCNT(SV* sv);
 SV* SvREFCNT_inc(SV* sv);
 void SvREFCNT_dec(SV* sv);

However, there is one other function which manipulates the reference count of its argument.
newRV_inc function, you will recall, creates a reference to the specified argument. As a side effe
increments the argument‘s reference count. If this is not what you want, use newRV_noinc instead.

For example, imagine you want to return a reference from an XSUB function. Inside the XSUB routin
create an SV which initially has a reference count of one. Then you call newRV_inc , passing it the
just−created SV. This returns the reference as a new SV, but the reference count of the SV you pa
newRV_inc has been incremented to two. Now you return the reference from the XSUB routine and
about the SV. But Perl hasn‘t! Whenever the returned reference is destroyed, the reference coun
original SV is decreased to one and nothing happens. The SV will hang around without any way to a
until Perl itself terminates. This is a memory leak.

The correct procedure, then, is to use newRV_noinc instead of newRV_inc . Then, if and when the last
reference is destroyed, the reference count of the SV will go to zero and it will be destroyed, stoppi
memory leak.

There are some convenience functions available that can help with the destruction of xVs. These fu
introduce the concept of "mortality". An xV that is mortal has had its reference count marked
decremented, but not actually decremented, until "a short time later". Generally the term "short time
means a single Perl statement, such as a call to an XSUB function. The actual determinant for when
xVs have their reference count decremented depends on two macros, SAVETMPS and FREETMP
perlcall and perlxs for more details on these macros.

"Mortalization" then is at its simplest a deferred SvREFCNT_dec. However, if you mortalize a variable
twice, the reference count will later be decremented twice.

You should be careful about creating mortal variables. Strange things can happen if you make th
value mortal within multiple contexts, or if you make a variable mortal multiple times.

To create a mortal variable, use the functions:

 SV* sv_newmortal()
 SV* sv_2mortal(SV*)
 SV* sv_mortalcopy(SV*)
18−Oct−1998 Version 5.005_02 507

perlguts Perl Programmers Reference Guide perlguts

s a call

ddress

 key of
and each
ects of

o get at
kage are
ar::"‘s

 stash is

fault

turned

erl will

. The
The first call creates a mortal SV, the second converts an existing SV to a mortal SV (and thus defer
to SvREFCNT_dec), and the third creates a mortal copy of an existing SV.

The mortal routines are not just for SVs — AVs and HVs can be made mortal by passing their a
(type−casted to SV*) to the sv_2mortal or sv_mortalcopy routines.

Stashes and Globs
A "stash" is a hash that contains all of the different objects that are contained within a package. Each
the stash is a symbol name (shared by all the different types of objects that have the same name),
value in the hash table is a GV (Glob Value). This GV in turn contains references to the various obj
that name, including (but not limited to) the following:

 Scalar Value
 Array Value
 Hash Value
 I/O Handle
 Format
 Subroutine

There is a single stash called "PL_defstash" that holds the items that exist in the "main" package. T
the items in other packages, append the string "::" to the package name. The items in the "Foo" pac
in the stash "Foo::" in PL_defstash. The items in the "Bar::Baz" package are in the stash "Baz::" in "B
stash.

To get the stash pointer for a particular package, use the function:

 HV* gv_stashpv(char* name, I32 create)
 HV* gv_stashsv(SV*, I32 create)

The first function takes a literal string, the second uses the string stored in the SV. Remember that a
just a hash table, so you get back an HV*. The create flag will create a new package if it is set.

The name that gv_stash*v wants is the name of the package whose symbol table you want. The de
package is called main . If you have multiply nested packages, pass their names to gv_stash*v ,
separated by :: as in the Perl language itself.

Alternately, if you have an SV that is a blessed reference, you can find out the stash pointer by using:

 HV* SvSTASH(SvRV(SV*));

then use the following to get the package name itself:

 char* HvNAME(HV* stash);

If you need to bless or re−bless an object you can use the following function:

 SV* sv_bless(SV*, HV* stash)

where the first argument, an SV*, must be a reference, and the second argument is a stash. The re
SV* can now be used in the same way as any other SV.

For more information on references and blessings, consult perlref.

Double−Typed SVs
Scalar variables normally contain only one type of value, an integer, double, pointer, or reference. P
automatically convert the actual scalar data from the stored type into the requested type.

Some scalar variables contain more than one type of scalar data. For example, the variable $! contains
either the numeric value of errno or its string equivalent from either strerror or sys_errlist[] .

To force multiple data values into an SV, you must do two things: use the sv_set*v routines to add the
additional scalar type, then set a flag so that Perl will believe it contains more than one type of data
four macros to set the flags are:
508 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

e
ll the

criptive

ted is

ures are

f the
 type of

 of a

be
SvIOK_on
SvNOK_on
SvPOK_on
SvROK_on

The particular macro you must use depends on which sv_set*v routine you called first. This is becaus
every sv_set*v routine turns on only the bit for the particular type of data being set, and turns off a
rest.

For example, to create a new Perl variable called "dberror" that contains both the numeric and des
string error values, you could use the following code:

 extern int dberror;
 extern char *dberror_list;

 SV* sv = perl_get_sv("dberror", TRUE);
 sv_setiv(sv, (IV) dberror);
 sv_setpv(sv, dberror_list[dberror]);
 SvIOK_on(sv);

If the order of sv_setiv and sv_setpv had been reversed, then the macro SvPOK_on would need to be
called instead of SvIOK_on .

Magic Variables
[This section still under construction. Ignore everything here. Post no bills. Everything not permit
forbidden.]

Any SV may be magical, that is, it has special features that a normal SV does not have. These feat
stored in the SV structure in a linked list of struct magic ‘s, typedef‘ed to MAGIC.

 struct magic {
 MAGIC* mg_moremagic;
 MGVTBL* mg_virtual;
 U16 mg_private;
 char mg_type;
 U8 mg_flags;
 SV* mg_obj;
 char* mg_ptr;
 I32 mg_len;
 };

Note this is current as of patchlevel 0, and could change at any time.

Assigning Magic
Perl adds magic to an SV using the sv_magic function:

 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);

The sv argument is a pointer to the SV that is to acquire a new magical feature.

If sv is not already magical, Perl uses the SvUPGRADE macro to set the SVt_PVMG flag for the sv . Perl
then continues by adding it to the beginning of the linked list of magical features. Any prior entry o
same type of magic is deleted. Note that this can be overridden, and multiple instances of the same
magic can be associated with an SV.

The name and namlen arguments are used to associate a string with the magic, typically the name
variable. namlen is stored in the mg_len field and if name is non−null and namlen = 0 a malloc‘d copy
of the name is stored in mg_ptr field.

The sv_magic function uses how to determine which, if any, predefined "Magic Virtual Table" should
assigned to the mg_virtual field. See the "Magic Virtual Table" section below. The how argument is
also stored in the mg_type field.
18−Oct−1998 Version 5.005_02 509

perlguts Perl Programmers Reference Guide perlguts

to that

h
erform

d, the
The obj argument is stored in the mg_obj field of the MAGIC structure. If it is not the same as the sv
argument, the reference count of the obj object is incremented. If it is the same, or if the how argument is
"#", or if it is a NULL pointer, then obj is merely stored, without the reference count being incremented.

There is also a function to add magic to an HV:

 void hv_magic(HV *hv, GV *gv, int how);

This simply calls sv_magic and coerces the gv argument into an SV.

To remove the magic from an SV, call the function sv_unmagic:

 void sv_unmagic(SV *sv, int type);

The type argument should be equal to the how value when the SV was initially made magical.

Magic Virtual Tables
The mg_virtual field in the MAGIC structure is a pointer to a MGVTBL, which is a structure of function
pointers and stands for "Magic Virtual Table" to handle the various operations that might be applied
variable.

The MGVTBL has five pointers to the following routine types:

 int (*svt_get)(SV* sv, MAGIC* mg);
 int (*svt_set)(SV* sv, MAGIC* mg);
 U32 (*svt_len)(SV* sv, MAGIC* mg);
 int (*svt_clear)(SV* sv, MAGIC* mg);
 int (*svt_free)(SV* sv, MAGIC* mg);

This MGVTBL structure is set at compile−time in perl.h and there are currently 19 types (or 21 wit
overloading turned on). These different structures contain pointers to various routines that p
additional actions depending on which function is being called.

 Function pointer Action taken
 −−−−−−−−−−−−−−−− −−−−−−−−−−−−
 svt_get Do something after the value of the SV is retrieved.
 svt_set Do something after the SV is assigned a value.
 svt_len Report on the SV’s length.
 svt_clear Clear something the SV represents.
 svt_free Free any extra storage associated with the SV.

For instance, the MGVTBL structure called vtbl_sv (which corresponds to an mg_type of ‘\0’) contains:

 { magic_get, magic_set, magic_len, 0, 0 }

Thus, when an SV is determined to be magical and of type ‘\0‘, if a get operation is being performe
routine magic_get is called. All the various routines for the various magical types begin with magic_ .

The current kinds of Magic Virtual Tables are:

 mg_type MGVTBL Type of magic
 −−−−−−− −−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−
 \0 vtbl_sv Special scalar variable
 A vtbl_amagic %OVERLOAD hash
 a vtbl_amagicelem %OVERLOAD hash element
 c (none) Holds overload table (AMT) on stash
 B vtbl_bm Boyer−Moore (fast string search)
 E vtbl_env %ENV hash
 e vtbl_envelem %ENV hash element
 f vtbl_fm Formline (’compiled’ format)
 g vtbl_mglob m//g target / study()ed string
510 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

represent
nt of that

itself.
is is
unlike

or

 take
 as the
of the

m

’

 I vtbl_isa @ISA array
 i vtbl_isaelem @ISA array element
 k vtbl_nkeys scalar(keys()) lvalue
 L (none) Debugger %_<filename
 l vtbl_dbline Debugger %_<filename element
 o vtbl_collxfrm Locale transformation
 P vtbl_pack Tied array or hash
 p vtbl_packelem Tied array or hash element
 q vtbl_packelem Tied scalar or handle
 S vtbl_sig %SIG hash
 s vtbl_sigelem %SIG hash element
 t vtbl_taint Taintedness
 U vtbl_uvar Available for use by extensions
 v vtbl_vec vec() lvalue
 x vtbl_substr substr() lvalue
 y vtbl_defelem Shadow "foreach" iterator variable /
 smart parameter vivification
 * vtbl_glob GV (typeglob)
 # vtbl_arylen Array length ($#ary)
 . vtbl_pos pos() lvalue
 ~ (none) Available for use by extensions

When an uppercase and lowercase letter both exist in the table, then the uppercase letter is used to
some kind of composite type (a list or a hash), and the lowercase letter is used to represent an eleme
composite type.

The ‘~’ and ‘U’ magic types are defined specifically for use by extensions and will not be used by perl
 Extensions can use ‘~’ magic to ‘attach’ private information to variables (typically objects). Th
especially useful because there is no way for normal perl code to corrupt this private information (
using extra elements of a hash object).

Similarly, ‘U’ magic can be used much like tie() to call a C function any time a scalar‘s value is used
changed. The MAGIC‘s mg_ptr field points to a ufuncs structure:

 struct ufuncs {
 I32 (*uf_val)(IV, SV*);
 I32 (*uf_set)(IV, SV*);
 IV uf_index;
 };

When the SV is read from or written to, the uf_val or uf_set function will be called with uf_index as
the first arg and a pointer to the SV as the second.

Note that because multiple extensions may be using ‘~’ or ‘U’ magic, it is important for extensions to
extra care to avoid conflict. Typically only using the magic on objects blessed into the same class
extension is sufficient. For ‘~’ magic, it may also be appropriate to add an I32 ‘signature’ at the top
private data area and check that.

Also note that the sv_set*() and sv_cat*() functions described earlier do not invoke ‘set’ magic on
their targets. This must be done by the user either by calling the SvSETMAGIC() macro after calling these
functions, or by using one of the sv_set*_mg() or sv_cat*_mg() functions. Similarly, generic C
code must call the SvGETMAGIC() macro to invoke any ‘get’ magic if they use an SV obtained fro
external sources in functions that don‘t handle magic. API LISTING later in this document identifies such
functions. For example, calls to the sv_cat*() functions typically need to be followed by
SvSETMAGIC() , but they don‘t need a prior SvGETMAGIC() since their implementation handles ‘get
magic.
18−Oct−1998 Version 5.005_02 511

perlguts Perl Programmers Reference Guide perlguts

ical

the

equires
 fixed in

such
.

to the
lly

Y

s

 TIE
lue

ctual
t

of lazy

e aware
ay be

ersions.

voke
s some

o the
tively

verhead
Finding Magic
 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */

This routine returns a pointer to the MAGIC structure stored in the SV. If the SV does not have that mag
feature, NULL is returned. Also, if the SV is not of type SVt_PVMG, Perl may core dump.

 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);

This routine checks to see what types of magic sv has. If the mg_type field is an uppercase letter, then
mg_obj is copied to nsv , but the mg_type field is changed to be the lowercase letter.

Understanding the Magic of Tied Hashes and Arrays
Tied hashes and arrays are magical beasts of the ‘P’ magic type.

WARNING: As of the 5.004 release, proper usage of the array and hash access functions r
understanding a few caveats. Some of these caveats are actually considered bugs in the API, to be
later releases, and are bracketed with [MAYCHANGE] below. If you find yourself actually applying
information in this section, be aware that the behavior may change in the future, umm, without warning

The av_store function, when given a tied array argument, merely copies the magic of the array on
value to be "stored", using mg_copy . It may also return NULL, indicating that the value did not actua
need to be stored in the array. [MAYCHANGE] After a call to av_store on a tied array, the caller will
usually need to call mg_set(val) to actually invoke the perl level "STORE" method on the TIEARRA
object. If av_store did return NULL, a call to SvREFCNT_dec(val) will also be usually necessary to
avoid a memory leak. [/MAYCHANGE]

The previous paragraph is applicable verbatim to tied hash access using the hv_store and
hv_store_ent functions as well.

av_fetch and the corresponding hash functions hv_fetch and hv_fetch_ent actually return an
undefined mortal value whose magic has been initialized using mg_copy . Note the value so returned doe
not need to be deallocated, as it is already mortal. [MAYCHANGE] But you will need to call mg_get()
on the returned value in order to actually invoke the perl level "FETCH" method on the underlying
object. Similarly, you may also call mg_set() on the return value after possibly assigning a suitable va
to it using sv_setsv , which will invoke the "STORE" method on the TIE object. [/MAYCHANGE]

[MAYCHANGE] In other words, the array or hash fetch/store functions don‘t really fetch and store a
values in the case of tied arrays and hashes. They merely call mg_copy to attach magic to the values tha
were meant to be "stored" or "fetched". Later calls to mg_get and mg_set actually do the job of invoking
the TIE methods on the underlying objects. Thus the magic mechanism currently implements a kind
access to arrays and hashes.

Currently (as of perl version 5.004), use of the hash and array access functions requires the user to b
of whether they are operating on "normal" hashes and arrays, or on their tied variants. The API m
changed to provide more transparent access to both tied and normal data types in future v
[/MAYCHANGE]

You would do well to understand that the TIEARRAY and TIEHASH interfaces are mere sugar to in
some perl method calls while using the uniform hash and array syntax. The use of this sugar impose
overhead (typically about two to four extra opcodes per FETCH/STORE operation, in addition t
creation of all the mortal variables required to invoke the methods). This overhead will be compara
small if the TIE methods are themselves substantial, but if they are only a few statements long, the o
will not be insignificant.

Localizing changes
Perl has a very handy construction

 {
 local $var = 2;
 ...
512 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

tant
air for
 almost

ted
 }

This construction is approximately equivalent to

 {
 my $oldvar = $var;
 $var = 2;
 ...
 $var = $oldvar;
 }

The biggest difference is that the first construction would reinstate the initial value of $var, irrespective of
how control exits the block: goto , return , die /eval etc. It is a little bit more efficient as well.

There is a way to achieve a similar task from C via Perl API: create a pseudo−block, and arrange for some
changes to be automatically undone at the end of it, either explicit, or via a non−local exit (via die()). A
block−like construct is created by a pair of ENTER/LEAVE macros (see
Returning a Scalar in perlcall/EXAMPLE). Such a construct may be created specially for some impor
localized task, or an existing one (like boundaries of enclosing Perl subroutine/block, or an existing p
freeing TMPs) may be used. (In the second case the overhead of additional localization must be
negligible.) Note that any XSUB is automatically enclosed in an ENTER/LEAVE pair.

Inside such a pseudo−block the following service is available:

SAVEINT(int i)
SAVEIV(IV i)
SAVEI32(I32 i)
SAVELONG(long i)

These macros arrange things to restore the value of integer variable i at the end of enclosing
pseudo−block.

SAVESPTR(s)
SAVEPPTR(p)

These macros arrange things to restore the value of pointers s and p. s must be a pointer of a type
which survives conversion to SV* and back, p should be able to survive conversion to char* and
back.

SAVEFREESV(SV *sv)
The refcount of sv would be decremented at the end of pseudo−block. This is similar to
sv_2mortal , which should (?) be used instead.

SAVEFREEOP(OP *op)
The OP * is op_free() ed at the end of pseudo−block.

SAVEFREEPV(p)
The chunk of memory which is pointed to by p is Safefree() ed at the end of pseudo−block.

SAVECLEARSV(SV *sv)
Clears a slot in the current scratchpad which corresponds to sv at the end of pseudo−block.

SAVEDELETE(HV *hv, char *key, I32 length)
The key key of hv is deleted at the end of pseudo−block. The string pointed to by key is
Safefree() ed. If one has a key in short−lived storage, the corresponding string may be realloca
like this:

 SAVEDELETE(PL_defstash, savepv(tmpbuf), strlen(tmpbuf));

SAVEDESTRUCTOR(f,p)
At the end of pseudo−block the function f is called with the only argument (of type void*) p.
18−Oct−1998 Version 5.005_02 513

perlguts Perl Programmers Reference Guide perlguts

 data

e will
erl data

PUT
andle all

he

oubles,
SAVESTACK_POS()
The current offset on the Perl internal stack (cf. SP) is restored at the end of pseudo−block.

The following API list contains functions, thus one needs to provide pointers to the modifiable
explicitly (either C pointers, or Perlish GV * s). Where the above macros take int , a similar function takes
int * .

SV* save_scalar(GV *gv)
Equivalent to Perl code local $gv.

AV* save_ary(GV *gv)
HV* save_hash(GV *gv)

Similar to save_scalar , but localize @gv and %gv.

void save_item(SV *item)
Duplicates the current value of SV, on the exit from the current ENTER/LEAVE pseudo−block will
restore the value of SV using the stored value.

void save_list(SV **sarg, I32 maxsarg)
A variant of save_item which takes multiple arguments via an array sarg of SV* of length
maxsarg .

SV* save_svref(SV **sptr)
Similar to save_scalar , but will reinstate a SV * .

void save_aptr(AV **aptr)
void save_hptr(HV **hptr)

Similar to save_svref , but localize AV * and HV * .

The Alias module implements localization of the basic types within the caller‘s scope. People who are
interested in how to localize things in the containing scope should take a look there too.

Subroutines

XSUBs and the Argument Stack
The XSUB mechanism is a simple way for Perl programs to access C subroutines. An XSUB routin
have a stack that contains the arguments from the Perl program, and a way to map from the P
structures to a C equivalent.

The stack arguments are accessible through the ST(n) macro, which returns the n‘th stack argument.
Argument 0 is the first argument passed in the Perl subroutine call. These arguments are SV*, and can be
used anywhere an SV* is used.

Most of the time, output from the C routine can be handled through use of the RETVAL and OUT
directives. However, there are some cases where the argument stack is not already long enough to h
the return values. An example is the POSIX tzname() call, which takes no arguments, but returns two, t
local time zone‘s standard and summer time abbreviations.

To handle this situation, the PPCODE directive is used and the stack is extended using the macro:

 EXTEND(SP, num);

where SP is the macro that represents the local copy of the stack pointer, and num is the number of elements
the stack should be extended by.

Now that there is room on the stack, values can be pushed on it using the macros to push IVs, d
strings, and SV pointers respectively:

 PUSHi(IV)
 PUSHn(double)
 PUSHp(char*, I32)
514 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

r are:

erl
t control
ts, how

rl

s sizes
rms, it

 help
st Perl
 PUSHs(SV*)

And now the Perl program calling tzname , the two values will be assigned as in:

 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;

An alternate (and possibly simpler) method to pushing values on the stack is to use the macros:

 XPUSHi(IV)
 XPUSHn(double)
 XPUSHp(char*, I32)
 XPUSHs(SV*)

These macros automatically adjust the stack for you, if needed. Thus, you do not need to call EXTEND to
extend the stack.

For more information, consult perlxs and perlxstut.

Calling Perl Routines from within C Programs
There are four routines that can be used to call a Perl subroutine from within a C program. These fou

 I32 perl_call_sv(SV*, I32);
 I32 perl_call_pv(char*, I32);
 I32 perl_call_method(char*, I32);
 I32 perl_call_argv(char*, I32, register char**);

The routine most often used is perl_call_sv . The SV* argument contains either the name of the P
subroutine to be called, or a reference to the subroutine. The second argument consists of flags tha
the context in which the subroutine is called, whether or not the subroutine is being passed argumen
errors should be trapped, and how to treat return values.

All four routines return the number of arguments that the subroutine returned on the Perl stack.

When using any of these routines (except perl_call_argv), the programmer must manipulate the Pe
stack. These include the following macros and functions:

 dSP
 SP
 PUSHMARK()
 PUTBACK
 SPAGAIN
 ENTER
 SAVETMPS
 FREETMPS
 LEAVE
 XPUSH*()
 POP*()

For a detailed description of calling conventions from C to Perl, consult perlcall.

Memory Allocation
It is suggested that you use the version of malloc that is distributed with Perl. It keeps pools of variou
of unallocated memory in order to satisfy allocation requests more quickly. However, on some platfo
may cause spurious malloc or free errors.

 New(x, pointer, number, type);
 Newc(x, pointer, number, type, cast);
 Newz(x, pointer, number, type);

These three macros are used to initially allocate memory.

The first argument x was a "magic cookie" that was used to keep track of who called the macro, to
when debugging memory problems. However, the current code makes no use of this feature (mo
18−Oct−1998 Version 5.005_02 515

perlguts Perl Programmers Reference Guide perlguts

ted

re

 needed.

ro out

ency on
reating
. All
s about

 stack.
s reuse

as

 are
nes) —
 for the

 deduce

an
developers now use run−time memory checkers), so this argument can be any number.

The second argument pointer should be the name of a variable that will point to the newly alloca
memory.

The third and fourth arguments number and type specify how many of the specified type of data structu
should be allocated. The argument type is passed to sizeof . The final argument to Newc, cast , should
be used if the pointer argument is different from the type argument.

Unlike the New and Newc macros, the Newz macro calls memzero to zero out all the newly allocated
memory.

 Renew(pointer, number, type);
 Renewc(pointer, number, type, cast);
 Safefree(pointer)

These three macros are used to change a memory buffer size or to free a piece of memory no longer
The arguments to Renew and Renewc match those of New and Newc with the exception of not needing the
"magic cookie" argument.

 Move(source, dest, number, type);
 Copy(source, dest, number, type);
 Zero(dest, number, type);

These three macros are used to move, copy, or zero out previously allocated memory. The source and
dest arguments point to the source and destination starting points. Perl will move, copy, or ze
number instances of the size of the type data structure (using the sizeof function).

PerlIO
The most recent development releases of Perl has been experimenting with removing Perl‘s depend
the "normal" standard I/O suite and allowing other stdio implementations to be used. This involves c
a new abstraction layer that then calls whichever implementation of stdio Perl was compiled with
XSUBs should now use the functions in the PerlIO abstraction layer and not make any assumption
what kind of stdio is being used.

For a complete description of the PerlIO abstraction, consult perlapio.

Putting a C value on Perl stack
A lot of opcodes (this is an elementary operation in the internal perl stack machine) put an SV* on the
However, as an optimization the corresponding SV is (usually) not recreated each time. The opcode
specially assigned SVs (targets) which are (as a corollary) not constantly freed/created.

Each of the targets is created only once (but see Scratchpads and recursion below), and when an opcode
needs to put an integer, a double, or a string on stack, it just sets the corresponding parts of its target and puts
the target on stack.

The macro to put this target on stack is PUSHTARG, and it is directly used in some opcodes, as well
indirectly in zillions of others, which use it via (X)PUSH[pni] .

Scratchpads
The question remains on when the SVs which are targets for opcodes are created. The answer is that they
created when the current unit — a subroutine or a file (for opcodes for statements outside of subrouti
is compiled. During this time a special anonymous Perl array is created, which is called a scratchpad
current unit.

A scratchpad keeps SVs which are lexicals for the current unit and are targets for opcodes. One can
that an SV lives on a scratchpad by looking on its flags: lexicals have SVs_PADMY set, and targets have
SVs_PADTMP set.

The correspondence between OPs and targets is not 1−to−1. Different OPs in the compile tree of the unit c
use the same target, if this would not conflict with the expected life of the temporary.
516 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

ains a
 extra

n
for the
 have

ine it is
s, new

o with
ws the

r is the
Scratchpads and recursion
In fact it is not 100% true that a compiled unit contains a pointer to the scratchpad AV. In fact it cont
pointer to an AV of (initially) one element, and this element is the scratchpad AV. Why do we need an
level of indirection?

The answer is recursion, and maybe (sometime soon) threads. Both these can create several executio
pointers going into the same subroutine. For the subroutine−child not write over the temporaries
subroutine−parent (lifespan of which covers the call to the child), the parent and the child should
different scratchpads. (And the lexicals should be separate anyway!)

So each subroutine is born with an array of scratchpads (of length 1). On each entry to the subrout
checked that the current depth of the recursion is not more than the length of this array, and if it i
scratchpad is created and pushed into the array.

The targets on this scratchpad are undef s, but they are already marked with correct flags.

Compiled code

Code tree
Here we describe the internal form your code is converted to by Perl. Start with a simple example:

 $a = $b + $c;

This is converted to a tree similar to this one:

 assign−to
 / \
 + $a
 / \
 $b $c

(but slightly more complicated). This tree reflects the way Perl parsed your code, but has nothing to d
the execution order. There is an additional "thread" going through the nodes of the tree which sho
order of execution of the nodes. In our simplified example above it looks like:

 $b −−−> $c −−−> + −−−> $a −−−> assign−to

But with the actual compile tree for $a = $b + $c it is different: some nodes optimized away. As a
corollary, though the actual tree contains more nodes than our simplified example, the execution orde
same as in our example.

Examining the tree
If you have your perl compiled for debugging (usually done with −D optimize=−g on Configure
command line), you may examine the compiled tree by specifying −Dx on the Perl command line. The
output takes several lines per node, and for $b+$c it looks like this:

 5 TYPE = add ===> 6
 TARG = 1
 FLAGS = (SCALAR,KIDS)
 {
 TYPE = null ===> (4)
 (was rv2sv)
 FLAGS = (SCALAR,KIDS)
 {
 3 TYPE = gvsv ===> 4
 FLAGS = (SCALAR)
 GV = main::b
 }
 }
 {
18−Oct−1998 Version 5.005_02 517

perlguts Perl Programmers Reference Guide perlguts

r in

nce

on this
and

ince at
 to the

as not

−time

e the
e. In
 context

ompile
 TYPE = null ===> (5)
 (was rv2sv)
 FLAGS = (SCALAR,KIDS)
 {
 4 TYPE = gvsv ===> 5
 FLAGS = (SCALAR)
 GV = main::c
 }
 }

This tree has 5 nodes (one per TYPE specifier), only 3 of them are not optimized away (one per numbe
the left column). The immediate children of the given node correspond to {} pairs on the same level of
indentation, thus this listing corresponds to the tree:

 add
 / \
 null null
 | |
 gvsv gvsv

The execution order is indicated by ===> marks, thus it is 3 4 5 6 (node 6 is not included into above
listing), i.e., gvsv gvsv add whatever .

Compile pass 1: check routines
The tree is created by the pseudo−compiler while yacc code feeds it the constructions it recognizes. Si
yacc works bottom−up, so does the first pass of perl compilation.

What makes this pass interesting for perl developers is that some optimization may be performed
pass. This is optimization by so−called check routines. The correspondence between node names
corresponding check routines is described in opcode.pl (do not forget to run make regen_headers if
you modify this file).

A check routine is called when the node is fully constructed except for the execution−order thread. S
this time there are no back−links to the currently constructed node, one can do most any operation
top−level node, including freeing it and/or creating new nodes above/below it.

The check routine returns the node which should be inserted into the tree (if the top−level node w
modified, check routine returns its argument).

By convention, check routines have names ck_* . They are usually called from new*OP subroutines (or
convert) (which in turn are called from perly.y).

Compile pass 1a: constant folding
Immediately after the check routine is called the returned node is checked for being compile
executable. If it is (the value is judged to be constant) it is immediately executed, and a constant node with
the "return value" of the corresponding subtree is substituted instead. The subtree is deleted.

If constant folding was not performed, the execution−order thread is created.

Compile pass 2: context propagation
When a context for a part of compile tree is known, it is propagated down through the tree. At this tim
context can have 5 values (instead of 2 for runtime context): void, boolean, scalar, list, and lvalu
contrast with the pass 1 this pass is processed from top to bottom: a node‘s context determines the
for its children.

Additional context−dependent optimizations are performed at this time. Since at this moment the c
tree contains back−references (via "thread" pointers), nodes cannot be free() d now. To allow
optimized−away nodes at this stage, such nodes are null() ified instead of free() ing (i.e. their type is
changed to OP_NULL).
518 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

de
itional

at may

ose of

it to a

o they

te the

in the
Compile pass 3: peephole optimization
After the compile tree for a subroutine (or for an eval or a file) is created, an additional pass over the co
is performed. This pass is neither top−down or bottom−up, but in the execution order (with add
complications for conditionals). These optimizations are done in the subroutine peep() . Optimizations
performed at this stage are subject to the same restrictions as in the pass 2.

API LISTING
This is a listing of functions, macros, flags, and variables that may be useful to extension writers or th
be found while reading other extensions.

Note that all Perl API global variables must be referenced with the PL_ prefix. Some macros are provided
for compatibility with the older, unadorned names, but this support will be removed in a future release.

It is strongly recommended that all Perl API functions that don‘t begin with perl be referenced with an
explicit Perl_ prefix.

The sort order of the listing is case insensitive, with any occurrences of ‘_’ ignored for the the purp
sorting.

av_clear Clears an array, making it empty. Does not free the memory used by the array itself.

void av_clear (AV* ar)

av_extend
Pre−extend an array. The key is the index to which the array should be extended.

void av_extend (AV* ar, I32 key)

av_fetch Returns the SV at the specified index in the array. The key is the index. If lval is set then the
fetch will be part of a store. Check that the return value is non−null before dereferencing
SV*.

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use
this function on tied arrays.

SV** av_fetch (AV* ar, I32 key, I32 lval)

AvFILL Same as av_len() . Deprecated, use av_len() instead.

av_len Returns the highest index in the array. Returns −1 if the array is empty.

I32 av_len (AV* ar)

av_make Creates a new AV and populates it with a list of SVs. The SVs are copied into the array, s
may be freed after the call to av_make. The new AV will have a reference count of 1.

AV* av_make (I32 size, SV** svp)

av_pop Pops an SV off the end of the array. Returns &PL_sv_undef if the array is empty.

SV* av_pop (AV* ar)

av_push Pushes an SV onto the end of the array. The array will grow automatically to accommoda
addition.

void av_push (AV* ar, SV* val)

av_shift Shifts an SV off the beginning of the array.

SV* av_shift (AV* ar)

av_store Stores an SV in an array. The array index is specified as key . The return value will be NULL if
the operation failed or if the value did not need to be actually stored within the array (as
case of tied arrays). Otherwise it can be dereferenced to get the original SV*. Note that the
caller is responsible for suitably incrementing the reference count of val before the call, and
18−Oct−1998 Version 5.005_02 519

perlguts Perl Programmers Reference Guide perlguts

w

 is

e

u

s
 every

Perl‘s
decrementing it if the function returned NULL.

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use
this function on tied arrays.

SV** av_store (AV* ar, I32 key, SV* val)

av_undef Undefines the array. Frees the memory used by the array itself.

void av_undef (AV* ar)

av_unshift
Unshift the given number of undef values onto the beginning of the array. The array will gro
automatically to accommodate the addition. You must then use av_store to assign values to
these new elements.

void av_unshift (AV* ar, I32 num)

CLASS Variable which is setup by xsubpp to indicate the class name for a C++ XS constructor. This
always a char* . See THIS and Using XS With C++ in perlxs.

Copy The XSUB−writer‘s interface to the C memcpy function. The s is the source, d is the
destination, n is the number of items, and t is the type. May fail on overlapping copies. Se
also Move.

void Copy(s, d, n, t)

croak This is the XSUB−writer‘s interface to Perl‘s die function. Use this function the same way yo
use the C printf function. See warn .

CvSTASH
Returns the stash of the CV.

HV* CvSTASH(SV* sv)

PL_DBsingle
When Perl is run in debugging mode, with the −d switch, this SV is a boolean which indicate
whether subs are being single−stepped. Single−stepping is automatically turned on after
step. This is the C variable which corresponds to Perl‘s $DB::single variable. See
PL_DBsub.

PL_DBsub
When Perl is run in debugging mode, with the −d switch, this GV contains the SV which holds
the name of the sub being debugged. This is the C variable which corresponds to
$DB::sub variable. See PL_DBsingle . The sub name can be found by

SvPV(GvSV(PL_DBsub), PL_na)

PL_DBtrace
Trace variable used when Perl is run in debugging mode, with the −d switch. This is the C
variable which corresponds to Perl‘s $DB::trace variable. See PL_DBsingle .

dMARK Declare a stack marker variable, mark , for the XSUB. See MARK and dORIGMARK.

dORIGMARK
Saves the original stack mark for the XSUB. See ORIGMARK.

PL_dowarn
The C variable which corresponds to Perl‘s $^W warning variable.

dSP Declares a local copy of perl‘s stack pointer for the XSUB, available via the SP macro. See SP.
520 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

ndled
e

y by

ot
dXSARGS
Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is usually ha
automatically by xsubpp . Declares the items variable to indicate the number of items on th
stack.

dXSI32 Sets up the ix variable for an XSUB which has aliases. This is usually handled automaticall
xsubpp .

do_binmode
Switches filehandle to binmode. iotype is what IoTYPE(io) would contain.

do_binmode(fp, iotype, TRUE);

ENTER Opening bracket on a callback. See LEAVE and perlcall.

ENTER;

EXTEND Used to extend the argument stack for an XSUB‘s return values.

EXTEND(sp, int x)

fbm_compile
Analyses the string in order to make fast searches on it using fbm_instr() — the
Boyer−Moore algorithm.

void fbm_compile(SV* sv, U32 flags)

fbm_instr Returns the location of the SV in the string delimited by str and strend . It returns Nullch
if the string can‘t be found. The sv does not have to be fbm_compiled, but the search will n
be as fast then.

char* fbm_instr(char *str, char *strend, SV *sv, U32 flags)

FREETMPS
Closing bracket for temporaries on a callback. See SAVETMPS and perlcall.

FREETMPS;

G_ARRAY
Used to indicate array context. See GIMME_V, GIMME and perlcall.

G_DISCARD
Indicates that arguments returned from a callback should be discarded. See perlcall.

G_EVAL Used to force a Perl eval wrapper around a callback. See perlcall.

GIMME A backward−compatible version of GIMME_V which can only return G_SCALAR or G_ARRAY;
in a void context, it returns G_SCALAR.

GIMME_V
The XSUB−writer‘s equivalent to Perl‘s wantarray . Returns G_VOID, G_SCALAR or
G_ARRAY for void, scalar or array context, respectively.

G_NOARGS
Indicates that no arguments are being sent to a callback. See perlcall.

G_SCALAR
Used to indicate scalar context. See GIMME_V, GIMME, and perlcall.

gv_fetchmeth
Returns the glob with the given name and a defined subroutine or NULL. The glob lives in the
given stash , or in the stashes accessible via @ISA and @UNIVERSAL.
18−Oct−1998 Version 5.005_02 521

perlguts Perl Programmers Reference Guide perlguts

b
the

to
u

 the

k for

eing
 to

by

en

ucture
to
The argument level should be either 0 or −1. If level==0 , as a side−effect creates a glo
with the given name in the given stash which in the case of success contains an alias for
subroutine, and sets up caching info for this glob. Similarly for all the searched stashes.

This function grants "SUPER" token as a postfix of the stash name.

The GV returned from gv_fetchmeth may be a method cache entry, which is not visible
Perl code. So when calling perl_call_sv , you should not use the GV directly; instead, yo
should use the method‘s CV, which can be obtained from the GV with the GvCV macro.

 GV* gv_fetchmeth (HV* stash, char* name, STRLEN len, I32 level)

gv_fetchmethod
gv_fetchmethod_autoload

Returns the glob which contains the subroutine to call to invoke the method on the stash . In
fact in the presense of autoloading this may be the glob for "AUTOLOAD". In this case
corresponding variable $AUTOLOAD is already setup.

The third parameter of gv_fetchmethod_autoload determines whether AUTOLOAD
lookup is performed if the given method is not present: non−zero means yes, loo
AUTOLOAD; zero means no, don‘t look for AUTOLOAD. Calling gv_fetchmethod is
equivalent to calling gv_fetchmethod_autoload with a non−zero autoload parameter.

These functions grant "SUPER" token as a prefix of the method name.

Note that if you want to keep the returned glob for a long time, you need to check for it b
"AUTOLOAD", since at the later time the call may load a different subroutine due
$AUTOLOAD changing its value. Use the glob created via a side effect to do this.

These functions have the same side−effects and as gv_fetchmeth with level==0 . name
should be writable if contains ‘:’ or ‘\‘’ . The warning against passing the GV returned
gv_fetchmeth to perl_call_sv apply equally to these functions.

 GV* gv_fetchmethod (HV* stash, char* name)
 GV* gv_fetchmethod_autoload (HV* stash, char* name, I32 autoload)

G_VOID Used to indicate void context. See GIMME_V and perlcall.

gv_stashpv
Returns a pointer to the stash for a specified package. If create is set then the package will be
created if it does not already exist. If create is not set and the package does not exist th
NULL is returned.

HV* gv_stashpv (char* name, I32 create)

gv_stashsv
Returns a pointer to the stash for a specified package. See gv_stashpv .

HV* gv_stashsv (SV* sv, I32 create)

GvSV Return the SV from the GV.

HEf_SVKEY
This flag, used in the length slot of hash entries and magic structures, specifies the str
contains a SV* pointer where a char* pointer is to be expected. (For information only—not
be used).

HeHASH Returns the computed hash stored in the hash entry.

U32 HeHASH(HE* he)
522 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

 either

of

iable
 using
r to

of an

 of key

 to the

 to the
HeKEY Returns the actual pointer stored in the key slot of the hash entry. The pointer may be
char* or SV*, depending on the value of HeKLEN() . Can be assigned to. The HePV() or
HeSVKEY() macros are usually preferable for finding the value of a key.

char* HeKEY(HE* he)

HeKLEN If this is negative, and amounts to HEf_SVKEY, it indicates the entry holds an SV* key.
Otherwise, holds the actual length of the key. Can be assigned to. The HePV() macro is usually
preferable for finding key lengths.

int HeKLEN(HE* he)

HePV Returns the key slot of the hash entry as a char* value, doing any necessary dereferencing
possibly SV* keys. The length of the string is placed in len (this is a macro, so do not use
&len). If you do not care about what the length of the key is, you may use the global var
PL_na . Remember though, that hash keys in perl are free to contain embedded nulls, so
strlen() or similar is not a good way to find the length of hash keys. This is very simila
the SvPV() macro described elsewhere in this document.

char* HePV(HE* he, STRLEN len)

HeSVKEY
Returns the key as an SV*, or Nullsv if the hash entry does not contain an SV* key.

HeSVKEY(HE* he)

HeSVKEY_force
Returns the key as an SV*. Will create and return a temporary mortal SV* if the hash entry
contains only a char* key.

HeSVKEY_force(HE* he)

HeSVKEY_set
Sets the key to a given SV*, taking care to set the appropriate flags to indicate the presence
SV* key, and returns the same SV*.

HeSVKEY_set(HE* he, SV* sv)

HeVAL Returns the value slot (type SV*) stored in the hash entry.

HeVAL(HE* he)

hv_clear Clears a hash, making it empty.

void hv_clear (HV* tb)

hv_delayfree_ent
Releases a hash entry, such as while iterating though the hash, but delays actual freeing
and value until the end of the current statement (or thereabouts) with sv_2mortal . See
hv_iternext and hv_free_ent .

void hv_delayfree_ent (HV* hv, HE* entry)

hv_delete
Deletes a key/value pair in the hash. The value SV is removed from the hash and returned
caller. The klen is the length of the key. The flags value will normally be zero; if set to
G_DISCARD then NULL will be returned.

SV* hv_delete (HV* tb, char* key, U32 klen, I32 flags)

hv_delete_ent
Deletes a key/value pair in the hash. The value SV is removed from the hash and returned
caller. The flags value will normally be zero; if set to G_DISCARD then NULL will be
18−Oct−1998 Version 5.005_02 523

perlguts Perl Programmers Reference Guide perlguts

e is

efore
ure

at
acro

ill
returned. hash can be a valid precomputed hash value, or 0 to ask for it to be computed.

SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash)

hv_exists Returns a boolean indicating whether the specified hash key exists. The klen is the length of
the key.

bool hv_exists (HV* tb, char* key, U32 klen)

hv_exists_ent
Returns a boolean indicating whether the specified hash key exists. hash can be a valid
precomputed hash value, or 0 to ask for it to be computed.

bool hv_exists_ent (HV* tb, SV* key, U32 hash)

hv_fetch Returns the SV which corresponds to the specified key in the hash. The klen is the length of
the key. If lval is set then the fetch will be part of a store. Check that the return valu
non−null before dereferencing it to a SV*.

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use
this function on tied hashes.

SV** hv_fetch (HV* tb, char* key, U32 klen, I32 lval)

hv_fetch_ent
Returns the hash entry which corresponds to the specified key in the hash. hash must be a valid
precomputed hash number for the given key , or 0 if you want the function to compute it. IF
lval is set then the fetch will be part of a store. Make sure the return value is non−null b
accessing it. The return value when tb is a tied hash is a pointer to a static location, so be s
to make a copy of the structure if you need to store it somewhere.

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use
this function on tied hashes.

HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash)

hv_free_ent
Releases a hash entry, such as while iterating though the hash. See hv_iternext and
hv_delayfree_ent .

void hv_free_ent (HV* hv, HE* entry)

hv_iterinit Prepares a starting point to traverse a hash table.

I32 hv_iterinit (HV* tb)

Returns the number of keys in the hash (i.e. the same as HvKEYS(tb)). The return value is
currently only meaningful for hashes without tie magic.

NOTE: Before version 5.004_65, hv_iterinit used to return the number of hash buckets th
happen to be in use. If you still need that esoteric value, you can get it through the m
HvFILL(tb) .

hv_iterkey
Returns the key from the current position of the hash iterator. See hv_iterinit .

char* hv_iterkey (HE* entry, I32* retlen)

hv_iterkeysv
Returns the key as an SV* from the current position of the hash iterator. The return value w
always be a mortal copy of the key. Also see hv_iterinit .

SV* hv_iterkeysv (HE* entry)
524 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

 The
ored
get the
nt of

 hash
 be
 of the
 is
hv_iternext
Returns entries from a hash iterator. See hv_iterinit .

HE* hv_iternext (HV* tb)

hv_iternextsv
Performs an hv_iternext , hv_iterkey , and hv_iterval in one operation.

SV* hv_iternextsv (HV* hv, char** key, I32* retlen)

hv_iterval Returns the value from the current position of the hash iterator. See hv_iterkey .

SV* hv_iterval (HV* tb, HE* entry)

hv_magic Adds magic to a hash. See sv_magic .

void hv_magic (HV* hv, GV* gv, int how)

HvNAME Returns the package name of a stash. See SvSTASH, CvSTASH.

char* HvNAME (HV* stash)

hv_store Stores an SV in a hash. The hash key is specified as key and klen is the length of the key.
The hash parameter is the precomputed hash value; if it is zero then Perl will compute it.
return value will be NULL if the operation failed or if the value did not need to be actually st
within the hash (as in the case of tied hashes). Otherwise it can be dereferenced to
original SV*. Note that the caller is responsible for suitably incrementing the reference cou
val before the call, and decrementing it if the function returned NULL.

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use
this function on tied hashes.

SV** hv_store (HV* tb, char* key, U32 klen, SV* val, U32 hash)

hv_store_ent
Stores val in a hash. The hash key is specified as key . The hash parameter is the
precomputed hash value; if it is zero then Perl will compute it. The return value is the new
entry so created. It will be NULL if the operation failed or if the value did not need to
actually stored within the hash (as in the case of tied hashes). Otherwise the contents
return value can be accessed using the He??? macros described here. Note that the caller
responsible for suitably incrementing the reference count of val before the call, and
decrementing it if the function returned NULL.

See Understanding the Magic of Tied Hashes and Arrays for more information on how to use
this function on tied hashes.

HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash)

hv_undef Undefines the hash.

void hv_undef (HV* tb)

isALNUM Returns a boolean indicating whether the C char is an ascii alphanumeric character or digit.

int isALNUM (char c)

isALPHA Returns a boolean indicating whether the C char is an ascii alphabetic character.

int isALPHA (char c)

isDIGIT Returns a boolean indicating whether the C char is an ascii digit.

int isDIGIT (char c)
18−Oct−1998 Version 5.005_02 525

perlguts Perl Programmers Reference Guide perlguts

ee

ke

lso
isLOWER
Returns a boolean indicating whether the C char is a lowercase character.

int isLOWER (char c)

isSPACE Returns a boolean indicating whether the C char is whitespace.

int isSPACE (char c)

isUPPER Returns a boolean indicating whether the C char is an uppercase character.

int isUPPER (char c)

items Variable which is setup by xsubpp to indicate the number of items on the stack. S
Variable−length Parameter Lists in perlxs.

ix Variable which is setup by xsubpp to indicate which of an XSUB‘s aliases was used to invo
it. See The ALIAS: Keyword in perlxs.

LEAVE Closing bracket on a callback. See ENTER and perlcall.

LEAVE;

looks_like_number
Test if an the content of an SV looks like a number (or is a number).

int looks_like_number(SV*)

MARK Stack marker variable for the XSUB. See dMARK.

mg_clear Clear something magical that the SV represents. See sv_magic .

int mg_clear (SV* sv)

mg_copy Copies the magic from one SV to another. See sv_magic .

int mg_copy (SV *, SV *, char *, STRLEN)

mg_find Finds the magic pointer for type matching the SV. See sv_magic .

MAGIC* mg_find (SV* sv, int type)

mg_free Free any magic storage used by the SV. See sv_magic .

int mg_free (SV* sv)

mg_get Do magic after a value is retrieved from the SV. See sv_magic .

int mg_get (SV* sv)

mg_len Report on the SV‘s length. See sv_magic .

U32 mg_len (SV* sv)

mg_magical
Turns on the magical status of an SV. See sv_magic .

void mg_magical (SV* sv)

mg_set Do magic after a value is assigned to the SV. See sv_magic .

int mg_set (SV* sv)

Move The XSUB−writer‘s interface to the C memmove function. The s is the source, d is the
destination, n is the number of items, and t is the type. Can do overlapping moves. See a
Copy.

void Move(s, d, n, t)
526 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

ted
OK is
 set to

If

If
PL_na A variable which may be used with SvPV to tell Perl to calculate the string length.

New The XSUB−writer‘s interface to the C malloc function.

void* New(x, void *ptr, int size, type)

newAV Creates a new AV. The reference count is set to 1.

AV* newAV (void)

Newc The XSUB−writer‘s interface to the C malloc function, with cast.

void* Newc(x, void *ptr, int size, type, cast)

newCONSTSUB
Creates a constant sub equivalent to Perl sub FOO () { 123 } which is eligible for inlining
at compile−time.

void newCONSTSUB(HV* stash, char* name, SV* sv)

newHV Creates a new HV. The reference count is set to 1.

HV* newHV (void)

newRV_inc
Creates an RV wrapper for an SV. The reference count for the original SV is incremented.

SV* newRV_inc (SV* ref)

For historical reasons, "newRV" is a synonym for "newRV_inc".

newRV_noinc
Creates an RV wrapper for an SV. The reference count for the original SV is not incremented.

SV* newRV_noinc (SV* ref)

NEWSV Creates a new SV. A non−zero len parameter indicates the number of bytes of prealloca
string space the SV should have. An extra byte for a tailing NUL is also reserved. (SvP
not set for the SV even if string space is allocated.) The reference count for the new SV is
1. id is an integer id between 0 and 1299 (used to identify leaks).

SV* NEWSV (int id, STRLEN len)

newSViv Creates a new SV and copies an integer into it. The reference count for the SV is set to 1.

SV* newSViv (IV i)

newSVnv Creates a new SV and copies a double into it. The reference count for the SV is set to 1.

SV* newSVnv (NV i)

newSVpv Creates a new SV and copies a string into it. The reference count for the SV is set to 1. len
is zero then Perl will compute the length.

SV* newSVpv (char* s, STRLEN len)

newSVpvf
Creates a new SV an initialize it with the string formatted like sprintf .

SV* newSVpvf(const char* pat, ...);

newSVpvn
Creates a new SV and copies a string into it. The reference count for the SV is set to 1. len
is zero then Perl will create a zero length string.

SV* newSVpvn (char* s, STRLEN len)
18−Oct−1998 Version 5.005_02 527

perlguts Perl Programmers Reference Guide perlguts

.
 new

h

k. See
newSVrv Creates a new SV for the RV, rv , to point to. If rv is not an RV then it will be upgraded to one
 If classname is non−null then the new SV will be blessed in the specified package. The
SV is returned and its reference count is 1.

SV* newSVrv (SV* rv, char* classname)

newSVsv Creates a new SV which is an exact duplicate of the original SV.

SV* newSVsv (SV* old)

newXS Used by xsubpp to hook up XSUBs as Perl subs.

newXSproto
Used by xsubpp to hook up XSUBs as Perl subs. Adds Perl prototypes to the subs.

Newz The XSUB−writer‘s interface to the C malloc function. The allocated memory is zeroed wit
memzero.

void* Newz(x, void *ptr, int size, type)

Nullav Null AV pointer.

Nullch Null character pointer.

Nullcv Null CV pointer.

Nullhv Null HV pointer.

Nullsv Null SV pointer.

ORIGMARK
The original stack mark for the XSUB. See dORIGMARK.

perl_alloc Allocates a new Perl interpreter. See perlembed.

perl_call_argv
Performs a callback to the specified Perl sub. See perlcall.

I32 perl_call_argv (char* subname, I32 flags, char** argv)

perl_call_method
Performs a callback to the specified Perl method. The blessed object must be on the stac
perlcall.

I32 perl_call_method (char* methname, I32 flags)

perl_call_pv
Performs a callback to the specified Perl sub. See perlcall.

I32 perl_call_pv (char* subname, I32 flags)

perl_call_sv
Performs a callback to the Perl sub whose name is in the SV. See perlcall.

I32 perl_call_sv (SV* sv, I32 flags)

perl_construct
Initializes a new Perl interpreter. See perlembed.

perl_destruct
Shuts down a Perl interpreter. See perlembed.

perl_eval_sv
Tells Perl to eval the string in the SV.
528 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

st
 is

st
 is

st
 is

st
 is
I32 perl_eval_sv (SV* sv, I32 flags)

perl_eval_pv
Tells Perl to eval the given string and return an SV* result.

SV* perl_eval_pv (char* p, I32 croak_on_error)

perl_free Releases a Perl interpreter. See perlembed.

perl_get_av
Returns the AV of the specified Perl array. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then NULL
returned.

AV* perl_get_av (char* name, I32 create)

perl_get_cv
Returns the CV of the specified Perl sub. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then NULL
returned.

CV* perl_get_cv (char* name, I32 create)

perl_get_hv
Returns the HV of the specified Perl hash. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then NULL
returned.

HV* perl_get_hv (char* name, I32 create)

perl_get_sv
Returns the SV of the specified Perl scalar. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then NULL
returned.

SV* perl_get_sv (char* name, I32 create)

perl_parse
Tells a Perl interpreter to parse a Perl script. See perlembed.

perl_require_pv
Tells Perl to require a module.

void perl_require_pv (char* pv)

perl_run Tells a Perl interpreter to run. See perlembed.

POPi Pops an integer off the stack.

int POPi()

POPl Pops a long off the stack.

long POPl()

POPp Pops a string off the stack.

char* POPp()

POPn Pops a double off the stack.

double POPn()
18−Oct−1998 Version 5.005_02 529

perlguts Perl Programmers Reference Guide perlguts

magic.

magic.

le ‘set’

t. See

e

 an
POPs Pops an SV off the stack.

SV* POPs()

PUSHMARK
Opening bracket for arguments on a callback. See PUTBACK and perlcall.

PUSHMARK(p)

PUSHi Push an integer onto the stack. The stack must have room for this element. Handles ‘set’
See XPUSHi.

void PUSHi(int d)

PUSHn Push a double onto the stack. The stack must have room for this element. Handles ‘set’
See XPUSHn.

void PUSHn(double d)

PUSHp Push a string onto the stack. The stack must have room for this element. The len indicates the
length of the string. Handles ‘set’ magic. See XPUSHp.

void PUSHp(char *c, int len)

PUSHs Push an SV onto the stack. The stack must have room for this element. Does not hand
magic. See XPUSHs.

void PUSHs(sv)

PUSHu Push an unsigned integer onto the stack. The stack must have room for this elemen
XPUSHu.

void PUSHu(unsigned int d)

PUTBACK
Closing bracket for XSUB arguments. This is usually handled by xsubpp . See PUSHMARK and
perlcall for other uses.

PUTBACK;

Renew The XSUB−writer‘s interface to the C realloc function.

void* Renew(void *ptr, int size, type)

Renewc The XSUB−writer‘s interface to the C realloc function, with cast.

void* Renewc(void *ptr, int size, type, cast)

RETVAL Variable which is setup by xsubpp to hold the return value for an XSUB. This is always th
proper type for the XSUB. See The RETVAL Variable in perlxs.

safefree The XSUB−writer‘s interface to the C free function.

safemalloc
The XSUB−writer‘s interface to the C malloc function.

saferealloc
The XSUB−writer‘s interface to the C realloc function.

savepv Copy a string to a safe spot. This does not use an SV.

char* savepv (char* sv)

savepvn Copy a string to a safe spot. The len indicates number of bytes to copy. This does not use
SV.
530 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

to

to

ust be

c, but
char* savepvn (char* sv, I32 len)

SAVETMPS
Opening bracket for temporaries on a callback. See FREETMPS and perlcall.

SAVETMPS;

SP Stack pointer. This is usually handled by xsubpp . See dSP and SPAGAIN.

SPAGAIN
Refetch the stack pointer. Used after a callback. See perlcall.

SPAGAIN;

ST Used to access elements on the XSUB‘s stack.

SV* ST(int x)

strEQ Test two strings to see if they are equal. Returns true or false.

int strEQ(char *s1, char *s2)

strGE Test two strings to see if the first, s1 , is greater than or equal to the second, s2 . Returns true or
false.

int strGE(char *s1, char *s2)

strGT Test two strings to see if the first, s1 , is greater than the second, s2 . Returns true or false.

int strGT(char *s1, char *s2)

strLE Test two strings to see if the first, s1 , is less than or equal to the second, s2 . Returns true or
false.

int strLE(char *s1, char *s2)

strLT Test two strings to see if the first, s1 , is less than the second, s2 . Returns true or false.

int strLT(char *s1, char *s2)

strNE Test two strings to see if they are different. Returns true or false.

int strNE(char *s1, char *s2)

strnEQ Test two strings to see if they are equal. The len parameter indicates the number of bytes
compare. Returns true or false.

int strnEQ(char *s1, char *s2)

strnNE Test two strings to see if they are different. The len parameter indicates the number of bytes
compare. Returns true or false.

int strnNE(char *s1, char *s2, int len)

sv_2mortal
Marks an SV as mortal. The SV will be destroyed when the current context ends.

SV* sv_2mortal (SV* sv)

sv_bless Blesses an SV into a specified package. The SV must be an RV. The package m
designated by its stash (see gv_stashpv()). The reference count of the SV is unaffected.

SV* sv_bless (SV* sv, HV* stash)

sv_catpv Concatenates the string onto the end of the string which is in the SV. Handles ‘get’ magi
not ‘set’ magic. See sv_catpv_mg .

void sv_catpv (SV* sv, char* ptr)
18−Oct−1998 Version 5.005_02 531

perlguts Perl Programmers Reference Guide perlguts

les

 true
sv_catpv_mg
Like sv_catpv , but also handles ‘set’ magic.

void sv_catpvn (SV* sv, char* ptr)

sv_catpvn
Concatenates the string onto the end of the string which is in the SV. The len indicates number
of bytes to copy. Handles ‘get’ magic, but not ‘set’ magic. See sv_catpvn_mg .

void sv_catpvn (SV* sv, char* ptr, STRLEN len)

sv_catpvn_mg
Like sv_catpvn , but also handles ‘set’ magic.

void sv_catpvn_mg (SV* sv, char* ptr, STRLEN len)

sv_catpvf Processes its arguments like sprintf and appends the formatted output to an SV. Hand
‘get’ magic, but not ‘set’ magic. SvSETMAGIC() must typically be called after calling this
function to handle ‘set’ magic.

void sv_catpvf (SV* sv, const char* pat, ...)

sv_catpvf_mg
Like sv_catpvf , but also handles ‘set’ magic.

void sv_catpvf_mg (SV* sv, const char* pat, ...)

sv_catsv Concatenates the string from SV ssv onto the end of the string in SV dsv . Handles ‘get’
magic, but not ‘set’ magic. See sv_catsv_mg .

void sv_catsv (SV* dsv, SV* ssv)

sv_catsv_mg
Like sv_catsv , but also handles ‘set’ magic.

void sv_catsv_mg (SV* dsv, SV* ssv)

sv_chop Efficient removal of characters from the beginning of the string buffer. SvPOK(sv) must be
and the ptr must be a pointer to somewhere inside the string buffer. The ptr becomes the first
character of the adjusted string.

void sv_chop(SV* sv, char *ptr)

sv_cmp Compares the strings in two SVs. Returns −1, 0, or 1 indicating whether the string in sv1 is less
than, equal to, or greater than the string in sv2 .

I32 sv_cmp (SV* sv1, SV* sv2)

SvCUR Returns the length of the string which is in the SV. See SvLEN.

int SvCUR (SV* sv)

SvCUR_set
Set the length of the string which is in the SV. See SvCUR.

void SvCUR_set (SV* sv, int val)

sv_dec Auto−decrement of the value in the SV.

void sv_dec (SV* sv)

sv_derived_from
Returns a boolean indicating whether the SV is a subclass of the specified class.

int sv_derived_from(SV* sv, char* class)
532 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

is the

than

bytes
sv_derived_from
Returns a boolean indicating whether the SV is derived from the specified class. This
function that implements UNIVERSAL::isa . It works for class names as well as for objects.

bool sv_derived_from _((SV* sv, char* name));

SvEND Returns a pointer to the last character in the string which is in the SV. See SvCUR. Access the
character as

char* SvEND(sv)

sv_eq Returns a boolean indicating whether the strings in the two SVs are identical.

I32 sv_eq (SV* sv1, SV* sv2)

SvGETMAGIC
Invokes mg_get on an SV if it has ‘get’ magic. This macro evaluates its argument more
once.

void SvGETMAGIC(SV *sv)

SvGROW
Expands the character buffer in the SV so that it has room for the indicated number of
(remember to reserve space for an extra trailing NUL character). Calls sv_grow to perform the
expansion if necessary. Returns a pointer to the character buffer.

char* SvGROW(SV* sv, int len)

sv_grow Expands the character buffer in the SV. This will use sv_unref and will upgrade the SV to
SVt_PV . Returns a pointer to the character buffer. Use SvGROW.

sv_inc Auto−increment of the value in the SV.

void sv_inc (SV* sv)

sv_insert Inserts a string at the specified offset/length within the SV. Similar to the Perl substr()
function.

void sv_insert(SV *sv, STRLEN offset, STRLEN len,
 char *str, STRLEN strlen)

SvIOK Returns a boolean indicating whether the SV contains an integer.

int SvIOK (SV* SV)

SvIOK_off
Unsets the IV status of an SV.

void SvIOK_off (SV* sv)

SvIOK_on
Tells an SV that it is an integer.

void SvIOK_on (SV* sv)

SvIOK_only
Tells an SV that it is an integer and disables all other OK bits.

void SvIOK_only (SV* sv)

SvIOKp Returns a boolean indicating whether the SV contains an integer. Checks the private setting.
Use SvIOK .

int SvIOKp (SV* SV)
18−Oct−1998 Version 5.005_02 533

perlguts Perl Programmers Reference Guide perlguts

es not

SV is

ks the
sv_isa Returns a boolean indicating whether the SV is blessed into the specified class. This do
check for subtypes; use sv_derived_from to verify an inheritance relationship.

int sv_isa (SV* sv, char* name)

sv_isobject
Returns a boolean indicating whether the SV is an RV pointing to a blessed object. If the
not an RV, or if the object is not blessed, then this will return false.

int sv_isobject (SV* sv)

SvIV Returns the integer which is in the SV.

int SvIV (SV* sv)

SvIVX Returns the integer which is stored in the SV.

int SvIVX (SV* sv)

SvLEN Returns the size of the string buffer in the SV. See SvCUR.

int SvLEN (SV* sv)

sv_len Returns the length of the string in the SV. Use SvCUR.

STRLEN sv_len (SV* sv)

sv_magic Adds magic to an SV.

void sv_magic (SV* sv, SV* obj, int how, char* name, I32 namlen)

sv_mortalcopy
Creates a new SV which is a copy of the original SV. The new SV is marked as mortal.

SV* sv_mortalcopy (SV* oldsv)

sv_newmortal
Creates a new SV which is mortal. The reference count of the SV is set to 1.

SV* sv_newmortal (void)

SvNIOK Returns a boolean indicating whether the SV contains a number, integer or double.

int SvNIOK (SV* SV)

SvNIOK_off
Unsets the NV/IV status of an SV.

void SvNIOK_off (SV* sv)

SvNIOKp Returns a boolean indicating whether the SV contains a number, integer or double. Chec
private setting. Use SvNIOK.

int SvNIOKp (SV* SV)

PL_sv_no
This is the false SV. See PL_sv_yes . Always refer to this as &PL_sv_no.

SvNOK Returns a boolean indicating whether the SV contains a double.

int SvNOK (SV* SV)

SvNOK_off
Unsets the NV status of an SV.

void SvNOK_off (SV* sv)
534 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

This
When

 not
t’

are
SvNOK_on
Tells an SV that it is a double.

void SvNOK_on (SV* sv)

SvNOK_only
Tells an SV that it is a double and disables all other OK bits.

void SvNOK_only (SV* sv)

SvNOKp Returns a boolean indicating whether the SV contains a double. Checks the private setting. Use
SvNOK.

int SvNOKp (SV* SV)

SvNV Returns the double which is stored in the SV.

double SvNV (SV* sv)

SvNVX Returns the double which is stored in the SV.

double SvNVX (SV* sv)

SvOK Returns a boolean indicating whether the value is an SV.

int SvOK (SV* sv)

SvOOK Returns a boolean indicating whether the SvIVX is a valid offset value for the SvPVX.
hack is used internally to speed up removal of characters from the beginning of a SvPV.
SvOOK is true, then the start of the allocated string buffer is really (SvPVX − SvIVX).

int SvOOK(SV* sv)

SvPOK Returns a boolean indicating whether the SV contains a character string.

int SvPOK (SV* SV)

SvPOK_off
Unsets the PV status of an SV.

void SvPOK_off (SV* sv)

SvPOK_on
Tells an SV that it is a string.

void SvPOK_on (SV* sv)

SvPOK_only
Tells an SV that it is a string and disables all other OK bits.

void SvPOK_only (SV* sv)

SvPOKp Returns a boolean indicating whether the SV contains a character string. Checks the private
setting. Use SvPOK.

int SvPOKp (SV* SV)

SvPV Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does
contain a string. If len is PL_na then Perl will handle the length on its own. Handles ‘ge
magic.

char* SvPV (SV* sv, int len)

SvPV_force
Like <SvPV but will force the SV into becoming a string (SvPOK). You want force if you
going to update the SvPVX directly.
18−Oct−1998 Version 5.005_02 535

perlguts Perl Programmers Reference Guide perlguts

than

agic.
char* SvPV_force(SV* sv, int len)

SvPVX Returns a pointer to the string in the SV. The SV must contain a string.

char* SvPVX (SV* sv)

SvREFCNT
Returns the value of the object‘s reference count.

int SvREFCNT (SV* sv)

SvREFCNT_dec
Decrements the reference count of the given SV.

void SvREFCNT_dec (SV* sv)

SvREFCNT_inc
Increments the reference count of the given SV.

void SvREFCNT_inc (SV* sv)

SvROK Tests if the SV is an RV.

int SvROK (SV* sv)

SvROK_off
Unsets the RV status of an SV.

void SvROK_off (SV* sv)

SvROK_on
Tells an SV that it is an RV.

void SvROK_on (SV* sv)

SvRV Dereferences an RV to return the SV.

SV* SvRV (SV* sv)

SvSETMAGIC
Invokes mg_set on an SV if it has ‘set’ magic. This macro evaluates its argument more
once.

void SvSETMAGIC(SV *sv)

sv_setiv Copies an integer into the given SV. Does not handle ‘set’ magic. See sv_setiv_mg .

void sv_setiv (SV* sv, IV num)

sv_setiv_mg
Like sv_setiv , but also handles ‘set’ magic.

void sv_setiv_mg (SV* sv, IV num)

sv_setnv Copies a double into the given SV. Does not handle ‘set’ magic. See sv_setnv_mg .

void sv_setnv (SV* sv, double num)

sv_setnv_mg
Like sv_setnv , but also handles ‘set’ magic.

void sv_setnv_mg (SV* sv, double num)

sv_setpv Copies a string into an SV. The string must be null−terminated. Does not handle ‘set’ m
See sv_setpv_mg .
536 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

agic.

ed.

dle

e

void sv_setpv (SV* sv, char* ptr)

sv_setpv_mg
Like sv_setpv , but also handles ‘set’ magic.

void sv_setpv_mg (SV* sv, char* ptr)

sv_setpviv
Copies an integer into the given SV, also updating its string value. Does not handle ‘set’ m
See sv_setpviv_mg .

void sv_setpviv (SV* sv, IV num)

sv_setpviv_mg
Like sv_setpviv , but also handles ‘set’ magic.

void sv_setpviv_mg (SV* sv, IV num)

sv_setpvn
Copies a string into an SV. The len parameter indicates the number of bytes to be copi
Does not handle ‘set’ magic. See sv_setpvn_mg .

void sv_setpvn (SV* sv, char* ptr, STRLEN len)

sv_setpvn_mg
Like sv_setpvn , but also handles ‘set’ magic.

void sv_setpvn_mg (SV* sv, char* ptr, STRLEN len)

sv_setpvf Processes its arguments like sprintf and sets an SV to the formatted output. Does not han
‘set’ magic. See sv_setpvf_mg .

void sv_setpvf (SV* sv, const char* pat, ...)

sv_setpvf_mg
Like sv_setpvf , but also handles ‘set’ magic.

void sv_setpvf_mg (SV* sv, const char* pat, ...)

sv_setref_iv
Copies an integer into a new SV, optionally blessing the SV. The rv argument will be upgraded
to an RV. That RV will be modified to point to the new SV. The classname argument
indicates the package for the blessing. Set classname to Nullch to avoid the blessing. The
new SV will be returned and will have a reference count of 1.

SV* sv_setref_iv (SV *rv, char *classname, IV iv)

sv_setref_nv
Copies a double into a new SV, optionally blessing the SV. The rv argument will be upgraded
to an RV. That RV will be modified to point to the new SV. The classname argument
indicates the package for the blessing. Set classname to Nullch to avoid the blessing. The
new SV will be returned and will have a reference count of 1.

SV* sv_setref_nv (SV *rv, char *classname, double nv)

sv_setref_pv
Copies a pointer into a new SV, optionally blessing the SV. The rv argument will be upgraded
to an RV. That RV will be modified to point to the new SV. If the pv argument is NULL then
PL_sv_undef will be placed into the SV. The classname argument indicates the packag
for the blessing. Set classname to Nullch to avoid the blessing. The new SV will be
returned and will have a reference count of 1.
18−Oct−1998 Version 5.005_02 537

perlguts Perl Programmers Reference Guide perlguts

come

st be
to
Set
 a

te

See
SV* sv_setref_pv (SV *rv, char *classname, void* pv)

Do not use with integral Perl types such as HV, AV, SV, CV, because those objects will be
corrupted by the pointer copy process.

Note that sv_setref_pvn copies the string while this copies the pointer.

sv_setref_pvn
Copies a string into a new SV, optionally blessing the SV. The length of the string mu
specified with n. The rv argument will be upgraded to an RV. That RV will be modified
point to the new SV. The classname argument indicates the package for the blessing.
classname to Nullch to avoid the blessing. The new SV will be returned and will have
reference count of 1.

SV* sv_setref_pvn (SV *rv, char *classname, char* pv, I32 n)

Note that sv_setref_pv copies the pointer while this copies the string.

SvSetSV Calls sv_setsv if dsv is not the same as ssv. May evaluate arguments more than once.

void SvSetSV (SV* dsv, SV* ssv)

SvSetSV_nosteal
Calls a non−destructive version of sv_setsv if dsv is not the same as ssv. May evalua
arguments more than once.

void SvSetSV_nosteal (SV* dsv, SV* ssv)

sv_setsv Copies the contents of the source SV ssv into the destination SV dsv . The source SV may be
destroyed if it is mortal. Does not handle ‘set’ magic. See the macro forms SvSetSV ,
SvSetSV_nosteal and sv_setsv_mg .

void sv_setsv (SV* dsv, SV* ssv)

sv_setsv_mg
Like sv_setsv , but also handles ‘set’ magic.

void sv_setsv_mg (SV* dsv, SV* ssv)

sv_setuv Copies an unsigned integer into the given SV. Does not handle ‘set’ magic.
sv_setuv_mg .

void sv_setuv (SV* sv, UV num)

sv_setuv_mg
Like sv_setuv , but also handles ‘set’ magic.

void sv_setuv_mg (SV* sv, UV num)

SvSTASH
Returns the stash of the SV.

HV* SvSTASH (SV* sv)

SvTAINT Taints an SV if tainting is enabled

void SvTAINT (SV* sv)

SvTAINTED
Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.

int SvTAINTED (SV* sv)
538 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

tal
nd all

 the
.

ed or

 being
SvTAINTED_off
Untaints an SV. Be very careful with this routine, as it short−circuits some of Perl‘s fundamen
security features. XS module authors should not use this function unless they fully understa
the implications of unconditionally untainting the value. Untainting should be done in
standard perl fashion, via a carefully crafted regexp, rather than directly untainting variables

void SvTAINTED_off (SV* sv)

SvTAINTED_on
Marks an SV as tainted.

void SvTAINTED_on (SV* sv)

SVt_IV Integer type flag for scalars. See svtype .

SVt_PV Pointer type flag for scalars. See svtype .

SVt_PVAV
Type flag for arrays. See svtype .

SVt_PVCV
Type flag for code refs. See svtype .

SVt_PVHV
Type flag for hashes. See svtype .

SVt_PVMG
Type flag for blessed scalars. See svtype .

SVt_NV Double type flag for scalars. See svtype .

SvTRUE Returns a boolean indicating whether Perl would evaluate the SV as true or false, defin
undefined. Does not handle ‘get’ magic.

int SvTRUE (SV* sv)

SvTYPE Returns the type of the SV. See svtype .

svtype SvTYPE (SV* sv)

svtype An enum of flags for Perl types. These are found in the file sv.h in the svtype enum. Test
these flags with the SvTYPE macro.

PL_sv_undef
This is the undef SV. Always refer to this as &PL_sv_undef.

sv_unref Unsets the RV status of the SV, and decrements the reference count of whatever was
referenced by the RV. This can almost be thought of as a reversal of newSVrv . See
SvROK_off .

void sv_unref (SV* sv)

SvUPGRADE
Used to upgrade an SV to a more complex form. Uses sv_upgrade to perform the upgrade if
necessary. See svtype .

bool SvUPGRADE (SV* sv, svtype mt)

sv_upgrade
Upgrade an SV to a more complex form. Use SvUPGRADE. See svtype .
18−Oct−1998 Version 5.005_02 539

perlguts Perl Programmers Reference Guide perlguts

ut

after

 an
ale

he

y

c. See
sv_usepvn
Tells an SV to use ptr to find its string value. Normally the string is stored inside the SV b
sv_usepvn allows the SV to use an outside string. The ptr should point to memory that was
allocated by malloc . The string length, len , must be supplied. This function will realloc the
memory pointed to by ptr , so that pointer should not be freed or used by the programmer
giving it to sv_usepvn. Does not handle ‘set’ magic. See sv_usepvn_mg .

void sv_usepvn (SV* sv, char* ptr, STRLEN len)

sv_usepvn_mg
Like sv_usepvn , but also handles ‘set’ magic.

void sv_usepvn_mg (SV* sv, char* ptr, STRLEN len)

sv_vcatpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
Processes its arguments like vsprintf and appends the formatted output to an SV. Uses
array of SVs if the C style variable argument list is missing (NULL). Indicates if loc
information has been used for formatting.

void sv_catpvfn _((SV* sv, const char* pat, STRLEN patlen,
 va_list *args, SV **svargs, I32 svmax,
 bool *used_locale));

sv_vsetpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
Works like vcatpvfn but copies the text into the SV instead of appending it.

void sv_setpvfn _((SV* sv, const char* pat, STRLEN patlen,
 va_list *args, SV **svargs, I32 svmax,
 bool *used_locale));

SvUV Returns the unsigned integer which is in the SV.

UV SvUV(SV* sv)

SvUVX Returns the unsigned integer which is stored in the SV.

UV SvUVX(SV* sv)

PL_sv_yes
This is the true SV. See PL_sv_no . Always refer to this as &PL_sv_yes.

THIS Variable which is setup by xsubpp to designate the object in a C++ XSUB. This is always t
proper type for the C++ object. See CLASS and Using XS With C++ in perlxs.

toLOWER
Converts the specified character to lowercase.

int toLOWER (char c)

toUPPER Converts the specified character to uppercase.

int toUPPER (char c)

warn This is the XSUB−writer‘s interface to Perl‘s warn function. Use this function the same wa
you use the C printf function. See croak() .

XPUSHi Push an integer onto the stack, extending the stack if necessary. Handles ‘set’ magi
PUSHi.

XPUSHi(int d)
540 Version 5.005_02 18−Oct−1998

perlguts Perl Programmers Reference Guide perlguts

. See

c. See

 by

tal
XPUSHn Push a double onto the stack, extending the stack if necessary. Handles ‘set’ magic
PUSHn.

XPUSHn(double d)

XPUSHp Push a string onto the stack, extending the stack if necessary. The len indicates the length of
the string. Handles ‘set’ magic. See PUSHp.

XPUSHp(char *c, int len)

XPUSHs Push an SV onto the stack, extending the stack if necessary. Does not handle ‘set’ magi
PUSHs.

XPUSHs(sv)

XPUSHu Push an unsigned integer onto the stack, extending the stack if necessary. See PUSHu.

XS Macro to declare an XSUB and its C parameter list. This is handled by xsubpp .

XSRETURN
Return from XSUB, indicating number of items on the stack. This is usually handled
xsubpp .

XSRETURN(int x)

XSRETURN_EMPTY
Return an empty list from an XSUB immediately.

XSRETURN_EMPTY;

XSRETURN_IV
Return an integer from an XSUB immediately. Uses XST_mIV.

XSRETURN_IV(IV v)

XSRETURN_NO
Return &PL_sv_no from an XSUB immediately. Uses XST_mNO.

XSRETURN_NO;

XSRETURN_NV
Return an double from an XSUB immediately. Uses XST_mNV.

XSRETURN_NV(NV v)

XSRETURN_PV
Return a copy of a string from an XSUB immediately. Uses XST_mPV.

XSRETURN_PV(char *v)

XSRETURN_UNDEF
Return &PL_sv_undef from an XSUB immediately. Uses XST_mUNDEF.

XSRETURN_UNDEF;

XSRETURN_YES
Return &PL_sv_yes from an XSUB immediately. Uses XST_mYES.

XSRETURN_YES;

XST_mIV Place an integer into the specified position i on the stack. The value is stored in a new mor
SV.

XST_mIV(int i, IV v)
18−Oct−1998 Version 5.005_02 541

perlguts Perl Programmers Reference Guide perlguts

V.

w

by

 now

n, Ilya
feifer,
XST_mNV
Place a double into the specified position i on the stack. The value is stored in a new mortal S

XST_mNV(int i, NV v)

XST_mNO
Place &PL_sv_no into the specified position i on the stack.

XST_mNO(int i)

XST_mPV
Place a copy of a string into the specified position i on the stack. The value is stored in a ne
mortal SV.

XST_mPV(int i, char *v)

XST_mUNDEF
Place &PL_sv_undef into the specified position i on the stack.

XST_mUNDEF(int i)

XST_mYES
Place &PL_sv_yes into the specified position i on the stack.

XST_mYES(int i)

XS_VERSION
The version identifier for an XS module. This is usually handled automatically
ExtUtils::MakeMaker . See XS_VERSION_BOOTCHECK.

XS_VERSION_BOOTCHECK
Macro to verify that a PM module‘s $VERSION variable matches the XS module‘s
XS_VERSION variable. This is usually handled automatically by xsubpp . See
The VERSIONCHECK: Keyword in perlxs.

Zero The XSUB−writer‘s interface to the C memzero function. The d is the destination, n is the
number of items, and t is the type.

void Zero(d, n, t)

AUTHORS
Until May 1997, this document was maintained by Jeff Okamoto <okamoto@corp.hp.com. It is
maintained as part of Perl itself.

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul Hudso
Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich P
Stephen McCamant, and Gurusamy Sarathy.

API Listing originally by Dean Roehrich <roehrich@cray.com.
542 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

 write

ries of
oding

lled
e that

 for an
vents
ted.

 not the
bedding

ead the

ortant

r to

erl.
sk are

l
ence to

C

NAME
perlcall − Perl calling conventions from C

DESCRIPTION
The purpose of this document is to show you how to call Perl subroutines directly from C, i.e., how to
callbacks.

Apart from discussing the C interface provided by Perl for writing callbacks the document uses a se
examples to show how the interface actually works in practice. In addition some techniques for c
callbacks are covered.

Examples where callbacks are necessary include

 An Error Handler
You have created an XSUB interface to an application‘s C API.

A fairly common feature in applications is to allow you to define a C function that will be ca
whenever something nasty occurs. What we would like is to be able to specify a Perl subroutin
will be called instead.

 An Event Driven Program
The classic example of where callbacks are used is when writing an event driven program like
X windows application. In this case you register functions to be called whenever specific e
occur, e.g., a mouse button is pressed, the cursor moves into a window or a menu item is selec

Although the techniques described here are applicable when embedding Perl in a C program, this is
primary goal of this document. There are other details that must be considered and are specific to em
Perl. For details on embedding Perl in C refer to perlembed.

Before you launch yourself head first into the rest of this document, it would be a good idea to have r
following two documents − perlxs and perlguts.

THE PERL_CALL FUNCTIONS
Although this stuff is easier to explain using examples, you first need be aware of a few imp
definitions.

Perl has a number of C functions that allow you to call Perl subroutines. They are

 I32 perl_call_sv(SV* sv, I32 flags) ;
 I32 perl_call_pv(char *subname, I32 flags) ;
 I32 perl_call_method(char *methname, I32 flags) ;
 I32 perl_call_argv(char *subname, I32 flags, register char **argv) ;

The key function is perl_call_sv. All the other functions are fairly simple wrappers which make it easie
call Perl subroutines in special cases. At the end of the day they will all call perl_call_sv to invoke the Perl
subroutine.

All the perl_call_* functions have a flags parameter which is used to pass a bit mask of options to P
This bit mask operates identically for each of the functions. The settings available in the bit ma
discussed in FLAG VALUES.

Each of the functions will now be discussed in turn.

perl_call_sv
perl_call_sv takes two parameters, the first, sv , is an SV*. This allows you to specify the Per
subroutine to be called either as a C string (which has first been converted to an SV) or a refer
a subroutine. The section, Using perl_call_sv, shows how you can make use of perl_call_sv.

perl_call_pv
The function, perl_call_pv, is similar to perl_call_sv except it expects its first parameter to be a
char* which identifies the Perl subroutine you want to call, e.g., perl_call_pv("fred", 0) .
18−Oct−1998 Version 5.005_02 543

perlcall Perl Programmers Reference Guide perlcall

 string,

ngs to is
the class

outine.

ting
meone

 of

utes

Perl

cutes

course,
 be

Perl

ection
 many
e where

ill not
If the subroutine you want to call is in another package, just include the package name in the
e.g., "pkg::fred" .

perl_call_method
The function perl_call_method is used to call a method from a Perl class. The parameter methname
corresponds to the name of the method to be called. Note that the class that the method belo
passed on the Perl stack rather than in the parameter list. This class can be either the name of
(for a static method) or a reference to an object (for a virtual method). See perlobj for more
information on static and virtual methods and Using perl_call_method for an example of using
perl_call_method.

perl_call_argv
perl_call_argv calls the Perl subroutine specified by the C string stored in the subname parameter.
It also takes the usual flags parameter. The final parameter, argv , consists of a NULL terminated
list of C strings to be passed as parameters to the Perl subroutine. See Using perl_call_argv.

All the functions return an integer. This is a count of the number of items returned by the Perl subr
The actual items returned by the subroutine are stored on the Perl stack.

As a general rule you should always check the return value from these functions. Even if you are expec
only a particular number of values to be returned from the Perl subroutine, there is nothing to stop so
from doing something unexpected − don‘t say you haven‘t been warned.

FLAG VALUES
The flags parameter in all the perl_call_* functions is a bit mask which can consist of any combination
the symbols defined below, OR‘ed together.

G_VOID
Calls the Perl subroutine in a void context.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a void context (if it exec
wantarray the result will be the undefined value).

2. It ensures that nothing is actually returned from the subroutine.

The value returned by the perl_call_* function indicates how many items have been returned by the
subroutine − in this case it will be 0.

G_SCALAR
Calls the Perl subroutine in a scalar context. This is the default context flag setting for all the perl_call_*
functions.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a scalar context (if it exe
wantarray the result will be false).

2. It ensures that only a scalar is actually returned from the subroutine. The subroutine can, of
ignore the wantarray and return a list anyway. If so, then only the last element of the list will
returned.

The value returned by the perl_call_* function indicates how many items have been returned by the
subroutine − in this case it will be either 0 or 1.

If 0, then you have specified the G_DISCARD flag.

If 1, then the item actually returned by the Perl subroutine will be stored on the Perl stack − the s
Returning a Scalar shows how to access this value on the stack. Remember that regardless of how
items the Perl subroutine returns, only the last one will be accessible from the stack − think of the cas
only one value is returned as being a list with only one element. Any other items that were returned w
544 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

cutes

m the

Perl

stored
d

k. If
lly for

AR or

ters
 section

t Perl

t
broutine,

ere is
ARGS

meters.
exist by the time control returns from the perl_call_* function. The section Returning a list in a scalar
context shows an example of this behavior.

G_ARRAY
Calls the Perl subroutine in a list context.

As with G_SCALAR, this flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in an array context (if it exe
wantarray the result will be true).

2. It ensures that all items returned from the subroutine will be accessible when control returns fro
perl_call_* function.

The value returned by the perl_call_* function indicates how many items have been returned by the
subroutine.

If 0, then you have specified the G_DISCARD flag.

If not 0, then it will be a count of the number of items returned by the subroutine. These items will be
on the Perl stack. The section Returning a list of values gives an example of using the G_ARRAY flag an
the mechanics of accessing the returned items from the Perl stack.

G_DISCARD
By default, the perl_call_* functions place the items returned from by the Perl subroutine on the stac
you are not interested in these items, then setting this flag will make Perl get rid of them automatica
you. Note that it is still possible to indicate a context to the Perl subroutine by using either G_SCAL
G_ARRAY.

If you do not set this flag then it is very important that you make sure that any temporaries (i.e., parame
passed to the Perl subroutine and values returned from the subroutine) are disposed of yourself. The
Returning a Scalar gives details of how to dispose of these temporaries explicitly and the section Using Perl
to dispose of temporaries discusses the specific circumstances where you can ignore the problem and le
deal with it for you.

G_NOARGS
Whenever a Perl subroutine is called using one of the perl_call_* functions, it is assumed by default tha
parameters are to be passed to the subroutine. If you are not passing any parameters to the Perl su
you can save a bit of time by setting this flag. It has the effect of not creating the @_ array for the Perl
subroutine.

Although the functionality provided by this flag may seem straightforward, it should be used only if th
a good reason to do so. The reason for being cautious is that even if you have specified the G_NO
flag, it is still possible for the Perl subroutine that has been called to think that you have passed it para

In fact, what can happen is that the Perl subroutine you have called can access the @_ array from a previous
Perl subroutine. This will occur when the code that is executing the perl_call_* function has itself been
called from another Perl subroutine. The code below illustrates this

 sub fred
 { print "@_\n" }

 sub joe
 { &fred }

 &joe(1,2,3) ;

This will print

 1 2 3
18−Oct−1998 Version 5.005_02 545

perlcall Perl Programmers Reference Guide perlcall

inate

and

ious

 the

 of

e time
e of

ctors,

 of

up)",

rl with
What has happened is that fred accesses the @_ array which belongs to joe .

G_EVAL
It is possible for the Perl subroutine you are calling to terminate abnormally, e.g., by calling die explicitly or
by not actually existing. By default, when either of these events occurs, the process will term
immediately. If you want to trap this type of event, specify the G_EVAL flag. It will put an eval { } around
the subroutine call.

Whenever control returns from the perl_call_* function you need to check the $@ variable as you would in a
normal Perl script.

The value returned from the perl_call_* function is dependent on what other flags have been specified
whether an error has occurred. Here are all the different cases that can occur:

 If the perl_call_* function returns normally, then the value returned is as specified in the prev
sections.

 If G_DISCARD is specified, the return value will always be 0.

 If G_ARRAY is specified and an error has occurred, the return value will always be 0.

 If G_SCALAR is specified and an error has occurred, the return value will be 1 and the value on
top of the stack will be undef. This means that if you have already detected the error by checking$@
and you want the program to continue, you must remember to pop the undef from the stack.

See Using G_EVAL for details on using G_EVAL.

G_KEEPERR
You may have noticed that using the G_EVAL flag described above will always clear the $@ variable and
set it to a string describing the error iff there was an error in the called code. This unqualified resetting$@
can be problematic in the reliable identification of errors using the eval {} mechanism, because the
possibility exists that perl will call other code (end of block processing code, for example) between th
the error causes $@ to be set within eval {} , and the subsequent statement which checks for the valu
$@ gets executed in the user‘s script.

This scenario will mostly be applicable to code that is meant to be called from within destru
asynchronous callbacks, signal handlers, __DIE__ or __WARN__ hooks, and tie functions. In such
situations, you will not want to clear $@ at all, but simply to append any new errors to any existing value
$@.

The G_KEEPERR flag is meant to be used in conjunction with G_EVAL in perl_call_* functions that are
used to implement such code. This flag has no effect when G_EVAL is not used.

When G_KEEPERR is used, any errors in the called code will be prefixed with the string "\t(in clean
and appended to the current value of $@.

The G_KEEPERR flag was introduced in Perl version 5.002.

See Using G_KEEPERR for an example of a situation that warrants the use of this flag.

Determining the Context
As mentioned above, you can determine the context of the currently executing subroutine in Pe
wantarray. The equivalent test can be made in C by using the GIMME_V macro, which returns G_ARRAY if
you have been called in an array context, G_SCALAR if in a scalar context, or G_VOID if in a void context
(i.e. the return value will not be used). An older version of this macro is called GIMME; in a void context it
returns G_SCALAR instead of G_VOID. An example of using the GIMME_V macro is shown in section
Using GIMME_V.

KNOWN PROBLEMS
This section outlines all known problems that exist in the perl_call_* functions.
546 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

se a
at the

all

ver it

EVAL

s should
le to any

le, if the
1. If you are intending to make use of both the G_EVAL and G_SCALAR flags in your code, u
version of Perl greater than 5.000. There is a bug in version 5.000 of Perl which means th
combination of these two flags will not work as described in the section FLAG VALUES.

Specifically, if the two flags are used when calling a subroutine and that subroutine does not cdie,
the value returned by perl_call_* will be wrong.

2. In Perl 5.000 and 5.001 there is a problem with using perl_call_* if the Perl sub you are calling
attempts to trap a die.

The symptom of this problem is that the called Perl sub will continue to completion, but whene
attempts to pass control back to the XSUB, the program will immediately terminate.

For example, say you want to call this Perl sub

 sub fred
 {
 eval { die "Fatal Error" ; }
 print "Trapped error: $@\n"
 if $@ ;
 }

via this XSUB

 void
 Call_fred()
 CODE:
 PUSHMARK(SP) ;
 perl_call_pv("fred", G_DISCARD|G_NOARGS) ;
 fprintf(stderr, "back in Call_fred\n") ;

When Call_fred is executed it will print

 Trapped error: Fatal Error

As control never returns to Call_fred , the "back in Call_fred" string will not get printed.

To work around this problem, you can either upgrade to Perl 5.002 or higher, or use the G_
flag with perl_call_* as shown below

 void
 Call_fred()
 CODE:
 PUSHMARK(SP) ;
 perl_call_pv("fred", G_EVAL|G_DISCARD|G_NOARGS) ;
 fprintf(stderr, "back in Call_fred\n") ;

EXAMPLES
Enough of the definition talk, let‘s have a few examples.

Perl provides many macros to assist in accessing the Perl stack. Wherever possible, these macro
always be used when interfacing to Perl internals. We hope this should make the code less vulnerab
changes made to Perl in the future.

Another point worth noting is that in the first series of examples I have made use of only the perl_call_pv
function. This has been done to keep the code simpler and ease you into the topic. Wherever possib
choice is between using perl_call_pv and perl_call_sv, you should always try to use perl_call_sv. See Using
perl_call_sv for details.
18−Oct−1998 Version 5.005_02 547

perlcall Perl Programmers Reference Guide perlcall

 they

e the

from

tine,
No Parameters, Nothing returned
This first trivial example will call a Perl subroutine, PrintUID, to print out the UID of the process.

 sub PrintUID
 {
 print "UID is $<\n" ;
 }

and here is a C function to call it

 static void
 call_PrintUID()
 {
 dSP ;

 PUSHMARK(SP) ;
 perl_call_pv("PrintUID", G_DISCARD|G_NOARGS) ;
 }

Simple, eh.

A few points to note about this example.

1. Ignore dSP and PUSHMARK(SP) for now. They will be discussed in the next example.

2. We aren‘t passing any parameters to PrintUID so G_NOARGS can be specified.

3. We aren‘t interested in anything returned from PrintUID, so G_DISCARD is specified. Even if
PrintUID was changed to return some value(s), having specified G_DISCARD will mean that
will be wiped by the time control returns from perl_call_pv.

4. As perl_call_pv is being used, the Perl subroutine is specified as a C string. In this cas
subroutine name has been ‘hard−wired’ into the code.

5. Because we specified G_DISCARD, it is not necessary to check the value returned
perl_call_pv. It will always be 0.

Passing Parameters
Now let‘s make a slightly more complex example. This time we want to call a Perl subrou
LeftString , which will take 2 parameters − a string ($s) and an integer ($n). The subroutine will
simply print the first $n characters of the string.

So the Perl subroutine would look like this

 sub LeftString
 {
 my($s, $n) = @_ ;
 print substr($s, 0, $n), "\n" ;
 }

The C function required to call LeftString would look like this.

 static void
 call_LeftString(a, b)
 char * a ;
 int b ;
 {
 dSP ;

ENTER ;
 SAVETMPS ;
548 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

he code

is the

n. In

ers you

 you

. If we
ber

e Perl

 In this

his
 calls.
 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSVpv(a, 0)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 perl_call_pv("LeftString", G_DISCARD);

 FREETMPS ;
 LEAVE ;
 }

Here are a few notes on the C function call_LeftString.

1. Parameters are passed to the Perl subroutine using the Perl stack. This is the purpose of t
beginning with the line dSP and ending with the line PUTBACK. The dSP declares a local copy of
the stack pointer. This local copy should always be accessed as SP.

2. If you are going to put something onto the Perl stack, you need to know where to put it. This
purpose of the macro dSP − it declares and initializes a local copy of the Perl stack pointer.

All the other macros which will be used in this example require you to have used this macro.

The exception to this rule is if you are calling a Perl subroutine directly from an XSUB functio
this case it is not necessary to use the dSP macro explicitly − it will be declared for you
automatically.

3. Any parameters to be pushed onto the stack should be bracketed by the PUSHMARK and PUTBACK
macros. The purpose of these two macros, in this context, is to count the number of paramet
are pushing automatically. Then whenever Perl is creating the @_ array for the subroutine, it knows
how big to make it.

The PUSHMARK macro tells Perl to make a mental note of the current stack pointer. Even if
aren‘t passing any parameters (like the example shown in the section No Parameters, Nothing
returned) you must still call the PUSHMARK macro before you can call any of the perl_call_*
functions − Perl still needs to know that there are no parameters.

The PUTBACK macro sets the global copy of the stack pointer to be the same as our local copy
didn‘t do this perl_call_pv wouldn‘t know where the two parameters we pushed were − remem
that up to now all the stack pointer manipulation we have done is with our local copy, not the global
copy.

4. The only flag specified this time is G_DISCARD. Because we are passing 2 parameters to th
subroutine this time, we have not specified G_NOARGS.

5. Next, we come to XPUSHs. This is where the parameters actually get pushed onto the stack.
case we are pushing a string and an integer.

See XSUBs and the Argument Stack in perlguts for details on how the XPUSH macros work.

6. Because we created temporary values (by means of sv_2mortal() calls) we will have to tidy up
the Perl stack and dispose of mortal SVs.

This is the purpose of

 ENTER ;
 SAVETMPS ;

at the start of the function, and

 FREETMPS ;
 LEAVE ;

at the end. The ENTER/SAVETMPS pair creates a boundary for any temporaries we create. T
means that the temporaries we get rid of will be limited to those which were created after these
18−Oct−1998 Version 5.005_02 549

perlcall Perl Programmers Reference Guide perlcall

ext

.

e

The FREETMPS/LEAVE pair will get rid of any values returned by the Perl subroutine (see n
example), plus it will also dump the mortal SVs we have created. Having ENTER/SAVETMPS at the
beginning of the code makes sure that no other mortals are destroyed.

Think of these macros as working a bit like using { and } in Perl to limit the scope of local variables

See the section Using Perl to dispose of temporaries for details of an alternative to using thes
macros.

7. Finally, LeftString can now be called via the perl_call_pv function.

Returning a Scalar
Now for an example of dealing with the items returned from a Perl subroutine.

Here is a Perl subroutine, Adder, that takes 2 integer parameters and simply returns their sum.

 sub Adder
 {
 my($a, $b) = @_ ;
 $a + $b ;
 }

Because we are now concerned with the return value from Adder, the C function required to call it is now a
bit more complex.

 static void
 call_Adder(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("Adder", G_SCALAR);

 SPAGAIN ;

 if (count != 1)
 croak("Big trouble\n") ;

 printf ("The sum of %d and %d is %d\n", a, b, POPi) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

Points to note this time are

1. The only flag specified this time was G_SCALAR. That means the @_ array will be created and that
the value returned by Adder will still exist after the call to perl_call_pv.
550 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

is
llocated

l copy
l

odified
 Perl

ted an

ction.

e

2. The purpose of the macro SPAGAIN is to refresh the local copy of the stack pointer. This
necessary because it is possible that the memory allocated to the Perl stack has been rea
whilst in the perl_call_pv call.

If you are making use of the Perl stack pointer in your code you must always refresh the loca
using SPAGAIN whenever you make use of the perl_call_* functions or any other Perl interna
function.

3. Although only a single value was expected to be returned from Adder, it is still good practice to
check the return code from perl_call_pv anyway.

Expecting a single value is not quite the same as knowing that there will be one. If someone m
Adder to return a list and we didn‘t check for that possibility and take appropriate action the
stack would end up in an inconsistent state. That is something you really don‘t want to happen ever.

4. The POPi macro is used here to pop the return value from the stack. In this case we wan
integer, so POPi was used.

Here is the complete list of POP macros available, along with the types they return.

 POPs SV
 POPp pointer
 POPn double
 POPi integer
 POPl long

5. The final PUTBACK is used to leave the Perl stack in a consistent state before exiting the fun
This is necessary because when we popped the return value from the stack with POPi it updated only
our local copy of the stack pointer. Remember, PUTBACK sets the global stack pointer to be th
same as our local copy.

Returning a list of values
Now, let‘s extend the previous example to return both the sum of the parameters and the difference.

Here is the Perl subroutine

 sub AddSubtract
 {
 my($a, $b) = @_ ;
 ($a+$b, $a−$b) ;
 }

and this is the C function

 static void
 call_AddSubtract(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("AddSubtract", G_ARRAY);
18−Oct−1998 Version 5.005_02 551

perlcall Perl Programmers Reference Guide perlcall

tack.
 SPAGAIN ;

 if (count != 2)
 croak("Big trouble\n") ;

 printf ("%d − %d = %d\n", a, b, POPi) ;
 printf ("%d + %d = %d\n", a, b, POPi) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

If call_AddSubtract is called like this

 call_AddSubtract(7, 4) ;

then here is the output

 7 − 4 = 3
 7 + 4 = 11

Notes

1. We wanted array context, so G_ARRAY was used.

2. Not surprisingly POPi is used twice this time because we were retrieving 2 values from the s
The important thing to note is that when using the POP* macros they come off the stack in reverse
order.

Returning a list in a scalar context
Say the Perl subroutine in the previous section was called in a scalar context, like this

 static void
 call_AddSubScalar(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;
 int i ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("AddSubtract", G_SCALAR);

 SPAGAIN ;

 printf ("Items Returned = %d\n", count) ;

 for (i = 1 ; i <= count ; ++i)
 printf ("Value %d = %d\n", i, POPi) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }
552 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

rl

utine,

o it is
The other modification made is that call_AddSubScalar will print the number of items returned from the Pe
subroutine and their value (for simplicity it assumes that they are integer). So if call_AddSubScalar is called

 call_AddSubScalar(7, 4) ;

then the output will be

 Items Returned = 1
 Value 1 = 3

In this case the main point to note is that only the last item in the list is returned from the subro
AddSubtract actually made it back to call_AddSubScalar.

Returning Data from Perl via the parameter list
It is also possible to return values directly via the parameter list − whether it is actually desirable to d
another matter entirely.

The Perl subroutine, Inc, below takes 2 parameters and increments each directly.

 sub Inc
 {
 ++ $_[0] ;
 ++ $_[1] ;
 }

and here is a C function to call it.

 static void
 call_Inc(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;
 SV * sva ;
 SV * svb ;

 ENTER ;
 SAVETMPS;

 sva = sv_2mortal(newSViv(a)) ;
 svb = sv_2mortal(newSViv(b)) ;

 PUSHMARK(SP) ;
 XPUSHs(sva);
 XPUSHs(svb);
 PUTBACK ;

 count = perl_call_pv("Inc", G_DISCARD);

 if (count != 0)
 croak ("call_Inc: expected 0 values from ’Inc’, got %d\n",
 count) ;

 printf ("%d + 1 = %d\n", a, SvIV(sva)) ;
 printf ("%d + 1 = %d\n", b, SvIV(svb)) ;

 FREETMPS ;
 LEAVE ;
 }
18−Oct−1998 Version 5.005_02 553

perlcall Perl Programmers Reference Guide perlcall

e been

its 2
To be able to access the two parameters that were pushed onto the stack after they return from perl_call_pv it
is necessary to make a note of their addresses − thus the two variables sva and svb .

The reason this is necessary is that the area of the Perl stack which held them will very likely hav
overwritten by something else by the time control returns from perl_call_pv.

Using G_EVAL
Now an example using G_EVAL. Below is a Perl subroutine which computes the difference of
parameters. If this would result in a negative result, the subroutine calls die.

 sub Subtract
 {
 my ($a, $b) = @_ ;

 die "death can be fatal\n" if $a < $b ;

 $a − $b ;
 }

and some C to call it

 static void
 call_Subtract(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("Subtract", G_EVAL|G_SCALAR);

 SPAGAIN ;

 /* Check the eval first */
 if (SvTRUE(ERRSV))
 {
 printf ("Uh oh − %s\n", SvPV(ERRSV, PL_na)) ;
 POPs ;
 }
 else
 {
 if (count != 1)
 croak("call_Subtract: wanted 1 value from ’Subtract’, got %d\n",
 count) ;

 printf ("%d − %d = %d\n", a, b, POPi) ;
 }

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }
554 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

g

or.

er

xample

k, and
If call_Subtract is called thus

 call_Subtract(4, 5)

the following will be printed

 Uh oh − death can be fatal

Notes

1. We want to be able to catch the die so we have used the G_EVAL flag. Not specifying this fla
would mean that the program would terminate immediately at the die statement in the subroutine
Subtract.

2. The code

 if (SvTRUE(ERRSV))
 {
 printf ("Uh oh − %s\n", SvPV(ERRSV, PL_na)) ;
 POPs ;
 }

is the direct equivalent of this bit of Perl

 print "Uh oh − $@\n" if $@ ;

PL_errgv is a perl global of type GV * that points to the symbol table entry containing the err
ERRSV therefore refers to the C equivalent of $@.

3. Note that the stack is popped using POPs in the block where SvTRUE(ERRSV) is true. This is
necessary because whenever a perl_call_* function invoked with G_EVAL|G_SCALAR returns an
error, the top of the stack holds the value undef. Because we want the program to continue aft
detecting this error, it is essential that the stack is tidied up by removing the undef.

Using G_KEEPERR
Consider this rather facetious example, where we have used an XS version of the call_Subtract e
above inside a destructor:

 package Foo;
 sub new { bless {}, $_[0] }
 sub Subtract {
 my($a,$b) = @_;
 die "death can be fatal" if $a < $b ;
 $a − $b;
 }
 sub DESTROY { call_Subtract(5, 4); }
 sub foo { die "foo dies"; }

 package main;
 eval { Foo−>new−>foo };
 print "Saw: $@" if $@; # should be, but isn’t

This example will fail to recognize that an error occurred inside the eval {} . Here‘s why: the
call_Subtract code got executed while perl was cleaning up temporaries when exiting the eval bloc
because call_Subtract is implemented with perl_call_pv using the G_EVAL flag, it promptly reset $@. This
results in the failure of the outermost test for $@, and thereby the failure of the error trap.

Appending the G_KEEPERR flag, so that the perl_call_pv call in call_Subtract reads:

 count = perl_call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);

will preserve the error and restore reliable error handling.
18−Oct−1998 Version 5.005_02 555

perlcall Perl Programmers Reference Guide perlcall

 Most
within

rl 4 this
s where

.

he
inter to
Using perl_call_sv
In all the previous examples I have ‘hard−wired’ the name of the Perl subroutine to be called from C.
of the time though, it is more convenient to be able to specify the name of the Perl subroutine from
the Perl script.

Consider the Perl code below

 sub fred
 {
 print "Hello there\n" ;
 }

 CallSubPV("fred") ;

Here is a snippet of XSUB which defines CallSubPV.

 void
 CallSubPV(name)
 char * name
 CODE:
 PUSHMARK(SP) ;
 perl_call_pv(name, G_DISCARD|G_NOARGS) ;

That is fine as far as it goes. The thing is, the Perl subroutine can be specified as only a string. For Pe
was adequate, but Perl 5 allows references to subroutines and anonymous subroutines. This i
perl_call_sv is useful.

The code below for CallSubSV is identical to CallSubPV except that the name parameter is now defined as
an SV* and we use perl_call_sv instead of perl_call_pv.

 void
 CallSubSV(name)
 SV * name
 CODE:
 PUSHMARK(SP) ;
 perl_call_sv(name, G_DISCARD|G_NOARGS) ;

Because we are using an SV to call fred the following can all be used

 CallSubSV("fred") ;
 CallSubSV(\&fred) ;
 $ref = \&fred ;
 CallSubSV($ref) ;
 CallSubSV(sub { print "Hello there\n" }) ;

As you can see, perl_call_sv gives you much greater flexibility in how you can specify the Perl subroutine

You should note that if it is necessary to store the SV (name in the example above) which corresponds to t
Perl subroutine so that it can be used later in the program, it not enough just to store a copy of the po
the SV. Say the code above had been like this

 static SV * rememberSub ;

 void
 SaveSub1(name)
 SV * name
 CODE:
 rememberSub = name ;

 void
 CallSavedSub1()
556 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

ed to

 you are

r

ced

shows
 CODE:
 PUSHMARK(SP) ;
 perl_call_sv(rememberSub, G_DISCARD|G_NOARGS) ;

The reason this is wrong is that by the time you come to use the pointer rememberSub in
CallSavedSub1 , it may or may not still refer to the Perl subroutine that was recorded in SaveSub1 .
This is particularly true for these cases

 SaveSub1(\&fred) ;
 CallSavedSub1() ;

 SaveSub1(sub { print "Hello there\n" }) ;
 CallSavedSub1() ;

By the time each of the SaveSub1 statements above have been executed, the SV*s which correspond
the parameters will no longer exist. Expect an error message from Perl of the form

 Can’t use an undefined value as a subroutine reference at ...

for each of the CallSavedSub1 lines.

Similarly, with this code

 $ref = \&fred ;
 SaveSub1($ref) ;
 $ref = 47 ;
 CallSavedSub1() ;

you can expect one of these messages (which you actually get is dependent on the version of Perl
using)

 Not a CODE reference at ...
 Undefined subroutine &main::47 called ...

The variable $ref may have referred to the subroutine fred whenever the call to SaveSub1 was made
but by the time CallSavedSub1 gets called it now holds the number 47 . Because we saved only a pointe
to the original SV in SaveSub1 , any changes to $ref will be tracked by the pointer rememberSub . This
means that whenever CallSavedSub1 gets called, it will attempt to execute the code which is referen
by the SV* rememberSub . In this case though, it now refers to the integer 47 , so expect Perl to complain
loudly.

A similar but more subtle problem is illustrated with this code

 $ref = \&fred ;
 SaveSub1($ref) ;
 $ref = \&joe ;
 CallSavedSub1() ;

This time whenever CallSavedSub1 get called it will execute the Perl subroutine joe (assuming it
exists) rather than fred as was originally requested in the call to SaveSub1 .

To get around these problems it is necessary to take a full copy of the SV. The code below
SaveSub2 modified to do that

 static SV * keepSub = (SV*)NULL ;

 void
 SaveSub2(name)
 SV * name
 CODE:
 /* Take a copy of the callback */
 if (keepSub == (SV*)NULL)
 /* First time, so create a new SV */
18−Oct−1998 Version 5.005_02 557

perlcall Perl Programmers Reference Guide perlcall

en
 keepSub = newSVsv(name) ;
 else
 /* Been here before, so overwrite */
 SvSetSV(keepSub, name) ;

 void
 CallSavedSub2()
 CODE:
 PUSHMARK(SP) ;
 perl_call_sv(keepSub, G_DISCARD|G_NOARGS) ;

To avoid creating a new SV every time SaveSub2 is called, the function first checks to see if it has be
called before. If not, then space for a new SV is allocated and the reference to the Perl subroutine, name is
copied to the variable keepSub in one operation using newSVsv. Thereafter, whenever SaveSub2 is
called the existing SV, keepSub , is overwritten with the new value using SvSetSV .

Using perl_call_argv
Here is a Perl subroutine which prints whatever parameters are passed to it.

 sub PrintList
 {
 my(@list) = @_ ;

 foreach (@list) { print "$_\n" }
 }

and here is an example of perl_call_argv which will call PrintList.

 static char * words[] = {"alpha", "beta", "gamma", "delta", NULL} ;

 static void
 call_PrintList()
 {
 dSP ;

 perl_call_argv("PrintList", G_DISCARD, words) ;
 }

Note that it is not necessary to call PUSHMARK in this instance. This is because perl_call_argv will do it for
you.

Using perl_call_method
Consider the following Perl code

 {
 package Mine ;

 sub new
 {
 my($type) = shift ;
 bless [@_]
 }

 sub Display
 {
 my ($self, $index) = @_ ;
 print "$index: $$self[$index]\n" ;
 }

 sub PrintID
 {
 my($class) = @_ ;
558 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

a
erl

 via the
 print "This is Class $class version 1.0\n" ;
 }
 }

It implements just a very simple class to manage an array. Apart from the constructor, new, it declares
methods, one static and one virtual. The static method, PrintID , prints out simply the class name and
version number. The virtual method, Display , prints out a single element of the array. Here is an all P
example of using it.

 $a = new Mine (’red’, ’green’, ’blue’) ;
 $a−>Display(1) ;
 PrintID Mine;

will print

 1: green
 This is Class Mine version 1.0

Calling a Perl method from C is fairly straightforward. The following things are required

 a reference to the object for a virtual method or the name of the class for a static method.

 the name of the method.

 any other parameters specific to the method.

Here is a simple XSUB which illustrates the mechanics of calling both the PrintID and Display
methods from C.

 void
 call_Method(ref, method, index)
 SV * ref
 char * method
 int index
 CODE:
 PUSHMARK(SP);
 XPUSHs(ref);
 XPUSHs(sv_2mortal(newSViv(index))) ;
 PUTBACK;

 perl_call_method(method, G_DISCARD) ;

 void
 call_PrintID(class, method)
 char * class
 char * method
 CODE:
 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSVpv(class, 0))) ;
 PUTBACK;

 perl_call_method(method, G_DISCARD) ;

So the methods PrintID and Display can be invoked like this

 $a = new Mine (’red’, ’green’, ’blue’) ;
 call_Method($a, ’Display’, 1) ;
 call_PrintID(’Mine’, ’PrintID’) ;

The only thing to note is that in both the static and virtual methods, the method name is not passed
stack − it is used as the first parameter to perl_call_method.
18−Oct−1998 Version 5.005_02 559

perlcall Perl Programmers Reference Guide perlcall

e stack to

ever it

e under
flow of

ypical of
ortant

terface

ck to
o Perl
Using GIMME_V
Here is a trivial XSUB which prints the context in which it is currently executing.

 void
 PrintContext()
 CODE:
 I32 gimme = GIMME_V;
 if (gimme == G_VOID)
 printf ("Context is Void\n") ;
 else if (gimme == G_SCALAR)
 printf ("Context is Scalar\n") ;
 else
 printf ("Context is Array\n") ;

and here is some Perl to test it

 PrintContext ;
 $a = PrintContext ;
 @a = PrintContext ;

The output from that will be

 Context is Void
 Context is Scalar
 Context is Array

Using Perl to dispose of temporaries
In the examples given to date, any temporaries created in the callback (i.e., parameters passed on th
the perl_call_* function or values returned via the stack) have been freed by one of these methods

 specifying the G_DISCARD flag with perl_call_*.

 explicitly disposed of using the ENTER/SAVETMPS − FREETMPS/LEAVE pairing.

There is another method which can be used, namely letting Perl do it for you automatically when
regains control after the callback has terminated. This is done by simply not using the

 ENTER ;
 SAVETMPS ;
 ...
 FREETMPS ;
 LEAVE ;

sequence in the callback (and not, of course, specifying the G_DISCARD flag).

If you are going to use this method you have to be aware of a possible memory leak which can aris
very specific circumstances. To explain these circumstances you need to know a bit about the
control between Perl and the callback routine.

The examples given at the start of the document (an error handler and an event driven program) are t
the two main sorts of flow control that you are likely to encounter with callbacks. There is a very imp
distinction between them, so pay attention.

In the first example, an error handler, the flow of control could be as follows. You have created an in
to an external library. Control can reach the external library like this

 perl −−> XSUB −−> external library

Whilst control is in the library, an error condition occurs. You have previously set up a Perl callba
handle this situation, so it will get executed. Once the callback has finished, control will drop back t
again. Here is what the flow of control will be like in that situation
560 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

ss

is back
nd any

 might
 scope
 on, your
these
ory in

 fairly
 any
do any

ing out

 all C
 to a
 perl −−> XSUB −−> external library
 ...
 error occurs
 ...
 external library −−> perl_call −−> perl
 |
 perl <−− XSUB <−− external library <−− perl_call <−−−−+

After processing of the error using perl_call_* is completed, control reverts back to Perl more or le
immediately.

In the diagram, the further right you go the more deeply nested the scope is. It is only when control
with perl on the extreme left of the diagram that you will have dropped back to the enclosing scope a
temporaries you have left hanging around will be freed.

In the second example, an event driven program, the flow of control will be more like this

 perl −−> XSUB −−> event handler
 ...
 event handler −−> perl_call −−> perl
 |
 event handler <−− perl_call <−−−−+
 ...
 event handler −−> perl_call −−> perl
 |
 event handler <−− perl_call <−−−−+
 ...
 event handler −−> perl_call −−> perl
 |
 event handler <−− perl_call <−−−−+

In this case the flow of control can consist of only the repeated sequence

 event handler −−> perl_call −−> perl

for practically the complete duration of the program. This means that control may never drop back to the
surrounding scope in Perl at the extreme left.

So what is the big problem? Well, if you are expecting Perl to tidy up those temporaries for you, you
be in for a long wait. For Perl to dispose of your temporaries, control must drop back to the enclosing
at some stage. In the event driven scenario that may never happen. This means that as time goes
program will create more and more temporaries, none of which will ever be freed. As each of
temporaries consumes some memory your program will eventually consume all the available mem
your system − kapow!

So here is the bottom line − if you are sure that control will revert back to the enclosing Perl scope
quickly after the end of your callback, then it isn‘t absolutely necessary to dispose explicitly of
temporaries you may have created. Mind you, if you are at all uncertain about what to do, it doesn‘t
harm to tidy up anyway.

Strategies for storing Callback Context Information
Potentially one of the trickiest problems to overcome when designing a callback interface can be figur
how to store the mapping between the C callback function and the Perl equivalent.

To help understand why this can be a real problem first consider how a callback is set up in an
environment. Typically a C API will provide a function to register a callback. This will expect a pointer
function as one of its parameters. Below is a call to a hypothetical function register_fatal which
registers the C function to get called when a fatal error occurs.

 register_fatal(cb1) ;
18−Oct−1998 Version 5.005_02 561

perlcall Perl Programmers Reference Guide perlcall

ould be

u may
 be able

e above
ire is a
 for that
The single parameter cb1 is a pointer to a function, so you must have defined cb1 in your code, say
something like this

 static void
 cb1()
 {
 printf ("Fatal Error\n") ;
 exit(1) ;
 }

Now change that to call a Perl subroutine instead

 static SV * callback = (SV*)NULL;

 static void
 cb1()
 {
 dSP ;

 PUSHMARK(SP) ;

 /* Call the Perl sub to process the callback */
 perl_call_sv(callback, G_DISCARD) ;
 }

 void
 register_fatal(fn)
 SV * fn
 CODE:
 /* Remember the Perl sub */
 if (callback == (SV*)NULL)
 callback = newSVsv(fn) ;
 else
 SvSetSV(callback, fn) ;

 /* register the callback with the external library */
 register_fatal(cb1) ;

where the Perl equivalent of register_fatal and the callback it registers, pcb1 , might look like this

 # Register the sub pcb1
 register_fatal(\&pcb1) ;

 sub pcb1
 {
 die "I’m dying...\n" ;
 }

The mapping between the C callback and the Perl equivalent is stored in the global variable callback .

This will be adequate if you ever need to have only one callback registered at any time. An example c
an error handler like the code sketched out above. Remember though, repeated calls to register_fatal
will replace the previously registered callback function with the new one.

Say for example you want to interface to a library which allows asynchronous file i/o. In this case yo
be able to register a callback whenever a read operation has completed. To be of any use we want to
to call separate Perl subroutines for each file that is opened. As it stands, the error handler exampl
would not be adequate as it allows only a single callback to be defined at any time. What we requ
means of storing the mapping between the opened file and the Perl subroutine we want to be called
file.
562 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

andle.

l
 below
Say the i/o library has a function asynch_read which associates a C function ProcessRead with a file
handle fh − this assumes that it has also provided some routine to open the file and so obtain the file h

 asynch_read(fh, ProcessRead)

This may expect the C ProcessRead function of this form

 void
 ProcessRead(fh, buffer)
 int fh ;
 char * buffer ;
 {
 ...
 }

To provide a Perl interface to this library we need to be able to map between the fh parameter and the Per
subroutine we want called. A hash is a convenient mechanism for storing this mapping. The code
shows a possible implementation

 static HV * Mapping = (HV*)NULL ;

 void
 asynch_read(fh, callback)
 int fh
 SV * callback
 CODE:
 /* If the hash doesn’t already exist, create it */
 if (Mapping == (HV*)NULL)
 Mapping = newHV() ;

 /* Save the fh −> callback mapping */
 hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0) ;

 /* Register with the C Library */
 asynch_read(fh, asynch_read_if) ;

and asynch_read_if could look like this

 static void
 asynch_read_if(fh, buffer)
 int fh ;
 char * buffer ;
 {
 dSP ;
 SV ** sv ;

 /* Get the callback associated with fh */
 sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE) ;
 if (sv == (SV**)NULL)
 croak("Internal error...\n") ;

 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSViv(fh))) ;
 XPUSHs(sv_2mortal(newSVpv(buffer, 0))) ;
 PUTBACK ;

 /* Call the Perl sub */
 perl_call_sv(*sv, G_DISCARD) ;
 }

For completeness, here is asynch_close . This shows how to remove the entry from the hash Mapping .
18−Oct−1998 Version 5.005_02 563

perlcall Perl Programmers Reference Guide perlcall

dle to
only the

e.

nterface
 void
 asynch_close(fh)
 int fh
 CODE:
 /* Remove the entry from the hash */
 (void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD) ;

 /* Now call the real asynch_close */
 asynch_close(fh) ;

So the Perl interface would look like this

 sub callback1
 {
 my($handle, $buffer) = @_ ;
 }

 # Register the Perl callback
 asynch_read($fh, \&callback1) ;

 asynch_close($fh) ;

The mapping between the C callback and Perl is stored in the global hash Mapping this time. Using a hash
has the distinct advantage that it allows an unlimited number of callbacks to be registered.

What if the interface provided by the C callback doesn‘t contain a parameter which allows the file han
Perl subroutine mapping? Say in the asynchronous i/o package, the callback function gets passed
buffer parameter like this

 void
 ProcessRead(buffer)
 char * buffer ;
 {
 ...
 }

Without the file handle there is no straightforward way to map from the C callback to the Perl subroutin

In this case a possible way around this problem is to predefine a series of C functions to act as the i
to Perl, thus

 #define MAX_CB 3
 #define NULL_HANDLE −1
 typedef void (*FnMap)() ;

 struct MapStruct {
 FnMap Function ;
 SV * PerlSub ;
 int Handle ;
 } ;

 static void fn1() ;
 static void fn2() ;
 static void fn3() ;

 static struct MapStruct Map [MAX_CB] =
 {
 { fn1, NULL, NULL_HANDLE },
 { fn2, NULL, NULL_HANDLE },
 { fn3, NULL, NULL_HANDLE }
 } ;
564 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall
 static void
 Pcb(index, buffer)
 int index ;
 char * buffer ;
 {
 dSP ;

 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSVpv(buffer, 0))) ;
 PUTBACK ;

 /* Call the Perl sub */
 perl_call_sv(Map[index].PerlSub, G_DISCARD) ;
 }

 static void
 fn1(buffer)
 char * buffer ;
 {
 Pcb(0, buffer) ;
 }

 static void
 fn2(buffer)
 char * buffer ;
 {
 Pcb(1, buffer) ;
 }

 static void
 fn3(buffer)
 char * buffer ;
 {
 Pcb(2, buffer) ;
 }

 void
 array_asynch_read(fh, callback)
 int fh
 SV * callback
 CODE:
 int index ;
 int null_index = MAX_CB ;

 /* Find the same handle or an empty entry */
 for (index = 0 ; index < MAX_CB ; ++index)
 {
 if (Map[index].Handle == fh)
 break ;

 if (Map[index].Handle == NULL_HANDLE)
 null_index = index ;
 }

 if (index == MAX_CB && null_index == MAX_CB)
 croak ("Too many callback functions registered\n") ;

 if (index == MAX_CB)
 index = null_index ;
18−Oct−1998 Version 5.005_02 565

perlcall Perl Programmers Reference Guide perlcall

h of

exist
d then
 still a

ween C

tion.

ext is,
 to each

it is
 /* Save the file handle */
 Map[index].Handle = fh ;

 /* Remember the Perl sub */
 if (Map[index].PerlSub == (SV*)NULL)
 Map[index].PerlSub = newSVsv(callback) ;
 else
 SvSetSV(Map[index].PerlSub, callback) ;

 asynch_read(fh, Map[index].Function) ;

 void
 array_asynch_close(fh)
 int fh
 CODE:
 int index ;

 /* Find the file handle */
 for (index = 0; index < MAX_CB ; ++ index)
 if (Map[index].Handle == fh)
 break ;

 if (index == MAX_CB)
 croak ("could not close fh %d\n", fh) ;

 Map[index].Handle = NULL_HANDLE ;
 SvREFCNT_dec(Map[index].PerlSub) ;
 Map[index].PerlSub = (SV*)NULL ;

 asynch_close(fh) ;

In this case the functions fn1 , fn2 , and fn3 are used to remember the Perl subroutine to be called. Eac
the functions holds a separate hard−wired index which is used in the function Pcb to access the Map array
and actually call the Perl subroutine.

There are some obvious disadvantages with this technique.

Firstly, the code is considerably more complex than with the previous example.

Secondly, there is a hard−wired limit (in this case 3) to the number of callbacks that can
simultaneously. The only way to increase the limit is by modifying the code to add more functions an
recompiling. None the less, as long as the number of functions is chosen with some care, it is
workable solution and in some cases is the only one available.

To summarize, here are a number of possible methods for you to consider for storing the mapping bet
and the Perl callback

1. Ignore the problem − Allow only 1 callback
For a lot of situations, like interfacing to an error handler, this may be a perfectly adequate solu

2. Create a sequence of callbacks − hard wired limit
If it is impossible to tell from the parameters passed back from the C callback what the cont
then you may need to create a sequence of C callback interface functions, and store pointers
in an array.

3. Use a parameter to map to the Perl callback
A hash is an ideal mechanism to store the mapping between C and Perl.

Alternate Stack Manipulation
Although I have made use of only the POP* macros to access values returned from Perl subroutines,
also possible to bypass these macros and read the stack using the ST macro (See perlxs for a full description
of the ST macro).
566 Version 5.005_02 18−Oct−1998

perlcall Perl Programmers Reference Guide perlcall

ou to
s in some

er. So

 our
 done
Most of the time the POP* macros should be adequate, the main problem with them is that they force y
process the returned values in sequence. This may not be the most suitable way to process the value
cases. What we want is to be able to access the stack in a random order. The ST macro as used when coding
an XSUB is ideal for this purpose.

The code below is the example given in the section Returning a list of values recoded to use ST instead of
POP*.

 static void
 call_AddSubtract2(a, b)
 int a ;
 int b ;
 {
 dSP ;
 I32 ax ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(SP) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("AddSubtract", G_ARRAY);

 SPAGAIN ;
 SP −= count ;
 ax = (SP − PL_stack_base) + 1 ;

 if (count != 2)
 croak("Big trouble\n") ;

 printf ("%d + %d = %d\n", a, b, SvIV(ST(0))) ;
 printf ("%d − %d = %d\n", a, b, SvIV(ST(1))) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

Notes

1. Notice that it was necessary to define the variable ax . This is because the ST macro expects it to
exist. If we were in an XSUB it would not be necessary to define ax as it is already defined for you.

2. The code

 SPAGAIN ;
 SP −= count ;
 ax = (SP − PL_stack_base) + 1 ;

sets the stack up so that we can use the ST macro.

3. Unlike the original coding of this example, the returned values are not accessed in reverse ord
ST(0) refers to the first value returned by the Perl subroutine and ST(count−1) refers to the last.

Creating and calling an anonymous subroutine in C
As we‘ve already shown, perl_call_sv can be used to invoke an anonymous subroutine. However,
example showed how Perl script invoking an XSUB to preform this operation. Let‘s see how it can be
inside our C code:
18−Oct−1998 Version 5.005_02 567

perlcall Perl Programmers Reference Guide perlcall

(read
ith
 ...

 SV *cvrv = perl_eval_pv("sub { print ’You will not find me cluttering any namespace!

 ...

 perl_call_sv(cvrv, G_VOID|G_NOARGS);

perl_eval_pv is used to compile the anonymous subroutine, which will be the return value as well
more about perl_eval_pv in perl_eval_pv). Once this code reference is in hand, it can be mixed in w
all the previous examples we‘ve shown.

SEE ALSO
perlxs, perlguts, perlembed

AUTHOR
Paul Marquess <pmarquess@bfsec.bt.co.uk

Special thanks to the following people who assisted in the creation of the document.

Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy and Larry Wall.

DATE
Version 1.3, 14th Apr 1997
568 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed

rule:

utable
been
ables

e perl
NAME
perlembed − how to embed perl in your C program

DESCRIPTION

PREAMBLE
Do you want to:

Use C from Perl?
Read perlxstut, perlxs, h2xs, and perlguts.

Use a Unix program from Perl?
Read about back−quotes and about system and exec in perlfunc.

Use Perl from Perl?
Read about do and eval and require and use.

Use C from C?
Rethink your design.

Use Perl from C?
Read on...

ROADMAP
Compiling your C program

Adding a Perl interpreter to your C program

Calling a Perl subroutine from your C program

Evaluating a Perl statement from your C program

Performing Perl pattern matches and substitutions from your C program

Fiddling with the Perl stack from your C program

Maintaining a persistent interpreter

Maintaining multiple interpreter instances

Using Perl modules, which themselves use C libraries, from your C program

Embedding Perl under Win32

Compiling your C program
If you have trouble compiling the scripts in this documentation, you‘re not alone. The cardinal
COMPILE THE PROGRAMS IN EXACTLY THE SAME WAY THAT YOUR PERL WAS COMPILED.
(Sorry for yelling.)

Also, every C program that uses Perl must link in the perl library. What‘s that, you ask? Perl is itself written
in C; the perl library is the collection of compiled C programs that were used to create your perl exec
(/usr/bin/perl or equivalent). (Corollary: you can‘t use Perl from your C program unless Perl has
compiled on your machine, or installed properly—that‘s why you shouldn‘t blithely copy Perl execut
from machine to machine without also copying the lib directory.)

When you use Perl from C, your C program will—usually—allocate, "run", and deallocate a PerlInterpreter
object, which is defined by the perl library.

If your copy of Perl is recent enough to contain this documentation (version 5.002 or later), then th
library (and EXTERN.h and perl.h, which you‘ll also need) will reside in a directory that looks like this:

 /usr/local/lib/perl5/your_architecture_here/CORE
18−Oct−1998 Version 5.005_02 569

perlembed Perl Programmers Reference Guide perlembed

from

tests,

nstrate
ble
or perhaps just

 /usr/local/lib/perl5/CORE

or maybe something like

 /usr/opt/perl5/CORE

Execute this statement for a hint about where to find CORE:

 perl −MConfig −e ’print $Config{archlib}’

Here‘s how you‘d compile the example in the next section, Adding a Perl interpreter to your C program, on
my Linux box:

 % gcc −O2 −Dbool=char −DHAS_BOOL −I/usr/local/include
 −I/usr/local/lib/perl5/i586−linux/5.003/CORE
 −L/usr/local/lib/perl5/i586−linux/5.003/CORE
 −o interp interp.c −lperl −lm

(That‘s all one line.) On my DEC Alpha running old 5.003_05, the incantation is a bit different:

 % cc −O2 −Olimit 2900 −DSTANDARD_C −I/usr/local/include
 −I/usr/local/lib/perl5/alpha−dec_osf/5.00305/CORE
 −L/usr/local/lib/perl5/alpha−dec_osf/5.00305/CORE −L/usr/local/lib
 −D__LANGUAGE_C__ −D_NO_PROTO −o interp interp.c −lperl −lm

How can you figure out what to add? Assuming your Perl is post−5.001, execute a perl −V command and
pay special attention to the "cc" and "ccflags" information.

You‘ll have to choose the appropriate compiler (cc, gcc, et al.) for your machine: perl −MConfig −e
‘print $Config{cc}’ will tell you what to use.

You‘ll also have to choose the appropriate library directory (/usr/local/lib/...) for your machine. If your
compiler complains that certain functions are undefined, or that it can‘t locate −lperl , then you need to
change the path following the −L. If it complains that it can‘t find EXTERN.h and perl.h, you need to
change the path following the −I .

You may have to add extra libraries as well. Which ones? Perhaps those printed by

 perl −MConfig −e ’print $Config{libs}’

Provided your perl binary was properly configured and installed the ExtUtils::Embed module will
determine all of this information for you:

 % cc −o interp interp.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

If the ExtUtils::Embed module isn‘t part of your Perl distribution, you can retrieve it from
http://www.perl.com/perl/CPAN/modules/by−module/ExtUtils::Embed. (If this documentation came
your Perl distribution, then you‘re running 5.004 or better and you already have it.)

The ExtUtils::Embed kit on CPAN also contains all source code for the examples in this document,
additional examples and other information you may find useful.

Adding a Perl interpreter to your C program
In a sense, perl (the C program) is a good example of embedding Perl (the language), so I‘ll demo
embedding with miniperlmain.c, included in the source distribution. Here‘s a bastardized, nonporta
version of miniperlmain.c containing the essentials of embedding:

 #include <EXTERN.h> /* from the Perl distribution */
 #include <perl.h> /* from the Perl distribution */

 static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

 int main(int argc, char **argv, char **env)
570 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed

lacing
 {
 my_perl = perl_alloc();
 perl_construct(my_perl);
 perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
 perl_run(my_perl);
 perl_destruct(my_perl);
 perl_free(my_perl);
 }

Notice that we don‘t use the env pointer. Normally handed to perl_parse as its final argument, env
here is replaced by NULL, which means that the current environment will be used.

Now compile this program (I‘ll call it interp.c) into an executable:

 % cc −o interp interp.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

After a successful compilation, you‘ll be able to use interp just like perl itself:

 % interp
 print "Pretty Good Perl \n";
 print "10890 − 9801 is ", 10890 − 9801;
 <CTRL−D>
 Pretty Good Perl
 10890 − 9801 is 1089

or

 % interp −e ’printf("%x", 3735928559)’
 deadbeef

You can also read and execute Perl statements from a file while in the midst of your C program, by p
the filename in argv[1] before calling perl_run.

Calling a Perl subroutine from your C program
To call individual Perl subroutines, you can use any of the perl_call_* functions documented in perlcall. In
this example we‘ll use perl_call_argv .

That‘s shown below, in a program I‘ll call showtime.c.

 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 int main(int argc, char **argv, char **env)
 {
 char *args[] = { NULL };
 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, argc, argv, NULL);

 /*** skipping perl_run() ***/

 perl_call_argv("showtime", G_DISCARD | G_NOARGS, args);

 perl_destruct(my_perl);
 perl_free(my_perl);
 }

where showtime is a Perl subroutine that takes no arguments (that‘s the G_NOARGS) and for which I‘ll
ignore the return value (that‘s the G_DISCARD). Those flags, and others, are discussed in perlcall.
18−Oct−1998 Version 5.005_02 571

perlembed Perl Programmers Reference Guide perlembed

ch), and

re

e the

our C
y

types.
I‘ll define the showtime subroutine in a file called showtime.pl:

 print "I shan’t be printed.";

 sub showtime {
 print time;
 }

Simple enough. Now compile and run:

 % cc −o showtime showtime.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

 % showtime showtime.pl
 818284590

yielding the number of seconds that elapsed between January 1, 1970 (the beginning of the Unix epo
the moment I began writing this sentence.

In this particular case we don‘t have to call perl_run, but in general it‘s considered good practice to ensu
proper initialization of library code, including execution of all object DESTROY methods and package END
{} blocks.

If you want to pass arguments to the Perl subroutine, you can add strings to the NULL−terminated args list
passed to perl_call_argv. For other data types, or to examine return values, you‘ll need to manipulat
Perl stack. That‘s demonstrated in the last section of this document:
Fiddling with the Perl stack from your C program.

Evaluating a Perl statement from your C program
Perl provides two API functions to evaluate pieces of Perl code. These are perl_eval_sv and perl_eval_pv.

Arguably, these are the only routines you‘ll ever need to execute snippets of Perl code from within y
program. Your code can be as long as you wish; it can contain multiple statements; it can emplouse,
require, and do to include external Perl files.

perl_eval_pv lets us evaluate individual Perl strings, and then extract variables for coercion into C
The following program, string.c, executes three Perl strings, extracting an int from the first, a float from
the second, and a char * from the third.

 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 main (int argc, char **argv, char **env)
 {
 char *embedding[] = { "", "−e", "0" };

 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 3, embedding, NULL);
 perl_run(my_perl);

 /** Treat $a as an integer **/
 perl_eval_pv("$a = 3; $a **= 2", TRUE);
 printf("a = %d\n", SvIV(perl_get_sv("a", FALSE)));

 /** Treat $a as a float **/
 perl_eval_pv("$a = 3.14; $a **= 2", TRUE);
 printf("a = %f\n", SvNV(perl_get_sv("a", FALSE)));

 /** Treat $a as a string **/
 perl_eval_pv("$a = ’rekcaH lreP rehtonA tsuJ’; $a = reverse($a);", TRUE);
 printf("a = %s\n", SvPV(perl_get_sv("a", FALSE), PL_na));
572 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed

ibed

 eval‘d
e from

de as

s that

s

of
 perl_destruct(my_perl);
 perl_free(my_perl);
 }

All of those strange functions with sv in their names help convert Perl scalars to C types. They‘re descr
in perlguts.

If you compile and run string.c, you‘ll see the results of using SvIV() to create an int , SvNV() to create
a float , and SvPV() to create a string:

 a = 9
 a = 9.859600
 a = Just Another Perl Hacker

In the example above, we‘ve created a global variable to temporarily store the computed value of our
expression. It is also possible and in most cases a better strategy to fetch the return valu
perl_eval_pv() instead. Example:

 ...
 SV *val = perl_eval_pv("reverse ’rekcaH lreP rehtonA tsuJ’", TRUE);
 printf("%s\n", SvPV(val,PL_na));
 ...

This way, we avoid namespace pollution by not creating global variables and we‘ve simplified our co
well.

Performing Perl pattern matches and substitutions from your C program
The perl_eval_sv() function lets us evaluate strings of Perl code, so we can define some function
use it to "specialize" in matches and substitutions: match() , substitute() , and matches() .

 I32 match(SV *string, char *pattern);

Given a string and a pattern (e.g., m/clasp/ or /\b\w*\b/ , which in your C program might appear a
"/\\b\\w*\\b/"), match() returns 1 if the string matches the pattern and 0 otherwise.

 int substitute(SV **string, char *pattern);

Given a pointer to an SV and an =~ operation (e.g., s/bob/robert/g or tr[A−Z][a−z]),
substitute() modifies the string within the AV at according to the operation, returning the number
substitutions made.

 int matches(SV *string, char *pattern, AV **matches);

Given an SV, a pattern, and a pointer to an empty AV, matches() evaluates $string =~ $pattern in
an array context, and fills in matches with the array elements, returning the number of matches found.

Here‘s a sample program, match.c, that uses all three (long lines have been wrapped here):

 #include <EXTERN.h>
 #include <perl.h>

 /** my_perl_eval_sv(code, error_check)
 ** kinda like perl_eval_sv(),
 ** but we pop the return value off the stack
 **/
 SV* my_perl_eval_sv(SV *sv, I32 croak_on_error)
 {
 dSP;
 SV* retval;

 PUSHMARK(SP);
 perl_eval_sv(sv, G_SCALAR);
18−Oct−1998 Version 5.005_02 573

perlembed Perl Programmers Reference Guide perlembed
 SPAGAIN;
 retval = POPs;
 PUTBACK;

 if (croak_on_error && SvTRUE(ERRSV))
 croak(SvPVx(ERRSV, PL_na));

 return retval;
 }

 /** match(string, pattern)
 **
 ** Used for matches in a scalar context.
 **
 ** Returns 1 if the match was successful; 0 otherwise.
 **/

 I32 match(SV *string, char *pattern)
 {
 SV *command = NEWSV(1099, 0), *retval;

 sv_setpvf(command, "my $string = ’%s’; $string =~ %s",
 SvPV(string,PL_na), pattern);

 retval = my_perl_eval_sv(command, TRUE);
 SvREFCNT_dec(command);

 return SvIV(retval);
 }

 /** substitute(string, pattern)
 **
 ** Used for =~ operations that modify their left−hand side (s/// and tr///)
 **
 ** Returns the number of successful matches, and
 ** modifies the input string if there were any.
 **/

 I32 substitute(SV **string, char *pattern)
 {
 SV *command = NEWSV(1099, 0), *retval;

 sv_setpvf(command, "$string = ’%s’; ($string =~ %s)",
 SvPV(*string,PL_na), pattern);

 retval = my_perl_eval_sv(command, TRUE);
 SvREFCNT_dec(command);

 *string = perl_get_sv("string", FALSE);
 return SvIV(retval);
 }

 /** matches(string, pattern, matches)
 **
 ** Used for matches in an array context.
 **
 ** Returns the number of matches,
 ** and fills in **matches with the matching substrings
 **/

 I32 matches(SV *string, char *pattern, AV **match_list)
574 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed
 {
 SV *command = NEWSV(1099, 0);
 I32 num_matches;

 sv_setpvf(command, "my $string = ’%s’; @array = ($string =~ %s)",
 SvPV(string,PL_na), pattern);

 my_perl_eval_sv(command, TRUE);
 SvREFCNT_dec(command);

 *match_list = perl_get_av("array", FALSE);
 num_matches = av_len(*match_list) + 1; /** assume $[is 0 **/

 return num_matches;
 }

 main (int argc, char **argv, char **env)
 {
 PerlInterpreter *my_perl = perl_alloc();
 char *embedding[] = { "", "−e", "0" };
 AV *match_list;
 I32 num_matches, i;
 SV *text = NEWSV(1099,0);

 perl_construct(my_perl);
 perl_parse(my_perl, NULL, 3, embedding, NULL);

 sv_setpv(text, "When he is at a convenience store and the bill comes to some amo

 if (match(text, "m/quarter/")) /** Does text contain ’quarter’? **/
 printf("match: Text contains the word ’quarter’.\n\n");
 else
 printf("match: Text doesn’t contain the word ’quarter’.\n\n");

 if (match(text, "m/eighth/")) /** Does text contain ’eighth’? **/
 printf("match: Text contains the word ’eighth’.\n\n");
 else
 printf("match: Text doesn’t contain the word ’eighth’.\n\n");

 /** Match all occurrences of /wi../ **/
 num_matches = matches(text, "m/(wi..)/g", &match_list);
 printf("matches: m/(wi..)/g found %d matches...\n", num_matches);

 for (i = 0; i < num_matches; i++)
 printf("match: %s\n", SvPV(*av_fetch(match_list, i, FALSE),PL_na));
 printf("\n");

 /** Remove all vowels from text **/
 num_matches = substitute(&text, "s/[aeiou]//gi");
 if (num_matches) {
 printf("substitute: s/[aeiou]//gi...%d substitutions made.\n",
 num_matches);
 printf("Now text is: %s\n\n", SvPV(text,PL_na));
 }

 /** Attempt a substitution **/
 if (!substitute(&text, "s/Perl/C/")) {
 printf("substitute: s/Perl/C...No substitution made.\n\n");
 }

 SvREFCNT_dec(text);
18−Oct−1998 Version 5.005_02 575

perlembed Perl Programmers Reference Guide perlembed

loaded
t‘ll do

e some

 to it
 PL_perl_destruct_level = 1;
 perl_destruct(my_perl);
 perl_free(my_perl);
 }

which produces the output (again, long lines have been wrapped here)

 match: Text contains the word ’quarter’.

 match: Text doesn’t contain the word ’eighth’.

 matches: m/(wi..)/g found 2 matches...
 match: will
 match: with

 substitute: s/[aeiou]//gi...139 substitutions made.
 Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,
 Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt bck
 qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd gvs th by
 thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct mnt. Th by gvs
 hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s hs prz. −RCHH

 substitute: s/Perl/C...No substitution made.

Fiddling with the Perl stack from your C program
When trying to explain stacks, most computer science textbooks mumble something about spring−
columns of cafeteria plates: the last thing you pushed on the stack is the first thing you pop off. Tha
for our purposes: your C program will push some arguments onto "the Perl stack", shut its eyes whil
magic happens, and then pop the results—the return value of your Perl subroutine—off the stack.

First you‘ll need to know how to convert between C types and Perl types, with newSViv() and
sv_setnv() and newAV() and all their friends. They‘re described in perlguts.

Then you‘ll need to know how to manipulate the Perl stack. That‘s described in perlcall.

Once you‘ve understood those, embedding Perl in C is easy.

Because C has no builtin function for integer exponentiation, let‘s make Perl‘s ** operator available
(this is less useful than it sounds, because Perl implements ** with C‘s pow() function). First I‘ll create a
stub exponentiation function in power.pl:

 sub expo {
 my ($a, $b) = @_;
 return $a ** $b;
 }

Now I‘ll create a C program, power.c, with a function PerlPower() that contains all the perlguts
necessary to push the two arguments into expo() and to pop the return value out. Take a deep breath...

 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 static void
 PerlPower(int a, int b)
 {
 dSP; /* initialize stack pointer */
 ENTER; /* everything created after here */
 SAVETMPS; /* ...is a temporary variable. */
 PUSHMARK(SP); /* remember the stack pointer */
 XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
576 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed

tain a
 major

rsistent

symbol

Your

ntly

−unique

ith the

t be
ant to
uests, to
 XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
 PUTBACK; /* make local stack pointer global */
 perl_call_pv("expo", G_SCALAR); /* call the function */
 SPAGAIN; /* refresh stack pointer */
 /* pop the return value from stack */
 printf ("%d to the %dth power is %d.\n", a, b, POPi);
 PUTBACK;
 FREETMPS; /* free that return value */
 LEAVE; /* ...and the XPUSHed "mortal" args.*/
 }

 int main (int argc, char **argv, char **env)
 {
 char *my_argv[] = { "", "power.pl" };

 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
 perl_run(my_perl);

 PerlPower(3, 4); /*** Compute 3 ** 4 ***/

 perl_destruct(my_perl);
 perl_free(my_perl);
 }

Compile and run:

 % cc −o power power.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

 % power
 3 to the 4th power is 81.

Maintaining a persistent interpreter
When developing interactive and/or potentially long−running applications, it‘s a good idea to main
persistent interpreter rather than allocating and constructing a new interpreter multiple times. The
reason is speed: since Perl will only be loaded into memory once.

However, you have to be more cautious with namespace and variable scoping when using a pe
interpreter. In previous examples we‘ve been using global variables in the default package main . We knew
exactly what code would be run, and assumed we could avoid variable collisions and outrageous
table growth.

Let‘s say your application is a server that will occasionally run Perl code from some arbitrary file.
server has no way of knowing what code it‘s going to run. Very dangerous.

If the file is pulled in by perl_parse() , compiled into a newly constructed interpreter, and subseque
cleaned out with perl_destruct() afterwards, you‘re shielded from most namespace troubles.

One way to avoid namespace collisions in this scenario is to translate the filename into a guaranteed
package name, and then compile the code into that package using eval. In the example below, each file will
only be compiled once. Or, the application might choose to clean out the symbol table associated w
file after it‘s no longer needed. Using perl_call_argv, We‘ll call the subroutine
Embed::Persistent::eval_file which lives in the file persistent.pl and pass the filename
and boolean cleanup/cache flag as arguments.

Note that the process will continue to grow for each file that it uses. In addition, there migh
AUTOLOADed subroutines and other conditions that cause Perl‘s symbol table to grow. You might w
add some logic that keeps track of the process size, or restarts itself after a certain number of req
ensure that memory consumption is minimized. You‘ll also want to scope your variables with my whenever
18−Oct−1998 Version 5.005_02 577

perlembed Perl Programmers Reference Guide perlembed
possible.

 package Embed::Persistent;
 #persistent.pl

 use strict;
 use vars ’%Cache’;
 use Symbol qw(delete_package);

 sub valid_package_name {
 my($string) = @_;
 $string =~ s/([^A−Za−z0−9\/])/sprintf("_%2x",unpack("C",$1))/eg;
 # second pass only for words starting with a digit
 $string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;

 # Dress it up as a real package name
 $string =~ s|/|::|g;
 return "Embed" . $string;
 }

 sub eval_file {
 my($filename, $delete) = @_;
 my $package = valid_package_name($filename);
 my $mtime = −M $filename;
 if(defined $Cache{$package}{mtime}
 &&
 $Cache{$package}{mtime} <= $mtime)
 {
 # we have compiled this subroutine already,
 # it has not been updated on disk, nothing left to do
 print STDERR "already compiled $package−>handler\n";
 }
 else {
 local *FH;
 open FH, $filename or die "open ’$filename’ $!";
 local($/) = undef;
 my $sub = <FH>;
 close FH;

 #wrap the code into a subroutine inside our unique package
 my $eval = qq{package $package; sub handler { $sub; }};
 {
 # hide our variables within this block
 my($filename,$mtime,$package,$sub);
 eval $eval;
 }
 die $@ if $@;

 #cache it unless we’re cleaning out each time
 $Cache{$package}{mtime} = $mtime unless $delete;
 }

 eval {$package−>handler;};
 die $@ if $@;

 delete_package($package) if $delete;

 #take a look if you want
 #print Devel::Symdump−>rnew($package)−>as_string, $/;
578 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed
 }

 1;

 __END__

 /* persistent.c */
 #include <EXTERN.h>
 #include <perl.h>

 /* 1 = clean out filename’s symbol table after each request, 0 = don’t */
 #ifndef DO_CLEAN
 #define DO_CLEAN 0
 #endif

 static PerlInterpreter *perl = NULL;

 int
 main(int argc, char **argv, char **env)
 {
 char *embedding[] = { "", "persistent.pl" };
 char *args[] = { "", DO_CLEAN, NULL };
 char filename [1024];
 int exitstatus = 0;

 if((perl = perl_alloc()) == NULL) {
 fprintf(stderr, "no memory!");
 exit(1);
 }
 perl_construct(perl);

 exitstatus = perl_parse(perl, NULL, 2, embedding, NULL);

 if(!exitstatus) {
 exitstatus = perl_run(perl);

 while(printf("Enter file name: ") && gets(filename)) {

 /* call the subroutine, passing it the filename as an argument */
 args[0] = filename;
 perl_call_argv("Embed::Persistent::eval_file",
 G_DISCARD | G_EVAL, args);

 /* check $@ */
 if(SvTRUE(ERRSV))
 fprintf(stderr, "eval error: %s\n", SvPV(ERRSV,PL_na));
 }
 }

 PL_perl_destruct_level = 0;
 perl_destruct(perl);
 perl_free(perl);
 exit(exitstatus);
 }

Now compile:

 % cc −o persistent persistent.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

Here‘s a example script file:

 #test.pl
 my $string = "hello";
18−Oct−1998 Version 5.005_02 579

perlembed Perl Programmers Reference Guide perlembed

plication

y

d up,

but only
 foo($string);

 sub foo {
 print "foo says: @_\n";
 }

Now run:

 % persistent
 Enter file name: test.pl
 foo says: hello
 Enter file name: test.pl
 already compiled Embed::test_2epl−>handler
 foo says: hello
 Enter file name: ^C

Maintaining multiple interpreter instances
Some rare applications will need to create more than one interpreter during a session. Such an ap
might sporadically decide to release any resources associated with the interpreter.

The program must take care to ensure that this takes place before the next interpreter is constructed. B
default, the global variable PL_perl_destruct_level is set to , since extra cleaning isn‘t needed
when a program has only one interpreter.

Setting PL_perl_destruct_level to 1 makes everything squeaky clean:

 PL_perl_destruct_level = 1;

 while(1) {
 ...
 /* reset global variables here with PL_perl_destruct_level = 1 */
 perl_construct(my_perl);
 ...
 /* clean and reset _everything_ during perl_destruct */
 perl_destruct(my_perl);
 perl_free(my_perl);
 ...
 /* let’s go do it again! */
 }

When perl_destruct() is called, the interpreter‘s syntax parse tree and symbol tables are cleane
and global variables are reset.

Now suppose we have more than one interpreter instance running at the same time. This is feasible,
if you used the −DMULTIPLICITY flag when building Perl. By default, that sets
PL_perl_destruct_level to 1.

Let‘s give it a try:

 #include <EXTERN.h>
 #include <perl.h>

 /* we’re going to embed two interpreters */
 /* we’re going to embed two interpreters */

 #define SAY_HELLO "−e", "print qq(Hi, I’m $^X\n)"

 int main(int argc, char **argv, char **env)
 {
 PerlInterpreter
 *one_perl = perl_alloc(),
 *two_perl = perl_alloc();
580 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed

help.

C/C++
 char *one_args[] = { "one_perl", SAY_HELLO };
 char *two_args[] = { "two_perl", SAY_HELLO };

 perl_construct(one_perl);
 perl_construct(two_perl);

 perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);
 perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);

 perl_run(one_perl);
 perl_run(two_perl);

 perl_destruct(one_perl);
 perl_destruct(two_perl);

 perl_free(one_perl);
 perl_free(two_perl);
 }

Compile as usual:

 % cc −o multiplicity multiplicity.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

Run it, Run it:

 % multiplicity
 Hi, I’m one_perl
 Hi, I’m two_perl

Using Perl modules, which themselves use C libraries, from your C program
If you‘ve played with the examples above and tried to embed a script that use() s a Perl module (such as
Socket) which itself uses a C or C++ library, this probably happened:

 Can’t load module Socket, dynamic loading not available in this perl.
 (You may need to build a new perl executable which either supports
 dynamic loading or has the Socket module statically linked into it.)

What‘s wrong?

Your interpreter doesn‘t know how to communicate with these extensions on its own. A little glue will
 Up until now you‘ve been calling perl_parse() , handing it NULL for the second argument:

 perl_parse(my_perl, NULL, argc, my_argv, NULL);

That‘s where the glue code can be inserted to create the initial contact between Perl and linked
routines. Let‘s take a look some pieces of perlmain.c to see how Perl does this:

 #ifdef __cplusplus
 # define EXTERN_C extern "C"
 #else
 # define EXTERN_C extern
 #endif

 static void xs_init _((void));

 EXTERN_C void boot_DynaLoader _((CV* cv));
 EXTERN_C void boot_Socket _((CV* cv));

 EXTERN_C void
 xs_init()
 {
 char *file = __FILE__;
 /* DynaLoader is a special case */
 newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);
18−Oct−1998 Version 5.005_02 581

perlembed Perl Programmers Reference Guide perlembed

ation
te the

r

sions

sions
 this

 embed

 and

it on
 a

se, run

, e.g.

de
Build
 newXS("Socket::bootstrap", boot_Socket, file);
 }

Simply put: for each extension linked with your Perl executable (determined during its initial configur
on your computer or when adding a new extension), a Perl subroutine is created to incorpora
extension‘s routines. Normally, that subroutine is named Module::bootstrap() and is invoked when
you say use Module. In turn, this hooks into an XSUB, boot_Module, which creates a Perl counterpart fo
each of the extension‘s XSUBs. Don‘t worry about this part; leave that to the xsubpp and extension authors.
If your extension is dynamically loaded, DynaLoader creates Module::bootstrap() for you on the fly.
In fact, if you have a working DynaLoader then there is rarely any need to link in any other exten
statically.

Once you have this code, slap it into the second argument of perl_parse() :

 perl_parse(my_perl, xs_init, argc, my_argv, NULL);

Then compile:

 % cc −o interp interp.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

 % interp
 use Socket;
 use SomeDynamicallyLoadedModule;

 print "Now I can use extensions!\n"’

ExtUtils::Embed can also automate writing the xs_init glue code.

 % perl −MExtUtils::Embed −e xsinit −− −o perlxsi.c
 % cc −c perlxsi.c ‘perl −MExtUtils::Embed −e ccopts‘
 % cc −c interp.c ‘perl −MExtUtils::Embed −e ccopts‘
 % cc −o interp perlxsi.o interp.o ‘perl −MExtUtils::Embed −e ldopts‘

Consult perlxs and perlguts for more details.

Embedding Perl under Win32
At the time of this writing (5.004), there are two versions of Perl which run under Win32. (The two ver
are merging in 5.005.) Interfacing to ActiveState‘s Perl library is quite different from the examples in
documentation, as significant changes were made to the internal Perl API. However, it is possible to
ActiveState‘s Perl runtime. For details, see the Perl for Win32 FAQ at
http://www.perl.com/perl/faq/win32/Perl_for_Win32_FAQ.html.

With the "official" Perl version 5.004 or higher, all the examples within this documentation will compile
run untouched, although the build process is slightly different between Unix and Win32.

For starters, backticks don‘t work under the Win32 native command shell. The ExtUtils::Embed k
CPAN ships with a script called genmake, which generates a simple makefile to build a program from
single C source file. It can be used like this:

 C:\ExtUtils−Embed\eg> perl genmake interp.c
 C:\ExtUtils−Embed\eg> nmake
 C:\ExtUtils−Embed\eg> interp −e "print qq{I’m embedded in Win32!\n}"

You may wish to use a more robust environment such as the Microsoft Developer Studio. In this ca
this to generate perlxsi.c:

 perl −MExtUtils::Embed −e xsinit

Create a new project and Insert − Files into Project: perlxsi.c, perl.lib, and your own source files
interp.c. Typically you‘ll find perl.lib in C:\perl\lib\CORE , if not, you should see the CORE directory
relative to perl −V:archlib . The studio will also need this path so it knows where to find Perl inclu
files. This path can be added via the Tools − Options − Directories menu. Finally, select Build −
interp.exe and you‘re ready to go.
582 Version 5.005_02 18−Oct−1998

perlembed Perl Programmers Reference Guide perlembed

j.com).
he.org),
gars‘s

pyright

ditions
thors’
 that the

, under
MORAL
You can sometimes write faster code in C, but you can always write code faster in Perl. Because you can
use each from the other, combine them as you wish.

AUTHOR
Jon Orwant <orwant@tpj.com and Doug MacEachern <dougm@osf.org, with small contributions from Tim
Bunce, Tom Christiansen, Guy Decoux, Hallvard Furuseth, Dov Grobgeld, and Ilya Zakharevich.

Doug MacEachern has an article on embedding in Volume 1, Issue 4 of The Perl Journal (http://tp
Doug is also the developer of the most widely−used Perl embedding: the mod_perl system (perl.apac
which embeds Perl in the Apache web server. Oracle, Binary Evolution, ActiveState, and Ben Su
nsapi_perl have used this model for Oracle, Netscape and Internet Information Server Perl plugins.

July 22, 1998

COPYRIGHT
Copyright (C) 1995, 1996, 1997, 1998 Doug MacEachern and Jon Orwant. All Rights Reserved.

Permission is granted to make and distribute verbatim copies of this documentation provided the co
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation under the con
for verbatim copying, provided also that they are marked clearly as modified versions, that the au
names and title are unchanged (though subtitles and additional authors’ names may be added), and
entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language
the above conditions for modified versions.
18−Oct−1998 Version 5.005_02 583

perlpod Perl Programmers Reference Guide perlpod

ropriate

uld be
matting

the

 next
.

h as the

r the
 will
ation.
n‘t use
have_
 items
c., to
ullets
e first

ectly to
ill be
rmat
NAME
perlpod − plain old documentation

DESCRIPTION
A pod−to−whatever translator reads a pod file paragraph by paragraph, and translates it to the app
output format. There are three kinds of paragraphs: Verbatim Paragraph in verbatim|,
Command Paragraph in command|, and Ordinary Block of Text in ordinary text|.

Verbatim Paragraph
A verbatim paragraph, distinguished by being indented (that is, it starts with space or tab). It sho
reproduced exactly, with tabs assumed to be on 8−column boundaries. There are no special for
escapes, so you can‘t italicize or anything like that. A \ means \, and nothing else.

Command Paragraph
All command paragraphs start with "=", followed by an identifier, followed by arbitrary text that
command can use however it pleases. Currently recognized commands are

 =head1 heading
 =head2 heading
 =item text
 =over N
 =back
 =cut
 =pod
 =for X
 =begin X
 =end X

=pod
=cut The "=pod" directive does nothing beyond telling the compiler to lay off parsing code through the

"=cut". It‘s useful for adding another paragraph to the doc if you‘re mixing up code and pod a lot

=head1
=head2

Head1 and head2 produce first and second level headings, with the text in the same paragrap
"=headn" directive forming the heading description.

=over
=back
=item

Item, over, and back require a little more explanation: "=over" starts a section specifically fo
generation of a list using "=item" commands. At the end of your list, use "=back" to end it. You
probably want to give "4" as the number to "=over", as some formatters will use this for indent
This should probably be a default. Note also that there are some basic rules to using =item: do
them outside of an =over/=back block, use at least one inside an =over/=back block, you don‘t _
to include the =back if the list just runs off the document, and perhaps most importantly, keep the
consistent: either use "=item *" for all of them, to produce bullets, or use "=item 1.", "=item 2.", et
produce numbered lists, or use "=item foo", "=item bar", etc., i.e., things that looks nothing like b
or numbers. If you start with bullets or numbers, stick with them, as many formatters use th
"=item" type to decide how to format the list.

=for
=begin
=end

For, begin, and end let you include sections that are not interpreted as pod text, but passed dir
particular formatters. A formatter that can utilize that format will use the section, otherwise it w
completely ignored. The directive "=for" specifies that the entire next paragraph is in the fo
584 Version 5.005_02 18−Oct−1998

perlpod Perl Programmers Reference Guide perlpod

nly
reated

tex",

f the
 each

and in
indicated by the first word after "=for", like this:

 =for html

 <p> This is a raw HTML paragraph </p>

The paired commands "=begin" and "=end" work very similarly to "=for", but instead of o
accepting a single paragraph, all text from "=begin" to a paragraph with a matching "=end" are t
as a particular format.

Here are some examples of how to use these:

 =begin html

Figure 1.

 =end html

 =begin text

 −−−−−−−−−−−−−−−
 | foo |
 | bar |
 −−−−−−−−−−−−−−−

 ^^^^ Figure 1. ^^^^

 =end text

Some format names that formatters currently are known to accept include "roff", "man", "latex", "
"text", and "html". (Some formatters will treat some of these as synonyms.)

And don‘t forget, when using any command, that the command lasts up until the end o
paragraph, not the line. Hence in the examples below, you can see the empty lines after
command to end its paragraph.

Some examples of lists include:

 =over 4

 =item *

 First item

 =item *

 Second item

 =back

 =over 4

 =item Foo()

 Description of Foo function

 =item Bar()

 Description of Bar function

 =back

Ordinary Block of Text
It will be filled, and maybe even justified. Certain interior sequences are recognized both here
commands:

 I<text> italicize text, used for emphasis or variables
 B<text> embolden text, used for switches and programs
 S<text> text contains non−breaking spaces
18−Oct−1998 Version 5.005_02 585

perlpod Perl Programmers Reference Guide perlpod

t), so
 in my
right
 slurp
 in a

n along

 an
tation.

ead1"
 of the
ou‘re
t pod
 C<code> literal code
 L<name> A link (cross reference) to name

 L<name> manual page
 L<name/ident> item in manual page
 L<name/"sec"> section in other manual page
 L<"sec"> section in this manual page

(the quotes are optional)
 L</"sec"> ditto
same as above but only ’text’ is used for output.
(Text can not contain the characters ’|’ or ’>’)
 L<text|name>
 L<text|name/ident>
 L<text|name/"sec">
 L<text|"sec">
 L<text|/"sec">

 F<file> Used for filenames
 X<index> An index entry
 Z<> A zero−width character
 E<escape> A named character (very similar to HTML escapes)

 E<lt> A literal <
 E<gt> A literal >
 (these are optional except in other interior
 sequences and when preceded by a capital letter)
 E<n> Character number n (probably in ASCII)

 E<html> Some non−numeric HTML entity, such
as E<Agrave>

The Intent
That‘s it. The intent is simplicity, not power. I wanted paragraphs to look like paragraphs (block forma
that they stand out visually, and so that I could run them through fmt easily to reformat them (that‘s F7
version of vi). I wanted the translator (and not me) to worry about whether " or ’ is a left quote or a
quote within filled text, and I wanted it to leave the quotes alone, dammit, in verbatim mode, so I could
in a working program, shift it over 4 spaces, and have it print out, er, verbatim. And presumably
constant width font.

In particular, you can leave things like this verbatim in your text:

 Perl
 FILEHANDLE
 $variable
 function()
 manpage(3r)

Doubtless a few other commands or sequences will need to be added along the way, but I‘ve gotte
surprisingly well with just these.

Note that I‘m not at all claiming this to be sufficient for producing a book. I‘m just trying to make
idiot−proof common source for nroff, TeX, and other markup languages, as used for online documen
Translators exist for pod2man (that‘s for nroff(1) and troff(1)), pod2text, pod2html, pod2latex, and
pod2fm.

Embedding Pods in Perl Modules
You can embed pod documentation in your Perl scripts. Start your documentation with a "=h
command at the beginning, and end it with a "=cut" command. Perl will ignore the pod text. See any
supplied library modules for examples. If you‘re going to put your pods at the end of the file, and y
using an __END__ or __DATA__ cut mark, make sure to put an empty line there before the firs
directive.
586 Version 5.005_02 18−Oct−1998

perlpod Perl Programmers Reference Guide perlpod

u have

 this

hat
 best
r print

, which
 __END__

 =head1 NAME

 modern − I am a modern module

If you had not had that empty line there, then the translators wouldn‘t have seen it.

Common Pod Pitfalls

 Pod translators usually will require paragraphs to be separated by completely empty lines. If yo
an apparently empty line with some spaces on it, this can cause odd formatting.

 Translators will mostly add wording around a L<> link, so that L<foo(1)> becomes "the foo(1)
manpage", for example (see pod2man for details). Thus, you shouldn‘t write things like the
L<foo> manpage , if you want the translated document to read sensibly.

If you don need or want total control of the text used for a link in the output use the form L<show
text|foo> instead.

 The script pod/checkpods.PL in the Perl source distribution provides skeletal checking for lines t
look empty but aren‘t only, but is there as a placeholder until someone writes Pod::Checker. The
way to check your pod is to pass it through one or more translators and proofread the result, o
out the result and proofread that. Some of the problems found may be bugs in the translators
you may or may not wish to work around.

SEE ALSO
pod2man and PODs: Embedded Documentation in perlsyn

AUTHOR
Larry Wall
18−Oct−1998 Version 5.005_02 587

perlbook Perl Programmers Reference Guide perlbook

illy
 order
ver to
NAME
perlbook − Perl book information

DESCRIPTION
The Camel Book, officially known as Programming Perl, Second Edition, by Larry Wall et al, is the
definitive reference work covering nearly all of Perl. You can order it and other Perl books from O‘Re&
Associates, 1−800−998−9938. Local/overseas is +1 707 829 0515. If you can locate an O‘Reilly
form, you can also fax to +1 707 829 0104. If you‘re web−connected, you can even mosey on o
http://www.ora.com/ for an online order form.

Other Perl books from various publishers and authors can be found listed in perlfaq3.
588 Version 5.005_02 18−Oct−1998

perlapio Perl Programmers Reference Guide perlapio
NAME
perlapio − perl‘s IO abstraction interface.

SYNOPSIS
 PerlIO *PerlIO_stdin(void);
 PerlIO *PerlIO_stdout(void);
 PerlIO *PerlIO_stderr(void);

 PerlIO *PerlIO_open(const char *,const char *);
 int PerlIO_close(PerlIO *);

 int PerlIO_stdoutf(const char *,...)
 int PerlIO_puts(PerlIO *,const char *);
 int PerlIO_putc(PerlIO *,int);
 int PerlIO_write(PerlIO *,const void *,size_t);
 int PerlIO_printf(PerlIO *, const char *,...);
 int PerlIO_vprintf(PerlIO *, const char *, va_list);
 int PerlIO_flush(PerlIO *);

 int PerlIO_eof(PerlIO *);
 int PerlIO_error(PerlIO *);
 void PerlIO_clearerr(PerlIO *);

 int PerlIO_getc(PerlIO *);
 int PerlIO_ungetc(PerlIO *,int);
 int PerlIO_read(PerlIO *,void *,size_t);

 int PerlIO_fileno(PerlIO *);
 PerlIO *PerlIO_fdopen(int, const char *);
 PerlIO *PerlIO_importFILE(FILE *, int flags);
 FILE *PerlIO_exportFILE(PerlIO *, int flags);
 FILE *PerlIO_findFILE(PerlIO *);
 void PerlIO_releaseFILE(PerlIO *,FILE *);

 void PerlIO_setlinebuf(PerlIO *);

 long PerlIO_tell(PerlIO *);
 int PerlIO_seek(PerlIO *,off_t,int);
 int PerlIO_getpos(PerlIO *,Fpos_t *)
 int PerlIO_setpos(PerlIO *,Fpos_t *)
 void PerlIO_rewind(PerlIO *);

 int PerlIO_has_base(PerlIO *);
 int PerlIO_has_cntptr(PerlIO *);
 int PerlIO_fast_gets(PerlIO *);
 int PerlIO_canset_cnt(PerlIO *);

 char *PerlIO_get_ptr(PerlIO *);
 int PerlIO_get_cnt(PerlIO *);
 void PerlIO_set_cnt(PerlIO *,int);
 void PerlIO_set_ptrcnt(PerlIO *,char *,int);
 char *PerlIO_get_base(PerlIO *);
 int PerlIO_get_bufsiz(PerlIO *);

DESCRIPTION
Perl‘s source code should use the above functions instead of those defined in ANSI C‘s stdio.h. The perl
headers will #define them to the I/O mechanism selected at Configure time.

The functions are modeled on those in stdio.h, but parameter order has been "tidied up a little".
18−Oct−1998 Version 5.005_02 589

perlapio Perl Programmers Reference Guide perlapio

fe to

r

se

ne

le"

tch

n

PerlIO *
This takes the place of FILE *. Like FILE * it should be treated as opaque (it is probably sa
assume it is a pointer to something).

PerlIO_stdin() , PerlIO_stdout() , PerlIO_stderr()
Use these rather than stdin , stdout , stderr . They are written to look like "function calls" rathe
than variables because this makes it easier to make them function calls if platform cannot export data to
loaded modules, or if (say) different "threads" might have different values.

PerlIO_open(path, mode) , PerlIO_fdopen(fd,mode)
These correspond to fopen()/fdopen() arguments are the same.

PerlIO_printf(f,fmt,...) , PerlIO_vprintf(f,fmt,a)
These are fprintf()/vfprintf() equivalents.

PerlIO_stdoutf(fmt,...)
This is printf() equivalent. printf is #defined to this function, so it is (currently) legal to u
printf(fmt,...) in perl sources.

PerlIO_read(f,buf,count) , PerlIO_write(f,buf,count)
These correspond to fread() and fwrite() . Note that arguments are different, there is only o
"count" and order has "file" first.

PerlIO_close(f)
PerlIO_puts(f,s) , PerlIO_putc(f,c)

These correspond to fputs() and fputc() . Note that arguments have been revised to have "fi
first.

PerlIO_ungetc(f,c)
This corresponds to ungetc() . Note that arguments have been revised to have "file" first.

PerlIO_getc(f)
This corresponds to getc() .

PerlIO_eof(f)
This corresponds to feof() .

PerlIO_error(f)
This corresponds to ferror() .

PerlIO_fileno(f)
This corresponds to fileno() , note that on some platforms, the meaning of "fileno" may not ma
Unix.

PerlIO_clearerr(f)
This corresponds to clearerr() , i.e., clears ‘eof’ and ‘error’ flags for the "stream".

PerlIO_flush(f)
This corresponds to fflush() .

PerlIO_tell(f)
This corresponds to ftell() .

PerlIO_seek(f,o,w)
This corresponds to fseek() .

PerlIO_getpos(f,p) , PerlIO_setpos(f,p)
These correspond to fgetpos() and fsetpos() . If platform does not have the stdio calls the
they are implemented in terms of PerlIO_tell() and PerlIO_seek() .
590 Version 5.005_02 18−Oct−1998

perlapio Perl Programmers Reference Guide perlapio

be

erms
 must

 and

ations

 list

es it

als of
 This
ting a

ble in

m.
PerlIO_rewind(f)
This corresponds to rewind() . Note may be redefined in terms of PerlIO_seek() at some point.

PerlIO_tmpfile()
This corresponds to tmpfile() , i.e., returns an anonymous PerlIO which will automatically
deleted when closed.

Co−existence with stdio
There is outline support for co−existence of PerlIO with stdio. Obviously if PerlIO is implemented in t
of stdio there is no problem. However if perlio is implemented on top of (say) sfio then mechanisms
exist to create a FILE * which can be passed to library code which is going to use stdio calls.

PerlIO_importFILE(f,flags)
Used to get a PerlIO * from a FILE *. May need additional arguments, interface under review.

PerlIO_exportFILE(f,flags)
Given an PerlIO * return a ‘native’ FILE * suitable for passing to code expecting to be compiled
linked with ANSI C stdio.h.

The fact that such a FILE * has been ‘exported’ is recorded, and may affect future PerlIO oper
on the original PerlIO *.

PerlIO_findFILE(f)
Returns previously ‘exported’ FILE * (if any). Place holder until interface is fully defined.

PerlIO_releaseFILE(p,f)
Calling PerlIO_releaseFILE informs PerlIO that all use of FILE * is complete. It is removed from
of ‘exported’ FILE *s, and associated PerlIO * should revert to original behaviour.

PerlIO_setlinebuf(f)
This corresponds to setlinebuf() . Use is deprecated pending further discussion. (Perl core us
only when "dumping"; it has nothing to do with $| auto−flush.)

In addition to user API above there is an "implementation" interface which allows perl to get at intern
PerlIO. The following calls correspond to the various FILE_xxx macros determined by Configure.
section is really of interest to only those concerned with detailed perl−core behaviour or implemen
PerlIO mapping.

PerlIO_has_cntptr(f)
Implementation can return pointer to current position in the "buffer" and a count of bytes availa
the buffer.

PerlIO_get_ptr(f)
Return pointer to next readable byte in buffer.

PerlIO_get_cnt(f)
Return count of readable bytes in the buffer.

PerlIO_canset_cnt(f)
Implementation can adjust its idea of number of bytes in the buffer.

PerlIO_fast_gets(f)
Implementation has all the interfaces required to allow perl‘s fast code to handle <FILE mechanis

 PerlIO_fast_gets(f) = PerlIO_has_cntptr(f) && \
 PerlIO_canset_cnt(f) && \
 ‘Can set pointer into buffer’
18−Oct−1998 Version 5.005_02 591

perlapio Perl Programmers Reference Guide perlapio

ter to

ount <
ount"

r
PerlIO_set_ptrcnt(f,p,c)
Set pointer into buffer, and a count of bytes still in the buffer. Should be used only to set poin
within range implied by previous calls to PerlIO_get_ptr and PerlIO_get_cnt .

PerlIO_set_cnt(f,c)
Obscure − set count of bytes in the buffer. Deprecated. Currently used in only doio.c to force c
−1 to −1. Perhaps should be PerlIO_set_empty or similar. This call may actually do nothing if "c
is deduced from pointer and a "limit".

PerlIO_has_base(f)
Implementation has a buffer, and can return pointer to whole buffer and its size. Used by perl fo−T /
−B tests. Other uses would be very obscure...

PerlIO_get_base(f)
Return start of buffer.

PerlIO_get_bufsiz(f)
Return total size of buffer.
592 Version 5.005_02 18−Oct−1998

perldelta Perl Programmers Reference Guide perldelta

released
ressive
umbers

nals. If
 to use

should

 source

s
ill need

"

pact on

m with

e.

ited

le, try

,

NAME
perldelta − what‘s new for perl5.005

DESCRIPTION
This document describes differences between the 5.004 release and this one.

About the new versioning system
Perl is now developed on two tracks: a maintenance track that makes small, safe updates to
production versions with emphasis on compatibility; and a development track that pursues more agg
evolution. Maintenance releases (which should be considered production quality) have subversion n
that run from 1 to 49 , and development releases (which should be considered "alpha" quality) run from50
to 99 .

Perl 5.005 is the combined product of the new dual−track development scheme.

Incompatible Changes

WARNING: This version is not binary compatible with Perl 5.004.
Starting with Perl 5.004_50 there were many deep and far−reaching changes to the language inter
you have dynamically loaded extensions that you built under perl 5.003 or 5.004, you can continue
them with 5.004, but you will need to rebuild and reinstall those extensions to use them 5.005. See INSTALL
for detailed instructions on how to upgrade.

Default installation structure has changed
The new Configure defaults are designed to allow a smooth upgrade from 5.004 to 5.005, but you
read INSTALL for a detailed discussion of the changes in order to adapt them to your system.

Perl Source Compatibility
When none of the experimental features are enabled, there should be very few user−visible Perl
compatibility issues.

If threads are enabled, then some caveats apply. @_ and $_ become lexical variables. The effect of thi
should be largely transparent to the user, but there are some boundary conditions under which user w
to be aware of the issues. For example, local(@_) results in a "Can‘t localize lexical variable @_ ...
message. This may be enabled in a future version.

Some new keywords have been introduced. These are generally expected to have very little im
compatibility. See New INIT keyword, New lock keyword, and / operator.

Certain barewords are now reserved. Use of these will provoke a warning if you have asked for the
the −w switch. See our is now a reserved word.

C Source Compatibility
There have been a large number of changes in the internals to support the new features in this releas

Core sources now require ANSI C compiler
An ANSI C compiler is now required to build perl. See INSTALL .

All Perl global variables must now be referenced with an explicit prefix
All Perl global variables that are visible for use by extensions now have a PL_ prefix. New extensions
should not refer to perl globals by their unqualified names. To preserve sanity, we provide lim
backward compatibility for globals that are being widely used like sv_undef and na (which should
now be written as PL_sv_undef , PL_na etc.)

If you find that your XS extension does not compile anymore because a perl global is not visib
adding a PL_ prefix to the global and rebuild.

It is strongly recommended that all functions in the Perl API that don‘t begin with perl be referenced
with a Perl_ prefix. The bare function names without the Perl_ prefix are supported with macros
but this support may cease in a future release.
18−Oct−1998 Version 5.005_02 593

perldelta Perl Programmers Reference Guide perldelta

erl
es

iled.
rgely

e name,
tions in

sed to
al
ies.

ngs are

ion was
. Now
e terms
d

e
 future

t
efault

nerates
eads of
ackend
potential
kend
See API LISTING.

Enabling threads has source compatibility issues
Perl built with threading enabled requires extensions to use the new dTHR macro to initialize the
handle to access per−thread data. If you see a compiler error that talks about the variable thr not
being declared (when building a module that has XS code), you need to add dTHR; at the beginning
of the block that elicited the error.

The API function perl_get_sv("@",FALSE) should be used instead of directly accessing p
globals as GvSV(errgv) . The API call is backward compatible with existing perls and provid
source compatibility with threading is enabled.

See API Changes for more information.

Binary Compatibility
This version is NOT binary compatible with older versions. All extensions will need to be recomp
Further binaries built with threads enabled are incompatible with binaries built without. This should la
be transparent to the user, as all binary incompatible configurations have their own unique architectur
and extension binaries get installed at unique locations. This allows coexistence of several configura
the same directory hierarchy. See INSTALL .

Security fixes may affect compatibility
A few taint leaks and taint omissions have been corrected. This may lead to "failure" of scripts that u
work with older versions. Compiling with −DINCOMPLETE_TAINTS provides a perl with minim
amounts of changes to the tainting behavior. But note that the resulting perl will have known insecurit

Oneliners with the −e switch do not create temporary files anymore.

Relaxed new mandatory warnings introduced in 5.004
Many new warnings that were introduced in 5.004 have been made optional. Some of these warni
still present, but perl‘s new features make them less often a problem. See New Diagnostics.

Licensing
Perl has a new Social Contract for contributors. See Porting/Contract.

The license included in much of the Perl documentation has changed. Most of the Perl documentat
previously under the implicit GNU General Public License or the Artistic License (at the user‘s choice)
much of the documentation unambigously states the terms under which it may be distributed. Thos
are in general much less restrictive than the GNU GPL. See perl and the individual perl man pages liste
therein.

Core Changes

Threads
WARNING: Threading is considered an experimental feature. Details of the implementation may chang
without notice. There are known limitations and some bugs. These are expected to be fixed in
versions.

See README.threads.

Compiler
WARNING: The Compiler and related tools are considered experimental. Features may change withou
notice, and there are known limitations and bugs. Since the compiler is fully external to perl, the d
configuration will build and install it.

The Compiler produces three different types of transformations of a perl program. The C backend ge
C code that captures perl‘s state just before execution begins. It eliminates the compile−time overh
the regular perl interpreter, but the run−time performance remains comparatively the same. The CC b
generates optimized C code equivalent to the code path at run−time. The CC backend has greater
for big optimizations, but only a few optimizations are implemented currently. The Bytecode bac
594 Version 5.005_02 18−Oct−1998

perldelta Perl Programmers Reference Guide perldelta

ecution.

 that the

ts.

mats in

pported.
generates a platform independent bytecode representation of the interpreter‘s state just before ex
Thus, the Bytecode back end also eliminates much of the compilation overhead of the interpreter.

The compiler comes with several valuable utilities.

B::Lint is an experimental module to detect and warn about suspicious code, especially the cases
−w switch does not detect.

B::Deparse can be used to demystify perl code, and understand how perl optimizes certain construc

B::Xref generates cross reference reports of all definition and use of variables, subroutines and for
a program.

B::Showlex show the lexical variables used by a subroutine or file at a glance.

perlcc is a simple frontend for compiling perl.

See ext/B/README , B, and the respective compiler modules.

Regular Expressions
Perl‘s regular expression engine has been seriously overhauled, and many new constructs are su
Several bugs have been fixed.

Here is an itemized summary:

Many new and improved optimizations
Changes in the RE engine:

Unneeded nodes removed;
Substrings merged together;
New types of nodes to process (SUBEXPR)* and similar expressions
 quickly, used if the SUBEXPR has no side effects and matches
 strings of the same length;
Better optimizations by lookup for constant substrings;
Better search for constants substrings anchored by $;

Changes in Perl code using RE engine:

More optimizations to s/longer/short/;
study() was not working;
/blah/ may be optimized to an analogue of index() if $& $‘ $’ not seen;
Unneeded copying of matched−against string removed;
Only matched part of the string is copying if $‘ $’ were not seen;

Many bug fixes
Note that only the major bug fixes are listed here. See Changes for others.

Backtracking might not restore start of $3.
No feedback if max count for * or + on "complex" subexpression
 was reached, similarly (but at compile time) for {3,34567}
Primitive restrictions on max count introduced to decrease a
 possibility of a segfault;
(ZERO−LENGTH)* could segfault;
(ZERO−LENGTH)* was prohibited;
Long REs were not allowed;
/RE/g could skip matches at the same position after a
 zero−length match;

New regular expression constructs
The following new syntax elements are supported:

(?<=RE)
18−Oct−1998 Version 5.005_02 595

perldelta Perl Programmers Reference Guide perldelta

n
his
on

 the Perl

d. See

trigger
s". This

d like
ignored
means
ut less
(?<!RE)
(?{ CODE })
(?i−x)
(?i:RE)
(?(COND)YES_RE|NO_RE)
(?>RE)
\z

New operator for precompiled regular expressions
See / operator.

Other improvements
Better debugging output (possibly with colors),

 even from non−debugging Perl;
RE engine code now looks like C, not like assembler;
Behaviour of RE modifiable by ‘use re’ directive;
Improved documentation;
Test suite significantly extended;
Syntax [:^upper:] etc., reserved inside character classes;

Incompatible changes
(?i) localized inside enclosing group;
$(is not interpolated into RE any more;
/RE/g may match at the same position (with non−zero length)
 after a zero−length match (bug fix).

See perlre and perlop.

Improved malloc()
See banner at the beginning of malloc.c for details.

Quicksort is internally implemented
Perl now contains its own highly optimized qsort() routine. The new qsort() is resistant to
inconsistent comparison functions, so Perl‘s sort() will not provoke coredumps any more when give
poorly written sort subroutines. (Some C library qsort() s that were being used before used to have t
problem.) In our testing, the new qsort() required the minimal number of pair−wise compares
average, among all known qsort() implementations.

See perlfunc/sort .

Reliable signals
Perl‘s signal handling is susceptible to random crashes, because signals arrive asynchronously, and
runtime is not reentrant at arbitrary times.

However, one experimental implementation of reliable signals is available when threads are enable
Thread::Signal . Also see INSTALL for how to build a Perl capable of threads.

Reliable stack pointers
The internals now reallocate the perl stack only at predictable times. In particular, magic calls never
reallocations of the stack, because all reentrancy of the runtime is handled using a "stack of stack
should improve reliability of cached stack pointers in the internals and in XSUBs.

More generous treatment of carriage returns
Perl used to complain if it encountered literal carriage returns in scripts. Now they are mostly treate
whitespace within program text. Inside string literals and here documents, literal carriage returns are
if they occur paired with newlines, or get interpreted as newlines if they stand alone. This behavior
that literal carriage returns in files should be avoided. You can get the older, more compatible (b
generous) behavior by defining the preprocessor symbol PERL_STRICT_CR when building perl. Of
596 Version 5.005_02 18−Oct−1998

perldelta Perl Programmers Reference Guide perldelta

erous
rns in

 that

bal
ll each

 a

ed to be

ings of
If you
l be
work
 option
course, all this has nothing whatever to do with how escapes like \r are handled within strings.

Note that this doesn‘t somehow magically allow you to keep all text files in DOS format. The gen
treatment only applies to files that perl itself parses. If your C compiler doesn‘t allow carriage retu
files, you may still be unable to build modules that need a C compiler.

Memory leaks
substr , pos and vec don‘t leak memory anymore when used in lvalue context. Many small leaks
impacted applications that embed multiple interpreters have been fixed.

Better support for multiple interpreters
The build−time option −DMULTIPLICITY has had many of the details reworked. Some previously glo
variables that should have been per−interpreter now are. With care, this allows interpreters to ca
other. See the PerlInterp extension on CPAN.

Behavior of local() on array and hash elements is now well−defined
See "Temporary Values via local() ".

%! is transparently tied to the Errno module
See perlvar, and Errno.

Pseudo−hashes are supported
See perlref.

EXPR foreach EXPR is supported
See perlsyn.

Keywords can be globally overridden
See perlsub.

$^E is meaningful on Win32
See perlvar.

foreach (1..1000000) optimized
foreach (1..1000000) is now optimized into a counting loop. It does not try to allocate
1000000−size list anymore.

Foo:: can be used as implicitly quoted package name
Barewords caused unintuitive behavior when a subroutine with the same name as a package happen
defined. Thus, new Foo @args , use the result of the call to Foo() instead of Foo being treated as a
literal. The recommended way to write barewords in the indirect object slot is new Foo:: @args . Note
that the method new() is called with a first argument of Foo, not Foo:: when you do that.

exists $Foo::{Bar::} tests existence of a package
It was impossible to test for the existence of a package without actually creating it before. Now exists
$Foo::{Bar::} can be used to test if the Foo::Bar namespace has been created.

Better locale support
See perllocale.

Experimental support for 64−bit platforms
Perl5 has always had 64−bit support on systems with 64−bit longs. Starting with 5.005, the beginn
experimental support for systems with 32−bit long and 64−bit ‘long long’ integers has been added.
add −DUSE_LONG_LONG to your ccflags in config.sh (or manually define it in perl.h) then perl wil
built with ‘long long’ support. There will be many compiler warnings, and the resultant perl may not
on all systems. There are many other issues related to third−party extensions and libraries. This
exists to allow people to work on those issues.
18−Oct−1998 Version 5.005_02 597

perldelta Perl Programmers Reference Guide perldelta

 it

, the

e not

of the

reate
es, and

tations.

ement

for

on
ses the
e

c

prototype() returns useful results on builtins
See prototype.

Extended support for exception handling
die() now accepts a reference value, and $@ gets set to that value in exception traps. This makes
possible to propagate exception objects. This is an undocumented experimental feature.

Re−blessing in DESTROY() supported for chaining DESTROY() methods
See Destructors.

All printf format conversions are handled internally
See printf.

New INIT keyword
INIT subs are like BEGIN and END, but they get run just before the perl runtime begins execution. e.g.
Perl Compiler makes use of INIT blocks to initialize and resolve pointers to XSUBs.

New lock keyword
The lock keyword is the fundamental synchronization primitive in threaded perl. When threads ar
enabled, it is currently a noop.

To minimize impact on source compatibility this keyword is "weak", i.e., any user−defined subroutine
same name overrides it, unless a use Thread has been seen.

New qr// operator
The qr// operator, which is syntactically similar to the other quote−like operators, is used to c
precompiled regular expressions. This compiled form can now be explicitly passed around in variabl
interpolated in other regular expressions. See perlop.

our is now a reserved word
Calling a subroutine with the name our will now provoke a warning when using the −w switch.

Tied arrays are now fully supported
See Tie::Array.

Tied handles support is better
Several missing hooks have been added. There is also a new base class for TIEARRAY implemen
See Tie::Array.

4th argument to substr
substr() can now both return and replace in one operation. The optional 4th argument is the replac
string. See substr.

Negative LENGTH argument to splice
splice() with a negative LENGTH argument now work similar to what the LENGTH did
substr() . Previously a negative LENGTH was treated as 0. See splice.

Magic lvalues are now more magical
When you say something like substr($x, 5) = "hi" , the scalar returned by substr() is special, in
that any modifications to it affect $x. (This is called a ‘magic lvalue’ because an ‘lvalue’ is something
the left side of an assignment.) Normally, this is exactly what you would expect to happen, but Perl u
same magic if you use substr() , pos() , or vec() in a context where they might be modified, lik
taking a reference with \ or as an argument to a sub that modifies @_. In previous versions, this ‘magic’ only
went one way, but now changes to the scalar the magic refers to ($x in the above example) affect the magi
lvalue too. For instance, this code now acts differently:

 $x = "hello";
 sub printit {
598 Version 5.005_02 18−Oct−1998

perldelta Perl Programmers Reference Guide perldelta

f lines.

made

CC and
$x = "g’bye";
print $_[0], "\n";

 }
 printit(substr($x, 0, 5));

In previous versions, this would print "hello", but it now prints "g‘bye".

<> now reads in records
If $/ is a referenence to an integer, or a scalar that holds an integer, <> will read in records instead o
For more info, see $/ .

Supported Platforms
Configure has many incremental improvements. Site−wide policy for building perl can now be
persistent, via Policy.sh. Configure also records the command−line arguments used in config.sh.

New Platforms
BeOS is now supported. See README.beos.

DOS is now supported under the DJGPP tools. See README.dos.

MPE/iX is now supported. See README.mpeix.

MVS (OS390) is now supported. See README.os390.

Changes in existing support
Win32 support has been vastly enhanced. Support for Perl Object, a C++ encapsulation of Perl. G
EGCS are now supported on Win32. See README.win32, aka perlwin32.

VMS configuration system has been rewritten. See README.vms.

The hints files for most Unix platforms have seen incremental improvements.

Modules and Pragmata

New Modules

B Perl compiler and tools. See B.

Data::Dumper
A module to pretty print Perl data. See Data::Dumper.

Errno
A module to look up errors more conveniently. See Errno.

File::Spec
A portable API for file operations.

ExtUtils::Installed
Query and manage installed modules.

ExtUtils::Packlist
Manipulate .packlist files.

Fatal
Make functions/builtins succeed or die.

IPC::SysV
Constants and other support infrastructure for System V IPC operations in perl.

Test
A framework for writing testsuites.
18−Oct−1998 Version 5.005_02 599

perldelta Perl Programmers Reference Guide perldelta

etting

 always
s were
rwritten

nsitive
Tie::Array
Base class for tied arrays.

Tie::Handle
Base class for tied handles.

Thread
Perl thread creation, manipulation, and support.

attrs
Set subroutine attributes.

fields
Compile−time class fields.

re Various pragmata to control behavior of regular expressions.

Changes in existing modules

CGI CGI has been updated to version 2.42.

POSIX
POSIX now has its own platform−specific hints files.

DB_File
DB_File supports version 2.x of Berkeley DB. See ext/DB_File/Changes .

MakeMaker
MakeMaker now supports writing empty makefiles, provides a way to specify that site umask()
policy should be honored. There is also better support for manipulation of .packlist files, and g
information about installed modules.

Extensions that have both architecture−dependent and architecture−independent files are now
installed completely in the architecture−dependent locations. Previously, the shareable part
shared both across architectures and across perl versions and were therefore liable to be ove
with newer versions that might have subtle incompatibilities.

CPAN
See <perlmodinstall and CPAN.

Cwd
Cwd::cwd is faster on most platforms.

Benchmark
Keeps better time.

Utility Changes
h2ph and related utilities have been vastly overhauled.

perlcc , a new experimental front end for the compiler is available.

The crude GNU configure emulator is now called configure.gnu to avoid trampling on
Configure under case−insensitive filesystems.

perldoc used to be rather slow. The slower features are now optional. In particular, case−inse
searches need the −i switch, and recursive searches need −r . You can set these switches in the PERLDOC
environment variable to get the old behavior.
600 Version 5.005_02 18−Oct−1998

perldelta Perl Programmers Reference Guide perldelta

sed the
e the

me, or
t it‘s

 Index

at

 name

to map
 0.

jump

h.
nding

Errno
Documentation Changes
Config.pm now has a glossary of variables.

Porting/patching.pod has detailed instructions on how to create and submit patches for perl.

perlport specifies guidelines on how to write portably.

perlmodinstall describes how to fetch and install modules from CPAN sites.

Some more Perl traps are documented now. See perltrap.

New Diagnostics

Ambiguous call resolved as CORE::%s() , qualify as such or use &
(W) A subroutine you have declared has the same name as a Perl keyword, and you have u
name without qualification for calling one or the other. Perl decided to call the builtin becaus
subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand before the subroutine na
qualify the name with its package. Alternatively, you can import the subroutine (or pretend tha
imported with the use subs pragma).

To silently interpret it as the Perl operator, use the CORE:: prefix on the operator (e.g.
CORE::log($x)) or by declaring the subroutine to be an object method (see attrs).

Bad index while coercing array into hash
(F) The index looked up in the hash found as the 0‘th element of a pseudo−hash is not legal.
values must be at 1 or greater. See perlref.

Bareword "%s" refers to nonexistent package
(W) You used a qualified bareword of the form Foo:: , but the compiler saw no other uses of th
namespace before that point. Perhaps you need to predeclare a package?

Can‘t call method "%s" on an undefined value
(F) You used the syntax of a method call, but the slot filled by the object reference or package
contains an undefined value. Something like this will reproduce the error:

 $BADREF = 42;
 process $BADREF 1,2,3;
 $BADREF−>process(1,2,3);

Can‘t coerce array into hash
(F) You used an array where a hash was expected, but the array has no information on how
from keys to array indices. You can do that only with arrays that have a hash reference at index

Can‘t goto subroutine from an eval−string
(F) The "goto subroutine" call can‘t be used to jump out of an eval "string". (You can use it to
out of an eval {BLOCK}, but you probably don‘t want to.)

Can‘t localize pseudo−hash element
(F) You said something like local $ar−>{‘key‘}, where $ar is a reference to a pseudo−has
That hasn‘t been implemented yet, but you can get a similar effect by localizing the correspo
array element directly — local $ar−>[$ar−>[0]{‘key‘}].

Can‘t use %%! because Errno.pm is not available
(F) The first time the %! hash is used, perl automatically loads the Errno.pm module. The
module is expected to tie the %! hash to provide symbolic names for $! errno values.

Cannot find an opnumber for "%s"
(F) A string of a form CORE::word was given to prototype() , but there is no builtin with the
name word .
18−Oct−1998 Version 5.005_02 601

perldelta Perl Programmers Reference Guide perldelta

h ".]"
 regular

 with
nside a
\]".

 with
nside a
=\]".

ly

 is not
ted

ference
target

mber.

 index 0

 name.
 The

ed by

ich can
l string
Character class syntax [. .] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with "[." and ending wit
is reserved for future extensions. If you need to represent those character sequences inside a
expression character class, just quote the square brackets with the backslash: "\[." and ".\]".

Character class syntax [: :] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with "[:" and ending
":]" is reserved for future extensions. If you need to represent those character sequences i
regular expression character class, just quote the square brackets with the backslash: "\[:" and ":

Character class syntax [= =] is reserved for future extensions
(W) Within regular expression character classes ([]) the syntax beginning with "[=" and ending
"=]" is reserved for future extensions. If you need to represent those character sequences i
regular expression character class, just quote the square brackets with the backslash: "\[=" and "

%s: Eval−group in insecure regular expression
(F) Perl detected tainted data when trying to compile a regular expression that contains the (?{ ...
}) zero−width assertion, which is unsafe. See (?{ code }), and perlsec.

%s: Eval−group not allowed, use re ‘eval’
(F) A regular expression contained the (?{ ... }) zero−width assertion, but that construct is on
allowed when the use re ‘eval’ pragma is in effect. See (?{ code }).

%s: Eval−group not allowed at run time
(F) Perl tried to compile a regular expression containing the (?{ ... }) zero−width assertion at run
time, as it would when the pattern contains interpolated values. Since that is a security risk, it
allowed. If you insist, you may still do this by explicitly building the pattern from an interpola
string at run time and using that in an eval() . See (?{ code }).

Explicit blessing to ‘’ (assuming package main)
(W) You are blessing a reference to a zero length string. This has the effect of blessing the re
into the package main. This is usually not what you want. Consider providing a default
package, e.g. bless($ref, $p or ‘MyPackage’);

Illegal hex digit ignored
(W) You may have tried to use a character other than 0 − 9 or A − F in a hexadecimal nu
Interpretation of the hexadecimal number stopped before the illegal character.

No such array field
(F) You tried to access an array as a hash, but the field name used is not defined. The hash at
should map all valid field names to array indices for that to work.

No such field "%s" in variable %s of type %s
(F) You tried to access a field of a typed variable where the type does not know about the field
The field names are looked up in the %FIELDS hash in the type package at compile time.
%FIELDS hash is usually set up with the ‘fields’ pragma.

Out of memory during ridiculously large request
(F) You can‘t allocate more than 2^31+"small amount" bytes. This error is most likely to be caus
a typo in the Perl program. e.g., $arr[time] instead of $arr[$time].

Range iterator outside integer range
(F) One (or both) of the numeric arguments to the range operator ".." are outside the range wh
be represented by integers internally. One possible workaround is to force Perl to use magica
increment by prepending "0" to your numbers.
602 Version 5.005_02 18−Oct−1998

perldelta Perl Programmers Reference Guide perldelta

bably

nts (for
eant to

ord, so
e, or
y either

_ALL
r your
ettings.

ill use,
ssage
Recursive inheritance detected while looking for method ‘%s’ in package ‘%s’
(F) More than 100 levels of inheritance were encountered while invoking a method. Pro
indicates an unintended loop in your inheritance hierarchy.

Reference found where even−sized list expected
(W) You gave a single reference where Perl was expecting a list with an even number of eleme
assignment to a hash). This usually means that you used the anon hash constructor when you m
use parens. In any case, a hash requires key/value pairs.

 %hash = { one => 1, two => 2, }; # WRONG
 %hash = [qw/ an anon array /]; # WRONG
 %hash = (one => 1, two => 2,); # right
 %hash = qw(one 1 two 2); # also fine

Undefined value assigned to typeglob
(W) An undefined value was assigned to a typeglob, a la *foo = undef . This does nothing. It‘s
possible that you really mean undef *foo .

Use of reserved word "%s" is deprecated
(D) The indicated bareword is a reserved word. Future versions of perl may use it as a keyw
you‘re better off either explicitly quoting the word in a manner appropriate for its context of us
using a different name altogether. The warning can be suppressed for subroutine names b
adding a & prefix, or using a package qualifier, e.g. &our() , or Foo::our() .

perl: warning: Setting locale failed.
(S) The whole warning message will look something like:

 perl: warning: Setting locale failed.
 perl: warning: Please check that your locale settings:
 LC_ALL = "En_US",
 LANG = (unset)
 are supported and installed on your system.
 perl: warning: Falling back to the standard locale ("C").

Exactly what were the failed locale settings varies. In the above the settings were that the LC
was "En_US" and the LANG had no value. This error means that Perl detected that you and/o
system administrator have set up the so−called variable system but Perl could not use those s
This was not dead serious, fortunately: there is a "default locale" called "C" that Perl can and w
the script will be run. Before you really fix the problem, however, you will get the same error me
each time you run Perl. How to really fix the problem can be found in perllocale section LOCALE
PROBLEMS.

Obsolete Diagnostics

Can‘t mktemp()
(F) The mktemp() routine failed for some reason while trying to process a −e switch. Maybe your
/tmp partition is full, or clobbered.

Can‘t write to temp file for −e: %s
(F) The write routine failed for some reason while trying to process a −e switch. Maybe your /tmp
partition is full, or clobbered.

Cannot open temporary file
(F) The create routine failed for some reason while trying to process a −e switch. Maybe your /tmp
partition is full, or clobbered.
18−Oct−1998 Version 5.005_02 603

perldelta Perl Programmers Reference Guide perldelta

n the
Home

.
utput
BUGS
If you find what you think is a bug, you might check the headers of recently posted articles i
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/, the Perl
Page.

If you believe you have an unreported bug, please run the perlbug program included with your release
Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along with the o
of perl −V , will be sent off to <perlbug@perl.com to be analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Gurusamy Sarathy <gsar@umich.edu, with many contributions from The Perl Porters.

Send omissions or corrections to <perlbug@perl.com.
604 Version 5.005_02 18−Oct−1998

perllocale Perl Programmers Reference Guide perllocale

alent of
guages

 decimal
plication

d called
all, and

quests

e,

t
nd the

 a few,
ocales
d add
livered

le, the

t.

or

their
ion
d only
NAME
perllocale − Perl locale handling (internationalization and localization)

DESCRIPTION
Perl supports language−specific notions of data such as "is this a letter", "what is the uppercase equiv
this letter", and "which of these letters comes first". These are important issues, especially for lan
other than English—but also for English: it would be naïve to imagine that A−Za−z defines all the "letters"
needed to write in English. Perl is also aware that some character other than ’.’ may be preferred as a
point, and that output date representations may be language−specific. The process of making an ap
take account of its users’ preferences in such matters is called internationalization (often abbreviated as
i18n); telling such an application about a particular set of preferences is known as localization (l10n).

Perl can understand language−specific data via the standardized (ISO C, XPG4, POSIX 1.c) metho
"the locale system". The locale system is controlled per application using one pragma, one function c
several environment variables.

NOTE: This feature is new in Perl 5.004, and does not apply unless an application specifically re
it—see Backward compatibility. The one exception is that write() now always uses the current locale −
see "NOTES".

PREPARING TO USE LOCALES
If Perl applications are to understand and present your data correctly according a locale of your choicall of
the following must be true:

 Your operating system must support the locale system. If it does, you should find that the
setlocale() function is a documented part of its C library.

 Definitions for locales that you use must be installed. You, or your system administrator, mus
make sure that this is the case. The available locales, the location in which they are kept, a
manner in which they are installed all vary from system to system. Some systems provide only
hard−wired locales and do not allow more to be added. Others allow you to add "canned" l
provided by the system supplier. Still others allow you or the system administrator to define an
arbitrary locales. (You may have to ask your supplier to provide canned locales that are not de
with your operating system.) Read your system documentation for further illumination.

 Perl must believe that the locale system is supported. If it does, perl −V:d_setlocale will
say that the value for d_setlocale is define .

If you want a Perl application to process and present your data according to a particular loca
application code should include the use locale pragma (see L<The use locale pragma) where
appropriate, and at least one of the following must be true:

 The locale−determining environment variables (see "ENVIRONMENT") must be correctly set up
at the time the application is started, either by yourself or by whoever set up your system accoun

 The application must set its own locale using the method described in The setlocale function.

USING LOCALES

The use locale pragma
By default, Perl ignores the current locale. The use locale pragma tells Perl to use the current locale f
some operations:

 The comparison operators (lt , le , cmp, ge , and gt) and the POSIX string collation functions
strcoll() and strxfrm() use LC_COLLATE. sort() is also affected if used without an
explicit comparison function, because it uses cmp by default.

Note: eq and ne are unaffected by locale: they always perform a byte−by−byte comparison of
scalar operands. What‘s more, if cmp finds that its operands are equal according to the collat
sequence specified by the current locale, it goes on to perform a byte−by−byte comparison, an
18−Oct−1998 Version 5.005_02 605

perllocale Perl Programmers Reference Guide perllocale

two
 is

ng

 to be

ssed in
on
 Read

turns a
nt in a

ent. It
le locale

 to that
 call to
 gave

 to the
returns (equal) if the operands are bit−for−bit identical. If you really want to know whether
strings—which eq and cmp may consider different—are equal as far as collation in the locale
concerned, see the discussion in Category LC_COLLATE: Collation.

 Regular expressions and case−modification functions (uc() , lc() , ucfirst() , and
lcfirst()) use LC_CTYPE

 The formatting functions (printf() , sprintf() and write()) use LC_NUMERIC

 The POSIX date formatting function (strftime()) uses LC_TIME.

LC_COLLATE, LC_CTYPE, and so on, are discussed further in LOCALE CATEGORIES.

The default behavior is restored with the no locale pragma, or upon reaching the end of block enclosi
use locale .

The string result of any operation that uses locale information is tainted, as it is possible for a locale
untrustworthy. See "SECURITY".

The setlocale function
You can switch locales as often as you wish at run time with the POSIX::setlocale() function:

 # This functionality not usable prior to Perl 5.004
 require 5.004;

 # Import locale−handling tool set from POSIX module.
 # This example uses: setlocale −− the function call
 # LC_CTYPE −− explained below
 use POSIX qw(locale_h);

 # query and save the old locale
 $old_locale = setlocale(LC_CTYPE);

 setlocale(LC_CTYPE, "fr_CA.ISO8859−1");
 # LC_CTYPE now in locale "French, Canada, codeset ISO 8859−1"

 setlocale(LC_CTYPE, "");
 # LC_CTYPE now reset to default defined by LC_ALL/LC_CTYPE/LANG
 # environment variables. See below for documentation.

 # restore the old locale
 setlocale(LC_CTYPE, $old_locale);

The first argument of setlocale() gives the category, the second the locale. The category tells in what
aspect of data processing you want to apply locale−specific rules. Category names are discu
LOCALE CATEGORIES and "ENVIRONMENT". The locale is the name of a collection of customizati
information corresponding to a particular combination of language, country or territory, and codeset.
on for hints on the naming of locales: not all systems name locales as in the example.

If no second argument is provided and the category is something else than LC_ALL, the function re
string naming the current locale for the category. You can use this value as the second argume
subsequent call to setlocale() .

If no second argument is provided and the category is LC_ALL, the result is implementation−depend
may be a string of concatenated locales names (separator also implementation−dependent) or a sing
name. Please consult your setlocale(3) for details.

If a second argument is given and it corresponds to a valid locale, the locale for the category is set
value, and the function returns the now−current locale value. You can then use this in yet another
setlocale() . (In some implementations, the return value may sometimes differ from the value you
as the second argument—think of it as an alias for the value you gave.)

As the example shows, if the second argument is an empty string, the category‘s locale is returned
606 Version 5.005_02 18−Oct−1998

perllocale Perl Programmers Reference Guide perllocale

to the
n after

ed, and

le

 the

be
 name of

 same
POSIX
ion
its

 when

. Perl
default specified by the corresponding environment variables. Generally, this results in a return
default that was in force when Perl started up: changes to the environment made by the applicatio
startup may or may not be noticed, depending on your system‘s C library.

If the second argument does not correspond to a valid locale, the locale for the category is not chang
the function returns undef.

For further information about the categories, consult setlocale(3).

Finding locales
For locales available in your system, consult also setlocale(3) to see whether it leads to the list of availab
locales (search for the SEE ALSO section). If that fails, try the following command lines:

 locale −a

 nlsinfo

 ls /usr/lib/nls/loc

 ls /usr/lib/locale

 ls /usr/lib/nls

and see whether they list something resembling these

 en_US.ISO8859−1 de_DE.ISO8859−1 ru_RU.ISO8859−5
 en_US.iso88591 de_DE.iso88591 ru_RU.iso88595
 en_US de_DE ru_RU
 en de ru
 english german russian
 english.iso88591 german.iso88591 russian.iso88595
 english.roman8 russian.koi8r

Sadly, even though the calling interface for setlocale() has been standardized, names of locales and
directories where the configuration resides have not been. The basic form of the name is
language_country/territory.codeset, but the latter parts after language are not always present. The language
and country are usually from the standards ISO 3166 and ISO 639, the two−letter abbreviations for the
countries and the languages of the world, respectively. The codeset part often mentions some ISO 8859
character set, the Latin codesets. For example, ISO 8859−1 is the so−called "Western codeset" that can
used to encode most Western European languages. Again, there are several ways to write even the
that one standard. Lamentably.

Two special locales are worth particular mention: "C" and "POSIX". Currently these are effectively the
locale: the difference is mainly that the first one is defined by the C standard, the second by the
standard. They define the default locale in which every program starts in the absence of locale informat
in its environment. (The default default locale, if you will.) Its language is (American) English and
character codeset ASCII.

NOTE: Not all systems have the "POSIX" locale (not all systems are POSIX−conformant), so use "C"
you need explicitly to specify this default locale.

LOCALE PROBLEMS
You may encounter the following warning message at Perl startup:

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
 LC_ALL = "En_US",
 LANG = (unset)
 are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

This means that your locale settings had LC_ALL set to "En_US" and LANG exists but has no value
18−Oct−1998 Version 5.005_02 607

perllocale Perl Programmers Reference Guide perllocale

le that
ention

xample,
 well as

l under

under
d if later

od is
cale
within
 see the

riable
ds’

 settings
−like

e. We

r own
help of

y
nment

 do not
e error

e
 locale
tried to believe you but could not. Instead, Perl gave up and fell back to the "C" locale, the default loca
is supposed to work no matter what. This usually means your locale settings were wrong, they m
locales your system has never heard of, or the locale installation in your system has problems (for e
some system files are broken or missing). There are quick and temporary fixes to these problems, as
more thorough and lasting fixes.

Temporarily fixing locale problems
The two quickest fixes are either to render Perl silent about any locale inconsistencies or to run Per
the default locale "C".

Perl‘s moaning about locale problems can be silenced by setting the environment variable
PERL_BADLANG to a non−zero value, for example "1". This method really just sweeps the problem
the carpet: you tell Perl to shut up even when Perl sees that something is wrong. Do not be surprise
something locale−dependent misbehaves.

Perl can be run under the "C" locale by setting the environment variable LC_ALL to "C". This meth
perhaps a bit more civilized than the PERL_BADLANG approach, but setting LC_ALL (or other lo
variables) may affect other programs as well, not just Perl. In particular, external programs run from
Perl will see these changes. If you make the new settings permanent (read on), all programs you run
changes. See ENVIRONMENT for for the full list of relevant environment variables and USING LOCALES
for their effects in Perl. Effects in other programs are easily deducible. For example, the va
LC_COLLATE may well affect your sort program (or whatever the program that arranges ‘recor
alphabetically in your system is called).

You can test out changing these variables temporarily, and if the new settings seem to help, put those
into your shell startup files. Consult your local documentation for the exact details. For in Bourne
shells (sh, ksh, bash, zsh):

LC_ALL=en_US.ISO8859−1
export LC_ALL

This assumes that we saw the locale "en_US.ISO8859−1" using the commands discussed abov
decided to try that instead of the above faulty locale "En_US"—and in Cshish shells (csh, tcsh)

setenv LC_ALL en_US.ISO8859−1

If you do not know what shell you have, consult your local helpdesk or the equivalent.

Permanently fixing locale problems
The slower but superior fixes are when you may be able to yourself fix the misconfiguration of you
environment variables. The mis(sing)configuration of the whole system‘s locales usually requires the
your friendly system administrator.

First, see earlier in this document about Finding locales. That tells how to find which locales are reall
supported—and more importantly, installed—on your system. In our example error message, enviro
variables affecting the locale are listed in the order of decreasing importance (and unset variables
matter). Therefore, having LC_ALL set to "En_US" must have been the bad choice, as shown by th
message. First try fixing locale settings listed first.

Second, if using the listed commands you see something exactly (prefix matches do not count and cas
usually counts) like "En_US" without the quotes, then you should be okay because you are using a
name that should be installed and available in your system. In this case, see
Fixing system locale configuration.

Permanently fixing your locale configuration
This is when you see something like:

perl: warning: Please check that your locale settings:
 LC_ALL = "En_US",
 LANG = (unset)
608 Version 5.005_02 18−Oct−1998

perllocale Perl Programmers Reference Guide perllocale

gs like
ist and
ecause

and ask
 there is

eric

le

ion

orrectly
 are supported and installed on your system.

but then cannot see that "En_US" listed by the above−mentioned commands. You may see thin
"en_US.ISO8859−1", but that isn‘t the same. In this case, try running under a locale that you can l
which somehow matches what you tried. The rules for matching locale names are a bit vague b
standardization is weak in this area. See again the Finding locales about general rules.

Permanently fixing system locale configuration
Contact a system administrator (preferably your own) and report the exact error message you get,
them to read this same documentation you are now reading. They should be able to check whether
something wrong with the locale configuration of the system. The Finding locales section is unfortunately a
bit vague about the exact commands and places because these things are not that standardized.

The localeconv function
The POSIX::localeconv() function allows you to get particulars of the locale−dependent num
formatting information specified by the current LC_NUMERIC and LC_MONETARY locales. (If you just
want the name of the current locale for a particular category, use POSIX::setlocale() with a single
parameter—see The setlocale function.)

 use POSIX qw(locale_h);

 # Get a reference to a hash of locale−dependent info
 $locale_values = localeconv();

 # Output sorted list of the values
 for (sort keys %$locale_values) {
 printf "%−20s = %s\n", $_, $locale_values−>{$_}
 }

localeconv() takes no arguments, and returns a reference to a hash. The keys of this hash are variab
names for formatting, such as decimal_point and thousands_sep . The values are the
corresponding, er, values. See localeconv for a longer example listing the categories an implementat
might be expected to provide; some provide more and others fewer. You don‘t need an explicituse
locale , because localeconv() always observes the current locale.

Here‘s a simple−minded example program that rewrites its command−line parameters as integers c
formatted in the current locale:

 # See comments in previous example
 require 5.004;
 use POSIX qw(locale_h);

 # Get some of locale’s numeric formatting parameters
 my ($thousands_sep, $grouping) =
 @{localeconv()}{’thousands_sep’, ’grouping’};

 # Apply defaults if values are missing
 $thousands_sep = ’,’ unless $thousands_sep;

grouping and mon_grouping are packed lists
of small integers (characters) telling the
grouping (thousand_seps and mon_thousand_seps
being the group dividers) of numbers and
monetary quantities. The integers’ meanings:
255 means no more grouping, 0 means repeat
the previous grouping, 1−254 means use that
as the current grouping. Grouping goes from
right to left (low to high digits). In the
below we cheat slightly by never using anything
else than the first grouping (whatever that is).
18−Oct−1998 Version 5.005_02 609

perllocale Perl Programmers Reference Guide perllocale

tegories

der:

ould be

e
xample

ou can

res

 might
if ($grouping) {
 @grouping = unpack("C*", $grouping);
} else {
 @grouping = (3);
}

 # Format command line params for current locale
 for (@ARGV) {
 $_ = int; # Chop non−integer part
 1 while
 s/(\d)(\d{$grouping[0]}($|$thousands_sep))/$1$thousands_sep$2/;
 print "$_";
 }
 print "\n";

LOCALE CATEGORIES
The following subsections describe basic locale categories. Beyond these, some combination ca
allow manipulation of more than one basic category at a time. See "ENVIRONMENT" for a discussion of
these.

Category LC_COLLATE: Collation
In the scope of use locale , Perl looks to the LC_COLLATE environment variable to
determine the application‘s notions on collation (ordering) of
characters. For example, ‘b’ follows ‘a’ in Latin alphabets, but where
do ‘á’ and ‘å’ belong? And while ‘color’ follows ‘chocolate’ in English,
what about in Spanish?

The following collations all make sense and you may meet any of them if you "use locale".

A B C D E a b c d e
A a B b C c D d D e
a A b B c C d D e E
a b c d e A B C D E

Here is a code snippet to tell what alphanumeric characters are in the current locale, in that locale‘s or

 use locale;
 print +(sort grep /\w/, map { chr() } 0..255), "\n";

Compare this with the characters that you see and their order if you state explicitly that the locale sh
ignored:

 no locale;
 print +(sort grep /\w/, map { chr() } 0..255), "\n";

This machine−native collation (which is what you get unless use locale has appeared earlier in the sam
block) must be used for sorting raw binary data, whereas the locale−dependent collation of the first e
is useful for natural text.

As noted in USING LOCALES, cmp compares according to the current collation locale when use locale
is in effect, but falls back to a byte−by−byte comparison for strings that the locale says are equal. Y
use POSIX::strcoll() if you don‘t want this fall−back:

 use POSIX qw(strcoll);
 $equal_in_locale =
 !strcoll("space and case ignored", "SpaceAndCaseIgnored");

$equal_in_locale will be true if the collation locale specifies a dictionary−like ordering that igno
space characters completely and which folds case.

If you have a single string that you want to check for "equality in locale" against several others, you
610 Version 5.005_02 18−Oct−1998

perllocale Perl Programmers Reference Guide perllocale

risons
arison
med
ple
c (see
, then

ortable
‘t call

ercase.

ssibly

g
ts—for
think you could gain a little efficiency by using POSIX::strxfrm() in conjunction with eq :

 use POSIX qw(strxfrm);
 $xfrm_string = strxfrm("Mixed−case string");
 print "locale collation ignores spaces\n"
 if $xfrm_string eq strxfrm("Mixed−casestring");
 print "locale collation ignores hyphens\n"
 if $xfrm_string eq strxfrm("Mixedcase string");
 print "locale collation ignores case\n"
 if $xfrm_string eq strxfrm("mixed−case string");

strxfrm() takes a string and maps it into a transformed string for use in byte−by−byte compa
against other transformed strings during collation. "Under the hood", locale−affected Perl comp
operators call strxfrm() for both operands, then do a byte−by−byte comparison of the transfor
strings. By calling strxfrm() explicitly and using a non locale−affected comparison, the exam
attempts to save a couple of transformations. But in fact, it doesn‘t save anything: Perl magi
Magic Variables) creates the transformed version of a string the first time it‘s needed in a comparison
keeps this version around in case it‘s needed again. An example rewritten the easy way with cmp runs just
about as fast. It also copes with null characters embedded in strings; if you call strxfrm() directly, it
treats the first null it finds as a terminator. don‘t expect the transformed strings it produces to be p
across systems—or even from one revision of your operating system to the next. In short, don
strxfrm() directly: let Perl do it for you.

Note: use locale isn‘t shown in some of these examples because it isn‘t needed: strcoll() and
strxfrm() exist only to generate locale−dependent results, and so always obey the current LC_COLLATE
locale.

Category LC_CTYPE: Character Types
In the scope of use locale , Perl obeys the LC_CTYPE locale setting. This controls
the application‘s notion of which characters are alphabetic. This
affects Perl‘s \w regular expression metanotation, which stands for
alphanumeric characters—that is, alphabetic and numeric characters.
(Consult perlre for more information about regular expressions.) Thanks
to LC_CTYPE, depending on your locale setting, characters like ‘æ‘, ‘ð‘,
‘‘, and ‘ø’ may be understood as \w characters.

The LC_CTYPE locale also provides the map used in transliterating characters between lower and upp
 This affects the case−mapping functions—lc() , lcfirst, uc() , and ucfirst() ; case−mapping
interpolation with \l , \L , \u , or \U in double−quoted strings and s/// substitutions; and
case−independent regular expression pattern matching using the i modifier.

Finally, LC_CTYPE affects the POSIX character−class test functions—isalpha() , islower() , and
so on. For example, if you move from the "C" locale to a 7−bit Scandinavian one, you may find—po
to your surprise—that "|" moves from the ispunct() class to isalpha() .

Note: A broken or malicious LC_CTYPE locale definition may result in clearly ineligible characters bein
considered to be alphanumeric by your application. For strict matching of (mundane) letters and digi
example, in command strings—locale−aware applications should use \w inside a no locale block. See
"SECURITY".

Category LC_NUMERIC: Numeric Formatting
In the scope of use locale , Perl obeys the LC_NUMERIC locale information, which
controls an application‘s idea of how numbers should be formatted for
human readability by the printf(), sprintf(), and write() functions.
String−to−numeric conversion by the POSIX::strtod() function is also
affected. In most implementations the only effect is to change the
character used for the decimal point—perhaps from ’.’ to ‘,’. These
functions aren‘t aware of such niceties as thousands separation and so
18−Oct−1998 Version 5.005_02 611

perllocale Perl Programmers Reference Guide perllocale

ose
 issue.)

n
plex

k.

, is

 long

rate

ctions

sues.

 give
on. (See The localeconv function if you care about these things.)

Output produced by print() is never affected by the current locale: it is independent of whether use
locale or no locale is in effect, and corresponds to what you‘d get from printf() in the "C" locale.
The same is true for Perl‘s internal conversions between numeric and string formats:

 use POSIX qw(strtod);
 use locale;

 $n = 5/2; # Assign numeric 2.5 to $n

 $a = " $n"; # Locale−independent conversion to string

 print "half five is $n\n"; # Locale−independent output

 printf "half five is %g\n", $n; # Locale−dependent output

 print "DECIMAL POINT IS COMMA\n"
 if $n == (strtod("2,5"))[0]; # Locale−dependent conversion

Category LC_MONETARY: Formatting of monetary amounts
The C standard defines the LC_MONETARY category, but no function that is affected by its contents. (Th
with experience of standards committees will recognize that the working group decided to punt on the
 Consequently, Perl takes no notice of it. If you really want to use LC_MONETARY, you can query its
contents—see The localeconv function—and use the information that it returns in your application‘s ow
formatting of currency amounts. However, you may well find that the information, voluminous and com
though it may be, still does not quite meet your requirements: currency formatting is a hard nut to crac

LC_TIME
Output produced by POSIX::strftime() , which builds a formatted human−readable date/time string
affected by the current LC_TIME locale. Thus, in a French locale, the output produced by the %B format
element (full month name) for the first month of the year would be "janvier". Here‘s how to get a list of
month names in the current locale:

 use POSIX qw(strftime);
 for (0..11) {
 $long_month_name[$_] =
 strftime("%B", 0, 0, 0, 1, $_, 96);
 }

Note: use locale isn‘t needed in this example: as a function that exists only to gene
locale−dependent results, strftime() always obeys the current LC_TIME locale.

Other categories
The remaining locale category, LC_MESSAGES (possibly supplemented by others in particular
implementations) is not currently used by Perl—except possibly to affect the behavior of library fun
called by extensions outside the standard Perl distribution.

SECURITY
Although the main discussion of Perl security issues can be found in perlsec, a discussion of Perl‘s locale
handling would be incomplete if it did not draw your attention to locale−dependent security is
Locales—particularly on systems that allow unprivileged users to build their own locales—are
untrustworthy. A malicious (or just plain broken) locale can make a locale−aware application
unexpected results. Here are a few possibilities:

 Regular expression checks for safe file names or mail addresses using \w may be spoofed by an
LC_CTYPE locale that claims that characters such as ">" and "|" are alphanumeric.

 String interpolation with case−mapping, as in, say, $dest = "C:\U$name.$ext", may produce
dangerous results if a bogus LC_CTYPE case−mapping table is in effect.
612 Version 5.005_02 18−Oct−1998

perllocale Perl Programmers Reference Guide perllocale

a
le

head

 in US

 a

 may be
ming
 these

r own

ere is a

e

atch
 If the decimal point character in the LC_NUMERIC locale is surreptitiously changed from a dot to
comma, sprintf("%g", 0.123456e3) produces a string result of "123,456". Many peop
would interpret this as one hundred and twenty−three thousand, four hundred and fifty−six.

 A sneaky LC_COLLATE locale could result in the names of students with "D" grades appearing a
of those with "A"s.

 An application that takes the trouble to use information in LC_MONETARY may format debits as if
they were credits and vice versa if that locale has been subverted. Or it might make payments
dollars instead of Hong Kong dollars.

 The date and day names in dates formatted by strftime() could be manipulated to advantage by
malicious user able to subvert the LC_DATE locale. ("Look—it says I wasn‘t in the building on
Sunday.")

Such dangers are not peculiar to the locale system: any aspect of an application‘s environment which
modified maliciously presents similar challenges. Similarly, they are not specific to Perl: any program
language that allows you to write programs that take account of their environment exposes you to
issues.

Perl cannot protect you from all possibilities shown in the examples—there is no substitute for you
vigilance—but, when use locale is in effect, Perl uses the tainting mechanism (see perlsec) to mark
string results that become locale−dependent, and which may be untrustworthy in consequence. H
summary of the tainting behavior of operators and functions that may be affected by the locale:

Comparison operators (lt , le , ge , gt and cmp):
Scalar true/false (or less/equal/greater) result is never tainted.

Case−mapping interpolation (with \l , \L , \u or \U)
Result string containing interpolated material is tainted if use locale is in effect.

Matching operator (m//):
Scalar true/false result never tainted.

Subpatterns, either delivered as a list−context result or as $1 etc. are tainted if use locale is in
effect, and the subpattern regular expression contains \w (to match an alphanumeric character), \W
(non−alphanumeric character), \s (white−space character), or \S (non white−space character). Th
matched−pattern variable, $&, $‘ (pre−match), $’ (post−match), and $+ (last match) are also tainted
if use locale is in effect and the regular expression contains \w , \W, \s , or \S .

Substitution operator (s///):
Has the same behavior as the match operator. Also, the left operand of =~ becomes tainted when use
locale in effect if modified as a result of a substitution based on a regular expression m
involving \w , \W, \s , or \S ; or of case−mapping with \l , \L ,\u or \U .

In−memory formatting function (sprintf()):
Result is tainted if "use locale" is in effect.

Output formatting functions (printf() and write()):
Success/failure result is never tainted.

Case−mapping functions (lc() , lcfirst() , uc() , ucfirst()):
Results are tainted if use locale is in effect.

POSIX locale−dependent functions (localeconv() , strcoll() ,
strftime() , strxfrm()):

Results are never tainted.
18−Oct−1998 Version 5.005_02 613

perllocale Perl Programmers Reference Guide perllocale

 run: a
cks are

 second
t can.

re can
or if
ment
"0" or

he
hould

O C,
POSIX character class tests (isalnum() , isalpha() , isdigit() ,
isgraph() , islower() , isprint() , ispunct() , isspace() , isupper() ,
isxdigit()):

True/false results are never tainted.

Three examples illustrate locale−dependent tainting. The first program, which ignores its locale, won‘t
value taken directly from the command line may not be used to name an output file when taint che
enabled.

 #/usr/local/bin/perl −T
 # Run with taint checking

 # Command line sanity check omitted...
 $tainted_output_file = shift;

 open(F, ">$tainted_output_file")
 or warn "Open of $untainted_output_file failed: $!\n";

The program can be made to run by "laundering" the tainted value through a regular expression: the
example—which still ignores locale information—runs, creating the file named on its command line if i

 #/usr/local/bin/perl −T

 $tainted_output_file = shift;
 $tainted_output_file =~ m%[\w/]+%;
 $untainted_output_file = $&;

 open(F, ">$untainted_output_file")
 or warn "Open of $untainted_output_file failed: $!\n";

Compare this with a similar but locale−aware program:

 #/usr/local/bin/perl −T

 $tainted_output_file = shift;
 use locale;
 $tainted_output_file =~ m%[\w/]+%;
 $localized_output_file = $&;

 open(F, ">$localized_output_file")
 or warn "Open of $localized_output_file failed: $!\n";

This third program fails to run because $& is tainted: it is the result of a match involving \w while use
locale is in effect.

ENVIRONMENT

PERL_BADLANG
A string that can suppress Perl‘s warning about failed locale settings at startup. Failu
occur if the locale support in the operating system is lacking (broken) in some way—
you mistyped the name of a locale when you set up your environment. If this environ
variable is absent, or has a value that does not evaluate to integer zero—that is,
""—Perl will complain about locale setting failures.

NOTE: PERL_BADLANG only gives you a way to hide the warning message. T
message tells about some problem in your system‘s locale support, and you s
investigate what the problem is.

The following environment variables are not specific to Perl: They are part of the standardized (IS
XPG4, POSIX 1.c) setlocale() method for controlling an application‘s opinion on data.
614 Version 5.005_02 18−Oct−1998

perllocale Perl Programmers Reference Guide perllocale

t of

nce

e

n

e

he
g

sort

ilar
 (see
t a

that the

 The
scalar
lar

 times
d in any
more
and the
 system

 if a
point

 block
LC_ALL LC_ALL is the "override−all" locale environment variable. If set, it overrides all the res
the locale environment variables.

LC_CTYPE In the absence of LC_ALL, LC_CTYPE chooses the character type locale. In the abse
of both LC_ALL and LC_CTYPE, LANG chooses the character type locale.

LC_COLLATE In the absence of LC_ALL, LC_COLLATE chooses the collation (sorting) locale. In th
absence of both LC_ALL and LC_COLLATE, LANG chooses the collation locale.

LC_MONETARY
In the absence of LC_ALL, LC_MONETARY chooses the monetary formatting locale. I
the absence of both LC_ALL and LC_MONETARY, LANG chooses the monetary formatting
locale.

LC_NUMERIC In the absence of LC_ALL, LC_NUMERIC chooses the numeric format locale. In th
absence of both LC_ALL and LC_NUMERIC, LANG chooses the numeric format.

LC_TIME In the absence of LC_ALL, LC_TIME chooses the date and time formatting locale. In t
absence of both LC_ALL and LC_TIME, LANG chooses the date and time formattin
locale.

LANG LANG is the "catch−all" locale environment variable. If it is set, it is used as the last re
after the overall LC_ALL and the category−specific LC_... .

NOTES

Backward compatibility
Versions of Perl prior to 5.004 mostly ignored locale information, generally behaving as if something sim
to the "C" locale were always in force, even if the program environment suggested otherwise
The setlocale function). By default, Perl still behaves this way for backward compatibility. If you wan
Perl application to pay attention to locale information, you must use the use locale pragma (see
The use locale Pragma) to instruct it to do so.

Versions of Perl from 5.002 to 5.003 did use the LC_CTYPE information if available; that is, \w did
understand what were the letters according to the locale environment variables. The problem was
user had no control over the feature: if the C library supported locales, Perl used them.

I18N:Collate obsolete
In versions of Perl prior to 5.004, per−locale collation was possible using the I18N::Collate library
module. This module is now mildly obsolete and should be avoided in new applications.
LC_COLLATE functionality is now integrated into the Perl core language: One can use locale−specific
data completely normally with use locale , so there is no longer any need to juggle with the sca
references of I18N::Collate .

Sort speed and memory use impacts
Comparing and sorting by locale is usually slower than the default sorting; slow−downs of two to four
have been observed. It will also consume more memory: once a Perl scalar variable has participate
string comparison or sorting operation obeying the locale collation rules, it will take 3−15 times
memory than before. (The exact multiplier depends on the string‘s contents, the operating system
locale.) These downsides are dictated more by the operating system‘s implementation of the locale
than by Perl.

write() and LC_NUMERIC
Formats are the only part of Perl that unconditionally use information from a program‘s locale;
program‘s environment specifies an LC_NUMERIC locale, it is always used to specify the decimal
character in formatted output. Formatted output cannot be controlled by use locale because the pragma
is tied to the block structure of the program, and, for historical reasons, formats exist outside that
structure.
18−Oct−1998 Version 5.005_02 615

perllocale Perl Programmers Reference Guide perllocale

 allows
or the

teen
e way,

ly, and
eful to

andards
 into

trued as

rl. Such

s such
Freely available locale definitions
There is a large collection of locale definitions at ftp://dkuug.dk/i18n/WG15−collection . You
should be aware that it is unsupported, and is not claimed to be fit for any purpose. If your system
installation of arbitrary locales, you may find the definitions useful as they are, or as a basis f
development of your own locales.

I18n and l10n
"Internationalization" is often abbreviated as i18n because its first and last letters are separated by eigh
others. (You may guess why the internalin ... internaliti ... i18n tends to get abbreviated.) In the sam
"localization" is often abbreviated to l10n.

An imperfect standard
Internationalization, as defined in the C and POSIX standards, can be criticized as incomplete, ungain
having too large a granularity. (Locales apply to a whole process, when it would arguably be more us
have them apply to a single thread, window group, or whatever.) They also have a tendency, like st
groups, to divide the world into nations, when we all know that the world can equally well be divided
bankers, bikers, gamers, and so on. But, for now, it‘s the only standard we‘ve got. This may be cons
a bug.

BUGS

Broken systems
In certain systems, the operating system‘s locale support is broken and cannot be fixed or used by Pe
deficiencies can and will result in mysterious hangs and/or Perl core dumps when the use locale is in
effect. When confronted with such a system, please report in excruciating detail to <perlbug@perl.com, and
complain to your vendor: bug fixes may exist for these problems in your operating system. Sometime
bug fixes are called an operating system upgrade.

SEE ALSO
isalnum

isalpha

isdigit

isgraph

islower

isprint,

ispunct

isspace

isupper,

isxdigit

localeconv

setlocale,

strcoll

strftime

strtod,

strxfrm
616 Version 5.005_02 18−Oct−1998

perllocale Perl Programmers Reference Guide perllocale

rs.
HISTORY
Jarkko Hietaniemi‘s original perli18n.pod heavily hacked by Dominic Dunlop, assisted by the perl5−porte
 Prose worked over a bit by Tom Christiansen.

Last update: Thu Jun 11 08:44:13 MDT 1998
18−Oct−1998 Version 5.005_02 617

perlmodinstall Perl Programmers Reference Guide perlmodinstall

a Perl
ode to
ed at

r own

re are

f Perl

ith

rom
NAME
perlmodinstall − Installing CPAN Modules

DESCRIPTION
You can think of a module as the fundamental unit of reusable Perl code; see perlmod for details. Whenever
anyone creates a chunk of Perl code that they think will be useful to the world, they register as
developer at http://www.perl.com/CPAN/modules/04pause.html so that they can then upload their c
the CPAN. The CPAN is the Comprehensive Perl Archive Network and can be access
http://www.perl.com/CPAN/.

This documentation is for people who want to download CPAN modules and install them on thei
computer.

PREAMBLE
You have a file ending in .tar.gz (or, less often, .zip). You know there‘s a tasty module inside. The
four steps you must now take:

DECOMPRESS the file
UNPACK the file into a directory
BUILD the module (sometimes unnecessary)
INSTALL the module.

Here‘s how to perform each step for each operating system. This is not a substitute for reading the
README and INSTALL files that might have come with your module!

Also note that these instructions are tailored for installing the module into your system‘s repository o
modules. But you can install modules into any directory you wish. For instance, where I say perl
Makefile.PL , you can substitute perl Makefile.PL PREFIX=/my/perl_directory to install
the modules into /my/perl_directory . Then you can use the modules from your Perl programs w
use lib "/my/perl_directory/lib/site_perl"; or sometimes just use
"/my/perl_directory"; .

 If you‘re on Unix,

You can use Andreas Koenig‘s CPAN module (
http://www.perl.com/CPAN/modules/by−module/CPAN) to automate the following steps, f
DECOMPRESS through INSTALL.

A. DECOMPRESS

Decompress the file with gzip −d yourmodule.tar.gz

You can get gzip from ftp://prep.ai.mit.edu/pub/gnu.

Or, you can combine this step with the next to save disk space:

 gzip −dc yourmodule.tar.gz | tar −xof −

B. UNPACK

Unpack the result with tar −xof yourmodule.tar

C. BUILD

Go into the newly−created directory and type:

 perl Makefile.PL
 make
 make test

D. INSTALL

While still in that directory, type:
618 Version 5.005_02 18−Oct−1998

perlmodinstall Perl Programmers Reference Guide perlmodinstall

ctory.

amic

ou‘ll

s.

r .C)?
‘re

 go to

pe

d

s.

te
 make install

Make sure you have the appropriate permissions to install the module in your Perl 5 library dire
Often, you‘ll need to be root.

That‘s all you need to do on Unix systems with dynamic linking. Most Unix systems have dyn
linking — if yours doesn‘t, or if for another reason you have a statically−linked perl, and the module
requires compilation, you‘ll need to build a new Perl binary that includes the module. Again, y
probably need to be root.

 If you‘re running Windows 95 or NT with the ActiveState port of Perl

 A. DECOMPRESS

You can use the shareware Winzip (http://www.winzip.com) to decompress and unpack module

 B. UNPACK

If you used WinZip, this was already done for you.

 C. BUILD

Does the module require compilation (i.e. does it have files that end in .xs, .c, .h, .y, .cc, .cxx, o
If it does, you‘re on your own. You can try compiling it yourself if you have a C compiler. If you
successful, consider uploading the resulting binary to the CPAN for others to use. If it doesn‘t,
INSTALL.

 D. INSTALL

Copy the module into your Perl‘s lib directory. That‘ll be one of the directories you see when you ty

 perl −e ’print "@INC"’

 If you‘re running Windows 95 or NT with the core Windows distribution of Perl,

 A. DECOMPRESS

When you download the module, make sure it ends in either .tar.gz or .zip . Windows browsers
sometimes download .tar.gz files as _tar.tar , because early versions of Windows prohibite
more than one dot in a filename.

You can use the shareware WinZip (http://www.winzip.com) to decompress and unpack module

Or, you can use InfoZip‘s unzip utility (http://www.cdrom.com/pub/infozip/Info−Zip.html) to
uncompress .zip files; type unzip yourmodule.zip in your shell.

Or, if you have a working tar and gzip , you can type

 gzip −cd yourmodule.tar.gz | tar xvf −

in the shell to decompress yourmodule.tar.gz . This will UNPACK your module as well.

 B. UNPACK

All of the methods in DECOMPRESS will have done this for you.

 C. BUILD

Go into the newly−created directory and type:

 perl Makefile.PL
 dmake
 dmake test

Depending on your perl configuration, dmake might not be available. You might have to substitu
whatever perl −V:make says. (Usually, that will be nmake or make.)
18−Oct−1998 Version 5.005_02 619

perlmodinstall Perl Programmers Reference Guide perlmodinstall

e the

 and
ikely
ledge.

 you.

 To

ually

ut none
 D. INSTALL

While still in that directory, type:

 dmake install

 If you‘re using a Macintosh,

A. DECOMPRESS

You can either use StuffIt Expander (http://www.aladdinsys.com/) in combination with DropStuff
with Expander Enhancer (shareware), or the freeware MacGzip (
http://persephone.cps.unizar.es/general/gente/spd/gzip/gzip.html).

B. UNPACK

If you‘re using DropStuff or Stuffit, you can just extract the tar archive. Otherwise, you can us
freeware suntar (http://www.cirfid.unibo.it/~speranza).

C. BUILD

Does the module require compilation?

1. If it does,

Overview: You need MPW and a combination of new and old CodeWarrior compilers for MPW
libraries. Makefiles created for building under MPW use the Metrowerks compilers. It‘s most l
possible to build without other compilers, but it has not been done successfully, to our know
Read the documentation in MacPerl: Power and Ease (http://www.ptf.com/macperl/) on
porting/building extensions, or find an existing precompiled binary, or hire someone to build it for

Or, ask someone on the mac−perl mailing list (mac−perl@iis.ee.ethz.ch) to build it for you.
subscribe to the mac−perl mailing list, send mail to mac−perl−request@iis.ee.ethz.ch.

2. If the module doesn‘t require compilation, go to INSTALL.

D. INSTALL

Make sure the newlines for the modules are in Mac format, not Unix format. Move the files man
into the correct folders.

Move the files to their final destination: This will most likely be in $ENV{MACPERL}site_lib:
(i.e., HD:MacPerl folder:site_lib:). You can add new paths to the default @INC in the
Preferences menu item in the MacPerl application ($ENV{MACPERL}site_lib: is added
automagically). Create whatever directory structures are required (i.e., for Some::Module , create
$ENV{MACPERL}site_lib:Some: and put Module.pm in that directory).

Run the following script (or something like it):

 #!perl −w
 use AutoSplit;
 my $dir = "${MACPERL}site_perl";
 autosplit("$dir:Some:Module.pm", "$dir:auto", 0, 1, 1);

Eventually there should be a way to automate the installation process; some solutions exist, b
are ready for the general public yet.

 If you‘re on the DJGPP port of DOS,

 A. DECOMPRESS

djtarx (ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2/) will both uncompress and unpack.

 B. UNPACK
620 Version 5.005_02 18−Oct−1998

perlmodinstall Perl Programmers Reference Guide perlmodinstall

 Leo (

imple

 at
See above.

 C. BUILD

Go into the newly−created directory and type:

 perl Makefile.PL
 make
 make test

You will need the packages mentioned in Readme.dos in the Perl distribution.

 D. INSTALL

While still in that directory, type:

 make install

You will need the packages mentioned in Readme.dos in the Perl distribution.

 If you‘re on OS/2,

Get the EMX development suite and gzip/tar, from either Hobbes (http://hobbes.nmsu.edu) or
http://www.leo.org), and then follow the instructions for Unix.

 If you‘re on VMS,

When downloading from CPAN, save your file with a .tgz extension instead of .tar.gz . All other
periods in the filename should be replaced with underscores. For example,
Your−Module−1.33.tar.gz should be downloaded as Your−Module−1_33.tgz .

A. DECOMPRESS

Type

 gzip −d Your−Module.tgz

or, for zipped modules, type

 unzip Your−Module.zip

Executables for gzip, zip, and VMStar (Alphas:
http://www.openvms.digital.com/cd/000TOOLS/ALPHA/ and Vaxen:
http://www.openvms.digital.com/cd/000TOOLS/VAX/).

gzip and tar are also available at ftp://ftp.digital.com/pub/VMS.

Note that GNU‘s gzip/gunzip is not the same as Info−ZIP‘s zip/unzip package. The former is a s
compression tool; the latter permits creation of multi−file archives.

B. UNPACK

If you‘re using VMStar:

 VMStar xf Your−Module.tar

Or, if you‘re fond of VMS command syntax:

 tar/extract/verbose Your_Module.tar

C. BUILD

Make sure you have MMS (from Digital) or the freeware MMK (available from MadGoat
http://www.madgoat.com). Then type this to create the DESCRIP.MMS for the module:

 perl Makefile.PL

Now you‘re ready to build:
18−Oct−1998 Version 5.005_02 621

perlmodinstall Perl Programmers Reference Guide perlmodinstall

efiles
.

 help on
answer

rkko
hris
irden,

pyright

ditions
thors’
 that the

, under
 mms
 mms test

Substitute mmk for mms above if you‘re using MMK.

D. INSTALL

Type

 mms install

Substitute mmk for mms above if you‘re using MMK.

 If you‘re on MVS ,

Introduce the .tar.gz file into an HFS as binary; don‘t translate from ASCII to EBCDIC.

A. DECOMPRESS

 Decompress the file with C<gzip −d yourmodule.tar.gz>

 You can get gzip from
 http://www.s390.ibm.com/products/oe/bpxqp1.html.

B. UNPACK

Unpack the result with

 pax −o to=IBM−1047,from=ISO8859−1 −r < yourmodule.tar

The BUILD and INSTALL steps are identical to those for Unix. Some modules generate Mak
that work better with GNU make, which is available from http://www.mks.com/s390/gnu/index.htm

HEY
If you have any suggested changes for this page, let me know. Please don‘t send me mail asking for
how to install your modules. There are too many modules, and too few Orwants, for me to be able to
or even acknowledge all your questions. Contact the module author instead, or post to
comp.lang.perl.modules, or ask someone familiar with Perl on your operating system.

AUTHOR
Jon Orwant

orwant@tpj.com

The Perl Journal, http://tpj.com

with invaluable help from Brandon Allbery, Charles Bailey, Graham Barr, Dominic Dunlop, Ja
Hietaniemi, Ben Holzman, Tom Horsley, Nick Ing−Simmons, Tuomas J. Lukka, Laszlo Molnar, C
Nandor, Alan Olsen, Peter Prymmer, Gurusamy Sarathy, Christoph Spalinger, Dan Sugalski, Larry V
and Ilya Zakharevich.

July 22, 1998

COPYRIGHT
Copyright (C) 1998 Jon Orwant. All Rights Reserved.

Permission is granted to make and distribute verbatim copies of this documentation provided the co
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation under the con
for verbatim copying, provided also that they are marked clearly as modified versions, that the au
names and title are unchanged (though subtitles and additional authors’ names may be added), and
entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language
the above conditions for modified versions.
622 Version 5.005_02 18−Oct−1998

perlmodlib Perl Programmers Reference Guide perlmodlib

d

s will
er

annot

ich
hen

e
NAME
perlmodlib − constructing new Perl modules and finding existing ones

DESCRIPTION

THE PERL MODULE LIBRARY
A number of modules are included the Perl distribution. These are described below, and all end in .pm. You
may also discover files in the library directory that end in either .pl or .ph. These are old libraries supplied
so that old programs that use them still run. The .pl files will all eventually be converted into standar
modules, and the .ph files made by h2ph will probably end up as extension modules made by h2xs. (Some
.ph values may already be available through the POSIX module.) The pl2pm file in the distribution may
help in your conversion, but it‘s just a mechanical process and therefore far from bulletproof.

Pragmatic Modules
They work somewhat like pragmas in that they tend to affect the compilation of your program, and thu
usually work well only when used within a use , or no . Most of these are locally scoped, so an inn
BLOCK may countermand any of these by saying:

 no integer;
 no strict ’refs’;

which lasts until the end of that BLOCK.

Unlike the pragmas that effect the $^H hints variable, the use vars and use subs declarations are not
BLOCK−scoped. They allow you to predeclare a variables or subroutines within a particular file rather than
just a block. Such declarations are effective for the entire file for which they were declared. You c
rescind them with no vars or no subs .

The following pragmas are defined (and have their own documentation).

use autouse MODULE = qw(sub1 sub2 sub3)
Defers require MODULE until someone calls one of the specified subroutines (wh
must be exported by MODULE). This pragma should be used with caution, and only w
necessary.

blib manipulate @INC at compile time to use MakeMaker‘s uninstalled version of a packag

diagnostics force verbose warning diagnostics

integer compute arithmetic in integer instead of double

less request less of something from the compiler

lib manipulate @INC at compile time

locale use or ignore current locale for builtin operations (see perllocale)

ops restrict named opcodes when compiling or running Perl code

overload overload basic Perl operations

re alter behaviour of regular expressions

sigtrap enable simple signal handling

strict restrict unsafe constructs

subs predeclare sub names

vmsish adopt certain VMS−specific behaviors

vars predeclare global variable names
18−Oct−1998 Version 5.005_02 623

perlmodlib Perl Programmers Reference Guide perlmodlib

espace
Standard Modules
Standard, bundled modules are all expected to behave in a well−defined manner with respect to nam
pollution because they use the Exporter module. See their own documentation for details.

AnyDBM_File provide framework for multiple DBMs

AutoLoader load functions only on demand

AutoSplit split a package for autoloading

Benchmark benchmark running times of code

CPAN interface to Comprehensive Perl Archive Network

CPAN::FirstTime
create a CPAN configuration file

CPAN::Nox run CPAN while avoiding compiled extensions

Carp warn of errors (from perspective of caller)

Class::Struct declare struct−like datatypes

Config access Perl configuration information

Cwd get pathname of current working directory

DB_File access to Berkeley DB

Devel::SelfStubber
generate stubs for a SelfLoading module

DirHandle supply object methods for directory handles

DynaLoader dynamically load C libraries into Perl code

English use nice English (or awk) names for ugly punctuation variables

Env import environment variables

Exporter implements default import method for modules

ExtUtils::Embed
utilities for embedding Perl in C/C++ applications

ExtUtils::Install install files from here to there

ExtUtils::Liblist determine libraries to use and how to use them

ExtUtils::MM_OS2
methods to override Unix behaviour in ExtUtils::MakeMaker

ExtUtils::MM_Unix
methods used by ExtUtils::MakeMaker

ExtUtils::MM_VMS
methods to override Unix behaviour in ExtUtils::MakeMaker

ExtUtils::MakeMaker
create an extension Makefile

ExtUtils::Manifest
utilities to write and check a MANIFEST file
624 Version 5.005_02 18−Oct−1998

perlmodlib Perl Programmers Reference Guide perlmodlib
ExtUtils::Mkbootstrap
make a bootstrap file for use by DynaLoader

ExtUtils::Mksymlists
write linker options files for dynamic extension

ExtUtils::testlib add blib/* directories to @INC

Fatal make errors in builtins or Perl functions fatal

Fcntl load the C Fcntl.h defines

File::Basename
split a pathname into pieces

File::CheckTree
run many filetest checks on a tree

File::Compare compare files or filehandles

File::Copy copy files or filehandles

File::Find traverse a file tree

File::Path create or remove a series of directories

File::stat by−name interface to Perl‘s builtin stat() functions

FileCache keep more files open than the system permits

FileHandle supply object methods for filehandles

FindBin locate directory of original Perl script

GDBM_File access to the gdbm library

Getopt::Long extended processing of command line options

Getopt::Std process single−character switches with switch clustering

I18N::Collate compare 8−bit scalar data according to the current locale

IO load various IO modules

IO::File supply object methods for filehandles

IO::Handle supply object methods for I/O handles

IO::Pipe supply object methods for pipes

IO::Seekable supply seek based methods for I/O objects

IO::Select OO interface to the select system call

IO::Socket object interface to socket communications

IPC::Open2 open a process for both reading and writing

IPC::Open3 open a process for reading, writing, and error handling

Math::BigFloat arbitrary length float math package

Math::BigInt arbitrary size integer math package

Math::Complex
complex numbers and associated mathematical functions
18−Oct−1998 Version 5.005_02 625

perlmodlib Perl Programmers Reference Guide perlmodlib

ions
Math::Trig simple interface to parts of Math::Complex for those who need trigonometric funct
only for real numbers

NDBM_File tied access to ndbm files

Net::Ping Hello, anybody home?

Net::hostent by−name interface to Perl‘s builtin gethost*() functions

Net::netent by−name interface to Perl‘s builtin getnet*() functions

Net::protoent by−name interface to Perl‘s builtin getproto*() functions

Net::servent by−name interface to Perl‘s builtin getserv*() functions

Opcode disable named opcodes when compiling or running Perl code

Pod::Text convert POD data to formatted ASCII text

POSIX interface to IEEE Standard 1003.1

SDBM_File tied access to sdbm files

Safe compile and execute code in restricted compartments

Search::Dict search for key in dictionary file

SelectSaver save and restore selected file handle

SelfLoader load functions only on demand

Shell run shell commands transparently within Perl

Socket load the C socket.h defines and structure manipulators

Symbol manipulate Perl symbols and their names

Sys::Hostname
try every conceivable way to get hostname

Sys::Syslog interface to the Unix syslog(3) calls

Term::Cap termcap interface

Term::Complete
word completion module

Term::ReadLine
interface to various readline packages

Test::Harness run Perl standard test scripts with statistics

Text::Abbrev create an abbreviation table from a list

Text::ParseWords
parse text into an array of tokens

Text::Soundex implementation of the Soundex Algorithm as described by Knuth

Text::Tabs expand and unexpand tabs per the Unix expand(1) and unexpand(1)

Text::Wrap line wrapping to form simple paragraphs

Tie::Hash base class definitions for tied hashes

Tie::RefHash base class definitions for tied hashes with references as keys
626 Version 5.005_02 18−Oct−1998

perlmodlib Perl Programmers Reference Guide perlmodlib

e the

and. If

ral are
Socket,

 sizes,
s on
Q or

resent

of all
dules:
Tie::Scalar base class definitions for tied scalars

Tie::SubstrHash
fixed−table−size, fixed−key−length hashing

Time::Local efficiently compute time from local and GMT time

Time::gmtime by−name interface to Perl‘s builtin gmtime() function

Time::localtime
by−name interface to Perl‘s builtin localtime() function

Time::tm internal object used by Time::gmtime and Time::localtime

UNIVERSAL base class for ALL classes (blessed references)

User::grent by−name interface to Perl‘s builtin getgr*() functions

User::pwent by−name interface to Perl‘s builtin getpw*() functions

To find out all the modules installed on your system, including those without documentation or outsid
standard release, do this:

 % find ‘perl −e ’print "@INC"’‘ −name ’*.pm’ −print

They should all have their own documentation installed and accessible via your system man(1) comm
that fails, try the perldoc program.

Extension Modules
Extension modules are written in C (or a mix of Perl and C) and may be statically linked or in gene
dynamically loaded into Perl if and when you need them. Supported extension modules include the
Fcntl, and POSIX modules.

Many popular C extension modules do not come bundled (at least, not completely) due to their
volatility, or simply lack of time for adequate testing and configuration across the multitude of platform
which Perl was beta−tested. You are encouraged to look for them in archie(1L), the Perl FA
Meta−FAQ, the WWW page, and even with their authors before randomly posting asking for their p
condition and disposition.

CPAN
CPAN stands for the Comprehensive Perl Archive Network. This is a globally replicated collection
known Perl materials, including hundreds of unbundled modules. Here are the major categories of mo

 Language Extensions and Documentation Tools

 Development Support

 Operating System Interfaces

 Networking, Device Control (modems) and InterProcess Communication

 Data Types and Data Type Utilities

 Database Interfaces

 User Interfaces

 Interfaces to / Emulations of Other Programming Languages

 File Names, File Systems and File Locking (see also File Handles)

 String Processing, Language Text Processing, Parsing, and Searching

 Option, Argument, Parameter, and Configuration File Processing
18−Oct−1998 Version 5.005_02 627

perlmodlib Perl Programmers Reference Guide perlmodlib

se to
 Internationalization and Locale

 Authentication, Security, and Encryption

 World Wide Web, HTML, HTTP, CGI, MIME

 Server and Daemon Utilities

 Archiving and Compression

 Images, Pixmap and Bitmap Manipulation, Drawing, and Graphing

 Mail and Usenet News

 Control Flow Utilities (callbacks and exceptions etc)

 File Handle and Input/Output Stream Utilities

 Miscellaneous Modules

The registered CPAN sites as of this writing include the following. You should try to choose one clo
you:

 Africa

 South Africa ftp://ftp.is.co.za/programming/perl/CPAN/

 Asia

 Hong Kong ftp://ftp.hkstar.com/pub/CPAN/
 Japan ftp://ftp.jaist.ac.jp/pub/lang/perl/CPAN/
 ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/
 South Korea ftp://ftp.nuri.net/pub/CPAN/
 Taiwan ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
 ftp://ftp.wownet.net/pub2/PERL/

 Australasia

 Australia ftp://ftp.netinfo.com.au/pub/perl/CPAN/
 New Zealand ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/

 Europe

 Austria ftp://ftp.tuwien.ac.at/pub/languages/perl/CPAN/
 Belgium ftp://ftp.kulnet.kuleuven.ac.be/pub/mirror/CPAN/
 Czech Republic ftp://sunsite.mff.cuni.cz/Languages/Perl/CPAN/
 Denmark ftp://sunsite.auc.dk/pub/languages/perl/CPAN/
 Finland ftp://ftp.funet.fi/pub/languages/perl/CPAN/
 France ftp://ftp.ibp.fr/pub/perl/CPAN/
 ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/
 Germany ftp://ftp.gmd.de/packages/CPAN/
 ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/
 ftp://ftp.mpi−sb.mpg.de/pub/perl/CPAN/
 ftp://ftp.rz.ruhr−uni−bochum.de/pub/CPAN/
 ftp://ftp.uni−erlangen.de/pub/source/Perl/CPAN/
 ftp://ftp.uni−hamburg.de/pub/soft/lang/perl/CPAN/
 Greece ftp://ftp.ntua.gr/pub/lang/perl/
 Hungary ftp://ftp.kfki.hu/pub/packages/perl/CPAN/
 Italy ftp://cis.utovrm.it/CPAN/
 the Netherlands ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/
 ftp://ftp.EU.net/packages/cpan/
 Norway ftp://ftp.uit.no/pub/languages/perl/cpan/
 Poland ftp://ftp.pk.edu.pl/pub/lang/perl/CPAN/
628 Version 5.005_02 18−Oct−1998

perlmodlib Perl Programmers Reference Guide perlmodlib

PAN

f a class.
 methods.
"static"

 import
e of its

 of the
s on

 a new
ng or
 ftp://sunsite.icm.edu.pl/pub/CPAN/
 Portugal ftp://ftp.ci.uminho.pt/pub/lang/perl/
 ftp://ftp.telepac.pt/pub/CPAN/
 Russia ftp://ftp.sai.msu.su/pub/lang/perl/CPAN/
 Slovenia ftp://ftp.arnes.si/software/perl/CPAN/
 Spain ftp://ftp.etse.urv.es/pub/mirror/perl/
 ftp://ftp.rediris.es/mirror/CPAN/
 Sweden ftp://ftp.sunet.se/pub/lang/perl/CPAN/
 UK ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/
 ftp://sunsite.doc.ic.ac.uk/packages/CPAN/
 ftp://unix.hensa.ac.uk/mirrors/perl−CPAN/

 North America

 Ontario ftp://ftp.utilis.com/public/CPAN/
 ftp://enterprise.ic.gc.ca/pub/perl/CPAN/
 Manitoba ftp://theory.uwinnipeg.ca/pub/CPAN/
 California ftp://ftp.digital.com/pub/plan/perl/CPAN/
 ftp://ftp.cdrom.com/pub/perl/CPAN/
 Colorado ftp://ftp.cs.colorado.edu/pub/perl/CPAN/
 Florida ftp://ftp.cis.ufl.edu/pub/perl/CPAN/
 Illinois ftp://uiarchive.uiuc.edu/pub/lang/perl/CPAN/
 Massachusetts ftp://ftp.iguide.com/pub/mirrors/packages/perl/CPAN/
 New York ftp://ftp.rge.com/pub/languages/perl/
 North Carolina ftp://ftp.duke.edu/pub/perl/
 Oklahoma ftp://ftp.ou.edu/mirrors/CPAN/
 Oregon http://www.perl.org/CPAN/
 ftp://ftp.orst.edu/pub/packages/CPAN/
 Pennsylvania ftp://ftp.epix.net/pub/languages/perl/
 Texas ftp://ftp.sedl.org/pub/mirrors/CPAN/
 ftp://ftp.metronet.com/pub/perl/

 South America

 Chile ftp://sunsite.dcc.uchile.cl/pub/Lang/perl/CPAN/

For an up−to−date listing of CPAN sites, see http://www.perl.com/perl/CPAN or ftp://ftp.perl.com/perl/.

Modules: Creation, Use, and Abuse
(The following section is borrowed directly from Tim Bunce‘s modules file, available at your nearest C
site.)

Perl implements a class using a package, but the presence of a package doesn‘t imply the presence o
 A package is just a namespace. A class is a package that provides subroutines that can be used as
A method is just a subroutine that expects, as its first argument, either the name of a package (for
methods), or a reference to something (for "virtual" methods).

A module is a file that (by convention) provides a class of the same name (sans the .pm), plus an
method in that class that can be called to fetch exported symbols. This module may implement som
methods by loading dynamic C or C++ objects, but that should be totally transparent to the user
module. Likewise, the module might set up an AUTOLOAD function to slurp in subroutine definition
demand, but this is also transparent. Only the .pm file is required to exist. See perlsub, perltoot, and
AutoLoader for details about the AUTOLOAD mechanism.

Guidelines for Module Creation

Do similar modules already exist in some form?
If so, please try to reuse the existing modules either in whole or by inheriting useful features into
class. If this is not practical try to get together with the module authors to work on extendi
18−Oct−1998 Version 5.005_02 629

perlmodlib Perl Programmers Reference Guide perlmodlib

ges in

ith the
cheme

n as the

functions
thods

lly,

‘t use

y as

ages

as they
at seem

that
enhancing the functionality of the existing modules. A perfect example is the plethora of packa
perl4 for dealing with command line options.

If you are writing a module to expand an already existing set of modules, please coordinate w
author of the package. It helps if you follow the same naming scheme and module interaction s
as the original author.

Try to design the new module to be easy to extend and reuse.
Use blessed references. Use the two argument form of bless to bless into the class name give
first parameter of the constructor, e.g.,:

 sub new {
my $class = shift;
return bless {}, $class;

 }

or even this if you‘d like it to be used as either a static or a virtual method.

 sub new {
my $self = shift;
my $class = ref($self) || $self;
return bless {}, $class;

 }

Pass arrays as references so more parameters can be added later (it‘s also faster). Convert
into methods where appropriate. Split large methods into smaller more flexible ones. Inherit me
from other modules if appropriate.

Avoid class name tests like: die "Invalid" unless ref $ref eq ‘FOO’ . Generally you
can delete the "eq ‘FOO’ " part with no harm at all. Let the objects look after themselves! Genera
avoid hard−wired class names as far as possible.

Avoid $r−>Class::func() where using @ISA=qw(... Class ...) and $r−>func()
would work (see perlbot for more details).

Use autosplit so little used or newly added functions won‘t be a burden to programs that don
them. Add test functions to the module after __END__ either using AutoSplit or by saying:

 eval join(’’,<main::DATA>) || die $@ unless caller();

Does your module pass the ‘empty subclass’ test? If you say "@SUBCLASS::ISA =
qw(YOURCLASS);" your applications should be able to use SUBCLASS in exactly the same wa
YOURCLASS. For example, does your application still work if you change: $obj = new
YOURCLASS; into: $obj = new SUBCLASS; ?

Avoid keeping any state information in your packages. It makes it difficult for multiple other pack
to use yours. Keep state information in objects.

Always use −w. Try to use strict; (or use strict qw(...);). Remember that you can add
no strict qw(...); to individual blocks of code that need less strictness. Always use −w.
Always use −w! Follow the guidelines in the perlstyle(1) manual.

Some simple style guidelines
The perlstyle manual supplied with Perl has many helpful points.

Coding style is a matter of personal taste. Many people evolve their style over several years
learn what helps them write and maintain good code. Here‘s one set of assorted suggestions th
to be widely used by experienced developers:

Use underscores to separate words. It is generally easier to read $var_names_like_this than
$VarNamesLikeThis, especially for non−native speakers of English. It‘s also a simple rule
works consistently with VAR_NAMES_LIKE_THIS.
630 Version 5.005_02 18−Oct−1998

perlmodlib Perl Programmers Reference Guide perlmodlib

 names
 and

le:

side the

OK in
.

a

ave a

st a

biguity.
 about
formally
d name.

alled
side

s with a
iew,

d the

ght be
ake this

at will
?

knows.
lace to
Package/Module names are an exception to this rule. Perl informally reserves lowercase module
for ‘pragma’ modules like integer and strict. Other modules normally begin with a capital letter
use mixed case with no underscores (need to be short and portable).

You may find it helpful to use letter case to indicate the scope or nature of a variable. For examp

 $ALL_CAPS_HERE constants only (beware clashes with Perl vars)
 $Some_Caps_Here package−wide global/static
 $no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. e.g., $obj−>as_string() .

You can use a leading underscore to indicate that a variable or function should not be used out
package that defined it.

Select what to export.
Do NOT export method names!

Do NOT export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export try to use @EXPORT_
preference to @EXPORT and avoid short or common names to reduce the risk of name clashes

Generally anything not exported is still accessible from outside the module using the
ModuleName::item_name (or $blessed_ref−>method) syntax. By convention you can use
leading underscore on names to indicate informally that they are ‘internal’ and not for public use.

(It is actually possible to get private functions by saying: my $subref = sub { ... };
&$subref;. But there‘s no way to call that directly as a method, because a method must h
name in the symbol table.)

As a general rule, if the module is trying to be object oriented then export nothing. If it‘s ju
collection of functions then @EXPORT_OK anything but use @EXPORT with caution.

Select a name for the module.
This name should be as descriptive, accurate, and complete as possible. Avoid any risk of am
Always try to use two or more whole words. Generally the name should reflect what is special
what the module does rather than how it does it. Please use nested module names to group in
or categorize a module. There should be a very good reason for a module not to have a neste
Module names should begin with a capital letter.

Having 57 modules all called Sort will not make life easy for anyone (though having 23 c
Sort::Quick is only marginally better :−). Imagine someone trying to install your module along
many others. If in any doubt ask for suggestions in comp.lang.perl.misc.

If you are developing a suite of related modules/classes it‘s good practice to use nested classe
common prefix as this will avoid namespace clashes. For example: Xyz::Control, Xyz::V
Xyz::Model etc. Use the modules in this list as a naming guide.

If adding a new module to a set, follow the original author‘s standards for naming modules an
interface to methods in those modules.

To be portable each component of a module name should be limited to 11 characters. If it mi
used on MS−DOS then try to ensure each is unique in the first 8 characters. Nested modules m
easier.

Have you got it right?
How do you know that you‘ve made the right decisions? Have you picked an interface design th
cause problems later? Have you picked the most appropriate name? Do you have any questions

The best way to know for sure, and pick up many helpful suggestions, is to ask someone who
Comp.lang.perl.misc is read by just about all the people who develop modules and it‘s the best p
18−Oct−1998 Version 5.005_02 631

perlmodlib Perl Programmers Reference Guide perlmodlib

es on
ed by

sage.

ver,
 full

s into

 assert

nce
g the

rge is

t in a
 the

your

 for

er in
.tar.Z).
ask.

All you need to do is post a short summary of the module, its purpose and interfaces. A few lin
each of the main methods is probably enough. (If you post the whole module it might be ignor
busy people − generally the very people you want to read it!)

Don‘t worry about posting if you can‘t say when the module will be ready − just say so in the mes
It might be worth inviting others to help you, they may be able to complete it for you!

README and other Additional Files.
It‘s well known that software developers usually fully document the software they write. If, howe
the world is in urgent need of your software and there is not enough time to write the
documentation please at least provide a README file containing:

 A description of the module/package/extension etc.

 A copyright notice − see below.

 Prerequisites − what else you may need to have.

 How to build it − possible changes to Makefile.PL etc.

 How to install it.

 Recent changes in this release, especially incompatibilities

 Changes / enhancements you plan to make in the future.

If the README file seems to be getting too large you may wish to split out some of the section
separate files: INSTALL, Copying, ToDo etc.

Adding a Copyright Notice.
How you choose to license your work is a personal decision. The general mechanism is to
your Copyright and then make a declaration of how others may copy/use/modify your work.

Perl, for example, is supplied with two types of licence: The GNU GPL and The Artistic Lice
(see the files README, Copying, and Artistic). Larry has good reasons for NOT just usin
GNU GPL.

My personal recommendation, out of respect for Larry, Perl, and the Perl community at la
to state something simply like:

 Copyright (c) 1995 Your Name. All rights reserved.
 This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl itself.

This statement should at least appear in the README file. You may also wish to include i
Copying file and your source files. Remember to include the other words in addition to
Copyright.

Give the module a version/issue/release number.
To be fully compatible with the Exporter and MakeMaker modules you should store
module‘s version number in a non−my package variable called $VERSION. This should be a
floating point number with at least two digits after the decimal (i.e., hundredths, e.g, $VERSION
= "0.01"). Don‘t use a "1.3.2" style version. See Exporter.pm in Perl5.001m or later
details.

It may be handy to add a function or method to retrieve the number. Use the numb
announcements and archive file names when releasing the module (ModuleName−1.02
See perldoc ExtUtils::MakeMaker.pm for details.
632 Version 5.005_02 18−Oct−1998

perlmodlib Perl Programmers Reference Guide perlmodlib

elf if
 wide

f its

version
 see

on as
le to

your

dd a
es.

ay
there is

ipt is

erface.

pm
How to release and distribute a module.
It‘s good idea to post an announcement of the availability of your module (or the module its
small) to the comp.lang.perl.announce Usenet newsgroup. This will at least ensure very
once−off distribution.

If possible you should place the module into a major ftp archive and include details o
location in your announcement.

Some notes about ftp archives: Please use a long descriptive file name that includes the
number. Most incoming directories will not be readable/listable, i.e., you won‘t be able to
your file after uploading it. Remember to send your email notification message as so
possible after uploading else your file may get deleted automatically. Allow time for the fi
be processed and/or check the file has been processed before announcing its location.

FTP Archives for Perl Modules:

Follow the instructions and links on

 http://franz.ww.tu−berlin.de/modulelist

or upload to one of these sites:

 ftp://franz.ww.tu−berlin.de/incoming
 ftp://ftp.cis.ufl.edu/incoming

and notify <upload@franz.ww.tu−berlin.de.

By using the WWW interface you can ask the Upload Server to mirror your modules from
ftp or WWW site into your own directory on CPAN!

Please remember to send me an updated entry for the Module list!

Take care when changing a released module.
Always strive to remain compatible with previous released versions. Otherwise try to a
mechanism to revert to the old behaviour if people rely on it. Document incompatible chang

Guidelines for Converting Perl 4 Library Scripts into Modules

There is no requirement to convert anything.
If it ain‘t broke, don‘t fix it! Perl 4 library scripts should continue to work with no problems. You m
need to make some minor changes (like escaping non−array @‘s in double quoted strings) but
no need to convert a .pl file into a Module for just that.

Consider the implications.
All Perl applications that make use of the script will need to be changed (slightly) if the scr
converted into a module. Is it worth it unless you plan to make other changes at the same time?

Make the most of the opportunity.
If you are going to convert the script to a module you can use the opportunity to redesign the int
The ‘Guidelines for Module Creation’ above include many of the issues you should consider.

The pl2pm utility will get you started.
This utility will read *.pl files (given as parameters) and write corresponding *.pm files. The pl2
utilities does the following:

 Adds the standard Module prologue lines

 Converts package specifiers from ’ to ::

 Converts die(...) to croak(...)
18−Oct−1998 Version 5.005_02 633

perlmodlib Perl Programmers Reference Guide perlmodlib

cking,

ed as:

n other
ould

.

. Part
 written
n you
 Several other minor changes

Being a mechanical process pl2pm is not bullet proof. The converted code will need careful che
especially any package statements. Don‘t delete the original .pl file till the new .pm one works!

Guidelines for Reusing Application Code

Complete applications rarely belong in the Perl Module Library.
Many applications contain some Perl code that could be reused.

Help save the world! Share your code in a form that makes it easy to reuse.

Break−out the reusable code into one or more separate module files.
Take the opportunity to reconsider and redesign the interfaces.
In some cases the ‘application’ can then be reduced to a small

fragment of code built on top of the reusable modules. In these cases the application could invok

 % perl −e ’use Module::Name; method(@ARGV)’ ...
or
 % perl −mModule::Name ... (in perl5.002 or higher)

NOTE
Perl does not enforce private and public parts of its modules as you may have been used to i
languages like C++, Ada, or Modula−17. Perl doesn‘t have an infatuation with enforced privacy. It w
prefer that you stayed out of its living room because you weren‘t invited, not because it has a shotgun

The module and its user have a contract, part of which is common law, and part of which is "written"
of the common law contract is that a module doesn‘t pollute any namespace it wasn‘t asked to. The
contract for the module (A.K.A. documentation) may make other provisions. But then you know whe
use RedefineTheWorld that you‘re redefining the world and willing to take the consequences.
634 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

ve their

u have
m.

f a
mon

ate to
 which
e task
done.
ever way

ces.

, or to
im for

s its
eans

cation.
bout

tforms,
ation
es. On
 is often
riting

er the
d to be

rts

about
s this

nder
NAME
perlport − Writing portable Perl

DESCRIPTION
Perl runs on a variety of operating systems. While most of them share a lot in common, they also ha
own very particular and unique features.

This document is meant to help you to find out what constitutes portable Perl code, so that once yo
made your decision to write portably, you know where the lines are drawn, and you can stay within the

There is a tradeoff between taking full advantage of a particular type of computer, and taking advantage o
full range of them. Naturally, as you make your range bigger (and thus more diverse), the com
denominators drop, and you are left with fewer areas of common ground in which you can oper
accomplish a particular task. Thus, when you begin attacking a problem, it is important to consider
part of the tradeoff curve you want to operate under. Specifically, whether it is important to you that th
that you are coding needs the full generality of being portable, or if it is sufficient to just get the job
This is the hardest choice to be made. The rest is easy, because Perl provides lots of choices, which
you want to approach your problem.

Looking at it another way, writing portable code is usually about willfully limiting your available choi
Naturally, it takes discipline to do that.

Be aware of two important points:

Not all Perl programs have to be portable
There is no reason why you should not use Perl as a language to glue Unix tools together
prototype a Macintosh application, or to manage the Windows registry. If it makes no sense to a
portability for one reason or another in a given program, then don‘t bother.

The vast majority of Perl is portable
Don‘t be fooled into thinking that it is hard to create portable Perl code. It isn‘t. Perl trie
level−best to bridge the gaps between what‘s available on different platforms, and all the m
available to use those features. Thus almost all Perl code runs on any machine without modifi
But there are some significant issues in writing portable code, and this document is entirely a
those issues.

Here‘s the general rule: When you approach a task that is commonly done using a whole range of pla
think in terms of writing portable code. That way, you don‘t sacrifice much by way of the implement
choices you can avail yourself of, and at the same time you can give your users lots of platform choic
the other hand, when you have to take advantage of some unique feature of a particular platform, as
the case with systems programming (whether for Unix, Windows, Mac OS, VMS, etc.), consider w
platform−specific code.

When the code will run on only two or three operating systems, then you may only need to consid
differences of those particular systems. The important thing is to decide where the code will run, an
deliberate in your decision.

The material below is separated into three main sections: main issues of portability ("ISSUES",
platform−specific issues ("PLATFORMS", and builtin perl functions that behave differently on various po
("FUNCTION IMPLEMENTATIONS".

This information should not be considered complete; it includes possibly transient information
idiosyncrasies of some of the ports, almost all of which are in a state of constant evolution. Thu
material should be considered a perpetual work in progress (<IMG SRC="yellow_sign.gif" ALT="U
Construction">).
18−Oct−1998 Version 5.005_02 635

perlport Perl Programmers Reference Guide perlport

ay vary

e. In

of

al

odule

ng
it.

mbers
work
ISSUES

Newlines
In most operating systems, lines in files are separated with newlines. Just what is used as a newline m
from OS to OS. Unix traditionally uses \012 , one kind of Windows I/O uses \015\012 , and
Mac OS uses \015.

Perl uses \n to represent the "logical" newline, where what is logical may depend on the platform in us
MacPerl, \n always means \015 . In DOSish perls, \n usually means \012 , but when accessing a file in
"text" mode, STDIO translates it to (or from) \015\012 .

Due to the "text" mode translation, DOSish perls have limitations of using seek and tell when a file is
being accessed in "text" mode. Specifically, if you stick to seek −ing to locations you got from tell (and
no others), you are usually free to use seek and tell even in "text" mode. In general, using seek or
tell or other file operations that count bytes instead of characters, without considering the length \n ,
may be non−portable. If you use binmode on a file, however, you can usually use seek and tell with
arbitrary values quite safely.

A common misconception in socket programming is that \n eq \012 everywhere. When using protocols
such as common Internet protocols, \012 and \015 are called for specifically, and the values of the logic
\n and \r (carriage return) are not reliable.

 print SOCKET "Hi there, client!\r\n"; # WRONG
 print SOCKET "Hi there, client!\015\012"; # RIGHT

[NOTE: this does not necessarily apply to communications that are filtered by another program or m
before sending to the socket; the the most popular EBCDIC webserver, for instance, accepts \r\n , which
translates those characters, along with all other characters in text streams, from EBCDIC to ASCII.]

However, using \015\012 (or \cM\cJ , or \x0D\x0A) can be tedious and unsightly, as well as confusi
to those maintaining the code. As such, the Socket module supplies the Right Thing for those who want

 use Socket qw(:DEFAULT :crlf);
 print SOCKET "Hi there, client!$CRLF" # RIGHT

When reading from a socket, remember that the default input record separator ($/) is \n , but code like this
should recognize $/ as \012 or \015\012 :

 while (<SOCKET>) {
 # ...
 }

Better:

 use Socket qw(:DEFAULT :crlf);
 local($/) = LF; # not needed if $/ is already \012

 while (<SOCKET>) {
 s/$CR?$LF/\n/; # not sure if socket uses LF or CRLF, OK
 # s/\015?\012/\n/; # same thing
 }

And this example is actually better than the previous one even for Unix platforms, because now any \015 ‘s
(\cM ‘s) are stripped out (and there was much rejoicing).

Numbers endianness and Width
Different CPUs store integers and floating point numbers in different orders (called endianness) and widths
(32−bit and 64−bit being the most common). This affects your programs if they attempt to transfer nu
in binary format from a CPU architecture to another over some channel: either ‘live’ via net
connections or storing the numbers to secondary storage such as a disk file.
636 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

stores
it as

se the
.

shorter
 avoid

 in text

that any
ath is

MS,
gle root

ic

from a

ase

n the

tem is
is using
code‘s

e

Conflicting storage orders make utter mess out of the numbers: if a little−endian host (Intel, Alpha)
0x12345678 (305419896 in decimal), a big−endian host (Motorola, MIPS, Sparc, PA) reads
0x78563412 (2018915346 in decimal). To avoid this problem in network (socket) connections u
pack() and unpack() formats "n" and "N" , the "network" orders, they are guaranteed to be portable

Different widths can cause truncation even between platforms of equal endianness: the platform of
width loses the upper parts of the number. There is no good solution for this problem except to
transferring or storing raw binary numbers.

One can circumnavigate both these problems in two ways: either transfer and store numbers always
format, instead of raw binary, or consider using modules like Data::Dumper (included in the standard
distribution as of Perl 5.005) and Storable .

Files
Most platforms these days structure files in a hierarchical fashion. So, it is reasonably safe to assume
platform supports the notion of a "path" to uniquely identify a file on the system. Just how that p
actually written, differs.

While they are similar, file path specifications differ between Unix, Windows, Mac OS, OS/2, V
RISC OS and probably others. Unix, for example, is one of the few OSes that has the idea of a sin
directory.

VMS, Windows, and OS/2 can work similarly to Unix with / as path separator, or in their own idiosyncrat
ways (such as having several root directories and various "unrooted" device files such NIL: and LPT:).

Mac OS uses : as a path separator instead of /.

RISC OS perl can emulate Unix filenames with / as path separator, or go native and use . for path
separator and : to signal filing systems and disc names.

As with the newline problem above, there are modules that can help. The File::Spec modules provide
methods to do the Right Thing on whatever platform happens to be running the program.

 use File::Spec;
 chdir(File::Spec−>updir()); # go up one directory
 $file = File::Spec−>catfile(
 File::Spec−>curdir(), ’temp’, ’file.txt’
);
 # on Unix and Win32, ’./temp/file.txt’
 # on Mac OS, ’:temp:file.txt’

File::Spec is available in the standard distribution, as of version 5.004_05.

In general, production code should not have file paths hardcoded; making them user supplied or
configuration file is better, keeping in mind that file path syntax varies on different machines.

This is especially noticeable in scripts like Makefiles and test suites, which often assume / as a path
separator for subdirectories.

Also of use is File::Basename , from the standard distribution, which splits a pathname into pieces (b
filename, full path to directory, and file suffix).

Even when on a single platform (if you can call UNIX a single platform), remember not to count o
existence or the contents of system−specific files, like /etc/passwd, /etc/sendmail.conf, or /etc/resolv.conf.
For example the /etc/passwd may exist but it may not contain the encrypted passwords because the sys
using some form of enhanced security— or it may not contain all the accounts because the system
NIS. If code does need to rely on such a file, include a description of the file and its format in the
documentation, and make it easy for the user to override the default location of the file.

Do not have two files of the same name with different case, like test.pl and <Test.pl, as many platforms hav
case−insensitive filenames. Also, try not to have non−word characters (except for .) in the names, and keep
them to the 8.3 convention, for maximum portability.
18−Oct−1998 Version 5.005_02 637

perlport Perl Programmers Reference Guide perlport

tive
 first 8

at rely
ht not

ndatory

erl

 of them
them.
ation,
 in a

many
solution

(via

rnally

., might
 might
code is
Likewise, if using AutoSplit , try to keep the split functions to 8.3 naming and case−insensi
conventions; or, at the very least, make it so the resulting files have a unique (case−insensitively)
characters.

Don‘t assume < won‘t be the first character of a filename. Always use > explicitly to open a file for reading:

 open(FILE, "<$existing_file") or die $!;

System Interaction
Not all platforms provide for the notion of a command line, necessarily. These are usually platforms th
on a Graphical User Interface (GUI) for user interaction. So a program requiring command lines mig
work everywhere. But this is probably for the user of the program to deal with.

Some platforms can‘t delete or rename files that are being held open by the system. Remember toclose
files when you are done with them. Don‘t unlink or rename an open file. Don‘t tie to or open a file
that is already tied to or opened; untie or close first.

Don‘t open the same file more than once at a time for writing, as some operating systems put ma
locks on such files.

Don‘t count on a specific environment variable existing in %ENV. Don‘t count on %ENV entries being
case−sensitive, or even case−preserving.

Don‘t count on signals.

Don‘t count on filename globbing. Use opendir , readdir , and closedir instead.

Don‘t count on per−program environment variables, or per−program current directories.

Interprocess Communication (IPC)
In general, don‘t directly access the system in code that is meant to be portable. That means, no system ,
exec , fork , pipe , ‘‘ , qx// , open with a | , nor any of the other things that makes being a Unix p
hacker worth being.

Commands that launch external processes are generally supported on most platforms (though many
do not support any type of forking), but the problem with using them arises from what you invoke with
External tools are often named differently on different platforms, often not available in the same loc
often accept different arguments, often behave differently, and often represent their results
platform−dependent way. Thus you should seldom depend on them to produce consistent results.

One especially common bit of Perl code is opening a pipe to sendmail:

 open(MAIL, ’|/usr/lib/sendmail −t’) or die $!;

This is fine for systems programming when sendmail is known to be available. But it is not fine for
non−Unix systems, and even some Unix systems that may not have sendmail installed. If a portable
is needed, see the Mail::Send and Mail::Mailer modules in the MailTools distribution.
Mail::Mailer provides several mailing methods, including mail, sendmail, and direct SMTP
Net::SMTP) if a mail transfer agent is not available.

The rule of thumb for portable code is: Do it all in portable Perl, or use a module (that may inte
implement it with platform−specific code, but expose a common interface).

The UNIX System V IPC (msg*(), sem*(), shm*()) is not available even in all UNIX platforms.

External Subroutines (XS)
XS code, in general, can be made to work with any platform; but dependent libraries, header files, etc
not be readily available or portable, or the XS code itself might be platform−specific, just as Perl code
be. If the libraries and headers are portable, then it is normally reasonable to make sure the XS
portable, too.
638 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

the
 some

 (like

lowest

sume
ne

r to store
e date
ing

merical
e before

A’ come
fore the

d more
ittle
 affects

en you

rows a
is more
There is a different kind of portability issue with writing XS code: availability of a C compiler on
end−user‘s system. C brings with it its own portability issues, and writing XS code will expose you to
of those. Writing purely in perl is a comparatively easier way to achieve portability.

Standard Modules
In general, the standard modules work across platforms. Notable exceptions are CPAN.pm (which currently
makes connections to external programs that may not be available), platform−specific modules
ExtUtils::MM_VMS), and DBM modules.

There is no one DBM module that is available on all platforms. SDBM_File and the others are generally
available on all Unix and DOSish ports, but not in MacPerl, where only NBDM_File and DB_File are
available.

The good news is that at least some DBM module should be available, and AnyDBM_File will use
whichever module it can find. Of course, then the code needs to be fairly strict, dropping to the
common denominator (e.g., not exceeding 1K for each record).

Time and Date
The system‘s notion of time of day and calendar date is controlled in widely different ways. Don‘t as
the timezone is stored in $ENV{TZ}, and even if it is, don‘t assume that you can control the timezo
through that variable.

Don‘t assume that the epoch starts at 00:00:00, January 1, 1970, because that is OS−specific. Bette
a date in an unambiguous representation. The ISO 8601 standard defines YYYY−MM−DD as th
format. A text representation (like 1 Jan 1970) can be easily converted into an OS−specific value us
a module like Date::Parse . An array of values, such as those returned by localtime , can be
converted to an OS−specific representation using Time::Local .

Character sets and character encoding
Assume very little about character sets. Do not assume anything about the numerical values (ord() ,
chr()) of characters. Do not assume that the alphabetic characters are encoded contiguously (in nu
sense). Do no assume anything about the ordering of the characters. The lowercase letters may com
or after the uppercase letters, the lowercase and uppercase may be interlaced so that both ‘a’ and ‘
before the ‘b‘, the accented and other international characters may be interlaced so that ä comes be
‘b’.

Internationalisation
If you may assume POSIX (a rather large assumption, that: in practise that means UNIX) you may rea
about the POSIX locale system from perllocale. The locale system at least attempts to make things a l
bit more portable or at least more convenient and native−friendly for non−English users. The system
character sets and encoding, and date and time formatting, among other things.

System Resources
If your code is destined for systems with severely constrained (or missing!) virtual memory systems th
want to be especially mindful of avoiding wasteful constructs such as:

 # NOTE: this is no longer "bad" in perl5.005
 for (0..10000000) {} # bad
 for (my $x = 0; $x <= 10000000; ++$x) {} # good

 @lines = <VERY_LARGE_FILE>; # bad

 while (<FILE>) {$file .= $_} # sometimes bad
 $file = join(’’, <FILE>); # better

The last two may appear unintuitive to most people. The first of those two constructs repeatedly g
string, while the second allocates a large chunk of memory in one go. On some systems, the latter
efficient that the former.
18−Oct−1998 Version 5.005_02 639

perlport Perl Programmers Reference Guide perlport

Other
ate of
curity
 code

pecific

 testers
 this

rop up
r not a

his

ield
le,

ry

−DOS,
count
of
Security
Most multi−user platforms provide basic levels of security that is usually felt at the file−system level.
platforms usually don‘t (unfortunately). Thus the notion of user id, or "home" directory, or even the st
being logged−in, may be unrecognizable on many platforms. If you write programs that are se
conscious, it is usually best to know what type of system you will be operating under, and write
explicitly for that platform (or class of platforms).

Style
For those times when it is necessary to have platform−specific code, consider keeping the platform−s
code in one place, making porting to other platforms easier. Use the Config module and the special
variable $^O to differentiate platforms, as described in "PLATFORMS".

CPAN Testers
Modules uploaded to CPAN are tested by a variety of volunteers on different platforms. These CPAN
are notified by mail of each new upload, and reply to the list with PASS, FAIL, NA (not applicable to
platform), or UNKNOWN (unknown), along with any relevant notations.

The purpose of the testing is twofold: one, to help developers fix any problems in their code that c
because of lack of testing on other platforms; two, to provide users with information about whether o
given module works on a given platform.

Mailing list: cpan−testers@perl.org
Testing results: http://www.connect.net/gbarr/cpan−test/

PLATFORMS
As of version 5.002, Perl is built with a $^O variable that indicates the operating system it was built on. T
was implemented to help speed up code that would otherwise have to use Config; and use the value of
$Config{‘osname‘}. Of course, to get detailed information about the system, looking into %Config
is certainly recommended.

Unix
Perl works on a bewildering variety of Unix and Unix−like platforms (see e.g. most of the files in the hints/
directory in the source code kit). On most of these systems, the value of $^O (hence
$Config{‘osname‘}, too) is determined by lowercasing and stripping punctuation from the first f
of the string returned by typing uname −a (or a similar command) at the shell prompt. Here, for examp
are a few of the more popular Unix flavors:

 uname $^O $Config{’archname’}
 −−−
 AIX aix aix
 FreeBSD freebsd freebsd−i386
 Linux linux i386−linux
 HP−UX hpux PA−RISC1.1
 IRIX irix irix
 OSF1 dec_osf alpha−dec_osf
 SunOS solaris sun4−solaris
 SunOS solaris i86pc−solaris
 SunOS4 sunos sun4−sunos

Note that because the $Config{‘archname‘} may depend on the hardware architecture it may va
quite a lot, much more than the $^O.

DOS and Derivatives
Perl has long been ported to PC style microcomputers running under systems like PC−DOS, MS
OS/2, and most Windows platforms you can bring yourself to mention (except for Windows CE, if you
that). Users familiar with COMMAND.COM and/or CMD.EXE style shells should be aware that each
these file specifications may have subtle differences:
640 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

OS

age,

ut case
ed with

2 etc.
s. It

.
r

−free
ted in

 include
 $filespec0 = "c:/foo/bar/file.txt";
 $filespec1 = "c:\\foo\\bar\\file.txt";
 $filespec2 = ’c:\foo\bar\file.txt’;
 $filespec3 = ’c:\\foo\\bar\\file.txt’;

System calls accept either / or \ as the path separator. However, many command−line utilities of D
vintage treat / as the option prefix, so they may get confused by filenames containing / . Aside from calling
any external programs, / will work just fine, and probably better, as it is more consistent with popular us
and avoids the problem of remembering what to backwhack and what not to.

The DOS FAT filesystem can only accommodate "8.3" style filenames. Under the "case insensitive, b
preserving" HPFS (OS/2) and NTFS (NT) filesystems you may have to be careful about case return
functions like readdir or used with functions like open or opendir .

DOS also treats several filenames as special, such as AUX, PRN, NUL, CON, COM1, LPT1, LPT
Unfortunately these filenames won‘t even work if you include an explicit directory prefix, in some case
is best to avoid such filenames, if you want your code to be portable to DOS and its derivatives.

Users of these operating systems may also wish to make use of scripts such as pl2bat.bat or pl2cmd as
appropriate to put wrappers around your scripts.

Newline (\n) is translated as \015\012 by STDIO when reading from and writing to files
binmode(FILEHANDLE) will keep \n translated as \012 for that filehandle. Since it is a noop on othe
systems, binmode should be used for cross−platform code that deals with binary data.

The $^O variable and the $Config{‘archname‘} values for various DOSish perls are as follows:

 OS $^O $Config{’archname’}
 −−
 MS−DOS dos
 PC−DOS dos
 OS/2 os2
 Windows 95 MSWin32 MSWin32−x86
 Windows NT MSWin32 MSWin32−x86
 Windows NT MSWin32 MSWin32−alpha
 Windows NT MSWin32 MSWin32−ppc

Also see:

The djgpp environment for DOS, http://www.delorie.com/djgpp/
The EMX environment for DOS, OS/2, etc. emx@iaehv.nl ,

http://www.juge.com/bbs/Hobb.19.html

Build instructions for Win32, perlwin32.
The ActiveState Pages, http://www.activestate.com/

Mac OS
Any module requiring XS compilation is right out for most people, because MacPerl is built using non
(and non−cheap!) compilers. Some XS modules that can work with MacPerl are built and distribu
binary form on CPAN. See MacPerl: Power and Ease and "CPAN Testers" for more details.

Directories are specified as:

 volume:folder:file for absolute pathnames
 volume:folder: for absolute pathnames
 :folder:file for relative pathnames
 :folder: for relative pathnames
 :file for relative pathnames
 file for relative pathnames

Files in a directory are stored in alphabetical order. Filenames are limited to 31 characters, and may
18−Oct−1998 Version 5.005_02 641

perlport Perl Programmers Reference Guide perlport

or the

o

shop, a
an be

rl app,

x, and
o run

pt

et of

 For
any character except : , which is reserved as a path separator.

Instead of flock , see FSpSetFLock and FSpRstFLock in the Mac::Files module.

In the MacPerl application, you can‘t run a program from the command line; programs that expect @ARGV to
be populated can be edited with something like the following, which brings up a dialog box asking f
command line arguments.

 if (!@ARGV) {
 @ARGV = split /\s+/, MacPerl::Ask(’Arguments?’);
 }

A MacPerl script saved as a droplet will populate @ARGV with the full pathnames of the files dropped ont
the script.

Mac users can use programs on a kind of command line under MPW (Macintosh Programmer‘s Work
free development environment from Apple). MacPerl was first introduced as an MPW tool, and MPW c
used like a shell:

 perl myscript.plx some arguments

ToolServer is another app from Apple that provides access to MPW tools from MPW and the MacPe
which allows MacPerl programs to use system , backticks, and piped open .

"Mac OS" is the proper name for the operating system, but the value in $^O is "MacOS". To determine
architecture, version, or whether the application or MPW tool version is running, check:

 $is_app = $MacPerl::Version =~ /App/;
 $is_tool = $MacPerl::Version =~ /MPW/;
 ($version) = $MacPerl::Version =~ /^(\S+)/;
 $is_ppc = $MacPerl::Architecture eq ’MacPPC’;
 $is_68k = $MacPerl::Architecture eq ’Mac68K’;

Mac OS X, to be based on NeXT‘s OpenStep OS, will be able to run MacPerl natively (in the Blue Bo
even in the Yellow Box, once some changes to the toolbox calls are made), but Unix perl will als
natively.

Also see:

The MacPerl Pages, http://www.ptf.com/macperl/ .
The MacPerl mailing list, mac−perl−request@iis.ee.ethz.ch .

VMS
Perl on VMS is discussed in vms/perlvms.pod in the perl distribution. Note that perl on VMS can acce
either VMS− or Unix−style file specifications as in either of the following:

 $ perl −ne "print if /perl_setup/i" SYS$LOGIN:LOGIN.COM
 $ perl −ne "print if /perl_setup/i" /sys$login/login.com

but not a mixture of both as in:

 $ perl −ne "print if /perl_setup/i" sys$login:/login.com
 Can’t open sys$login:/login.com: file specification syntax error

Interacting with Perl from the Digital Command Language (DCL) shell often requires a different s
quotation marks than Unix shells do. For example:

 $ perl −e "print ""Hello, world.\n"""
 Hello, world.

There are a number of ways to wrap your perl scripts in DCL .COM files if you are so inclined.
example:

 $ write sys$output "Hello from DCL!"
642 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

racters,
. Valid

trailing

ior to

 Perl
d from

,

 not be

out

 well as
racter
rently
 $ if p1 .eqs. ""
 $ then perl −x ’f$environment("PROCEDURE")
 $ else perl −x − ’p1 ’p2 ’p3 ’p4 ’p5 ’p6 ’p7 ’p8
 $ deck/dollars="__END__"
 #!/usr/bin/perl

 print "Hello from Perl!\n";

 __END__
 $ endif

Do take care with $ ASSIGN/nolog/user SYS$COMMAND: SYS$INPUT if your perl−in−DCL script
expects to do things like $read = <STDIN>; .

Filenames are in the format "name.extension;version". The maximum length for filenames is 39 cha
and the maximum length for extensions is also 39 characters. Version is a number from 1 to 32767
characters are /[A−Z0−9$_−]/.

VMS’ RMS filesystem is case insensitive and does not preserve case. readdir returns lowercased
filenames, but specifying a file for opening remains case insensitive. Files without extensions have a
period on them, so doing a readdir with a file named A.;5 will return a. (though that file could be opened
with open(FH, ‘A’)).

RMS had an eight level limit on directory depths from any rooted logical (allowing 16 levels overall) pr
VMS 7.2. Hence PERL_ROOT:[LIB.2.3.4.5.6.7.8] is a valid directory specification but
PERL_ROOT:[LIB.2.3.4.5.6.7.8.9] is not. Makefile.PL authors might have to take this into
account, but at least they can refer to the former as /PERL_ROOT/lib/2/3/4/5/6/7/8/ .

The VMS::Filespec module, which gets installed as part of the build process on VMS, is a pure
module that can easily be installed on non−VMS platforms and can be helpful for conversions to an
RMS native formats.

What \n represents depends on the type of file that is open. It could be \015 , \012 , \015\012 , or
nothing. Reading from a file translates newlines to \012 , unless binmode was executed on that handle
just like DOSish perls.

TCP/IP stacks are optional on VMS, so socket routines might not be implemented. UDP sockets may
supported.

The value of $^O on OpenVMS is "VMS". To determine the architecture that you are running on with
resorting to loading all of %Config you can examine the content of the @INC array like so:

 if (grep(/VMS_AXP/, @INC)) {
 print "I’m on Alpha!\n";
 } elsif (grep(/VMS_VAX/, @INC)) {
 print "I’m on VAX!\n";
 } else {
 print "I’m not so sure about where $^O is...\n";
 }

Also see:

perlvms.pod
vmsperl list, vmsperl−request@newman.upenn.edu

Put words SUBSCRIBE VMSPERL in message body.

vmsperl on the web, http://www.sidhe.org/vmsperl/index.html

EBCDIC Platforms
Recent versions of Perl have been ported to platforms such as OS/400 on AS/400 minicomputers as
OS/390 for IBM Mainframes. Such computers use EBCDIC character sets internally (usually Cha
Code Set ID 00819 for OS/400 and IBM−1047 for OS/390). Note that on the mainframe perl cur
18−Oct−1998 Version 5.005_02 643

perlport Perl Programmers Reference Guide perlport

cript:

ns with

f the

 since
rk with

 for all

iling
 usually
es are
 name
 such
works under the "Unix system services for OS/390" (formerly known as OpenEdition).

As of R2.5 of USS for OS/390 that Unix sub−system did not support the #! shebang trick for script
invocation. Hence, on OS/390 perl scripts can executed with a header similar to the following simple s

 : # use perl
 eval ’exec /usr/local/bin/perl −S $0 ${1+"$@"}’
 if 0;
 #!/usr/local/bin/perl # just a comment really

 print "Hello from perl!\n";

On these platforms, bear in mind that the EBCDIC character set may have an effect on what happe
some perl functions (such as chr , pack , print , printf , ord , sort , sprintf , unpack), as well as
bit−fiddling with ASCII constants using operators like ^ , & and | , not to mention dealing with socket
interfaces to ASCII computers (see "NEWLINES").

Fortunately, most web servers for the mainframe will correctly translate the \n in the following statement to
its ASCII equivalent (note that \r is the same under both Unix and OS/390):

 print "Content−type: text/html\r\n\r\n";

The value of $^O on OS/390 is "os390".

Some simple tricks for determining if you are running on an EBCDIC platform could include any o
following (perhaps all):

 if ("\t" eq "\05") { print "EBCDIC may be spoken here!\n"; }

 if (ord(’A’) == 193) { print "EBCDIC may be spoken here!\n"; }

 if (chr(169) eq ’z’) { print "EBCDIC may be spoken here!\n"; }

Note that one thing you may not want to rely on is the EBCDIC encoding of punctuation characters
these may differ from code page to code page (and once your module or script is rumoured to wo
EBCDIC, folks will want it to work with all EBCDIC character sets).

Also see:

perl−mvs list
The perl−mvs@perl.org list is for discussion of porting issues as well as general usage issues
EBCDIC Perls. Send a message body of "subscribe perl−mvs" to majordomo@perl.org.

AS/400 Perl information at http://as400.rochester.ibm.com/

Acorn RISC OS
As Acorns use ASCII with newlines (\n) in text files as \012 like Unix and Unix filename emulation is
turned on by default, it is quite likely that most simple scripts will work "out of the box". The native f
system is modular, and individual filing systems are free to be case−sensitive or insensitive, and are
case−preserving. Some native filing systems have name length limits which file and directory nam
silently truncated to fit − scripts should be aware that the standard disc filing system currently has a
length limit of 10 characters, with up to 77 items in a directory, but other filing systems may not impose
limitations.

Native filenames are of the form

 Filesystem#Special_Field::DiscName.$.Directory.Directory.File

where

 Special_Field is not usually present, but may contain . and $.
 Filesystem =~ m|[A−Za−z0−9_]|
 DsicName =~ m|[A−Za−z0−9_/]|
 $ represents the root directory
644 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

d, hence

file

after 10

files are

ion is
 may

rse

t
,
efiles)
ffecting

eing a
ly on

 string

not rely

sers of
rrently
ause
 . is the path separator
 @ is the current directory (per filesystem but machine global)
 ^ is the parent directory
 Directory and File =~ m|[^\0− "\.\$\%\&:\@\\^\|\177]+|

The default filename translation is roughly tr|/.|./|;

Note that "ADFS::HardDisc.$.File" ne ‘ADFS::HardDisc.$.File’ and that the second
stage of $ interpolation in regular expressions will fall foul of the $. if scripts are not careful.

Logical paths specified by system variables containing comma−separated search lists are also allowe
System:Modules is a valid filename, and the filesystem will prefix Modules with each section of
System$Path until a name is made that points to an object on disc. Writing to a new
System:Modules would only be allowed if System$Path contains a single item list. The filesystem
will also expand system variables in filenames if enclosed in angle brackets, so
<System$Dir>.Modules would look for the file $ENV{‘System$Dir‘} . ‘Modules’. The
obvious implication of this is that fully qualified filenames can start with <> and should be protected
when open is used for input.

Because . was in use as a directory separator and filenames could not be assumed to be unique
characters, Acorn implemented the C compiler to strip the trailing .c .h .s and .o suffix from filenames
specified in source code and store the respective files in subdirectories named after the suffix. Hence
translated:

 foo.h h.foo
 C:foo.h C:h.foo (logical path variable)
 sys/os.h sys.h.os (C compiler groks Unix−speak)
 10charname.c c.10charname
 10charname.o o.10charname
 11charname_.c c.11charname (assuming filesystem truncates at 10)

The Unix emulation library‘s translation of filenames to native assumes that this sort of translat
required, and allows a user defined list of known suffixes which it will transpose in this fashion. This
appear transparent, but consider that with these rules foo/bar/baz.h and foo/bar/h/baz both map
to foo.bar.h.baz , and that readdir and glob cannot and do not attempt to emulate the reve
mapping. Other . s in filenames are translated to / .

As implied above the environment accessed through %ENV is global, and the convention is that program
specific environment variables are of the form Program$Name. Each filing system maintains a curren
directory, and the current filing system‘s current directory is the global current directory. Consequently
sociable scripts don‘t change the current directory but rely on full pathnames, and scripts (and Mak
cannot assume that they can spawn a child process which can change the current directory without a
its parent (and everyone else for that matter).

As native operating system filehandles are global and currently are allocated down from 255, with 0 b
reserved value the Unix emulation library emulates Unix filehandles. Consequently, you can‘t re
passing STDIN, STDOUT, or STDERR to your children.

The desire of users to express filenames of the form <Foo$Dir>.Bar on the command line unquoted
causes problems, too: ‘‘ command output capture has to perform a guessing game. It assumes that a
<[^<>]+\$[^<>]> is a reference to an environment variable, whereas anything else involving < or > is
redirection, and generally manages to be 99% right. Of course, the problem remains that scripts can
on any Unix tools being available, or that any tools found have Unix−like command line arguments.

Extensions and XS are, in theory, buildable by anyone using free tools. In practice, many don‘t, as u
the Acorn platform are used to binary distribution. MakeMaker does run, but no available make cu
copes with MakeMaker‘s makefiles; even if/when this is fixed, the lack of a Unix−like shell can c
problems with makefile rules, especially lines of the form cd sdbm && make all , and anything using
quoting.
18−Oct−1998 Version 5.005_02 645

perlport Perl Programmers Reference Guide perlport

such as
it. You
os,
the

 each

t the
 for a

able,

file

S).

extent.

is is
"RISC OS" is the proper name for the operating system, but the value in $^O is "riscos" (because we don‘t
like shouting).

Also see:

perl list

Other perls
Perl has been ported to a variety of platforms that do not fit into any of the above categories. Some,
AmigaOS, BeOS, QNX, and Plan 9, have been well−integrated into the standard Perl source code k
may need to see the ports/ directory on CPAN for information, and possibly binaries, for the likes of: a
atari, lynxos, riscos, Tandem Guardian, vos, etc. (yes we know that some of these OSes may fall under
Unix category, but we are not a standards body.)

See also:

Atari, Guido Flohr‘s page http://stud.uni−sb.de/~gufl0000/
HP 300 MPE/iX http://www.cccd.edu/~markb/perlix.html
Novell Netware

A free perl5−based PERL.NLM for Novell Netware is available from http://www.novell.com/

FUNCTION IMPLEMENTATIONS
Listed below are functions unimplemented or implemented differently on various platforms. Following
description will be, in parentheses, a list of platforms that the description applies to.

The list may very well be incomplete, or wrong in some places. When in doubt, consul
platform−specific README files in the Perl source distribution, and other documentation resources
given port.

Be aware, moreover, that even among Unix−ish systems there are variations.

For many functions, you can also query %Config , exported by default from Config.pm . For example, to
check if the platform has the lstat call, check $Config{‘d_lstat‘}. See Config.pm for a full
description of available variables.

Alphabetical Listing of Perl Functions

−X FILEHANDLE
−X EXPR
−X −r , −w, and −x have only a very limited meaning; directories and applications are execut

and there are no uid/gid considerations. −o is not supported. (Mac OS)

−r , −w, −x , and −o tell whether or not file is accessible, which may not reflect UIC−based
protections. (VMS)

−s returns the size of the data fork, not the total size of data fork plus resource fork. (Mac O

−s by name on an open file will return the space reserved on disk, rather than the current
−s on an open filehandle returns the current size. (RISC OS)

−R, −W, −X, −O are indistinguishable from −r , −w, −x , −o. (Mac OS, Win32, VMS, RISC OS)

−b, −c , −k , −g, −p, −u, −A are not implemented. (Mac OS)

−g, −k , −l , −p, −u, −A are not particularly meaningful. (Win32, VMS, RISC OS)

−d is true if passed a device spec without an explicit directory. (VMS)

−T and −B are implemented, but might misclassify Mac text files with foreign characters; th
the case will all platforms, but may affect Mac OS often. (Mac OS)

−x (or −X) determine if a file ends in one of the executable suffixes. −S is meaningless. (Win32)
646 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

d, or

ed.

 the

less.
−x (or −X) determine if a file has an executable file type. (RISC OS)

binmode FILEHANDLE
Meaningless. (Mac OS, RISC OS)

Reopens file and restores pointer; if function fails, underlying filehandle may be close
pointer may be in a different position. (VMS)

The value returned by tell may be affected after the call, and the filehandle may be flush
(Win32)

chmod LIST
Only limited meaning. Disabling/enabling write permission is mapped to locking/unlocking
file. (Mac OS)

Only good for changing "owner" read−write access, "group", and "other" bits are meaning
(Win32)

Only good for changing "owner" and "other" read−write access. (RISC OS)

chown LIST
Not implemented. (Mac OS, Win32, Plan9, RISC OS)

Does nothing, but won‘t fail. (Win32)

chroot FILENAME
chroot Not implemented. (Mac OS, Win32, VMS, Plan9, RISC OS)

crypt PLAINTEXT,SALT
May not be available if library or source was not provided when building perl. (Win32)

dbmclose HASH
Not implemented. (VMS, Plan9)

dbmopen HASH,DBNAME,MODE
Not implemented. (VMS, Plan9)

dump LABEL
Not useful. (Mac OS, RISC OS)

Not implemented. (Win32)

Invokes VMS debugger. (VMS)

exec LIST
Not implemented. (Mac OS)

fcntl FILEHANDLE,FUNCTION,SCALAR
Not implemented. (Win32, VMS)

flock FILEHANDLE,OPERATION
Not implemented (Mac OS, VMS, RISC OS).

Available only on Windows NT (not on Windows 95). (Win32)

fork Not implemented. (Mac OS, Win32, AmigaOS, RISC OS)

getlogin Not implemented. (Mac OS, RISC OS)

getpgrp PID
Not implemented. (Mac OS, Win32, VMS, RISC OS)
18−Oct−1998 Version 5.005_02 647

perlport Perl Programmers Reference Guide perlport
getppid Not implemented. (Mac OS, Win32, VMS, RISC OS)

getpriority WHICH,WHO
Not implemented. (Mac OS, Win32, VMS, RISC OS)

getpwnam NAME
Not implemented. (Mac OS, Win32)

Not useful. (RISC OS)

getgrnam NAME
Not implemented. (Mac OS, Win32, VMS, RISC OS)

getnetbyname NAME
Not implemented. (Mac OS, Win32, Plan9)

getpwuid UID
Not implemented. (Mac OS, Win32)

Not useful. (RISC OS)

getgrgid GID
Not implemented. (Mac OS, Win32, VMS, RISC OS)

getnetbyaddr ADDR,ADDRTYPE
Not implemented. (Mac OS, Win32, Plan9)

getprotobynumber NUMBER
Not implemented. (Mac OS)

getservbyport PORT,PROTO
Not implemented. (Mac OS)

getpwent Not implemented. (Mac OS, Win32)

getgrent Not implemented. (Mac OS, Win32, VMS)

gethostent
Not implemented. (Mac OS, Win32)

getnetent Not implemented. (Mac OS, Win32, Plan9)

getprotoent
Not implemented. (Mac OS, Win32, Plan9)

getservent
Not implemented. (Win32, Plan9)

setpwent Not implemented. (Mac OS, Win32, RISC OS)

setgrent Not implemented. (Mac OS, Win32, VMS, RISC OS)

sethostent STAYOPEN
Not implemented. (Mac OS, Win32, Plan9, RISC OS)

setnetent STAYOPEN
Not implemented. (Mac OS, Win32, Plan9, RISC OS)

setprotoent STAYOPEN
Not implemented. (Mac OS, Win32, Plan9, RISC OS)
648 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

g like

ting
sitive,
setservent STAYOPEN
Not implemented. (Plan9, Win32, RISC OS)

endpwent
Not implemented. (Mac OS, Win32)

endgrent Not implemented. (Mac OS, Win32, VMS, RISC OS)

endhostent
Not implemented. (Mac OS, Win32)

endnetent
Not implemented. (Mac OS, Win32, Plan9)

endprotoent
Not implemented. (Mac OS, Win32, Plan9)

endservent
Not implemented. (Plan9, Win32)

getsockopt SOCKET,LEVEL,OPTNAME
Not implemented. (Mac OS, Plan9)

glob EXPR
glob Globbing built−in, but only * and ? metacharacters are supported. (Mac OS)

Features depend on external perlglob.exe or perlglob.bat. May be overridden with somethin
File::DosGlob, which is recommended. (Win32)

Globbing built−in, but only * and ? metacharacters are supported. Globbing relies on opera
system calls, which may return filenames in any order. As most filesystems are case−insen
even "sorted" filenames will not be in case−sensitive order. (RISC OS)

ioctl FILEHANDLE,FUNCTION,SCALAR
Not implemented. (VMS)

Available only for socket handles, and it does what the ioctlsocket() call in the Winsock
API does. (Win32)

Available only for socket handles. (RISC OS)

kill LIST Not implemented, hence not useful for taint checking. (Mac OS, RISC OS)

Available only for process handles returned by the system(1, ...) method of spawning a
process. (Win32)

link OLDFILE,NEWFILE
Not implemented. (Mac OS, Win32, VMS, RISC OS)

lstat FILEHANDLE
lstat EXPR
lstat Not implemented. (VMS, RISC OS)

Return values may be bogus. (Win32)

msgctl ID,CMD,ARG
msgget KEY,FLAGS
msgsnd ID,MSG,FLAGS
msgrcv ID,VAR,SIZE,TYPE,FLAGS

Not implemented. (Mac OS, Win32, VMS, Plan9, RISC OS)
18−Oct−1998 Version 5.005_02 649

perlport Perl Programmers Reference Guide perlport

 time.

 not

ome
open FILEHANDLE,EXPR
open FILEHANDLE

The | variants are only supported if ToolServer is installed. (Mac OS)

open to |− and −| are unsupported. (Mac OS, Win32, RISC OS)

pipe READHANDLE,WRITEHANDLE
Not implemented. (Mac OS)

readlink EXPR
readlink Not implemented. (Win32, VMS, RISC OS)

select RBITS,WBITS,EBITS,TIMEOUT
Only implemented on sockets. (Win32)

Only reliable on sockets. (RISC OS)

semctl ID,SEMNUM,CMD,ARG
semget KEY,NSEMS,FLAGS
semop KEY,OPSTRING

Not implemented. (Mac OS, Win32, VMS, RISC OS)

setpgrp PID,PGRP
Not implemented. (Mac OS, Win32, VMS, RISC OS)

setpriority WHICH,WHO,PRIORITY
Not implemented. (Mac OS, Win32, VMS, RISC OS)

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Not implemented. (Mac OS, Plan9)

shmctl ID,CMD,ARG
shmget KEY,SIZE,FLAGS
shmread ID,VAR,POS,SIZE
shmwrite ID,STRING,POS,SIZE

Not implemented. (Mac OS, Win32, VMS, RISC OS)

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
Not implemented. (Mac OS, Win32, VMS, RISC OS)

stat FILEHANDLE
stat EXPR
stat mtime and atime are the same thing, and ctime is creation time instead of inode change

(Mac OS)

device and inode are not meaningful. (Win32)

device and inode are not necessarily reliable. (VMS)

mtime, atime and ctime all return the last modification time. Device and inode are
necessarily reliable. (RISC OS)

symlink OLDFILE,NEWFILE
Not implemented. (Win32, VMS, RISC OS)

syscall LIST
Not implemented. (Mac OS, Win32, VMS, RISC OS)

sysopen FILEHANDLE,FILENAME,MODE,PERMS
The traditional "0", "1", and "2" MODEs are implemented with different numeric values on s
systems. The flags exported by Fcntl (O_RDONLY, O_WRONLY, O_RDWR) should work
650 Version 5.005_02 18−Oct−1998

perlport Perl Programmers Reference Guide perlport

cess

and line

in,
of the
f a

l be

ion of
rt an
everywhere though. (Mac OS, OS/390)

system LIST
Only implemented if ToolServer is installed. (Mac OS)

As an optimization, may not call the command shell specified in $ENV{PERL5SHELL}.
system(1, @args) spawns an external process and immediately returns its pro
designator, without waiting for it to terminate. Return value may be used subsequently in wait
or waitpid . (Win32)

There is no shell to process metacharacters, and the native standard is to pass a comm
terminated by "\n" "\r" or "\0" to the spawned program. Redirection such as > foo is
performed (if at all) by the run time library of the spawned program. system list will call the
Unix emulation library‘s exec emulation, which attempts to provide emulation of the std
stdout, stderr in force in the parent, providing the child program uses a compatible version
emulation library. scalar will call the native command line direct and no such emulation o
child Unix program will exists. Mileage will vary. (RISC OS)

times Only the first entry returned is nonzero. (Mac OS)

"cumulative" times will be bogus. On anything other than Windows NT, "system" time wil
bogus, and "user" time is actually the time returned by the clock() function in the C runtime
library. (Win32)

Not useful. (RISC OS)

truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH

Not implemented. (VMS)

umask EXPR
umask Returns undef where unavailable, as of version 5.005.

utime LIST
Only the modification time is updated. (Mac OS, VMS, RISC OS)

May not behave as expected. Behavior depends on the C runtime library‘s implementat
utime() , and the filesystem being used. The FAT filesystem typically does not suppo
"access time" field, and it may limit timestamps to a granularity of two seconds. (Win32)

wait
waitpid PID,FLAGS

Not implemented. (Mac OS)

Can only be applied to process handles returned for processes spawned using system(1,
...) . (Win32)

Not useful. (RISC OS)

CHANGES

1.33, 06 August 1998
Integrate more minor changes.

1.32, 05 August 1998
Integrate more minor changes.

1.30, 03 August 1998
Major update for RISC OS, other minor changes.
18−Oct−1998 Version 5.005_02 651

perlport Perl Programmers Reference Guide perlport

nlop
Nick

ead
om>,
hoenix
1.23, 10 July 1998
First public release with perl5.005.

AUTHORS / CONTRIBUTORS
Abigail <abigail@fnx.com>, Charles Bailey <bailey@genetics.upenn.edu>, Graham Barr
<gbarr@pobox.com>, Tom Christiansen <tchrist@perl.com>, Nicholas Clark
<Nicholas.Clark@liverpool.ac.uk>, Andy Dougherty <doughera@lafcol.lafayette.edu>, Dominic Du
<domo@vo.lu>, M.J.T. Guy <mjtg@cus.cam.ac.uk>, Luther Huffman <lutherh@stratcom.com>,
Ing−Simmons <nick@ni−s.u−net.com>, Andreas J. König <koenig@kulturbox.de>, Andrew M. Langm
<aml@world.std.com>, Paul Moore <Paul.Moore@uk.origin−it.com>, Chris Nandor <pudge@pobox.c
Matthias Neeracher <neeri@iis.ee.ethz.ch>, Gary Ng <71564.1743@CompuServe.COM>, Tom P
<rootbeer@teleport.com>, Peter Prymmer <pvhp@forte.com>, Hugo van der Sanden
<hv@crypt0.demon.co.uk>, Gurusamy Sarathy <gsar@umich.edu>, Paul J. Schinder
<schinder@pobox.com>, Dan Sugalski <sugalskd@ous.edu>, Nathan Torkington <gnat@frii.com>.

This document is maintained by Chris Nandor.

VERSION
Version 1.34, last modified 07 August 1998.
652 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

cts than

undle.
eks on
 is what
nt, but
contract

ass is a
 The Perl
Objects

y know
 me an
 you is

 object
fferent
tring or
d, with

but one
ell,
ploy any
a hash
ually a

e) name
) should
s of its

 called
ecome
ething

ssume
ouping

doesn‘t

agic is
bject.
it.
NAME
perltoot − Tom‘s object−oriented tutorial for perl

DESCRIPTION
Object−oriented programming is a big seller these days. Some managers would rather have obje
sliced bread. Why is that? What‘s so special about an object? Just what is an object anyway?

An object is nothing but a way of tucking away complex behaviours into a neat little easy−to−use b
(This is what professors call abstraction.) Smart people who have nothing to do but sit around for we
end figuring out really hard problems make these nifty objects that even regular people can use. (This
professors call software reuse.) Users (well, programmers) can play with this little bundle all they wa
they aren‘t to open it up and mess with the insides. Just like an expensive piece of hardware, the
says that you void the warranty if you muck with the cover. So don‘t do that.

The heart of objects is the class, a protected little private namespace full of data and functions. A cl
set of related routines that addresses some problem area. You can think of it as a user−defined type.
package mechanism, also used for more traditional modules, is used for class modules as well.
"live" in a class, meaning that they belong to some package.

More often than not, the class provides the user with little bundles. These bundles are objects. The
whose class they belong to, and how to behave. Users ask the class to do something, like "give
object." Or they can ask one of these objects to do something. Asking a class to do something for
calling a class method. Asking an object to do something for you is calling an object method. Asking either a
class (usually) or an object (sometimes) to give you back an object is calling a constructor, which is just a
kind of method.

That‘s all well and good, but how is an object different from any other Perl data type? Just what is an
really; that is, what‘s its fundamental type? The answer to the first question is easy. An object is di
from any other data type in Perl in one and only one way: you may dereference it using not merely s
numeric subscripts as with simple arrays and hashes, but with named subroutine calls. In a wor
methods.

The answer to the second question is that it‘s a reference, and not just any reference, mind you,
whose referent has been bless () ed into a particular class (read: package). What kind of reference? W
the answer to that one is a bit less concrete. That‘s because in Perl the designer of the class can em
sort of reference they‘d like as the underlying intrinsic data type. It could be a scalar, an array, or
reference. It could even be a code reference. But because of its inherent flexibility, an object is us
hash reference.

Creating a Class
Before you create a class, you need to decide what to name it. That‘s because the class (packag
governs the name of the file used to house it, just as with regular modules. Then, that class (package
provide one or more ways to generate objects. Finally, it should provide mechanisms to allow user
objects to indirectly manipulate these objects from a distance.

For example, let‘s make a simple Person class module. It gets stored in the file Person.pm. If it were
a Happy::Person class, it would be stored in the file Happy/Person.pm, and its package would b
Happy::Person instead of just Person. (On a personal computer not running Unix or Plan 9, but som
like MacOS or VMS, the directory separator may be different, but the principle is the same.) Do not a
any formal relationship between modules based on their directory names. This is merely a gr
convenience, and has no effect on inheritance, variable accessibility, or anything else.

For this module we aren‘t going to use Exporter, because we‘re a well−behaved class module that
export anything at all. In order to manufacture objects, a class needs to have a constructor method. A
constructor gives you back not just a regular data type, but a brand−new object in that class. This m
taken care of by the bless() function, whose sole purpose is to enable its referent to be used as an o
Remember: being an object really means nothing more than that methods may now be called against
18−Oct−1998 Version 5.005_02 653

perltoot Perl Programmers Reference Guide perltoot

 theirs
Some
ctor.

lass is an
accessed

named

mming
 data
e

ead of

 on you
l won‘t
hod
piler to

docs that

the fact)
jects is
While a constructor may be named anything you‘d like, most Perl programmers seem to like to call
new() . However, new() is not a reserved word, and a class is under no obligation to supply such.
programmers have also been known to use a function with the same name as the class as the constru

Object Representation
By far the most common mechanism used in Perl to represent a Pascal record, a C struct, or a C++ c
anonymous hash. That‘s because a hash has an arbitrary number of data fields, each conveniently
by an arbitrary name of your own devising.

If you were just doing a simple struct−like emulation, you would likely go about it something like this:

 $rec = {
 name => "Jason",
 age => 23,
 peers => ["Norbert", "Rhys", "Phineas"],
 };

If you felt like it, you could add a bit of visual distinction by up−casing the hash keys:

 $rec = {
 NAME => "Jason",
 AGE => 23,
 PEERS => ["Norbert", "Rhys", "Phineas"],
 };

And so you could get at $rec−>{NAME} to find "Jason", or @{ $rec−>{PEERS} } to get at "Norbert",
"Rhys", and "Phineas". (Have you ever noticed how many 23−year−old programmers seem to be
"Jason" these days? :−)

This same model is often used for classes, although it is not considered the pinnacle of progra
propriety for folks from outside the class to come waltzing into an object, brazenly accessing its
members directly. Generally speaking, an object should be considered an opaque cookie that you usobject
methods to access. Visually, methods look like you‘re dereffing a reference using a function name inst
brackets or braces.

Class Interface
Some languages provide a formal syntactic interface to a class‘s methods, but Perl does not. It relies
to read the documentation of each class. If you try to call an undefined method on an object, Per
complain, but the program will trigger an exception while it‘s running. Likewise, if you call a met
expecting a prime number as its argument with a non−prime one instead, you can‘t expect the com
catch this. (Well, you can expect it all you like, but it‘s not going to happen.)

Let‘s suppose you have a well−educated user of your Person class, someone who has read the
explain the prescribed interface. Here‘s how they might use the Person class:

 use Person;

 $him = Person−>new();
 $him−>name("Jason");
 $him−>age(23);
 $him−>peers("Norbert", "Rhys", "Phineas");

 push @All_Recs, $him; # save object in array for later

 printf "%s is %d years old.\n", $him−>name, $him−>age;
 print "His peers are: ", join(", ", $him−>peers), "\n";

 printf "Last rec’s name is %s\n", $All_Recs[−1]−>name;

As you can see, the user of the class doesn‘t know (or at least, has no business paying attention to
that the object has one particular implementation or another. The interface to the class and its ob
exclusively via methods, and that‘s all the user of the class should ever play with.
654 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

s that
standard
e
ur

rn the

about
t this

rgument
Constructors and Instance Methods
Still, someone has to know what‘s in the object. And that someone is the class. It implements method
the programmer uses to access the object. Here‘s how to implement the Person class using the
hash−ref−as−an−object idiom. We‘ll make a class method called new() to act as the constructor, and thre
object methods called name() , age() , and peers() to get at per−object data hidden away in o
anonymous hash.

 package Person;
 use strict;

 ##
 ## the object constructor (simplistic version) ##
 ##
 sub new {
 my $self = {};
 $self−>{NAME} = undef;
 $self−>{AGE} = undef;
 $self−>{PEERS} = [];
 bless($self); # but see below
 return $self;
 }

 ##
 ## methods to access per−object data ##
 ## ##
 ## With args, they set the value. Without ##
 ## any, they only retrieve it/them. ##
 ##

 sub name {
 my $self = shift;
 if (@_) { $self−>{NAME} = shift }
 return $self−>{NAME};
 }

 sub age {
 my $self = shift;
 if (@_) { $self−>{AGE} = shift }
 return $self−>{AGE};
 }

 sub peers {
 my $self = shift;
 if (@_) { @{ $self−>{PEERS} } = @_ }
 return @{ $self−>{PEERS} };
 }

 1; # so the require or use succeeds

We‘ve created three methods to access an object‘s data, name() , age() , and peers() . These are all
substantially similar. If called with an argument, they set the appropriate field; otherwise they retu
value held by that field, meaning the value of that hash key.

Planning for the Future: Better Constructors
Even though at this point you may not even know what it means, someday you‘re going to worry
inheritance. (You can safely ignore this for now and worry about it later if you‘d like.) To ensure tha
all works out smoothly, you must use the double−argument form of bless() . The second argument is the
class into which the referent will be blessed. By not assuming our own class as the default second a
18−Oct−1998 Version 5.005_02 655

perltoot Perl Programmers Reference Guide perltoot

ethod,

e were

paque

plicitly

uctor,

xplicitly
ystem,
hat the
fined

ntion to
licitly

 called.
ay to

lean up
ctor is
Person

 data

emory.
en your
object
nning
 thread
and instead using the class passed into us, we make our constructor inheritable.

While we‘re at it, let‘s make our constructor a bit more flexible. Rather than being uniquely a class m
we‘ll set it up so that it can be called as either a class method or an object method. That way you can say:

 $me = Person−>new();
 $him = $me−>new();

To do this, all we have to do is check whether what was passed in was a reference or not. If so, w
invoked as an object method, and we need to extract the package (class) using the ref() function. If not,
we just use the string passed in as the package name for blessing our referent.

 sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = {};
 $self−>{NAME} = undef;
 $self−>{AGE} = undef;
 $self−>{PEERS} = [];
 bless ($self, $class);
 return $self;
 }

That‘s about all there is for constructors. These methods bring objects to life, returning neat little o
bundles to the user to be used in subsequent method calls.

Destructors
Every story has a beginning and an end. The beginning of the object‘s story is its constructor, ex
called when the object comes into existence. But the ending of its story is the destructor, a method
implicitly called when an object leaves this life. Any per−object clean−up code is placed in the destr
which must (in Perl) be called DESTROY.

If constructors can have arbitrary names, then why not destructors? Because while a constructor is e
called, a destructor is not. Destruction happens automatically via Perl‘s garbage collection (GC) s
which is a quick but somewhat lazy reference−based GC system. To know what to call, Perl insists t
destructor be named DESTROY. Perl‘s notion of the right time to call a destructor is not well−de
currently, which is why your destructors should not rely on when they are called.

Why is DESTROY in all caps? Perl on occasion uses purely uppercase function names as a conve
indicate that the function will be automatically called by Perl in some way. Others that are called imp
include BEGIN, END, AUTOLOAD, plus all methods used by tied objects, described in perltie.

In really good object−oriented programming languages, the user doesn‘t care when the destructor is
It just happens when it‘s supposed to. In low−level languages without any GC at all, there‘s no w
depend on this happening at the right time, so the programmer must explicitly call the destructor to c
memory and state, crossing their fingers that it‘s the right time to do so. Unlike C++, an object destru
nearly never needed in Perl, and even when it is, explicit invocation is uncalled for. In the case of our
class, we don‘t need a destructor because Perl takes care of simple matters like memory deallocation.

The only situation where Perl‘s reference−based GC won‘t work is when there‘s a circularity in the
structure, such as:

 $this−>{WHATEVER} = $this;

In that case, you must delete the self−reference manually if you expect your program not to leak m
While admittedly error−prone, this is the best we can do right now. Nonetheless, rest assured that wh
program is finished, its objects’ destructors are all duly called. So you are guaranteed that an
eventually gets properly destroyed, except in the unique case of a program that never exits. (If you‘re ru
Perl embedded in another application, this full GC pass happens a bit more frequently—whenever a
shuts down.)
656 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

thods",
, except
tly via its

ction is

an
s alone
rced by

The key
 more

ffs to be
s more
rnally
.

? Well,
t?

t
say
ven
 global.

rm in
e from
Other Object Methods
The methods we‘ve talked about so far have either been constructors or else simple "data me
interfaces to data stored in the object. These are a bit like an object‘s data members in the C++ world
that strangers don‘t access them as data. Instead, they should only access the object‘s data indirec
methods. This is an important rule: in Perl, access to an object‘s data should only be made through methods.

Perl doesn‘t impose restrictions on who gets to use which methods. The public−versus−private distin
by convention, not syntax. (Well, unless you use the Alias module described below in
Data Members as Variables.) Occasionally you‘ll see method names beginning or ending with
underscore or two. This marking is a convention indicating that the methods are private to that clas
and sometimes to its closest acquaintances, its immediate subclasses. But this distinction is not enfo
Perl itself. It‘s up to the programmer to behave.

There‘s no reason to limit methods to those that simply access data. Methods can do anything at all.
point is that they‘re invoked against an object or a class. Let‘s say we‘d like object methods that do
than fetch or set one particular field.

 sub exclaim {
 my $self = shift;
 return sprintf "Hi, I’m %s, age %d, working with %s",
 $self−>{NAME}, $self−>{AGE}, join(", ", $self−>{PEERS});
 }

Or maybe even one like this:

 sub happy_birthday {
 my $self = shift;
 return ++$self−>{AGE};
 }

Some might argue that one should go at these this way:

 sub exclaim {
 my $self = shift;
 return sprintf "Hi, I’m %s, age %d, working with %s",
 $self−>name, $self−>age, join(", ", $self−>peers);
 }

 sub happy_birthday {
 my $self = shift;
 return $self−>age($self−>age() + 1);
 }

But since these methods are all executing in the class itself, this may not be critical. There are tradeo
made. Using direct hash access is faster (about an order of magnitude faster, in fact), and it‘
convenient when you want to interpolate in strings. But using methods (the external interface) inte
shields not just the users of your class but even you yourself from changes in your data representation

Class Data
What about "class data", data items common to each object in a class? What would you want that for
in your Person class, you might like to keep track of the total people alive. How do you implement tha

You could make it a global variable called $Person::Census. But about only reason you‘d do tha
would be if you wanted people to be able to get at your class data directly. They could just
$Person::Census and play around with it. Maybe this is ok in your design scheme. You might e
conceivably want to make it an exported variable. To be exportable, a variable must be a (package)
If this were a traditional module rather than an object−oriented one, you might do that.

While this approach is expected in most traditional modules, it‘s generally considered rather poor fo
most object modules. In an object module, you should set up a protective veil to separate interfac
18−Oct−1998 Version 5.005_02 657

perltoot Perl Programmers Reference Guide perltoot

to access

f the
 make

ply put

this
hat the
oesn‘t

ou

e of for

hat
,
 object
sses. In

ROY

obably it

h key
strong
at this

PEERS
implementation. So provide a class method to access class data just as you provide object methods
object data.

So, you could still keep $Census as a package global and rely upon others to honor the contract o
module and therefore not play around with its implementation. You could even be supertricky and
$Census a tied object as described in perltie, thereby intercepting all accesses.

But more often than not, you just want to make your class data a file−scoped lexical. To do so, sim
this at the top of the file:

 my $Census = 0;

Even though the scope of a my() normally expires when the block in which it was declared is done (in
case the whole file being required or used), Perl‘s deep binding of lexical variables guarantees t
variable will not be deallocated, remaining accessible to functions declared within that scope. This d
work with global variables given temporary values via local() , though.

Irrespective of whether you leave $Census a package global or make it instead a file−scoped lexical, y
should make these changes to your Person::new() constructor:

 sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = {};
 $Census++;
 $self−>{NAME} = undef;
 $self−>{AGE} = undef;
 $self−>{PEERS} = [];
 bless ($self, $class);
 return $self;
 }

 sub population {
 return $Census;
 }

Now that we‘ve done this, we certainly do need a destructor so that when Person is destroyed, the $Census
goes down. Here‘s how this could be done:

 sub DESTROY { −−$Census }

Notice how there‘s no memory to deallocate in the destructor? That‘s something that Perl takes car
you all by itself.

Accessing Class Data
It turns out that this is not really a good way to go about handling class data. A good scalable rule is tyou
must never reference class data directly from an object method. Otherwise you aren‘t building a scalable
inheritable class. The object must be the rendezvous point for all operations, especially from an
method. The globals (class data) would in some sense be in the "wrong" package in your derived cla
Perl, methods execute in the context of the class they were defined in, not that of the object that triggered
them. Therefore, namespace visibility of package globals in methods is unrelated to inheritance.

Got that? Maybe not. Ok, let‘s say that some other class "borrowed" (well, inherited) the DEST
method as it was defined above. When those objects are destroyed, the original $Census variable will be
altered, not the one in the new class‘s package namespace. Perhaps this is what you want, but pr
isn‘t.

Here‘s how to fix this. We‘ll store a reference to the data in the value accessed by the has
"_CENSUS". Why the underscore? Well, mostly because an initial underscore already conveys
feelings of magicalness to a C programmer. It‘s really just a mnemonic device to remind ourselves th
field is special and not to be used as a public data member in the same way that NAME, AGE, and
658 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

‘ll have

 objects
e‘ll pull
out with
ective,
are. (Because we‘ve been developing this code under the strict pragma, prior to perl version 5.004 we
to quote the field name.)

 sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = {};
 $self−>{NAME} = undef;
 $self−>{AGE} = undef;
 $self−>{PEERS} = [];
 # "private" data
 $self−>{"_CENSUS"} = \$Census;
 bless ($self, $class);
 ++ ${ $self−>{"_CENSUS"} };
 return $self;
 }

 sub population {
 my $self = shift;
 if (ref $self) {
 return ${ $self−>{"_CENSUS"} };
 } else {
 return $Census;
 }
 }

 sub DESTROY {
 my $self = shift;
 −− ${ $self−>{"_CENSUS"} };
 }

Debugging Methods
It‘s common for a class to have a debugging mechanism. For example, you might want to see when
are created or destroyed. To do that, add a debugging variable as a file−scoped lexical. For this, w
in the standard Carp module to emit our warnings and fatal messages. That way messages will come
the caller‘s filename and line number instead of our own; if we wanted them to be from our own persp
we‘d just use die() and warn() directly instead of croak() and carp() respectively.

 use Carp;
 my $Debugging = 0;

Now add a new class method to access the variable.

 sub debug {
 my $class = shift;
 if (ref $class) { confess "Class method called as object method" }
 unless (@_ == 1) { confess "usage: CLASSNAME−>debug(level)" }
 $Debugging = shift;
 }

Now fix up DESTROY to murmur a bit as the moribund object expires:

 sub DESTROY {
 my $self = shift;
 if ($Debugging) { carp "Destroying $self " . $self−>name }
 −− ${ $self−>{"_CENSUS"} };
 }

One could conceivably make a per−object debug state. That way you could call both of these:
18−Oct−1998 Version 5.005_02 659

perltoot Perl Programmers Reference Guide perltoot

 class?

leanup
 such a
END
ecs or

er that

in the
. Even
by the
slators
 Person−>debug(1); # entire class
 $him−>debug(1); # just this object

To do so, we need our debugging method to be a "bimodal" one, one that works on both classes and objects.
Therefore, adjust the debug() and DESTROY methods as follows:

 sub debug {
 my $self = shift;
 confess "usage: thing−>debug(level)" unless @_ == 1;
 my $level = shift;
 if (ref($self)) {
 $self−>{"_DEBUG"} = $level; # just myself
 } else {
 $Debugging = $level; # whole class
 }
 }

 sub DESTROY {
 my $self = shift;
 if ($Debugging || $self−>{"_DEBUG"}) {
 carp "Destroying $self " . $self−>name;
 }
 −− ${ $self−>{"_CENSUS"} };
 }

What happens if a derived class (which we‘ll call Employee) inherits methods from this Person base
Then Employee−>debug() , when called as a class method, manipulates $Person::Debugging not
$Employee::Debugging.

Class Destructors
The object destructor handles the death of each distinct object. But sometimes you want a bit of c
when the entire class is shut down, which currently only happens when the program exits. To make
class destructor, create a function in that class‘s package named END. This works just like the
function in traditional modules, meaning that it gets called whenever your program exits unless it ex
dies of an uncaught signal. For example,

 sub END {
 if ($Debugging) {
 print "All persons are going away now.\n";
 }
 }

When the program exits, all the class destructors (END functions) are be called in the opposite ord
they were loaded in (LIFO order).

Documenting the Interface
And there you have it: we‘ve just shown you the implementation of this Person class. Its interface would be
its documentation. Usually this means putting it in pod ("plain old documentation") format right there
same file. In our Person example, we would place the following docs anywhere in the Person.pm file
though it looks mostly like code, it‘s not. It‘s embedded documentation such as would be used
pod2man, pod2html, or pod2text programs. The Perl compiler ignores pods entirely, just as the tran
ignore code. Here‘s an example of some pods describing the informal interface:

 =head1 NAME

 Person − class to implement people

 =head1 SYNOPSIS

 use Person;
660 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

odule
ntract

ort both
ames),
ugh its
en they

? To
:
 #################
 # class methods #
 #################
 $ob = Person−>new;
 $count = Person−>population;

 #######################
 # object data methods #
 #######################

 ### get versions ###
 $who = $ob−>name;
 $years = $ob−>age;
 @pals = $ob−>peers;

 ### set versions ###
 $ob−>name("Jason");
 $ob−>age(23);
 $ob−>peers("Norbert", "Rhys", "Phineas");

 ########################
 # other object methods #
 ########################

 $phrase = $ob−>exclaim;
 $ob−>happy_birthday;

 =head1 DESCRIPTION

 The Person class implements dah dee dah dee dah....

That‘s all there is to the matter of interface versus implementation. A programmer who opens up the m
and plays around with all the private little shiny bits that were safely locked up behind the interface co
has voided the warranty, and you shouldn‘t worry about their fate.

Aggregation
Suppose you later want to change the class to implement better names. Perhaps you‘d like to supp
given names (called Christian names, irrespective of one‘s religion) and family names (called surn
plus nicknames and titles. If users of your Person class have been properly accessing it thro
documented interface, then you can easily change the underlying implementation. If they haven‘t, th
lose and it‘s their fault for breaking the contract and voiding their warranty.

To do this, we‘ll make another class, this one called Fullname. What‘s the Fullname class look like
answer that question, you have to first figure out how you want to use it. How about we use it this way

 $him = Person−>new();
 $him−>fullname−>title("St");
 $him−>fullname−>christian("Thomas");
 $him−>fullname−>surname("Aquinas");
 $him−>fullname−>nickname("Tommy");
 printf "His normal name is %s\n", $him−>name;
 printf "But his real name is %s\n", $him−>fullname−>as_string;

Ok. To do this, we‘ll change Person::new() so that it supports a full name field this way:

 sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = {};
 $self−>{FULLNAME} = Fullname−>new();
 $self−>{AGE} = undef;
18−Oct−1998 Version 5.005_02 661

perltoot Perl Programmers Reference Guide perltoot

lds, and
 $self−>{PEERS} = [];
 $self−>{"_CENSUS"} = \$Census;
 bless ($self, $class);
 ++ ${ $self−>{"_CENSUS"} };
 return $self;
 }

 sub fullname {
 my $self = shift;
 return $self−>{FULLNAME};
 }

Then to support old code, define Person::name() this way:

 sub name {
 my $self = shift;
 return $self−>{FULLNAME}−>nickname(@_)
 || $self−>{FULLNAME}−>christian(@_);
 }

Here‘s the Fullname class. We‘ll use the same technique of using a hash reference to hold data fie
methods by the appropriate name to access them:

 package Fullname;
 use strict;

 sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = {
 TITLE => undef,
 CHRISTIAN => undef,
 SURNAME => undef,
 NICK => undef,
 };
 bless ($self, $class);
 return $self;
 }

 sub christian {
 my $self = shift;
 if (@_) { $self−>{CHRISTIAN} = shift }
 return $self−>{CHRISTIAN};
 }

 sub surname {
 my $self = shift;
 if (@_) { $self−>{SURNAME} = shift }
 return $self−>{SURNAME};
 }

 sub nickname {
 my $self = shift;
 if (@_) { $self−>{NICK} = shift }
 return $self−>{NICK};
 }

 sub title {
 my $self = shift;
662 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

llowing
ain. It‘s
 (The
han the

erl has
 the

 you try
n looks

T_OK,

y.
 if (@_) { $self−>{TITLE} = shift }
 return $self−>{TITLE};
 }

 sub as_string {
 my $self = shift;
 my $name = join(" ", @$self{’CHRISTIAN’, ’SURNAME’});
 if ($self−>{TITLE}) {
 $name = $self−>{TITLE} . " " . $name;
 }
 return $name;
 }

 1;

Finally, here‘s the test program:

 #!/usr/bin/perl −w
 use strict;
 use Person;
 sub END { show_census() }

 sub show_census () {
 printf "Current population: %d\n", Person−>population;
 }

 Person−>debug(1);

 show_census();

 my $him = Person−>new();

 $him−>fullname−>christian("Thomas");
 $him−>fullname−>surname("Aquinas");
 $him−>fullname−>nickname("Tommy");
 $him−>fullname−>title("St");
 $him−>age(1);

 printf "%s is really %s.\n", $him−>name, $him−>fullname;
 printf "%s’s age: %d.\n", $him−>name, $him−>age;
 $him−>happy_birthday;
 printf "%s’s age: %d.\n", $him−>name, $him−>age;

 show_census();

Inheritance
Object−oriented programming systems all support some notion of inheritance. Inheritance means a
one class to piggy−back on top of another one so you don‘t have to write the same code again and ag
about software reuse, and therefore related to Laziness, the principal virtue of a programmer.
import/export mechanisms in traditional modules are also a form of code reuse, but a simpler one t
true inheritance that you find in object modules.)

Sometimes the syntax of inheritance is built into the core of the language, and sometimes it‘s not. P
no special syntax for specifying the class (or classes) to inherit from. Instead, it‘s all strictly in
semantics. Each package can have a variable called @ISA, which governs (method) inheritance. If
to call a method on an object or class, and that method is not found in that object‘s package, Perl the
to @ISA for other packages to go looking through in search of the missing method.

Like the special per−package variables recognized by Exporter (such as @EXPORT, @EXPOR
@EXPORT_FAIL, %EXPORT_TAGS, and $VERSION), the @ISA array must be a package−scoped
global and not a file−scoped lexical created via my() . Most classes have just one item in their @ISA arra
18−Oct−1998 Version 5.005_02 663

perltoot Perl Programmers Reference Guide perltoot

herit
pon an

ss that
then the
e able to

rence to
e should

,
(blessed

e a
be left
d calls

 We‘ll

ta, do
is up.
In this case, we have what‘s called "single inheritance", or SI for short.

Consider this class:

 package Employee;
 use Person;
 @ISA = ("Person");
 1;

Not a lot to it, eh? All it‘s doing so far is loading in another class and stating that this one will in
methods from that other class if need be. We have given it none of its own methods. We rely u
Employee to behave just like a Person.

Setting up an empty class like this is called the "empty subclass test"; that is, making a derived cla
does nothing but inherit from a base class. If the original base class has been designed properly,
new derived class can be used as a drop−in replacement for the old one. This means you should b
write a program like this:

 use Employee;
 my $empl = Employee−>new();
 $empl−>name("Jason");
 $empl−>age(23);
 printf "%s is age %d.\n", $empl−>name, $empl−>age;

By proper design, we mean always using the two−argument form of bless() , avoiding direct access of
global data, and not exporting anything. If you look back at the Person::new() function we defined
above, we were careful to do that. There‘s a bit of package data used in the constructor, but the refe
this is stored on the object itself and all other methods access package data via that reference, so w
be ok.

What do we mean by the Person::new() function — isn‘t that actually a method? Well, in principle
yes. A method is just a function that expects as its first argument a class name (package) or object
reference). Person::new() is the function that both the Person−>new() method and the
Employee−>new() method end up calling. Understand that while a method call looks a lot lik
function call, they aren‘t really quite the same, and if you treat them as the same, you‘ll very soon
with nothing but broken programs. First, the actual underlying calling conventions are different: metho
get an extra argument. Second, function calls don‘t do inheritance, but methods do.

 Method Call Resulting Function Call
 −−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−
 Person−>new() Person::new("Person")
 Employee−>new() Person::new("Employee")

So don‘t use function calls when you mean to call a method.

If an employee is just a Person, that‘s not all too very interesting. So let‘s add some other methods.
give our employee data fields to access their salary, their employee ID, and their start date.

If you‘re getting a little tired of creating all these nearly identical methods just to get at the object‘s da
not despair. Later, we‘ll describe several different convenience mechanisms for shortening th
Meanwhile, here‘s the straight−forward way:

 sub salary {
 my $self = shift;
 if (@_) { $self−>{SALARY} = shift }
 return $self−>{SALARY};
 }

 sub id_number {
 my $self = shift;
 if (@_) { $self−>{ID} = shift }
664 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

 then you

return

poses.
‘d look

n as
tructors
 return $self−>{ID};
 }

 sub start_date {
 my $self = shift;
 if (@_) { $self−>{START_DATE} = shift }
 return $self−>{START_DATE};
 }

Overridden Methods
What happens when both a derived class and its base class have the same method defined? Well,
get the derived class‘s version of that method. For example, let‘s say that we want the peers() method
called on an employee to act a bit differently. Instead of just returning the list of peer names, let‘s
slightly different strings. So doing this:

 $empl−>peers("Peter", "Paul", "Mary");
 printf "His peers are: %s\n", join(", ", $empl−>peers);

will produce:

 His peers are: PEON=PETER, PEON=PAUL, PEON=MARY

To do this, merely add this definition into the Employee.pm file:

 sub peers {
 my $self = shift;
 if (@_) { @{ $self−>{PEERS} } = @_ }
 return map { "PEON=\U$_" } @{ $self−>{PEERS} };
 }

There, we‘ve just demonstrated the high−falutin’ concept known in certain circles as polymorphism. We‘ve
taken on the form and behaviour of an existing object, and then we‘ve altered it to suit our own pur
This is a form of Laziness. (Getting polymorphed is also what happens when the wizard decides you
better as a frog.)

Every now and then you‘ll want to have a method call trigger both its derived class (also know
"subclass") version as well as its base class (also known as "superclass") version. In practice, cons
and destructors are likely to want to do this, and it probably also makes sense in the debug() method we
showed previously.

To do this, add this to Employee.pm:

 use Carp;
 my $Debugging = 0;

 sub debug {
 my $self = shift;
 confess "usage: thing−>debug(level)" unless @_ == 1;
 my $level = shift;
 if (ref($self)) {
 $self−>{"_DEBUG"} = $level;
 } else {
 $Debugging = $level; # whole class
 }
 Person::debug($self, $Debugging); # don’t really do this
 }

As you see, we turn around and call the Person package‘s debug() function. But this is far too fragile for
good design. What if Person doesn‘t have a debug() function, but is inheriting its debug() method from
elsewhere? It would have been slightly better to say
18−Oct−1998 Version 5.005_02 665

perltoot Perl Programmers Reference Guide perltoot

re

 bad if
es to the

rridden

 to test
mployee
loyee.

t like
N this
 Person−>debug($Debugging);

But even that‘s got too much hard−coded. It‘s somewhat better to say

 $self−>Person::debug($Debugging);

Which is a funny way to say to start looking for a debug() method up in Person. This strategy is mo
often seen on overridden object methods than on overridden class methods.

There is still something a bit off here. We‘ve hard−coded our superclass‘s name. This in particular is
you change which classes you inherit from, or add others. Fortunately, the pseudoclass SUPER com
rescue here.

 $self−>SUPER::debug($Debugging);

This way it starts looking in my class‘s @ISA. This only makes sense from within a method call, though.
Don‘t try to access anything in SUPER:: from anywhere else, because it doesn‘t exist outside an ove
method call.

Things are getting a bit complicated here. Have we done anything we shouldn‘t? As before, one way
whether we‘re designing a decent class is via the empty subclass test. Since we already have an E
class that we‘re trying to check, we‘d better get a new empty subclass that can derive from Emp
Here‘s one:

 package Boss;
 use Employee; # :−)
 @ISA = qw(Employee);

And here‘s the test program:

 #!/usr/bin/perl −w
 use strict;
 use Boss;
 Boss−>debug(1);

 my $boss = Boss−>new();

 $boss−>fullname−>title("Don");
 $boss−>fullname−>surname("Pichon Alvarez");
 $boss−>fullname−>christian("Federico Jesus");
 $boss−>fullname−>nickname("Fred");

 $boss−>age(47);
 $boss−>peers("Frank", "Felipe", "Faust");

 printf "%s is age %d.\n", $boss−>fullname, $boss−>age;
 printf "His peers are: %s\n", join(", ", $boss−>peers);

Running it, we see that we‘re still ok. If you‘d like to dump out your object in a nice format, somewha
the way the ‘x’ command works in the debugger, you could use the Data::Dumper module from CPA
way:

 use Data::Dumper;
 print "Here’s the boss:\n";
 print Dumper($boss);

Which shows us something like this:

 Here’s the boss:
 $VAR1 = bless({

 _CENSUS => \1,
 FULLNAME => bless({

 TITLE => ’Don’,
666 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

et them

per
−versa.)

system
 that
 directly
efully

 When
 order.
:

irst,

chooses

ethods.
oader,
 SURNAME => ’Pichon Alvarez’,
 NICK => ’Fred’,
 CHRISTIAN => ’Federico Jesus’
 }, ’Fullname’),

 AGE => 47,
 PEERS => [

 ’Frank’,
 ’Felipe’,
 ’Faust’
]

 }, ’Boss’);

Hm.... something‘s missing there. What about the salary, start date, and ID fields? Well, we never s
to anything, even undef, so they don‘t show up in the hash‘s keys. The Employee class has no new()
method of its own, and the new() method in Person doesn‘t know about Employees. (Nor should it: pro
OO design dictates that a subclass be allowed to know about its immediate superclass, but never vice
 So let‘s fix up Employee::new() this way:

 sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = $class−>SUPER::new();
 $self−>{SALARY} = undef;
 $self−>{ID} = undef;
 $self−>{START_DATE} = undef;
 bless ($self, $class); # reconsecrate
 return $self;
 }

Now if you dump out an Employee or Boss object, you‘ll find that new fields show up there now.

Multiple Inheritance
Ok, at the risk of confusing beginners and annoying OO gurus, it‘s time to confess that Perl‘s object
includes that controversial notion known as multiple inheritance, or MI for short. All this means is
rather than having just one parent class who in turn might itself have a parent class, etc., that you can
inherit from two or more parents. It‘s true that some uses of MI can get you into trouble, although hop
not quite so much trouble with Perl as with dubiously−OO languages like C++.

The way it works is actually pretty simple: just put more than one package name in your @ISA array.
it comes time for Perl to go finding methods for your object, it looks at each of these packages in
Well, kinda. It‘s actually a fully recursive, depth−first order. Consider a bunch of @ISA arrays like this

 @First::ISA = qw(Alpha);
 @Second::ISA = qw(Beta);
 @Third::ISA = qw(First Second);

If you have an object of class Third:

 my $ob = Third−>new();
 $ob−>spin();

How do we find a spin() method (or a new() method for that matter)? Because the search is depth−f
classes will be looked up in the following order: Third, First, Alpha, Second, and Beta.

In practice, few class modules have been seen that actually make use of MI. One nearly always
simple containership of one class within another over MI. That‘s why our Person object contained a
Fullname object. That doesn‘t mean it was one.

However, there is one particular area where MI in Perl is rampant: borrowing another class‘s class m
This is rather common, especially with some bundled "objectless" classes, like Exporter, DynaL
18−Oct−1998 Version 5.005_02 667

perltoot Perl Programmers Reference Guide perltoot

 inherit
odule

ey‘re

effects.
e class.
er via a

ove we
UPER
mmon
‘d end

ld give
ns out
t at the

ut you

ethods
efined
"

allable

l called

e is a
 case,

m:

e same
AutoLoader, and SelfLoader. These classes do not provide constructors; they exist only so you may
their class methods. (It‘s not entirely clear why inheritance was done here rather than traditional m
importation.)

For example, here is the POSIX module‘s @ISA:

 package POSIX;
 @ISA = qw(Exporter DynaLoader);

The POSIX module isn‘t really an object module, but then, neither are Exporter or DynaLoader. Th
just lending their classes’ behaviours to POSIX.

Why don‘t people use MI for object methods much? One reason is that it can have complicated side−
 For one thing, your inheritance graph (no longer a tree) might converge back to the same bas
Although Perl guards against recursive inheritance, merely having parents who are related to each oth
common ancestor, incestuous though it sounds, is not forbidden. What if in our Third class shown ab
wanted its new() method to also call both overridden constructors in its two parent classes? The S
notation would only find the first one. Also, what about if the Alpha and Beta classes both had a co
ancestor, like Nought? If you kept climbing up the inheritance tree calling overridden methods, you
up calling Nought::new() twice, which might well be a bad idea.

UNIVERSAL: The Root of All Objects
Wouldn‘t it be convenient if all objects were rooted at some ultimate base class? That way you cou
every object common methods without having to go and add it to each and every @ISA. Well, it tur
that you can. You don‘t see it, but Perl tacitly and irrevocably assumes that there‘s an extra elemen
end of @ISA: the class UNIVERSAL. In version 5.003, there were no predefined methods there, b
could put whatever you felt like into it.

However, as of version 5.004 (or some subversive releases, like 5.003_08), UNIVERSAL has some m
in it already. These are builtin to your Perl binary, so they don‘t take any extra time to load. Pred
methods include isa() , can() , and VERSION() . isa() tells you whether an object or class "is
another one without having to traverse the hierarchy yourself:

 $has_io = $fd−>isa("IO::Handle");
 $itza_handle = IO::Socket−>isa("IO::Handle");

The can() method, called against that object or class, reports back whether its string argument is a c
method name in that class. In fact, it gives you back a function reference to that method:

 $his_print_method = $obj−>can(’as_string’);

Finally, the VERSION method checks whether the class (or the object‘s class) has a package globa
$VERSION that‘s high enough, as in:

 Some_Module−>VERSION(3.0);
 $his_vers = $ob−>VERSION();

However, we don‘t usually call VERSION ourselves. (Remember that an all uppercase function nam
Perl convention that indicates that the function will be automatically used by Perl in some way.) In this
it happens when you say

 use Some_Module 3.0;

If you wanted to add version checking to your Person class explained above, just add this to Person.p

 use vars qw($VERSION);
 $VERSION = ’1.1’;

and then in Employee.pm could you can say

 use Employee 1.1;

And it would make sure that you have at least that version number or higher available. This is not th
668 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

ion of

rence so
 also fair

s, but

ange its
rface

ct.

actually
lace
hes
entation
at bad,
er how
de into
as loading in that exact version number. No mechanism currently exists for concurrent installat
multiple versions of a module. Lamentably.

Alternate Object Representations
Nothing requires objects to be implemented as hash references. An object can be any sort of refe
long as its referent has been suitably blessed. That means scalar, array, and code references are
game.

A scalar would work if the object has only one datum to hold. An array would work for most case
makes inheritance a bit dodgy because you have to invent new indices for the derived classes.

Arrays as Objects
If the user of your class honors the contract and sticks to the advertised interface, then you can ch
underlying interface if you feel like it. Here‘s another implementation that conforms to the same inte
specification. This time we‘ll use an array reference instead of a hash reference to represent the obje

 package Person;
 use strict;

 my($NAME, $AGE, $PEERS) = (0 .. 2);

 ##
 ## the object constructor (array version) ##
 ##
 sub new {
 my $self = [];
 $self−>[$NAME] = undef; # this is unnecessary
 $self−>[$AGE] = undef; # as is this
 $self−>[$PEERS] = []; # but this isn’t, really
 bless($self);
 return $self;
 }

 sub name {
 my $self = shift;
 if (@_) { $self−>[$NAME] = shift }
 return $self−>[$NAME];
 }

 sub age {
 my $self = shift;
 if (@_) { $self−>[$AGE] = shift }
 return $self−>[$AGE];
 }

 sub peers {
 my $self = shift;
 if (@_) { @{ $self−>[$PEERS] } = @_ }
 return @{ $self−>[$PEERS] };
 }

 1; # so the require or use succeeds

You might guess that the array access would be a lot faster than the hash access, but they‘re
comparable. The array is a little bit faster, but not more than ten or fifteen percent, even when you rep
the variables above like $AGE with literal numbers, like 1. A bigger difference between the two approac
can be found in memory use. A hash representation takes up more memory than an array repres
because you have to allocate memory for the keys as well as for the values. However, it really isn‘t th
especially since as of version 5.004, memory is only allocated once for a given hash key, no matt
many hashes have that key. It‘s expected that sometime in the future, even these differences will fa
18−Oct−1998 Version 5.005_02 669

perltoot Perl Programmers Reference Guide perltoot

mmers
ough,

.

e a new
 we put
n as the
the field
sing

whose
than in

as within
 in the
n of
obscurity as more efficient underlying representations are devised.

Still, the tiny edge in speed (and somewhat larger one in memory) is enough to make some progra
choose an array representation for simple classes. There‘s still a little problem with scalability, th
because later in life when you feel like creating subclasses, you‘ll find that hashes just work out better

Closures as Objects
Using a code reference to represent an object offers some fascinating possibilities. We can creat
anonymous function (closure) who alone in all the world can see the object‘s data. This is because
the data into an anonymous hash that‘s lexically visible only to the closure we create, bless, and retur
object. This object‘s methods turn around and call the closure as a regular subroutine call, passing it
we want to affect. (Yes, the double−function call is slow, but if you wanted fast, you wouldn‘t be u
objects at all, eh? :−)

Use would be similar to before:

 use Person;
 $him = Person−>new();
 $him−>name("Jason");
 $him−>age(23);
 $him−>peers(["Norbert", "Rhys", "Phineas"]);
 printf "%s is %d years old.\n", $him−>name, $him−>age;
 print "His peers are: ", join(", ", @{$him−>peers}), "\n";

but the implementation would be radically, perhaps even sublimely different:

 package Person;

 sub new {
 my $that = shift;
 my $class = ref($that) || $that;
 my $self = {
 NAME => undef,
 AGE => undef,
 PEERS => [],
 };
 my $closure = sub {
 my $field = shift;
 if (@_) { $self−>{$field} = shift }
 return $self−>{$field};
};
bless($closure, $class);
return $closure;

 }

 sub name { &{ $_[0] }("NAME", @_[1 .. $#_]) }
 sub age { &{ $_[0] }("AGE", @_[1 .. $#_]) }
 sub peers { &{ $_[0] }("PEERS", @_[1 .. $#_]) }

 1;

Because this object is hidden behind a code reference, it‘s probably a bit mysterious to those
background is more firmly rooted in standard procedural or object−based programming languages
functional programming languages whence closures derive. The object created and returned by thenew()
method is itself not a data reference as we‘ve seen before. It‘s an anonymous code reference that h
it access to a specific version (lexical binding and instantiation) of the object‘s data, which are stored
private variable $self. Although this is the same function each time, it contains a different versio
$self.
670 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

g
nction
rence

atever

s what
unique

n data.
ieces

nique
f those

te
mming

 here
tten a

reate a

irectly
"proxy"

t looks
ments
age‘s
 a

, since
nd, we
t has
own to

e first
ash fields
r the

ism to
check
ped
 For
When a method like $him−>name("Jason") is called, its implicit zeroth argument is the invokin
object—just as it is with all method calls. But in this case, it‘s our code reference (something like a fu
pointer in C++, but with deep binding of lexical variables). There‘s not a lot to be done with a code refe
beyond calling it, so that‘s just what we do when we say &{$_[0]}. This is just a regular function call,
not a method call. The initial argument is the string "NAME", and any remaining arguments are wh
had been passed to the method itself.

Once we‘re executing inside the closure that had been created in new() , the $self hash reference
suddenly becomes visible. The closure grabs its first argument ("NAME" in this case because that‘
the name() method passed it), and uses that string to subscript into the private hash hidden in its
version of $self.

Nothing under the sun will allow anyone outside the executing method to be able to get at this hidde
Well, nearly nothing. You could single step through the program using the debugger and find out the p
while you‘re in the method, but everyone else is out of luck.

There, if that doesn‘t excite the Scheme folks, then I just don‘t know what will. Translation of this tech
into C++, Java, or any other braindead−static language is left as a futile exercise for aficionados o
camps.

You could even add a bit of nosiness via the caller() function and make the closure refuse to opera
unless called via its own package. This would no doubt satisfy certain fastidious concerns of progra
police and related puritans.

If you were wondering when Hubris, the third principle virtue of a programmer, would come into play,
you have it. (More seriously, Hubris is just the pride in craftsmanship that comes from having wri
sound bit of well−designed code.)

AUTOLOAD: Proxy Methods
Autoloading is a way to intercept calls to undefined methods. An autoload routine may choose to c
new function on the fly, either loaded from disk or perhaps just eval() ed right there. This
define−on−the−fly strategy is why it‘s called autoloading.

But that‘s only one possible approach. Another one is to just have the autoloaded method itself d
provide the requested service. When used in this way, you may think of autoloaded methods as
methods.

When Perl tries to call an undefined function in a particular package and that function is not defined, i
for a function in that same package called AUTOLOAD. If one exists, it‘s called with the same argu
as the original function would have had. The fully−qualified name of the function is stored in that pack
global variable $AUTOLOAD. Once called, the function can do anything it would like, including defining
new function by the right name, and then doing a really fancy kind of goto right to it, erasing itself from the
call stack.

What does this have to do with objects? After all, we keep talking about functions, not methods. Well
a method is just a function with an extra argument and some fancier semantics about where it‘s fou
can use autoloading for methods, too. Perl doesn‘t start looking for an AUTOLOAD method until i
exhausted the recursive hunt up through @ISA, though. Some programmers have even been kn
define a UNIVERSAL::AUTOLOAD method to trap unresolved method calls to any kind of object.

Autoloaded Data Methods
You probably began to get a little suspicious about the duplicated code way back earlier when w
showed you the Person class, and then later the Employee class. Each method used to access the h
looked virtually identical. This should have tickled that great programming virtue, Impatience, but fo
time, we let Laziness win out, and so did nothing. Proxy methods can cure this.

Instead of writing a new function every time we want a new data field, we‘ll use the autoload mechan
generate (actually, mimic) methods on the fly. To verify that we‘re accessing a valid member, we will
against an _permitted (pronounced "under−permitted") field, which is a reference to a file−sco
lexical (like a C file static) hash of permitted fields in this record called %fields. Why the underscore?
18−Oct−1998 Version 5.005_02 671

perltoot Perl Programmers Reference Guide perltoot

h:

rtant to
 or else

fined
in, it‘s

ed be

nce
od.
the same reason as the _CENSUS field we once used: as a marker that means "for internal use only".

Here‘s what the module initialization code and class constructor will look like when taking this approac

 package Person;
 use Carp;
 use vars qw($AUTOLOAD); # it’s a package global

 my %fields = (
name => undef,
age => undef,
peers => undef,

);

 sub new {
my $that = shift;
my $class = ref($that) || $that;
my $self = {
 _permitted => \%fields,
 %fields,
};
bless $self, $class;
return $self;

 }

If we wanted our record to have default values, we could fill those in where current we have undef in the
%fields hash.

Notice how we saved a reference to our class data on the object itself? Remember that it‘s impo
access class data through the object itself instead of having any method reference %fields directly,
you won‘t have a decent inheritance.

The real magic, though, is going to reside in our proxy method, which will handle all calls to unde
methods for objects of class Person (or subclasses of Person). It has to be called AUTOLOAD. Aga
all caps because it‘s called for us implicitly by Perl itself, not by a user directly.

 sub AUTOLOAD {
my $self = shift;
my $type = ref($self)

 or croak "$self is not an object";

my $name = $AUTOLOAD;
$name =~ s/.*://; # strip fully−qualified portion

unless (exists $self−>{_permitted}−>{$name}) {
 croak "Can’t access ‘$name’ field in class $type";
}

if (@_) {
 return $self−>{$name} = shift;
} else {
 return $self−>{$name};
}

 }

Pretty nifty, eh? All we have to do to add new data fields is modify %fields. No new functions ne
written.

I could have avoided the _permitted field entirely, but I wanted to demonstrate how to store a refere
to class data on the object so you wouldn‘t have to access that class data directly from an object meth
672 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

careful

kage,

classes
t means
e quite

. These
nd Alias.

re perl5
bjects
ough,
 class to
ss
The
Inherited Autoloaded Data Methods
But what about inheritance? Can we define our Employee class similarly? Yes, so long as we‘re
enough.

Here‘s how to be careful:

 package Employee;
 use Person;
 use strict;
 use vars qw(@ISA);
 @ISA = qw(Person);

 my %fields = (
id => undef,
salary => undef,

);

 sub new {
my $that = shift;
my $class = ref($that) || $that;
my $self = bless $that−>SUPER::new(), $class;
my($element);
foreach $element (keys %fields) {
 $self−>{_permitted}−>{$element} = $fields{$element};
}
@{$self}{keys %fields} = values %fields;
return $self;

 }

Once we‘ve done this, we don‘t even need to have an AUTOLOAD function in the Employee pac
because we‘ll grab Person‘s version of that via inheritance, and it will all work out just fine.

Metaclassical Tools
Even though proxy methods can provide a more convenient approach to making more struct−like
than tediously coding up data methods as functions, it still leaves a bit to be desired. For one thing, i
you have to handle bogus calls that you don‘t mean to trap via your proxy. It also means you have to b
careful when dealing with inheritance, as detailed above.

Perl programmers have responded to this by creating several different class construction classes
metaclasses are classes that create other classes. A couple worth looking at are Class::Struct a
These and other related metaclasses can be found in the modules directory on CPAN.

Class::Struct
One of the older ones is Class::Struct. In fact, its syntax and interface were sketched out long befo
even solidified into a real thing. What it does is provide you a way to "declare" a class as having o
whose fields are of a specific type. The function that does this is called, not surprisingly en
struct() . Because structures or records are not base types in Perl, each time you want to create a
provide a record−like data object, you yourself have to define a new() method, plus separate data−acce
methods for each of that record‘s fields. You‘ll quickly become bored with this process.
Class::Struct::struct() function alleviates this tedium.

Here‘s a simple example of using it:

 use Class::Struct qw(struct);
 use Jobbie; # user−defined; see below

 struct ’Fred’ => {
 one => ’$’,
 many => ’@’,
18−Oct−1998 Version 5.005_02 673

perltoot Perl Programmers Reference Guide perltoot

s will be

ea of
C
cts in

onymous
ritance.
d and
 profession => Jobbie, # calls Jobbie−>new()
 };

 $ob = Fred−>new;
 $ob−>one("hmmmm");

 $ob−>many(0, "here");
 $ob−>many(1, "you");
 $ob−>many(2, "go");
 print "Just set: ", $ob−>many(2), "\n";

 $ob−>profession−>salary(10_000);

You can declare types in the struct to be basic Perl types, or user−defined types (classes). User type
initialized by calling that class‘s new() method.

Here‘s a real−world example of using struct generation. Let‘s say you wanted to override Perl‘s id
gethostbyname() and gethostbyaddr() so that they would return objects that acted like
structures. We don‘t care about high−falutin’ OO gunk. All we want is for these objects to act like stru
the C sense.

 use Socket;
 use Net::hostent;
 $h = gethostbyname("perl.com"); # object return
 printf "perl.com’s real name is %s, address %s\n",

$h−>name, inet_ntoa($h−>addr);

Here‘s how to do this using the Class::Struct module. The crux is going to be this call:

 struct ’Net::hostent’ => [# note bracket
name => ’$’,
aliases => ’@’,
addrtype => ’$’,
’length’ => ’$’,
addr_list => ’@’,

];

Which creates object methods of those names and types. It even creates a new() method for us.

We could also have implemented our object this way:

 struct ’Net::hostent’ => { # note brace
name => ’$’,
aliases => ’@’,
addrtype => ’$’,
’length’ => ’$’,
addr_list => ’@’,

 };

and then Class::Struct would have used an anonymous hash as the object type, instead of an an
array. The array is faster and smaller, but the hash works out better if you eventually want to do inhe
Since for this struct−like object we aren‘t planning on inheritance, this time we‘ll opt for better spee
size over better flexibility.

Here‘s the whole implementation:

 package Net::hostent;
 use strict;

 BEGIN {
use Exporter ();
use vars qw(@EXPORT @EXPORT_OK %EXPORT_TAGS);
674 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

g core
@EXPORT = qw(gethostbyname gethostbyaddr gethost);
@EXPORT_OK = qw(

 $h_name @h_aliases
 $h_addrtype $h_length
 @h_addr_list $h_addr

);
%EXPORT_TAGS = (FIELDS => [@EXPORT_OK, @EXPORT]);

 }
 use vars @EXPORT_OK;

 # Class::Struct forbids use of @ISA
 sub import { goto &Exporter::import }

 use Class::Struct qw(struct);
 struct ’Net::hostent’ => [
 name => ’$’,
 aliases => ’@’,
 addrtype => ’$’,
 ’length’ => ’$’,
 addr_list => ’@’,
];

 sub addr { shift−>addr_list−>[0] }

 sub populate (@) {
return unless @_;
my $hob = new(); # Class::Struct made this!
$h_name = $hob−>[0] = $_[0];
@h_aliases = @{ $hob−>[1] } = split ’ ’, $_[1];
$h_addrtype = $hob−>[2] = $_[2];
$h_length = $hob−>[3] = $_[3];
$h_addr = $_[4];
@h_addr_list = @{ $hob−>[4] } = @_[(4 .. $#_)];
return $hob;

 }

 sub gethostbyname ($) { populate(CORE::gethostbyname(shift)) }

 sub gethostbyaddr ($;$) {
my ($addr, $addrtype);
$addr = shift;
require Socket unless @_;
$addrtype = @_ ? shift : Socket::AF_INET();
populate(CORE::gethostbyaddr($addr, $addrtype))

 }

 sub gethost($) {
if ($_[0] =~ /^\d+(?:\.\d+(?:\.\d+(?:\.\d+)?)?)?$/) {
 require Socket;
 &gethostbyaddr(Socket::inet_aton(shift));
} else {
 &gethostbyname;
}

 }

 1;

We‘ve snuck in quite a fair bit of other concepts besides just dynamic class creation, like overridin
functions, import/export bits, function prototyping, short−cut function call via &whatever, and function
18−Oct−1998 Version 5.005_02 675

perltoot Perl Programmers Reference Guide perltoot

nal

Perl in
grent,
ved for
the type

bers as
, such

instance
replacement with goto &whatever. These all mostly make sense from the perspective of a traditio
module, but as you can see, we can also use them in an object module.

You can look at other object−based, struct−like overrides of core functions in the 5.004 release of
File::stat, Net::hostent, Net::netent, Net::protoent, Net::servent, Time::gmtime, Time::localtime, User::
and User::pwent. These modules have a final component that‘s all lowercase, by convention reser
compiler pragmas, because they affect the compilation and change a builtin function. They also have
names that a C programmer would most expect.

Data Members as Variables
If you‘re used to C++ objects, then you‘re accustomed to being able to get at an object‘s data mem
simple variables from within a method. The Alias module provides for this, as well as a good bit more
as the possibility of private methods that the object can call but folks outside the class cannot.

Here‘s an example of creating a Person using the Alias module. When you update these magical
variables, you automatically update value fields in the hash. Convenient, eh?

 package Person;

 # this is the same as before...
 sub new {

 my $that = shift;
 my $class = ref($that) || $that;
 my $self = {
 NAME => undef,
 AGE => undef,
 PEERS => [],
};
bless($self, $class);
return $self;

 }

 use Alias qw(attr);
 use vars qw($NAME $AGE $PEERS);

 sub name {
my $self = attr shift;
if (@_) { $NAME = shift; }
return $NAME;

 }

 sub age {
my $self = attr shift;
if (@_) { $AGE = shift; }
return $AGE;

 }

 sub peers {
my $self = attr shift;
if (@_) { @PEERS = @_; }
return @PEERS;

 }

 sub exclaim {
 my $self = attr shift;
 return sprintf "Hi, I’m %s, age %d, working with %s",
 $NAME, $AGE, join(", ", @PEERS);
 }
676 Version 5.005_02 18−Oct−1998

perltoot Perl Programmers Reference Guide perltoot

 the
.

orary

fferent
 fancy

d is by
ct (one

ecked

"class as

hether
 Any
 be

 You
 fit. A

Brent
 sub happy_birthday {
 my $self = attr shift;
 return ++$AGE;
 }

The need for the use vars declaration is because what Alias does is play with package globals with
same name as the fields. To use globals while use strict is in effect, you have to predeclare them
These package variables are localized to the block enclosing the attr() call just as if you‘d used a
local() on them. However, that means that they‘re still considered global variables with temp
values, just as with any other local() .

It would be nice to combine Alias with something like Class::Struct or Class::MethodMaker.

NOTES

Object Terminology
In the various OO literature, it seems that a lot of different words are used to describe only a few di
concepts. If you‘re not already an object programmer, then you don‘t need to worry about all these
words. But if you are, then you might like to know how to get at the same concepts in Perl.

For example, it‘s common to call an object an instance of a class and to call those objects’ methods instance
methods. Data fields peculiar to each object are often called instance data or object attributes, and data
fields common to all members of that class are class data, class attributes, or static data members.

Also, base class, generic class, and superclass all describe the same notion, whereas derived class, specific
class, and subclass describe the other related one.

C++ programmers have static methods and virtual methods, but Perl only has class methods and object
methods. Actually, Perl only has methods. Whether a method gets used as a class or object metho
usage only. You could accidentally call a class method (one expecting a string argument) on an obje
expecting a reference), or vice versa.

From the C++ perspective, all methods in Perl are virtual. This, by the way, is why they are never ch
for function prototypes in the argument list as regular builtin and user−defined functions can be.

Because a class is itself something of an object, Perl‘s classes can be taken as describing both a
meta−object" (also called object factory) philosophy and the "class as type definition" (declaring behaviour,
not defining mechanism) idea. C++ supports the latter notion, but not the former.

SEE ALSO
The following manpages will doubtless provide more background for this one: perlmod, perlref, perlobj,
perlbot, perltie, and overload.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation w
printed or otherwise, this work may be distributed only under the terms of Perl‘s Artistic License.
distribution of this file or derivatives thereof outside of that package require that special arrangements
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
are permitted and encouraged to use this code in your own programs for fun or for profit as you see
simple comment in the code giving credit would be courteous but is not required.

COPYRIGHT

Acknowledgments
Thanks to Larry Wall, Roderick Schertler, Gurusamy Sarathy, Dean Roehrich, Raphael Manfredi,
Halsey, Greg Bacon, Brad Appleton, and many others for their helpful comments.
18−Oct−1998 Version 5.005_02 677

perlhist Perl Programmers Reference Guide perlhist

, Tim

various

ultiple
w−tech
ackups

 source
NAME
perlhist − the Perl history records

=for RCS # # $Id: perlhist.pod,v 1.48 1998/08/03 08:50:12 jhi Exp $ # =end RCS

DESCRIPTION
This document aims to record the Perl source code releases.

INTRODUCTION
Perl history in brief, by Larry Wall:

 Perl 0 introduced Perl to my officemates.
 Perl 1 introduced Perl to the world, and changed /\(...\|...\)/ to
 /(...|...)/. \(Dan Faigin still hasn’t forgiven me. :−\)
 Perl 2 introduced Henry Spencer’s regular expression package.
 Perl 3 introduced the ability to handle binary data (embedded nulls).
 Perl 4 introduced the first Camel book. Really. We mostly just
 switched version numbers so the book could refer to 4.000.
 Perl 5 introduced everything else, including the ability to
 introduce everything else.

THE KEEPERS OF THE PUMPKIN
Larry Wall, Andy Dougherty, Tom Christiansen, Charles Bailey, Nick Ing−Simmons, Chip Salzenberg
Bunce, Malcolm Beattie, Gurusamy Sarathy, Graham Barr.

PUMPKIN?
[from Porting/pumpkin.pod in the Perl source code distribution]

Chip Salzenberg gets credit for that, with a nod to his cow orker, David Croy. We had passed around
names (baton, token, hot potato) but none caught on. Then, Chip asked:

[begin quote]

 Who has the patch pumpkin?

To explain: David Croy once told me once that at a previous job, there was one tape drive and m
systems that used it for backups. But instead of some high−tech exclusion software, they used a lo
method to prevent multiple simultaneous backups: a stuffed pumpkin. No one was allowed to make b
unless they had the "backup pumpkin".

[end quote]

The name has stuck. The holder of the pumpkin is sometimes called the pumpking (keeping the
afloat?) or the pumpkineer (pulling the strings?).

THE RECORDS
 Pump− Release Date Notes
 king (by no means
 comprehensive,
 see Changes*
 for details)
 ===

 Larry 0 Classified. Don’t ask.

 Larry 1.000 1987−Dec−18

 1.001..10 1988−Jan−30
 1.011..14 1988−Feb−02

 Larry 2.000 1988−Jun−05
678 Version 5.005_02 18−Oct−1998

perlhist Perl Programmers Reference Guide perlhist
 2.001 1988−Jun−28

 Larry 3.000 1989−Oct−18

 3.001 1989−Oct−26
 3.002..4 1989−Nov−11
 3.005 1989−Nov−18
 3.006..8 1989−Dec−22
 3.009..13 1990−Mar−02
 3.014 1990−Mar−13
 3.015 1990−Mar−14
 3.016..18 1990−Mar−28
 3.019..27 1990−Aug−10 User subs.
 3.028 1990−Aug−14
 3.029..36 1990−Oct−17
 3.037 1990−Oct−20
 3.040 1990−Nov−10
 3.041 1990−Nov−13
 3.042..43 1990−Jan−??
 3.044 1991−Jan−12

 Larry 4.000 1991−Mar−21

 4.001..3 1991−Apr−12
 4.004..9 1991−Jun−07
 4.010 1991−Jun−10
 4.011..18 1991−Nov−05
 4.019 1991−Nov−11 Stable.
 4.020..33 1992−Jun−08
 4.034 1992−Jun−11
 4.035 1992−Jun−23
 Larry 4.036 1993−Feb−05 Very stable.

 5.000alpha1 1993−Jul−31
 5.000alpha2 1993−Aug−16
 5.000alpha3 1993−Oct−10
 5.000alpha4 1993−???−??
 5.000alpha5 1993−???−??
 5.000alpha6 1994−Mar−18
 5.003alpha7 1994−Mar−25
 Andy 5.000alpha8 1994−Apr−04
 Larry 5.000alpha9 1994−May−05 ext appears.
 5.000alpha10 1994−???−??
 5.000alpha11 1994−???−??
 Andy 5.000a11a 1994−Jul−07 To fit 14.
 5.000a11b 1994−Jul−14
 5.000a11c 1994−Jul−19
 5.000a11d 1994−Jul−22
 Larry 5.000alpha12 1994−???−??
 Andy 5.000a12a 1994−Aug−08
 5.000a12b 1994−Aug−15
 5.000a12c 1994−Aug−22
 5.000a12d 1994−Aug−22
 5.000a12e 1994−Aug−22
 5.000a12f 1994−Aug−24
 5.000a12g 1994−Aug−24
 5.000a12h 1994−Aug−24
18−Oct−1998 Version 5.005_02 679

perlhist Perl Programmers Reference Guide perlhist
 Larry 5.000beta1 1994−???−??
 Andy 5.000b1a 1994−???−??
 Larry 5.000beta2 1994−Sep−14 Core slushified.
 Andy 5.000b2a 1994−Sep−14
 5.000b2b 1994−Sep−17
 5.000b2c 1994−Sep−17
 Larry 5.000beta3 1994−Sep−??
 Andy 5.000b3a 1994−Sep−18
 5.000b3b 1994−Sep−22
 5.000b3c 1994−Sep−23
 5.000b3d 1994−Sep−27
 5.000b3e 1994−Sep−28
 5.000b3f 1994−Sep−30
 5.000b3g 1994−Oct−04
 Andy 5.000b3h 1994−Oct−07

 Larry 5.000 1994−Oct−18

 Andy 5.000a 1994−Dec−19
 5.000b 1995−Jan−18
 5.000c 1995−Jan−18
 5.000d 1995−Jan−18
 5.000e 1995−Jan−18
 5.000f 1995−Jan−18
 5.000g 1995−Jan−18
 5.000h 1995−Jan−18
 5.000i 1995−Jan−26
 5.000j 1995−Feb−07
 5.000k 1995−Feb−11
 5.000l 1995−Feb−21
 5.000m 1995−???−??
 5.000n 1995−Mar−07

 Larry 5.001 1995−Mar−13

 Andy 5.001a 1995−Mar−15
 5.001b 1995−Mar−31
 5.001c 1995−Apr−07
 5.001d 1995−Apr−14
 5.001e 1995−Apr−18 Stable.
 5.001f 1995−May−31
 5.001g 1995−May−25
 5.001h 1995−May−25
 5.001i 1995−May−30
 5.001j 1995−Jun−05
 5.001k 1995−Jun−06
 5.001l 1995−Jun−06 Stable.
 5.001m 1995−Jul−02 Very stable.
 5.001n 1995−Oct−31 Very unstable.
 5.002beta1 1995−Nov−21
 5.002b1a 1995−Nov−??
 5.002b1b 1995−Dec−04
 5.002b1c 1995−Dec−04
 5.002b1d 1995−Dec−04
 5.002b1e 1995−Dec−08
 5.002b1f 1995−Dec−08
680 Version 5.005_02 18−Oct−1998

perlhist Perl Programmers Reference Guide perlhist
 Tom 5.002b1g 1995−Dec−21 Doc release.
 Andy 5.002b1h 1996−Jan−05
 5.002b2 1996−Jan−14
 Larry 5.002b3 1996−Feb−02
 Andy 5.002gamma 1996−Feb−11
 Larry 5.002delta 1996−Feb−27

 Larry 5.002 1996−Feb−29 Prototypes.

 Charles 5.002_01 1996−Mar−25

 5.003 1996−Jun−25 Security release.

 5.003_01 1996−Jul−31
 Nick 5.003_02 1996−Aug−10
 Andy 5.003_03 1996−Aug−28
 5.003_04 1996−Sep−02
 5.003_05 1996−Sep−12
 5.003_06 1996−Oct−07
 5.003_07 1996−Oct−10
 Chip 5.003_08 1996−Nov−19
 5.003_09 1996−Nov−26
 5.003_10 1996−Nov−29
 5.003_11 1996−Dec−06
 5.003_12 1996−Dec−19
 5.003_13 1996−Dec−20
 5.003_14 1996−Dec−23
 5.003_15 1996−Dec−23
 5.003_16 1996−Dec−24
 5.003_17 1996−Dec−27
 5.003_18 1996−Dec−31
 5.003_19 1997−Jan−04
 5.003_20 1997−Jan−07
 5.003_21 1997−Jan−15
 5.003_22 1997−Jan−16
 5.003_23 1997−Jan−25
 5.003_24 1997−Jan−29
 5.003_25 1997−Feb−04
 5.003_26 1997−Feb−10
 5.003_27 1997−Feb−18
 5.003_28 1997−Feb−21
 5.003_90 1997−Feb−25 Ramping up to the 5.004 release.
 5.003_91 1997−Mar−01
 5.003_92 1997−Mar−06
 5.003_93 1997−Mar−10
 5.003_94 1997−Mar−22
 5.003_95 1997−Mar−25
 5.003_96 1997−Apr−01
 5.003_97 1997−Apr−03 Fairly widely used.
 5.003_97a 1997−Apr−05
 5.003_97b 1997−Apr−08
 5.003_97c 1997−Apr−10
 5.003_97d 1997−Apr−13
 5.003_97e 1997−Apr−15
 5.003_97f 1997−Apr−17
 5.003_97g 1997−Apr−18
18−Oct−1998 Version 5.005_02 681

perlhist Perl Programmers Reference Guide perlhist
 5.003_97h 1997−Apr−24
 5.003_97i 1997−Apr−25
 5.003_97j 1997−Apr−28
 5.003_98 1997−Apr−30
 5.003_99 1997−May−01
 5.003_99a 1997−May−09
 p54rc1 1997−May−12 Release Candidates.
 p54rc2 1997−May−14

 Chip 5.004 1997−May−15 A major maintenance release.

 Tim 5.004_01 1997−Jun−13 The 5.004 maintenance track.
 5.004_02 1997−Aug−07
 5.004_03 1997−Sep−05
 5.004_04 1997−Oct−15
 5.004m5t1 1998−Mar−04 Maintenance Trials (for 5.004_05).
 5.004_04−m2 1997−May−01
 5.004_04−m3 1998−May−15
 5.004_04−m4 1998−May−19
 5.004_04−MT5 1998−Jul−21

 Malcolm 5.004_50 1997−Sep−09 The 5.005 development track.
 5.004_51 1997−Oct−02
 5.004_52 1997−Oct−15
 5.004_53 1997−Oct−16
 5.004_54 1997−Nov−14
 5.004_55 1997−Nov−25
 5.004_56 1997−Dec−18
 5.004_57 1998−Feb−03
 5.004_58 1998−Feb−06
 5.004_59 1998−Feb−13
 5.004_60 1998−Feb−20
 5.004_61 1998−Feb−27
 5.004_62 1998−Mar−06
 5.004_63 1998−Mar−17
 5.004_64 1998−Apr−03
 5.004_65 1998−May−15
 5.004_66 1998−May−29
 Sarathy 5.004_67 1998−Jun−15
 5.004_68 1998−Jun−23
 5.004_69 1998−Jun−29
 5.004_70 1998−Jul−06
 5.004_71 1998−Jul−09
 5.004_72 1998−Jul−12
 5.004_73 1998−Jul−13
 5.004_74 1998−Jul−14 5.005 beta candidate.
 5.004_75 1998−Jul−15 5.005 beta1.
 5.004_76 1998−Jul−21 5.005 beta2.
 5.005 1998−Jul−22 Oneperl.

 Sarathy 5.005_01 1998−Jul−27 The 5.005 maintenance track.
 5.005_02−T1 1998−Aug−02
 5.005_02−T2 1998−Aug−05
 5.005_02 1998−Aug−08
 Graham 5.005_03 1998−
682 Version 5.005_02 18−Oct−1998

perlhist Perl Programmers Reference Guide perlhist

ytes, in

n **

mewhat
 Sarathy 5.005_50 1998−Jul−26 The 5.006 development track.

SELECTED RELEASE SIZES
For example the notation "core: 212 29" in the release 1.000 means that it had in the core 212 kilob
29 files. The "core".."doc" are explained below.

 release core lib ext t doc
 ==

 1.000 212 29 − − − − 38 51 62 3
 1.014 219 29 − − − − 39 52 68 4
 2.000 309 31 2 3 − − 55 57 92 4
 2.001 312 31 2 3 − − 55 57 94 4
 3.000 508 36 24 11 − − 79 73 156 5
 3.044 645 37 61 20 − − 90 74 190 6
 4.000 635 37 59 20 − − 91 75 198 4
 4.019 680 37 85 29 − − 98 76 199 4
 4.036 709 37 89 30 − − 98 76 208 5
 5.000alpha2 785 50 114 32 − − 112 86 209 5
 5.000alpha3 801 50 117 33 − − 121 87 209 5
 5.000alpha9 1022 56 149 43 116 29 125 90 217 6
 5.000a12h 978 49 140 49 205 46 152 97 228 9
 5.000b3h 1035 53 232 70 216 38 162 94 218 21
 5.000 1038 53 250 76 216 38 154 92 536 62
 5.001m 1071 54 388 82 240 38 159 95 544 29
 5.002 1121 54 661 101 287 43 155 94 847 35
 5.003 1129 54 680 102 291 43 166 100 853 35
 5.003_07 1231 60 748 106 396 53 213 137 976 39
 5.004 1351 60 1230 136 408 51 355 161 1587 55
 5.004_01 1356 60 1258 138 410 51 358 161 1587 55
 5.004_04 1375 60 1294 139 413 51 394 162 1629 55
 5.004_51 1401 61 1260 140 413 53 358 162 1594 56
 5.004_53 1422 62 1295 141 438 70 394 162 1637 56
 5.004_56 1501 66 1301 140 447 74 408 165 1648 57
 5.004_59 1555 72 1317 142 448 74 424 171 1678 58
 5.004_62 1602 77 1327 144 629 92 428 173 1674 58
 5.004_65 1626 77 1358 146 615 92 446 179 1698 60
 5.004_68 1856 74 1382 152 619 92 463 187 1784 60
 5.004_70 1863 75 1456 154 675 92 494 194 1809 60
 5.004_73 1874 76 1467 152 762 102 506 196 1883 61
 5.004_75 1877 76 1467 152 770 103 508 196 1896 62
 5.005 1896 76 1469 152 795 103 509 197 1945 63

The "core"..."doc" mean the following files from the Perl source code distribution. The glob notatio
means recursively, (.) means regular files.

 core *.[hcy]
 lib lib/**/*.p[ml]
 ext ext/**/*.{[hcyt],xs,pm}
 t t/**/*(.)
 doc {README*,INSTALL,*[_.]man{,.?},pod/**/*.pod}

Here are some statistics for the other subdirectories and one file in the Perl source distribution for so
more selected releases.

 ==
 Legend: kB #
18−Oct−1998 Version 5.005_02 683

perlhist Perl Programmers Reference Guide perlhist
 1.014 2.001 3.044 4.000 4.019 4.036

 atarist − − − − − − − − − − 113 31
 Configure 31 1 37 1 62 1 73 1 83 1 86 1
 eg − − 34 28 47 39 47 39 47 39 47 39
 emacs − − − − − − 67 4 67 4 67 4
 h2pl − − − − 12 12 12 12 12 12 12 12
 hints − − − − − − − − 5 42 11 56
 msdos − − − − 41 13 57 15 58 15 60 15
 os2 − − − − 63 22 81 29 81 29 113 31
 usub − − − − 21 16 25 7 43 8 43 8
 x2p 103 17 104 17 137 17 147 18 152 19 154 19

 ==

 5.000a2 5.000a12h 5.000b3h 5.000 5.001m 5.002 5.003

 atarist 113 31 113 31 − − − − − − − − − −
 bench − − 0 1 − − − − − − − − − −
 Bugs 2 5 26 1 − − − − − − − − − −
 dlperl 40 5 − − − − − − − − − − − −
 do 127 71 − − − − − − − − − − − −
 Configure − − 153 1 159 1 160 1 180 1 201 1 201 1
 Doc − − 26 1 75 7 11 1 11 1 − − − −
 eg 79 58 53 44 51 43 54 44 54 44 54 44 54 44
 emacs 67 4 104 6 104 6 104 1 104 6 108 1 108 1
 h2pl 12 12 12 12 12 12 12 12 12 12 12 12 12 12
 hints 11 56 12 46 18 48 18 48 44 56 73 59 77 60
 msdos 60 15 60 15 − − − − − − − − − −
 os2 113 31 113 31 − − − − − − 84 17 56 10
 U − − 62 8 112 42 − − − − − − − −
 usub 43 8 − − − − − − − − − − − −
 utils − − − − − − − − − − 87 7 88 7
 vms − − 80 7 123 9 184 15 304 20 500 24 475 26
 x2p 171 22 171 21 162 20 162 20 279 20 280 20 280 20

 ==

 5.003_07 5.004 5.004_04 5.004_62 5.004_65 5.004_68

 beos − − − − − − − − 1 1 1 1
 Configure 217 1 225 1 225 1 240 1 248 1 256 1
 cygwin32 − − 23 5 23 5 23 5 24 5 24 5
 djgpp − − − − − − 14 5 14 5 14 5
 eg 54 44 81 62 81 62 81 62 81 62 81 62
 emacs 143 1 194 1 204 1 212 2 212 2 212 2
 h2pl 12 12 12 12 12 12 12 12 12 12 12 12
 hints 90 62 129 69 132 71 144 72 151 74 155 74
 os2 117 42 121 42 127 42 127 44 129 44 129 44
 plan9 79 15 82 15 82 15 82 15 82 15 82 15
 Porting 51 1 94 2 109 4 203 6 234 8 241 9
 qnx − − 1 2 1 2 1 2 1 2 1 2
 utils 97 7 112 8 118 8 124 8 156 9 159 9
 vms 505 27 518 34 524 34 538 34 569 34 569 34
 win32 − − 285 33 378 36 470 39 493 39 575 41
 x2p 280 19 281 19 281 19 281 19 282 19 281 19

 ==
684 Version 5.005_02 18−Oct−1998

perlhist Perl Programmers Reference Guide perlhist

07 (or
s, and
ecome
 5.004_70 5.004_73 5.004_75 5.005

 beos 1 1 1 1 1 1 1 1
 Configure 256 1 256 1 264 1 264 1
 cygwin32 24 5 24 5 24 5 24 5
 djgpp 14 5 14 5 14 5 14 5
 eg 86 65 86 65 86 65 86 65
 emacs 262 2 262 2 262 2 262 2
 h2pl 12 12 12 12 12 12 12 12
 hints 157 74 157 74 159 74 160 74
 mpeix − − − − 5 3 5 3
 os2 129 44 139 44 142 44 143 44
 plan9 82 15 82 15 82 15 82 15
 Porting 241 9 253 9 259 10 264 12
 qnx 1 2 1 2 1 2 1 2
 utils 160 9 160 9 160 9 160 9
 vms 570 34 572 34 573 34 575 34
 win32 577 41 585 41 585 41 587 41
 x2p 281 19 281 19 281 19 281 19

SELECTED PATCH SIZES
The "diff lines kb" means that for example the patch 5.003_08, to be applied on top of the 5.003_
whatever was before the 5.003_08) added lines for 110 kilobytes, it removed lines for 19 kilobyte
changed lines for 424 kilobytes. Just the lines themselves are counted, not their context. The "+ − !" b
from the diff(1)s context diff output format.

 Pump− Release Date diff lines kB
 king + − !
 ===

 Chip 5.003_08 1996−Nov−19 110 19 424
 5.003_09 1996−Nov−26 38 9 248
 5.003_10 1996−Nov−29 29 2 27
 5.003_11 1996−Dec−06 73 12 165
 5.003_12 1996−Dec−19 275 6 436
 5.003_13 1996−Dec−20 95 1 56
 5.003_14 1996−Dec−23 23 7 333
 5.003_15 1996−Dec−23 0 0 1
 5.003_16 1996−Dec−24 12 3 50
 5.003_17 1996−Dec−27 19 1 14
 5.003_18 1996−Dec−31 21 1 32
 5.003_19 1997−Jan−04 80 3 85
 5.003_20 1997−Jan−07 18 1 146
 5.003_21 1997−Jan−15 38 10 221
 5.003_22 1997−Jan−16 4 0 18
 5.003_23 1997−Jan−25 71 15 119
 5.003_24 1997−Jan−29 426 1 20
 5.003_25 1997−Feb−04 21 8 169
 5.003_26 1997−Feb−10 16 1 15
 5.003_27 1997−Feb−18 32 10 38
 5.003_28 1997−Feb−21 58 4 66
 5.003_90 1997−Feb−25 22 2 34
 5.003_91 1997−Mar−01 37 1 39
 5.003_92 1997−Mar−06 16 3 69
 5.003_93 1997−Mar−10 12 3 15
 5.003_94 1997−Mar−22 407 7 200
18−Oct−1998 Version 5.005_02 685

perlhist Perl Programmers Reference Guide perlhist

 Alan
tz, and
 5.003_95 1997−Mar−25 41 1 37
 5.003_96 1997−Apr−01 283 5 261
 5.003_97 1997−Apr−03 13 2 34
 5.003_97a 1997−Apr−05 57 1 27
 5.003_97b 1997−Apr−08 14 1 20
 5.003_97c 1997−Apr−10 20 1 16
 5.003_97d 1997−Apr−13 8 0 16
 5.003_97e 1997−Apr−15 15 4 46
 5.003_97f 1997−Apr−17 7 1 33
 5.003_97g 1997−Apr−18 6 1 42
 5.003_97h 1997−Apr−24 23 3 68
 5.003_97i 1997−Apr−25 23 1 31
 5.003_97j 1997−Apr−28 36 1 49
 5.003_98 1997−Apr−30 171 12 539
 5.003_99 1997−May−01 6 0 7
 5.003_99a 1997−May−09 36 2 61
 p54rc1 1997−May−12 8 1 11
 p54rc2 1997−May−14 6 0 40

 5.004 1997−May−15 4 0 4

 Tim 5.004_01 1997−Jun−13 222 14 57
 5.004_02 1997−Aug−07 112 16 119
 5.004_03 1997−Sep−05 109 0 17
 5.004_04 1997−Oct−15 66 8 173

THE KEEPERS OF THE RECORDS
Jarkko Hietaniemi <jhi@iki.fi .

Thanks to the collective memory of the Perlfolk. In addition to the Keepers of the Pumpkin also
Champion, Andreas König, John Macdonald, Matthias Neeracher, Michael Peppler, Randal Schwar
Paul D. Smith sent corrections and additions.
686 Version 5.005_02 18−Oct−1998

AnyDBM_File Perl Programmers Reference Guide AnyDBM_File

of the
 (See
ld
NAME
AnyDBM_File − provide framework for multiple DBMs

NDBM_File, DB_File, GDBM_File, SDBM_File, ODBM_File − various DBM implementations

SYNOPSIS
 use AnyDBM_File;

DESCRIPTION
This module is a "pure virtual base class"—it has nothing of its own. It‘s just there to inherit from one
various DBM packages. It prefers ndbm for compatibility reasons with Perl 4, then Berkeley DB
DB_File), GDBM, SDBM (which is always there—it comes with Perl), and finally ODBM. This way o
programs that used to use NDBM via dbmopen() can still do so, but new ones can reorder @ISA:

 BEGIN { @AnyDBM_File::ISA = qw(DB_File GDBM_File NDBM_File) }
 use AnyDBM_File;

Having multiple DBM implementations makes it trivial to copy database formats:

 use POSIX; use NDBM_File; use DB_File;
 tie %newhash, ’DB_File’, $new_filename, O_CREAT|O_RDWR;
 tie %oldhash, ’NDBM_File’, $old_filename, 1, 0;
 %newhash = %oldhash;

DBM Comparisons
Here‘s a partial table of features the different packages offer:

 odbm ndbm sdbm gdbm bsd−db
 −−−− −−−− −−−− −−−− −−−−−−

 Linkage comes w/ perl yes yes yes yes yes
 Src comes w/ perl no no yes no no
 Comes w/ many unix os yes yes[0] no no no
 Builds ok on !unix ? ? yes yes ?
 Code Size ? ? small big big
 Database Size ? ? small big? ok[1]
 Speed ? ? slow ok fast
 FTPable no no yes yes yes
 Easy to build N/A N/A yes yes ok[2]
 Size limits 1k 4k 1k[3] none none
 Byte−order independent no no no no yes
 Licensing restrictions ? ? no yes no

[0] on mixed universe machines, may be in the bsd compat library, which is often shunned.

[1] Can be trimmed if you compile for one access method.

[2] See DB_File. Requires symbolic links.

[3] By default, but can be redefined.

SEE ALSO
dbm(3), ndbm(3), DB_File(3)
18−Oct−1998 Version 5.005_02 687

AutoLoader Perl Programmers Reference Guide AutoLoader

 after
e

lient
ile
ple, if

ans
eeded

ass the

s have

ith no

plit
n the

d to

ir
NAME
AutoLoader − load subroutines only on demand

SYNOPSIS
 package Foo;
 use AutoLoader ’AUTOLOAD’; # import the default AUTOLOAD subroutine

 package Bar;
 use AutoLoader; # don’t import AUTOLOAD, define our own
 sub AUTOLOAD {
 ...
 $AutoLoader::AUTOLOAD = "...";
 goto &AutoLoader::AUTOLOAD;
 }

DESCRIPTION
The AutoLoader module works with the AutoSplit module and the __END__ token to defer the loading of
some subroutines until they are used rather than loading them all at once.

To use AutoLoader, the author of a module has to place the definitions of subroutines to be autoloaded
an __END__ token. (See perldata.) The AutoSplit module can then be run manually to extract th
definitions into individual files auto/funcname.al.

AutoLoader implements an AUTOLOAD subroutine. When an undefined subroutine in is called in a c
module of AutoLoader, AutoLoader‘s AUTOLOAD subroutine attempts to locate the subroutine in a f
with a name related to the location of the file from which the client module was read. As an exam
POSIX.pm is located in /usr/local/lib/perl5/POSIX.pm, AutoLoader will look for perl subroutines POSIX
in /usr/local/lib/perl5/auto/POSIX/*.al, where the .al file has the same name as the subroutine, s
package. If such a file exists, AUTOLOAD will read and evaluate it, thus (presumably) defining the n
subroutine. AUTOLOAD will then goto the newly defined subroutine.

Once this process completes for a given funtion, it is defined, so future calls to the subroutine will byp
AUTOLOAD mechanism.

Subroutine Stubs
In order for object method lookup and/or prototype checking to operate correctly even when method
not yet been defined it is necessary to "forward declare" each subroutine (as in sub NAME;). See
SYNOPSIS in perlsub. Such forward declaration creates "subroutine stubs", which are place holders w
code.

The AutoSplit and AutoLoader modules automate the creation of forward declarations. The AutoS
module creates an ‘index’ file containing forward declarations of all the AutoSplit subroutines. Whe
AutoLoader module is ‘use‘d it loads these declarations into its callers package.

Because of this mechanism it is important that AutoLoader is always use d and not require d.

Using AutoLoader‘s AUTOLOAD Subroutine
In order to use AutoLoader‘s AUTOLOAD subroutine you must explicitly import it:

 use AutoLoader ’AUTOLOAD’;

Overriding AutoLoader‘s AUTOLOAD Subroutine
Some modules, mainly extensions, provide their own AUTOLOAD subroutines. They typically nee
check for some special cases (such as constants) and then fallback to AutoLoader‘s AUTOLOAD for the
rest.

Such modules should not import AutoLoader‘s AUTOLOAD subroutine. Instead, they should define the
own AUTOLOAD subroutines along these lines:
688 Version 5.005_02 18−Oct−1998

AutoLoader Perl Programmers Reference Guide AutoLoader

AD
t use

itly
visible

f

.

chanism

ding the

shorter
 use AutoLoader;
 use Carp;

 sub AUTOLOAD {
 my $constname;
 ($constname = $AUTOLOAD) =~ s/.*:://;
 my $val = constant($constname, @_ ? $_[0] : 0);
 if ($! != 0) {
 if ($! =~ /Invalid/) {
 $AutoLoader::AUTOLOAD = $AUTOLOAD;
 goto &AutoLoader::AUTOLOAD;
 }
 else {
 croak "Your vendor has not defined constant $constname";
 }
 }

*$AUTOLOAD = sub { $val }; # same as: eval "sub $AUTOLOAD { $val }";
 goto &$AUTOLOAD;
 }

If any module‘s own AUTOLOAD subroutine has no need to fallback to the AutoLoader‘s AUTOLO
subroutine (because it doesn‘t have any AutoSplit subroutines), then that module should no
AutoLoader at all.

Package Lexicals
Package lexicals declared with my in the main block of a package using AutoLoader will not be visible to
auto−loaded subroutines, due to the fact that the given scope ends at the __END__ marker. A module using
such variables as package globals will not work properly under the AutoLoader.

The vars pragma (see vars in perlmod) may be used in such situations as an alternative to explic
qualifying all globals with the package namespace. Variables pre−declared with this pragma will be
to any autoloaded routines (but will not be invisible outside the package, unfortunately).

AutoLoader vs. SelfLoader
The AutoLoader is similar in purpose to SelfLoader: both delay the loading of subroutines.

SelfLoader uses the __DATA__ marker rather than __END__. While this avoids the use of a hierarchy o
disk files and the associated open/close for each routine loaded, SelfLoader suffers a startup speed
disadvantage in the one−time parsing of the lines after __DATA__, after which routines are cached
SelfLoader can also handle multiple packages in a file.

AutoLoader only reads code as it is requested, and in many cases should be faster, but requires a ma
like AutoSplit be used to create the individual files. ExtUtils::MakeMaker will invoke AutoSplit
automatically if AutoLoader is used in a module source file.

CAVEATS
AutoLoaders prior to Perl 5.002 had a slightly different interface. Any old modules which use AutoLoader
should be changed to the new calling style. Typically this just means changing a require to a use, ad
explicit ‘AUTOLOAD’ import if needed, and removing AutoLoader from @ISA.

On systems with restrictions on file name length, the file corresponding to a subroutine may have a
name that the routine itself. This can lead to conflicting file names. The AutoSplit package warns of these
potential conflicts when used to split a module.

AutoLoader may fail to find the autosplit files (or even find the wrong ones) in cases where @INC contains
relative paths, and the program does chdir .
18−Oct−1998 Version 5.005_02 689

AutoLoader Perl Programmers Reference Guide AutoLoader
SEE ALSO
SelfLoader − an autoloader that doesn‘t use external files.
690 Version 5.005_02 18−Oct−1998

AutoSplit Perl Programmers Reference Guide AutoSplit

 both
ding.

re
der

m (the

es
e

ng and

 Both
NAME
AutoSplit − split a package for autoloading

SYNOPSIS
 autosplit($file, $dir, $keep, $check, $modtime);

 autosplit_lib_modules(@modules);

DESCRIPTION
This function will split up your program into files that the AutoLoader module can handle. It is used by
the standard perl libraries and by the MakeMaker utility, to automatically configure libraries for autoloa

The autosplit interface splits the specified file into a hierarchy rooted at the directory $dir. It creates
directories as needed to reflect class hierarchy, and creates the file autosplit.ix. This file acts as both forward
declaration of all package routines, and as timestamp for the last update of the hierarchy.

The remaining three arguments to autosplit govern other options to the autosplitter.

$keep
If the third argument, $keep , is false, then any pre−existing *.al files in the autoload directory are
removed if they are no longer part of the module (obsoleted functions). $keep defaults to 0.

$check
The fourth argument, $check , instructs autosplit to check the module currently being split to ensu
that it does include a use specification for the AutoLoader module, and skips the module if AutoLoa
is not detected. $check defaults to 1.

$modtime
Lastly, the $modtime argument specifies that autosplit is to check the modification time of the
module against that of the autosplit.ix file, and only split the module if it is newer. $modtime
defaults to 1.

Typical use of AutoSplit in the perl MakeMaker utility is via the command−line with:

 perl −e ’use AutoSplit; autosplit($ARGV[0], $ARGV[1], 0, 1, 1)’

Defined as a Make macro, it is invoked with file and directory arguments; autosplit will split the
specified file into the specified directory and delete obsolete .al files, after checking first that the module
does use the AutoLoader, and ensuring that the module is not already currently split in its current for
modtime test).

The autosplit_lib_modules form is used in the building of perl. It takes as input a list of fil
(modules) that are assumed to reside in a directory lib relative to the current directory. Each file is sent to th
 autosplitter one at a time, to be split into the directory lib/auto.

In both usages of the autosplitter, only subroutines defined following the perl __END__ token are split out
into separate files. Some routines may be placed prior to this marker to force their immediate loadi
parsing.

Multiple packages
As of version 1.01 of the AutoSplit module it is possible to have multiple packages within a single file.
of the following cases are supported:

 package NAME;
 __END__
 sub AAA { ... }
 package NAME::option1;
 sub BBB { ... }
 package NAME::option2;
18−Oct−1998 Version 5.005_02 691

AutoSplit Perl Programmers Reference Guide AutoSplit

the

orrect

ts on
used as
 sub BBB { ... }

 package NAME;
 __END__
 sub AAA { ... }
 sub NAME::option1::BBB { ... }
 sub NAME::option2::BBB { ... }

DIAGNOSTICS
AutoSplit will inform the user if it is necessary to create the top−level directory specified in
invocation. It is preferred that the script or installation process that invokes AutoSplit have created the
full directory path ahead of time. This warning may indicate that the module is being split into an inc
path.

AutoSplit will warn the user of all subroutines whose name causes potential file naming conflic
machines with drastically limited (8 characters or less) file name length. Since the subroutine name is
the file name, these warnings can aid in portability to such systems.

Warnings are issued and the file skipped if AutoSplit cannot locate either the __END__ marker or a
"package Name;"−style specification.

AutoSplit will also emit general diagnostics for inability to create directories or files.
692 Version 5.005_02 18−Oct−1998

B Perl Programmers Reference Guide B

odule
dge of

e
t perl‘s
.

OP,
ct
sented

nals by

imilar
d to the
, Hv,
e. For
NAME
B − The Perl Compiler

SYNOPSIS
use B;

DESCRIPTION
The B module supplies classes which allow a Perl program to delve into its own innards. It is the m
used to implement the "backends" of the Perl compiler. Usage of the compiler does not require knowle
this module: see the O module for the user−visible part. The B module is of use to those who want to writ
new compiler backends. This documentation assumes that the reader knows a fair amount abou
internals including such things as SVs, OPs and the internal symbol table and syntax tree of a program

OVERVIEW OF CLASSES
The C structures used by Perl‘s internals to hold SV and OP information (PVIV, AV, HV, ..., OP, SV
UNOP, ...) are modelled on a class hierarchy and the B module gives access to them via a true obje
hierarchy. Structure fields which point to other objects (whether types of SV or types of OP) are repre
by the B module as Perl objects of the appropriate class. The bulk of the B module is the methods for
accessing fields of these structures. Note that all access is read−only: you cannot modify the inter
using this module.

SV−RELATED CLASSES
B::IV, B::NV, B::RV, B::PV, B::PVIV, B::PVNV, B::PVMG, B::BM, B::PVLV, B::AV, B::HV, B::CV,
B::GV, B::FM, B::IO. These classes correspond in the obvious way to the underlying C structures of s
names. The inheritance hierarchy mimics the underlying C "inheritance". Access methods correspon
underlying C macros for field access, usually with the leading "class indication" prefix removed (Sv, Av
...). The leading prefix is only left in cases where its removal would cause a clash in method nam
example, GvREFCNT stays as−is since its abbreviation would clash with the "superclass" method REFCNT
(corresponding to the C function SvREFCNT).

B::SV METHODS

REFCNT
FLAGS

B::IV METHODS

IV
IVX
needs64bits
packiv

B::NV METHODS

NV
NVX

B::RV METHODS

RV

B::PV METHODS

PV

B::PVMG METHODS

MAGIC
SvSTASH
18−Oct−1998 Version 5.005_02 693

B Perl Programmers Reference Guide B
B::MAGIC METHODS

MOREMAGIC
PRIVATE
TYPE
FLAGS
OBJ
PTR

B::PVLV METHODS

TARGOFF
TARGLEN
TYPE
TARG

B::BM METHODS

USEFUL
PREVIOUS
RARE
TABLE

B::GV METHODS

NAME
STASH
SV
IO
FORM
AV
HV
EGV
CV
CVGEN
LINE
FILEGV
GvREFCNT
FLAGS

B::IO METHODS

LINES
PAGE
PAGE_LEN
LINES_LEFT
TOP_NAME
TOP_GV
FMT_NAME
FMT_GV
BOTTOM_NAME
BOTTOM_GV
SUBPROCESS
IoTYPE
IoFLAGS
694 Version 5.005_02 18−Oct−1998

B Perl Programmers Reference Guide B

P,
ing C
ccess
prefix
B::AV METHODS

FILL
MAX
OFF
ARRAY
AvFLAGS

B::CV METHODS

STASH
START
ROOT
GV
FILEGV
DEPTH
PADLIST
OUTSIDE
XSUB
XSUBANY

B::HV METHODS

FILL
MAX
KEYS
RITER
NAME
PMROOT
ARRAY

OP−RELATED CLASSES
B::OP, B::UNOP, B::BINOP, B::LOGOP, B::CONDOP, B::LISTOP, B::PMOP, B::SVOP, B::GVO
B::PVOP, B::CVOP, B::LOOP, B::COP. These classes correspond in the obvious way to the underly
structures of similar names. The inheritance hierarchy mimics the underlying C "inheritance". A
methods correspond to the underlying C structre field names, with the leading "class indication"
removed (op_).

B::OP METHODS

next
sibling
ppaddr

This returns the function name as a string (e.g. pp_add, pp_rv2av).

desc
This returns the op description from the global C op_desc array (e.g. "addition" "array deref").

targ
type
seq
flags
private

B::UNOP METHOD

first
18−Oct−1998 Version 5.005_02 695

B Perl Programmers Reference Guide B

gram

e Perl
B::BINOP METHOD

last

B::LOGOP METHOD

other

B::CONDOP METHODS

true
false

B::LISTOP METHOD

children

B::PMOP METHODS

pmreplroot
pmreplstart
pmnext
pmregexp
pmflags
pmpermflags
precomp

B::SVOP METHOD

sv

B::GVOP METHOD

gv

B::PVOP METHOD

pv

B::LOOP METHODS

redoop
nextop
lastop

B::COP METHODS

label
stash
filegv
cop_seq
arybase
line

FUNCTIONS EXPORTED BY B
The B module exports a variety of functions: some are simple utility functions, others provide a Perl pro
with a way to get an initial "handle" on an internal object.

main_cv
Return the (faked) CV corresponding to the main part of the Perl program.

main_root
Returns the root op (i.e. an object in the appropriate B::OP−derived class) of the main part of th
program.
696 Version 5.005_02 18−Oct−1998

B Perl Programmers Reference Guide B

node is
en

,

 the
 if that

erived
a

erl on

ck

 source

sed to
main_start
Returns the starting op of the main part of the Perl program.

comppadlist
Returns the AV object (i.e. in class B::AV) of the global comppadlist.

sv_undef
Returns the SV object corresponding to the C variable sv_undef .

sv_yes
Returns the SV object corresponding to the C variable sv_yes .

sv_no
Returns the SV object corresponding to the C variable sv_no .

walkoptree(OP, METHOD)
Does a tree−walk of the syntax tree based at OP and calls METHOD on each op it visits. Each
visited before its children. If walkoptree_debug (q.v.) has been called to turn debugging on th
the method walkoptree_debug is called on each op before METHOD is called.

walkoptree_debug(DEBUG)
Returns the current debugging flag for walkoptree . If the optional DEBUG argument is non−zero
it sets the debugging flag to that. See the description of walkoptree above for what the debugging
flag does.

walksymtable(SYMREF, METHOD, RECURSE)
Walk the symbol table starting at SYMREF and call METHOD on each symbol visited. When
walk reached package symbols "Foo::" it invokes RECURSE and only recurses into the package
sub returns true.

svref_2object(SV)
Takes any Perl variable and turns it into an object in the appropriate B::OP−derived or B::SV−d
class. Apart from functions such as main_root , this is the primary way to get an initial "handle" on
internal perl data structure which can then be followed with the other access methods.

ppname(OPNUM)
Return the PP function name (e.g. "pp_add") of op number OPNUM.

hash(STR)
Returns a string in the form "0x..." representing the value of the internal hash function used by p
string STR.

cast_I32(I)
Casts I to the internal I32 type used by that perl.

minus_c
Does the equivalent of the −c command−line option. Obviously, this is only useful in a BEGIN blo
or else the flag is set too late.

cstring(STR)
Returns a double−quote−surrounded escaped version of STR which can be used as a string in C
code.

class(OBJ)
Returns the class of an object without the part of the classname preceding the first "::". This is u
turn "B::UNOP" into "UNOP" for example.
18−Oct−1998 Version 5.005_02 697

B Perl Programmers Reference Guide B
threadsv_names
In a perl compiled for threads, this returns a list of the special per−thread threadsv variables.

byteload_fh(FILEHANDLE)
Load the contents of FILEHANDLE as bytecode. See documentation for the Bytecode module in
B::Backend for how to generate bytecode.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
698 Version 5.005_02 18−Oct−1998

O Perl Programmers Reference Guide O

 list of

al

sed via

rence
e
erl
 form.
t the

priate

e main
 which
NAME
O − Generic interface to Perl Compiler backends

SYNOPSIS
perl −MO=Backend[,OPTIONS] foo.pl

DESCRIPTION
This is the module that is used as a frontend to the Perl Compiler.

CONVENTIONS
Most compiler backends use the following conventions: OPTIONS consists of a comma−separated
words (no white−space). The −v option usually puts the backend into verbose mode. The −ofile option
generates output to file instead of stdout. The −D option followed by various letters turns on various intern
debugging flags. See the documentation for the desired backend (named B::Backend for the example
above) to find out about that backend.

IMPLEMENTATION
This section is only necessary for those who want to write a compiler backend module that can be u
this module.

The command−line mentioned in the SYNOPSIS section corresponds to the Perl code

 use O ("Backend", OPTIONS);

The import function which that calls loads in the appropriate B::Backend module and calls the
compile function in that package, passing it OPTIONS. That function is expected to return a sub refe
which we‘ll call CALLBACK. Next, the "compile−only" flag is switched on (equivalent to th
command−line option −c) and an END block is registered which calls CALLBACK. Thus the main P
program mentioned on the command−line is read in, parsed and compiled into internal syntax tree
Since the −c flag is set, the program does not start running (excepting BEGIN blocks of course) bu
CALLBACK function registered by the compiler backend is called.

In summary, a compiler backend module should be called "B::Foo" for some foo and live in the appro
directory for that name. It should define a function called compile . When the user types

 perl −MO=Foo,OPTIONS foo.pl

that function is called and is passed those OPTIONS (split on commas). It should return a sub ref to th
compilation function. After the user‘s program is loaded and parsed, that returned sub ref is invoked
can then go ahead and do the compilation, usually by making use of the B module‘s functionality.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 699

B::Asmdata Perl Programmers Reference Guide B::Asmdata
NAME
B::Asmdata − Autogenerated data about Perl ops, used to generate bytecode

SYNOPSIS
use Asmdata;

DESCRIPTION
See ext/B/B/Asmdata.pm.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
700 Version 5.005_02 18−Oct−1998

B::Bblock Perl Programmers Reference Guide B::Bblock
NAME
B::Bblock − Walk basic blocks

SYNOPSIS
perl −MO=Bblock[,OPTIONS] foo.pl

DESCRIPTION
See ext/B/README.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 701

B::Bytecode Perl Programmers Reference Guide B::Bytecode

ting code
 in, your
m into
 the
nment

 loaded

 doesn‘t

ler.

 the

eded
ulting

ents.
NAME
B::Bytecode − Perl compiler‘s bytecode backend

SYNOPSIS
perl −MO=Bytecode[,OPTIONS] foo.pl

DESCRIPTION
This compiler backend takes Perl source and generates a platform−independent bytecode encapsula
to load the internal structures perl uses to run your program. When the generated bytecode is loaded
program is ready to run, reducing the time which perl would have taken to load and parse your progra
its internal semi−compiled form. That means that compiling with this backend will not help improve
runtime execution speed of your program but may improve the start−up time. Depending on the enviro
in which your program runs this may or may not be a help.

The resulting bytecode can be run with a special byteperl executable or (for non−main programs) be
via the byteload_fh function in the B module.

OPTIONS
If there are any non−option arguments, they are taken to be names of objects to be saved (probably
work properly yet). Without extra arguments, it saves the main program.

−ofilename
Output to filename instead of STDOUT.

— Force end of options.

−f Force optimisations on or off one at a time. Each can be preceded by no− to turn the option off (e.g.
−fno−compress−nullops).

−fcompress−nullops
Only fills in the necessary fields of ops which have been optimised away by perl‘s internal compi

−fomit−sequence−numbers
Leaves out code to fill in the op_seq field of all ops which is only used by perl‘s internal compiler.

−fbypass−nullops
If op−op_next ever points to a NULLOP, replaces the op_next field with the first non−NULLOP in
path of execution.

−fstrip−syntax−tree
Leaves out code to fill in the pointers which link the internal syntax tree together. They‘re not ne
at run−time but leaving them out will make it impossible to recompile or disassemble the res
program. It will also stop goto label statements from working.

−On
Optimisation level (n = 0, 1, 2, ...). −O means −O1. −O1 sets −fcompress−nullops −fomit−sequence
numbers. −O6 adds −fstrip−syntax−tree.

−D Debug options (concatenated or separate flags like perl −D).

−Do Prints each OP as it‘s processed.

−Db Print debugging information about bytecompiler progress.

−Da Tells the (bytecode) assembler to include source assembler lines in its output as bytecode comm

−DC
Prints each CV taken from the final symbol tree walk.
702 Version 5.005_02 18−Oct−1998

B::Bytecode Perl Programmers Reference Guide B::Bytecode

putting

odes for
−S Output (bytecode) assembler source rather than piping it through the assembler and out
bytecode.

−m Compile as a module rather than a standalone program. Currently this just means that the bytec
initialising main_start , main_root and curpad are omitted.

EXAMPLES
 perl −MO=Bytecode,−O6,−o,foo.plc foo.pl

 perl −MO=Bytecode,−S foo.pl > foo.S
 assemble foo.S > foo.plc
 byteperl foo.plc

 perl −MO=Bytecode,−m,−oFoo.pmc Foo.pm

BUGS
Plenty. Current status: experimental.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 703

B::C Perl Programmers Reference Guide B::C

tructures
he time
. That
gram
ay be

 doesn‘t

 to use
at any
mple, if

ersion
NAME
B::C − Perl compiler‘s C backend

SYNOPSIS
perl −MO=C[,OPTIONS] foo.pl

DESCRIPTION
This compiler backend takes Perl source and generates C source code corresponding to the internal s
that perl uses to run your program. When the generated C source is compiled and run, it cuts out t
which perl would have taken to load and parse your program into its internal semi−compiled form
means that compiling with this backend will not help improve the runtime execution speed of your pro
but may improve the start−up time. Depending on the environment in which your program runs this m
either a help or a hindrance.

OPTIONS
If there are any non−option arguments, they are taken to be names of objects to be saved (probably
work properly yet). Without extra arguments, it saves the main program.

−ofilename
Output to filename instead of STDOUT

−v Verbose compilation (currently gives a few compilation statistics).

— Force end of options

−uPackname
Force apparently unused subs from package Packname to be compiled. This allows programs
eval "foo() " even when sub foo is never seen to be used at compile time. The down side is th
subs which really are never used also have code generated. This option is necessary, for exa
you have a signal handler foo which you initialise with $SIG{BAR} = "foo" . A better fix, though,
is just to change it to $SIG{BAR} = \&foo. You can have multiple −u options. The compiler tries
to figure out which packages may possibly have subs in which need compiling but the current v
doesn‘t do it very well. In particular, it is confused by nested packages (i.e. of the form A::B) where
package A does not contain any subs.

−D Debug options (concatenated or separate flags like perl −D).

−Do OPs, prints each OP as it‘s processed

−Dc COPs, prints COPs as processed (incl. file & line num)

−DA
prints AV information on saving

−DC
prints CV information on saving

−DM
prints MAGIC information on saving

−f Force optimisations on or off one at a time.

−fcog
Copy−on−grow: PVs declared and initialised statically.

−fno−cog
No copy−on−grow.
704 Version 5.005_02 18−Oct−1998

B::C Perl Programmers Reference Guide B::C
−On
Optimisation level (n = 0, 1, 2, ...). −O means −O1. Currently, −O1 and higher set −fcog.

EXAMPLES
 perl −MO=C,−ofoo.c foo.pl
 perl cc_harness −o foo foo.c

Note that cc_harness lives in the B subdirectory of your perl library directory. The utility called perlcc
may also be used to help make use of this compiler.

 perl −MO=C,−v,−DcA bar.pl > /dev/null

BUGS
Plenty. Current status: experimental.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 705

B::CC Perl Programmers Reference Guide B::CC

 of your
le think
rates

as the
p more

 doesn‘t

 to use
at any
mple, if

ersion

le. The
 and

rwise

m.

ssed
NAME
B::CC − Perl compiler‘s optimized C translation backend

SYNOPSIS
perl −MO=CC[,OPTIONS] foo.pl

DESCRIPTION
This compiler backend takes Perl source and generates C source code corresponding to the flow
program. In other words, this backend is somewhat a "real" compiler in the sense that many peop
about compilers. Note however that, currently, it is a very poor compiler in that although it gene
(mostly, or at least sometimes) correct code, it performs relatively few optimisations. This will change
compiler develops. The result is that running an executable compiled with this backend may start u
quickly than running the original Perl program (a feature shared by the C compiler backend—see B::C) and
may also execute slightly faster. This is by no means a good optimising compiler—yet.

OPTIONS
If there are any non−option arguments, they are taken to be names of objects to be saved (probably
work properly yet). Without extra arguments, it saves the main program.

−ofilename
Output to filename instead of STDOUT

−v Verbose compilation (currently gives a few compilation statistics).

— Force end of options

−uPackname
Force apparently unused subs from package Packname to be compiled. This allows programs
eval "foo() " even when sub foo is never seen to be used at compile time. The down side is th
subs which really are never used also have code generated. This option is necessary, for exa
you have a signal handler foo which you initialise with $SIG{BAR} = "foo" . A better fix, though,
is just to change it to $SIG{BAR} = \&foo. You can have multiple −u options. The compiler tries
to figure out which packages may possibly have subs in which need compiling but the current v
doesn‘t do it very well. In particular, it is confused by nested packages (i.e. of the form A::B) where
package A does not contain any subs.

−mModulename
Instead of generating source for a runnable executable, generate source for an XSUB modu
boot_Modulename function (which DynaLoader can look for) does the appropriate initialisation
runs the main part of the Perl source that is being compiled.

−D Debug options (concatenated or separate flags like perl −D).

−Dr Writes debugging output to STDERR just as it‘s about to write to the program‘s runtime (othe
writes debugging info as comments in its C output).

−DO
Outputs each OP as it‘s compiled

−Ds Outputs the contents of the shadow stack at each OP

−Dp Outputs the contents of the shadow pad of lexicals as it‘s loaded for each sub or the main progra

−Dq Outputs the name of each fake PP function in the queue as it‘s about to process it.

−Dl Output the filename and line number of each original line of Perl code as it‘s proce
(pp_nextstate).
706 Version 5.005_02 18−Oct−1998

B::CC Perl Programmers Reference Guide B::CC

ming a

d−go

es the

lip/flop.
w the
−Dt Outputs timing information of compilation stages.

−f Force optimisations on or off one at a time.

−ffreetmps−each−bblock
Delays FREETMPS from the end of each statement to the end of the each basic block.

−ffreetmps−each−loop
Delays FREETMPS from the end of each statement to the end of the group of basic blocks for
loop. At most one of the freetmps−each−* options can be used.

−fomit−taint
Omits generating code for handling perl‘s tainting mechanism.

−On
Optimisation level (n = 0, 1, 2, ...). −O means −O1. Currently, −O1 sets −ffreetmps−each−bblock
and −O2 sets −ffreetmps−each−loop.

EXAMPLES
 perl −MO=CC,−O2,−ofoo.c foo.pl
 perl cc_harness −o foo foo.c

Note that cc_harness lives in the B subdirectory of your perl library directory. The utility called perlcc
may also be used to help make use of this compiler.

 perl −MO=CC,−mFoo,−oFoo.c Foo.pm
 perl cc_harness −shared −c −o Foo.so Foo.c

BUGS
Plenty. Current status: experimental.

DIFFERENCES
These aren‘t really bugs but they are constructs which are heavily tied to perl‘s compile−an
implementation and with which this compiler backend cannot cope.

Loops
Standard perl calculates the target of "next", "last", and "redo" at run−time. The compiler calculat
targets at compile−time. For example, the program

 sub skip_on_odd { next NUMBER if $_[0] % 2 }
 NUMBER: for ($i = 0; $i < 5; $i++) {
 skip_on_odd($i);
 print $i;
 }

produces the output

 024

with standard perl but gives a compile−time error with the compiler.

Context of ".."
The context (scalar or array) of the ".." operator determines whether it behaves as a range or a f
Standard perl delays until runtime the decision of which context it is in but the compiler needs to kno
context at compile−time. For example,

 @a = (4,6,1,0,0,1);
 sub range { (shift @a)..(shift @a) }
 print range();
 while (@a) { print scalar(range()) }
18−Oct−1998 Version 5.005_02 707

B::CC Perl Programmers Reference Guide B::CC

ons on

ased
generates the output

 456123E0

with standard Perl but gives a compile−time error with compiled Perl.

Arithmetic
Compiled Perl programs use native C arithemtic much more frequently than standard perl. Operati
large numbers or on boundary cases may produce different behaviour.

Deprecated features
Features of standard perl such as $[which have been deprecated in standard perl since Perl5 was rele
have not been implemented in the compiler.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
708 Version 5.005_02 18−Oct−1998

B::Debug Perl Programmers Reference Guide B::Debug
NAME
B::Debug − Walk Perl syntax tree, printing debug info about ops

SYNOPSIS
perl −MO=Debug[,OPTIONS] foo.pl

DESCRIPTION
See ext/B/README.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 709

B::Deparse Perl Programmers Reference Guide B::Deparse

 internal
exactly
e isn‘t a
 it will
 not
ay you

 it may

 by a

 when
)
e how

nt

rogram
include
called

n‘t (yet)
NAME
B::Deparse − Perl compiler backend to produce perl code

SYNOPSIS
perl −MO=Deparse[,−uPACKAGE][,−p][,−l][,−sLETTERS] prog.pl

DESCRIPTION
B::Deparse is a backend module for the Perl compiler that generates perl source code, based on the
compiled structure that perl itself creates after parsing a program. The output of B::Deparse won‘t be
the same as the original source, since perl doesn‘t keep track of comments or whitespace, and ther
one−to−one correspondence between perl‘s syntactical constructions and their compiled form, but
often be close. When you use the −p option, the output also includes parentheses even when they are
required by precedence, which can make it easy to see if perl is parsing your expressions the w
intended.

Please note that this module is mainly new and untested code and is still under development, so
change in the future.

OPTIONS
As with all compiler backend options, these must follow directly after the ‘−MO=Deparse‘, separated
comma but not any white space.

−p Print extra parentheses. Without this option, B::Deparse includes parentheses in its output only
they are needed, based on the structure of your program. With −p, it uses parentheses (almost
whenever they would be legal. This can be useful if you are used to LISP, or if you want to se
perl parses your input. If you say

 if ($var & 0x7f == 65) {print "Gimme an A!"}
 print ($which ? $a : $b), "\n";
 $name = $ENV{USER} or "Bob";

B::Deparse,−p will print

 if (($var & 0)) {
 print(’Gimme an A!’)
 };
 (print(($which ? $a : $b)), ’???’);
 (($name = $ENV{’USER’}) or ’???’)

which probably isn‘t what you intended (the ‘???’ is a sign that perl optimized away a consta
value).

−uPACKAGE
Normally, B::Deparse deparses the main code of a program, all the subs called by the main p
(and all the subs called by them, recursively), and any other subs in the main:: package. To
subs in other packages that aren‘t called directly, such as AUTOLOAD, DESTROY, other subs
automatically by perl, and methods, which aren‘t resolved to subs until runtime, use the −u option. The
argument to −u is the name of a package, and should follow directly after the ‘u’. Multiple −u options
may be given, separated by commas. Note that unlike some other backends, B::Deparse does
try to guess automatically when −u is needed — you must invoke it yourself.

−l Add ‘#line’ declarations to the output based on the line and file locations of the original code.

−sLETTERS
Tweak the style of B::Deparse‘s output. At the moment, only one style option is implemented:

C Cuddle elsif , else , and continue blocks. For example, print

 if (...) {
 ...
710 Version 5.005_02 18−Oct−1998

B::Deparse Perl Programmers Reference Guide B::Deparse
 } else {
 ...
 }

instead of

 if (...) {
 ...
 }
 else {
 ...
 }

The default is not to cuddle.

BUGS
See the ‘to do’ list at the beginning of the module file.

AUTHOR
Stephen McCamant <alias@mcs.com, based on an earlier version by Malcolm Beattie
<mbeattie@sable.ox.ac.uk.
18−Oct−1998 Version 5.005_02 711

B::Disassembler Perl Programmers Reference Guide B::Disassembler
NAME
B::Disassembler − Disassemble Perl bytecode

SYNOPSIS
use Disassembler;

DESCRIPTION
See ext/B/B/Disassembler.pm.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
712 Version 5.005_02 18−Oct−1998

B::Lint Perl Programmers Reference Guide B::Lint

mpiler
h
ck
s, a

oth of

writes

 of

 in a
pecial

atch

of
NAME
B::Lint − Perl lint

SYNOPSIS
perl −MO=Lint[,OPTIONS] foo.pl

DESCRIPTION
The B::Lint module is equivalent to an extended version of the −w option of perl. It is named after the
program lint which carries out a similar process for C programs.

OPTIONS AND LINT CHECKS
Option words are separated by commas (not whitespace) and follow the usual conventions of co
backend options. Following any options (indicated by a leading −) come lint check arguments. Each suc
argument (apart from the special all and none options) is a word representing one possible lint che
(turning on that check) or is no−foo (turning off that check). Before processing the check argument
standard list of checks is turned on. Later options override earlier ones. Available options are:

context Produces a warning whenever an array is used in an implicit scalar context. For example, b
the lines

 $foo = length(@bar);
 $foo = @bar;
will elicit a warning. Using an explicit scalar() silences the warning. For example,

 $foo = scalar(@bar);

implicit−read and implicit−write
These options produce a warning whenever an operation implicitly reads or (respectively)
to one of Perl‘s special variables. For example, implicit−read will warn about these:

 /foo/;

and implicit−write will warn about these:

 s/foo/bar/;

Both implicit−read and implicit−write warn about this:

 for (@a) { ... }

dollar−underscore
This option warns whenever $_ is used either explicitly anywhere or as the implicit argument
a print statement.

private−names
This option warns on each use of any variable, subroutine or method name that lives
non−current package but begins with an underscore ("_"). Warnings aren‘t issued for the s
case of the single character name "_" by itself (e.g. $_ and @_).

undefined−subs
This option warns whenever an undefined subroutine is invoked. This option will only c
explicitly invoked subroutines such as foo() and not indirect invocations such as
&$subref() or $obj−>meth() . Note that some programs or modules delay definition
subs until runtime by means of the AUTOLOAD mechanism.

regexp−variables
This option warns whenever one of the regexp variables $‘, $& or $’ is used. Any occurrence
of any of these variables in your program can slow your whole program down. See perlre for
details.
18−Oct−1998 Version 5.005_02 713

B::Lint Perl Programmers Reference Guide B::Lint

d in
ecked
all Turn all warnings on.

none Turn all warnings off.

NON LINT−CHECK OPTIONS

−u Package
Normally, Lint only checks the main code of the program together with all subs define
package main. The −u option lets you include other package names whose subs are then ch
by Lint.

BUGS
This is only a very preliminary version.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk.
714 Version 5.005_02 18−Oct−1998

B::Showlex Perl Programmers Reference Guide B::Showlex

utine.
NAME
B::Showlex − Show lexical variables used in functions or files

SYNOPSIS
perl −MO=Showlex[,SUBROUTINE] foo.pl

DESCRIPTION
When a subroutine name is provided in OPTIONS, prints the lexical variables used in that subro
Otherwise, prints the file−scope lexicals in the file.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 715

B::Stackobj Perl Programmers Reference Guide B::Stackobj
NAME
B::Stackobj − Helper module for CC backend

SYNOPSIS
use B::Stackobj;

DESCRIPTION
See ext/B/README.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
716 Version 5.005_02 18−Oct−1998

B::Terse Perl Programmers Reference Guide B::Terse
NAME
B::Terse − Walk Perl syntax tree, printing terse info about ops

SYNOPSIS
perl −MO=Terse[,OPTIONS] foo.pl

DESCRIPTION
See ext/B/README.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 717

B::Xref Perl Programmers Reference Guide B::Xref

iables,

m
nd by

se

nd even

where
 where a
d by

mpiler

adable

g

exical
ported
NAME
B::Xref − Generates cross reference reports for Perl programs

SYNOPSIS
perl −MO=Xref[,OPTIONS] foo.pl

DESCRIPTION
The B::Xref module is used to generate a cross reference listing of all definitions and uses of var
subroutines and formats in a Perl program. It is implemented as a backend for the Perl compiler.

The report generated is in the following format:

 File filename1
 Subroutine subname1

Package package1
 object1 C<line numbers>
 object2 C<line numbers>
 ...
Package package2
...

Each File section reports on a single file. Each Subroutine section reports on a single subroutine apart fro
the special cases "(definitions)" and "(main)". These report, respectively, on subroutine definitions fou
the initial symbol table walk and on the main part of the program or module external to all subroutines.

The report is then grouped by the Package of each variable, subroutine or format with the special ca
"(lexicals)" meaning lexical variables. Each object name (implicitly qualified by its containing Package)
includes its type character(s) at the beginning where possible. Lexical variables are easier to track a
included dereferencing information where possible.

The line numbers are a comma separated list of line numbers (some preceded by code letters)
that object is used in some way. Simple uses aren‘t preceded by a code letter. Introductions (such as
lexical is first defined with my) are indicated with the letter "i". Subroutine and method calls are indicate
the character "&". Subroutine definitions are indicated by "s" and format definitions by "f".

OPTIONS
Option words are separated by commas (not whitespace) and follow the usual conventions of co
backend options.

−oFILENAME
Directs output to FILENAME instead of standard output.

−r Raw output. Instead of producing a human−readable report, outputs a line in machine−re
form for each definition/use of a variable/sub/format.

−D[tO] (Internal) debug options, probably only useful if −r included. The t option prints the object on
the top of the stack as it‘s being tracked. The O option prints each operator as it‘s bein
processed in the execution order of the program.

BUGS
Non−lexical variables are quite difficult to track through a program. Sometimes the type of a non−l
variable‘s use is impossible to determine. Introductions of non−lexical non−scalars don‘t seem to be re
properly.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk.
718 Version 5.005_02 18−Oct−1998

Benchmark Perl Programmers Reference Guide Benchmark

kes to

 run.
n the

ither
LE
NAME
Benchmark − benchmark running times of code

timethis − run a chunk of code several times

timethese − run several chunks of code several times

timeit − run a chunk of code and see how long it goes

SYNOPSIS
 timethis ($count, "code");

 # Use Perl code in strings...
 timethese($count, {

’Name1’ => ’...code1...’,
’Name2’ => ’...code2...’,

 });

 # ... or use subroutine references.
 timethese($count, {

’Name1’ => sub { ...code1... },
’Name2’ => sub { ...code2... },

 });

 $t = timeit($count, ’...other code...’)
 print "$count loops of other code took:",timestr($t),"\n";

DESCRIPTION
The Benchmark module encapsulates a number of routines to help you figure out how long it ta
execute some code.

Methods

new Returns the current time. Example:

 use Benchmark;
 $t0 = new Benchmark;
 # ... your code here ...
 $t1 = new Benchmark;
 $td = timediff($t1, $t0);
 print "the code took:",timestr($td),"\n";

debug Enables or disable debugging by setting the $Benchmark::Debug flag:

 debug Benchmark 1;
 $t = timeit(10, ’ 5 ** $Global ’);
 debug Benchmark 0;

Standard Exports
The following routines will be exported into your namespace if you use the Benchmark module:

timeit(COUNT, CODE)
Arguments: COUNT is the number of times to run the loop, and CODE is the code to
CODE may be either a code reference or a string to be eval‘d; either way it will be run i
caller‘s package.

Returns: a Benchmark object.

timethis (COUNT, CODE, [TITLE, [STYLE]])
Time COUNT iterations of CODE. CODE may be a string to eval or a code reference; e
way the CODE will run in the caller‘s package. Results will be printed to STDOUT as TIT
18−Oct−1998 Version 5.005_02 719

Benchmark Perl Programmers Reference Guide Benchmark

E

s:

elf, as
an 0.1
ntime

m
mark
e

tring to

le for

LE.

le
en).
two
o, in

e

d:
followed by the times. TITLE defaults to "timethis COUNT" if none is provided. STYL
determines the format of the output, as described for timestr() below.

The COUNT can be zero or negative: this means the minimum number of CPU seconds to
run. A zero signifies the default of 3 seconds. For example to run at least for 10 second

timethis(−10, $code)

or to run two pieces of code tests for at least 3 seconds:

timethese(0, { test1 => ’...’, test2 => ’...’})

CPU seconds is, in UNIX terms, the user time plus the system time of the process its
opposed to the real (wallclock) time and the time spent by the child processes. Less th
seconds is not accepted (−0.01 as the count, for example, will cause a fatal ru
exception).

Note that the CPU seconds is the minimum time: CPU scheduling and other operating syste
factors may complicate the attempt so that a little bit more time is spent. The bench
output will, however, also tell the number of $code runs/second, which should be a mor
interesting number than the actually spent seconds.

Returns a Benchmark object.

timethese (COUNT, CODEHASHREF, [STYLE])
The CODEHASHREF is a reference to a hash containing names as keys and either a s
eval or a code reference for each value. For each (KEY, VALUE) pair in the
CODEHASHREF, this routine will call

timethis(COUNT, VALUE, KEY, STYLE)

The routines are called in string comparison order of KEY.

The COUNT can be zero or negative, see timethis() .

timediff (T1, T2)
Returns the difference between two Benchmark times as a Benchmark object suitab
passing to timestr() .

timestr (TIMEDIFF, [STYLE, [FORMAT]])
Returns a string that formats the times in the TIMEDIFF object in the requested STY
TIMEDIFF is expected to be a Benchmark object similar to that returned by timediff() .

STYLE can be any of ‘all‘, ‘noc‘, ‘nop’ or ‘auto’. ‘all’ shows each of the 5 times availab
(‘wallclock’ time, user time, system time, user time of children, and system time of childr
‘noc’ shows all except the two children times. ‘nop’ shows only wallclock and the
children times. ‘auto’ (the default) will act as ‘all’ unless the children times are both zer
which case it acts as ‘noc’.

FORMAT is the printf(3)−style format specifier (without the leading ‘%’) to use to print th
times. It defaults to ‘5.2f’.

Optional Exports
The following routines will be exported into your namespace if you specifically ask that they be importe

clearcache (COUNT)
Clear the cached time for COUNT rounds of the null loop.

clearallcache ()
Clear all cached times.
720 Version 5.005_02 18−Oct−1998

Benchmark Perl Programmers Reference Guide Benchmark

ese

null

 from

d using

how a

pty loop

l code

umented
disablecache ()
Disable caching of timings for the null loop. This will force Benchmark to recalculate th
timings for each new piece of code timed.

enablecache ()
Enable caching of timings for the null loop. The time taken for COUNT rounds of the
loop will be calculated only once for each different COUNT used.

NOTES
The data is stored as a list of values from the time and times functions:

 ($real, $user, $system, $children_user, $children_system)

in seconds for the whole loop (not divided by the number of rounds).

The timing is done using time(3) and times(3).

Code is executed in the caller‘s package.

The time of the null loop (a loop with the same number of rounds but empty loop body) is subtracted
the time of the real loop.

The null loop times are cached, the key being the number of rounds. The caching can be controlle
calls like these:

 clearcache($key);
 clearallcache();

 disablecache();
 enablecache();

INHERITANCE
Benchmark inherits from no other class, except of course for Exporter.

CAVEATS
Comparing eval‘d strings with code references will give you inaccurate results: a code reference will s
slower execution time than the equivalent eval‘d string.

The real time timing is done using time(2) and the granularity is therefore only one second.

Short tests may produce negative figures because perl can appear to take longer to execute the em
than a short test; try:

 timethis(100,’1’);

The system time of the null loop might be slightly more than the system time of the loop with the actua
and therefore the difference might end up being < 0.

AUTHORS
Jarkko Hietaniemi <jhi@iki.fi , Tim Bunce <Tim.Bunce@ig.co.uk

MODIFICATION HISTORY
September 8th, 1994; by Tim Bunce.

March 28th, 1997; by Hugo van der Sanden: added support for code references and the already doc
‘debug’ method; revamped documentation.

April 04−07th, 1997: by Jarkko Hietaniemi, added the run−for−some−time functionality.
18−Oct−1998 Version 5.005_02 721

CGI Perl Programmers Reference Guide CGI

ntents.
er state
r script,
ation).
rrors.

ort for

d its

 style.
eate the
 passed

ecreate
arameter
NAME
CGI − Simple Common Gateway Interface Class

SYNOPSIS
 # CGI script that creates a fill−out form
 # and echoes back its values.

 use CGI qw/:standard/;
 print header,
 start_html(’A Simple Example’),
 h1(’A Simple Example’),
 start_form,
 "What’s your name? ",textfield(’name’),p,
 "What’s the combination?", p,
 checkbox_group(−name=>’words’,

 −values=>[’eenie’,’meenie’,’minie’,’moe’],
 −defaults=>[’eenie’,’minie’]), p,

 "What’s your favorite color? ",
 popup_menu(−name=>’color’,

 −values=>[’red’,’green’,’blue’,’chartreuse’]),p,
 submit,
 end_form,
 hr;

 if (param()) {
 print "Your name is",em(param(’name’)),p,

 "The keywords are: ",em(join(", ",param(’words’))),p,
 "Your favorite color is ",em(param(’color’)),
 hr;

 }

ABSTRACT
This perl library uses perl5 objects to make it easy to create Web fill−out forms and parse their co
This package defines CGI objects, entities that contain the values of the current query string and oth
variables. Using a CGI object‘s methods, you can examine keywords and parameters passed to you
and create forms whose initial values are taken from the current query (thereby preserving state inform
 The module provides shortcut functions that produce boilerplate HTML, reducing typing and coding e
It also provides functionality for some of the more advanced features of CGI scripting, including supp
file uploads, cookies, cascading style sheets, server push, and frames.

CGI.pm also provides a simple function−oriented programming style for those who don‘t nee
object−oriented features.

The current version of CGI.pm is available at

 http://www.genome.wi.mit.edu/ftp/pub/software/WWW/cgi_docs.html
 ftp://ftp−genome.wi.mit.edu/pub/software/WWW/

DESCRIPTION

PROGRAMMING STYLE
There are two styles of programming with CGI.pm, an object−oriented style and a function−oriented
In the object−oriented style you create one or more CGI objects and then use object methods to cr
various elements of the page. Each CGI object starts out with the list of named parameters that were
to your CGI script by the server. You can modify the objects, save them to a file or database and r
them. Because each object corresponds to the "state" of the CGI script, and because each object‘s p
list is independent of the others, this allows you to save the state of the script and restore it later.
722 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

e:

d you
rovides
wing
that we

e don‘t

IONS

lify this

. −type,
 a dash

l the
se

 provide
is

 reference
opriate.
 The
For example, using the object oriented style, here is now you create a simple "Hello World" HTML pag

 #!/usr/local/bin/pelr
 use CGI; # load CGI routines
 $q = new CGI; # create new CGI object
 print $q−>header, # create the HTTP header
 $q−>start_html(’hello world’), # start the HTML
 $q−>h1(’hello world’), # level 1 header
 $q−>end_html; # end the HTML

In the function−oriented style, there is one default CGI object that you rarely deal with directly. Instea
just call functions to retrieve CGI parameters, create HTML tags, manage cookies, and so on. This p
you with a cleaner programming interface, but limits you to using one CGI object at a time. The follo
example prints the same page, but uses the function−oriented interface. The main differences are
now need to import a set of functions into our name space (usually the "standard" functions), and w
need to create the CGI object.

 #!/usr/local/bin/pelr
 use CGI qw/:standard/; # load standard CGI routines
 print header, # create the HTTP header
 start_html(’hello world’), # start the HTML
 h1(’hello world’), # level 1 header
 end_html; # end the HTML

The examples in this document mainly use the object−oriented style. See HOW TO IMPORT FUNCT
for important information on function−oriented programming in CGI.pm

CALLING CGI.PM ROUTINES
Most CGI.pm routines accept several arguments, sometimes as many as 20 optional ones! To simp
interface, all routines use a named argument calling style that looks like this:

 print $q−>header(−type=>’image/gif’,−expires=>’+3d’);

Each argument name is preceded by a dash. Neither case nor order matters in the argument list
−Type, and −TYPE are all acceptable. In fact, only the first argument needs to begin with a dash. If
is present in the first argument, CGI.pm assumes dashes for the subsequent ones.

You don‘t have to use the hyphen at allif you don‘t want to. After creating a CGI object, cal
use_named_parameters() method with a nonzero value. This will tell CGI.pm that you intend to u
named parameters exclusively:

 $query = new CGI;
 $query−>use_named_parameters(1);
 $field = $query−>radio_group(’name’=>’OS’,

’values’=>[’Unix’,’Windows’,’Macintosh’],
’default’=>’Unix’);

Several routines are commonly called with just one argument. In the case of these routines you can
the single argument without an argument name. header() happens to be one of these routines. In th
case, the single argument is the document type.

 print $q−>header(’text/html’);

Other such routines are documented below.

Sometimes named arguments expect a scalar, sometimes a reference to an array, and sometimes a
to a hash. Often, you can pass any type of argument and the routine will do whatever is most appr
For example, the param() routine is used to set a CGI parameter to a single or a multi−valued value.
two cases are shown below:

 $q−>param(−name=>’veggie’,−value=>’tomato’);
18−Oct−1998 Version 5.005_02 723

CGI Perl Programmers Reference Guide CGI

rated
use in
he tag
tes and
gument,

HTML
r other
 As a
 curly

Perl
s, radio

le, you

utines

called
 $q−>param(−name=>’veggie’,−value=>’[tomato’,’tomahto’,’potato’,’potahto’]);

A large number of routines in CGI.pm actually aren‘t specifically defined in the module, but are gene
automatically as needed. These are the "HTML shortcuts," routines that generate HTML tags for
dynamically−generated pages. HTML tags have both attributes (the attribute="value" pairs within t
itself) and contents (the part between the opening and closing pairs.) To distinguish between attribu
contents, CGI.pm uses the convention of passing HTML attributes as a hash reference as the first ar
and the contents, if any, as any subsequent arguments. It works out like this:

 Code Generated HTML
 −−−− −−−−−−−−−−−−−−
 h1() <H1>
 h1(’some’,’contents’); <H1>some contents</H1>
 h1({−align=>left}); <H1 ALIGN="LEFT">
 h1({−align=>left},’contents’); <H1 ALIGN="LEFT">contents</H1>

HTML tags are described in more detail later.

Many newcomers to CGI.pm are puzzled by the difference between the calling conventions for the
shortcuts, which require curly braces around the HTML tag attributes, and the calling conventions fo
routines, which manage to generate attributes without the curly brackets. Don‘t be confused.
convenience the curly braces are optional in all but the HTML shortcuts. If you like, you can use
braces when calling any routine that takes named arguments. For example:

 print $q−>header({−type=>’image/gif’,−expires=>’+3d’});

If you use the −w switch, you will be warned that some CGI.pm argument names conflict with built−in
functions. The most frequent of these is the −values argument, used to create multi−valued menu
button clusters and the like. To get around this warning, you have several choices:

1. Use another name for the argument, if one is available. For
example, −value is an alias for −values.

2. Change the capitalization, e.g. −Values
3. Put quotes around the argument name, e.g. ‘−values’

Many routines will do something useful with a named argument that it doesn‘t recognize. For examp
can produce non−standard HTTP header fields by providing them as named arguments:

 print $q−>header(−type => ’text/html’,
 −cost => ’Three smackers’,
 −annoyance_level => ’high’,
 −complaints_to => ’bit bucket’);

This will produce the following nonstandard HTTP header:

 HTTP/1.0 200 OK
 Cost: Three smackers
 Annoyance−level: high
 Complaints−to: bit bucket
 Content−type: text/html

Notice the way that underscores are translated automatically into hyphens. HTML−generating ro
perform a different type of translation.

This feature allows you to keep up with the rapidly changing HTTP and HTML "standards".

CREATING A NEW QUERY OBJECT (OBJECT−ORIENTED STYLE):
 $query = new CGI;

This will parse the input (from both POST and GET methods) and store it into a perl5 object
$query.
724 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

r
ewline

nces to

ay to

other

d as an

named

y were
fined in
CREATING A NEW QUERY OBJECT FROM AN INPUT FILE
 $query = new CGI(INPUTFILE);

If you provide a file handle to the new() method, it will read parameters from the file (or STDIN, o
whatever). The file can be in any of the forms describing below under debugging (i.e. a series of n
delimited TAG=VALUE pairs will work). Conveniently, this type of file is created by the save() method
(see below). Multiple records can be saved and restored.

Perl purists will be pleased to know that this syntax accepts references to file handles, or even refere
filehandle globs, which is the "official" way to pass a filehandle:

 $query = new CGI(*STDIN);

You can also initialize the CGI object with a FileHandle or IO::File object.

If you are using the function−oriented interface and want to initialize CGI state from a file handle, the w
do this is with restore_parameters() . This will (re)initialize the default CGI object from the
indicated file handle.

 open (IN,"test.in") || die;
 restore_parameters(IN);
 close IN;

You can also initialize the query object from an associative array reference:

 $query = new CGI({’dinosaur’=>’barney’,
 ’song’=>’I love you’,
 ’friends’=>[qw/Jessica George Nancy/]}
);

or from a properly formatted, URL−escaped query string:

 $query = new CGI(’dinosaur=barney&color=purple’);

or from a previously existing CGI object (currently this clones the parameter list, but none of the
object−specific fields, such as autoescaping):

 $old_query = new CGI;
 $new_query = new CGI($old_query);

To create an empty query, initialize it from an empty string or hash:

 $empty_query = new CGI("");

 −or−

 $empty_query = new CGI({});

FETCHING A LIST OF KEYWORDS FROM THE QUERY:
 @keywords = $query−>keywords

If the script was invoked as the result of an <ISINDEX search, the parsed keywords can be obtaine
array using the keywords() method.

FETCHING THE NAMES OF ALL THE PARAMETERS PASSED TO YOUR SCRIPT:
 @names = $query−>param

If the script was invoked with a parameter list (e.g.
"name1=value1&name2=value2&name3=value3"), the param() method will return the parameter
names as a list. If the script was invoked as an <ISINDEX script, there will be a single parameter
‘keywords’.

NOTE: As of version 1.5, the array of parameter names returned will be in the same order as the
submitted by the browser. Usually this order is the same as the order in which the parameters are de
18−Oct−1998 Version 5.005_02 725

CGI Perl Programmers Reference Guide CGI

eter is
se the

e value
meter

d of the
izes the

 ‘Q’.

ed

 passed

en you
the form (however, this isn‘t part of the spec, and so isn‘t guaranteed).

FETCHING THE VALUE OR VALUES OF A SINGLE NAMED PARAMETER:
 @values = $query−>param(’foo’);

 −or−

 $value = $query−>param(’foo’);

Pass the param() method a single argument to fetch the value of the named parameter. If the param
multivalued (e.g. from multiple selections in a scrolling list), you can ask to receive an array. Otherwi
method will return a single value.

SETTING THE VALUE(S) OF A NAMED PARAMETER:
 $query−>param(’foo’,’an’,’array’,’of’,’values’);

This sets the value for the named parameter ‘foo’ to an array of values. This is one way to change th
of a field AFTER the script has been invoked once before. (Another way is with the −override para
accepted by all methods that generate form elements.)

param() also recognizes a named parameter style of calling described in more detail later:

 $query−>param(−name=>’foo’,−values=>[’an’,’array’,’of’,’values’]);

 −or−

 $query−>param(−name=>’foo’,−value=>’the value’);

APPENDING ADDITIONAL VALUES TO A NAMED PARAMETER:
 $query−>append(−name=>’foo’,−values=>[’yet’,’more’,’values’]);

This adds a value or list of values to the named parameter. The values are appended to the en
parameter if it already exists. Otherwise the parameter is created. Note that this method only recogn
named argument calling syntax.

IMPORTING ALL PARAMETERS INTO A NAMESPACE:
 $query−>import_names(’R’);

This creates a series of variables in the ‘R’ namespace. For example, $R::foo, @R:foo. For keyword
lists, a variable @R::keywords will appear. If no namespace is given, this method will assume
WARNING: don‘t import anything into ‘main‘; this is a major security risk!!!!

In older versions, this method was called import() . As of version 2.20, this name has been remov
completely to avoid conflict with the built−in Perl module import operator.

DELETING A PARAMETER COMPLETELY:
 $query−>delete(’foo’);

This completely clears a parameter. It sometimes useful for resetting parameters that you don‘t want
down between script invocations.

If you are using the function call interface, use "Delete() " instead to avoid conflicts with Perl‘s built−in
delete operator.

DELETING ALL PARAMETERS:
 $query−>delete_all();

This clears the CGI object completely. It might be useful to ensure that all the defaults are taken wh
create a fill−out form.

Use Delete_all() instead if you are using the function call interface.
726 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

obtain a
n

iding

ames. A
ack in
ode,

xample

‘s data
ee

r this

import
ch.
DIRECT ACCESS TO THE PARAMETER LIST:
 $q−>param_fetch(’address’)−>[1] = ’1313 Mockingbird Lane’;
 unshift @{$q−>param_fetch(−name=>’address’)},’George Munster’;

If you need access to the parameter list in a way that isn‘t covered by the methods above, you can
direct reference to it by calling the param_fetch() method with the name of the . This will return a
array reference to the named parameters, which you then can manipulate in any way you like.

You can also use a named argument style using the −name argument.

SAVING THE STATE OF THE SCRIPT TO A FILE:
 $query−>save(FILEHANDLE)

This will write the current state of the form to the provided filehandle. You can read it back in by prov
a filehandle to the new() method. Note that the filehandle can be a file, a pipe, or whatever!

The format of the saved file is:

NAME1=VALUE1
NAME1=VALUE1’
NAME2=VALUE2
NAME3=VALUE3
=

Both name and value are URL escaped. Multi−valued CGI parameters are represented as repeated n
session record is delimited by a single = symbol. You can write out multiple records and read them b
with several calls to new. You can do this across several sessions by opening the file in append m
allowing you to create primitive guest books, or to keep a history of users’ queries. Here‘s a short e
of creating multiple session records:

 use CGI;

 open (OUT,">>test.out") || die;
 $records = 5;
 foreach (0..$records) {
 my $q = new CGI;
 $q−>param(−name=>’counter’,−value=>$_);
 $q−>save(OUT);
 }
 close OUT;

 # reopen for reading
 open (IN,"test.out") || die;
 while (!eof(IN)) {
 my $q = new CGI(IN);
 print $q−>param(’counter’),"\n";
 }

The file format used for save/restore is identical to that used by the Whitehead Genome Center
exchange format "Boulderio", and can be manipulated and even databased using Boulderio utilities. S

 http://www.genome.wi.mit.edu/genome_software/other/boulder.html

for further details.

If you wish to use this method from the function−oriented (non−OO) interface, the exported name fo
method is save_parameters() .

USING THE FUNCTION−ORIENTED INTERFACE
To use the function−oriented interface, you must specify which CGI.pm routines or sets of routines to
into your script‘s namespace. There is a small overhead associated with this importation, but it isn‘t mu
18−Oct−1998 Version 5.005_02 727

CGI Perl Programmers Reference Guide CGI

ting a

ction

b).

GS is

 and
for the
lled

chine

ill be
resent.

GI
e

 use CGI <list of methods>;

The listed methods will be imported into the current package; you can call them directly without crea
CGI object first. This example shows how to import the param() and header() methods, and then use
them directly:

 use CGI ’param’,’header’;
 print header(’text/plain’);
 $zipcode = param(’zipcode’);

More frequently, you‘ll import common sets of functions by referring to the gropus by name. All fun
sets are preceded with a ":" character as in ":html3" (for tags defined in the HTML 3 standard).

Here is a list of the function sets you can import:

:cgi Import all CGI−handling methods, such as param() , path_info() and the like.

:form
Import all fill−out form generating methods, such as textfield() .

:html2
Import all methods that generate HTML 2.0 standard elements.

:html3
Import all methods that generate HTML 3.0 proposed elements (such as <table, <super and <su

:netscape
Import all methods that generate Netscape−specific HTML extensions.

:html
Import all HTML−generating shortcuts (i.e. ‘html2’ + ‘html3’ + ‘netscape’)...

:standard
Import "standard" features, ‘html2‘, ‘html3‘, ‘form’ and ‘cgi’.

:all Import all the available methods. For the full list, see the CGI.pm code, where the variable %TA
defined.

If you import a function name that is not part of CGI.pm, the module will treat it as a new HTML tag
generate the appropriate subroutine. You can then use it like any other HTML tag. This is to provide
rapidly−evolving HTML "standard." For example, say Microsoft comes out with a new tag ca
<GRADIENT (which causes the user‘s desktop to be flooded with a rotating gradient fill until his ma
reboots). You don‘t need to wait for a new version of CGI.pm to start using it immeidately:

 use CGI qw/:standard :html3 gradient/;
 print gradient({−start=>’red’,−end=>’blue’});

Note that in the interests of execution speed CGI.pm does not use the standard Exporter syntax for
specifying load symbols. This may change in the future.

If you import any of the state−maintaining CGI or form−generating methods, a default CGI object w
created and initialized automatically the first time you use any of the methods that require one to be p
This includes param() , textfield() , submit() and the like. (If you need direct access to the C
object, you can find it in the global variable $CGI::Q). By importing CGI.pm methods, you can creat
visually elegant scripts:

 use CGI qw/:standard/;
 print
 header,
 start_html(’Simple Script’),
 h1(’Simple Script’),
 start_form,
728 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

ich are
unction

eted

, use it

to later.
nd for
h the

piled
 "What’s your name? ",textfield(’name’),p,
 "What’s the combination?",
 checkbox_group(−name=>’words’,

 −values=>[’eenie’,’meenie’,’minie’,’moe’],
 −defaults=>[’eenie’,’moe’]),p,

 "What’s your favorite color?",
 popup_menu(−name=>’color’,

 −values=>[’red’,’green’,’blue’,’chartreuse’]),p,
 submit,
 end_form,
 hr,"\n";

 if (param) {
 print

 "Your name is ",em(param(’name’)),p,
 "The keywords are: ",em(join(", ",param(’words’))),p,
 "Your favorite color is ",em(param(’color’)),".\n";

 }
 print end_html;

PRAGMAS
In addition to the function sets, there are a number of pragmas that you can import. Pragmas, wh
always preceded by a hyphen, change the way that CGI.pm functions in various ways. Pragmas, f
sets, and individual functions can all be imported in the same use() line. For example, the following use
statement imports the standard set of functions and disables debugging mode (pragma −no_debug):

 use CGI qw/:standard −no_debug/;

The current list of pragmas is as follows:

−any
When you use CGI −any, then any method that the query object doesn‘t recognize will be interpr
as a new HTML tag. This allows you to support the next ad hoc Netscape or Microsoft HTML
extension. This lets you go wild with new and unsupported tags:

 use CGI qw(−any);
 $q=new CGI;
 print $q−>gradient({speed=>’fast’,start=>’red’,end=>’blue’});

Since using <citeany</cite causes any mistyped method name to be interpreted as an HTML tag
with care or not at all.

−compile
This causes the indicated autoloaded methods to be compiled up front, rather than deferred
This is useful for scripts that run for an extended period of time under FastCGI or mod_perl, a
those destined to be crunched by Malcom Beattie‘s Perl compiler. Use it in conjunction wit
methods or method familes you plan to use.

 use CGI qw(−compile :standard :html3);

or even

 use CGI qw(−compile :all);

Note that using the −compile pragma in this way will always have the effect of importing the com
functions into the current namespace. If you want to compile without importing use the compile()
method instead (see below).
18−Oct−1998 Version 5.005_02 729

CGI Perl Programmers Reference Guide CGI

u may
f NPH

rred to
them
mory
ut

 the
 from

, then
the file
f it is
orary
risk of

TTP
ers of

hat it

wser
n date,

 as server
−nph
This makes CGI.pm produce a header appropriate for an NPH (no parsed header) script. Yo
need to do other things as well to tell the server that the script is NPH. See the discussion o
scripts below.

−autoload
This overrides the autoloader so that any function in your program that is not recognized is refe
CGI.pm for possible evaluation. This allows you to use all the CGI.pm functions without adding
to your symbol table, which is of concern for mod_perl users who are worried about me
consumption. Warning: when −autoload is in effect, you cannot use "poetry mode" (functions witho
the parenthesis). Use hr() rather than hr, or add something like use subs qw/hr p header/ to the top
of your script.

−no_debug
This turns off the command−line processing features. If you want to run a CGI.pm script from
command line to produce HTML, and you don‘t want it pausing to request CGI parameters
standard input or the command line, then use this pragma:

 use CGI qw(−no_debug :standard);

If you‘d like to process the command−line parameters but not standard input, this should work:

 use CGI qw(−no_debug :standard);
 restore_parameters(join(’&’,@ARGV));

See the section on debugging for more details.

−private_tempfiles
CGI.pm can process uploaded file. Ordinarily it spools the uploaded file to a temporary directory
deletes the file when done. However, this opens the risk of eavesdropping as described in
upload section. Another CGI script author could peek at this data during the upload, even i
confidential information. On Unix systems, the −private_tempfiles pragma will cause the temp
file to be unlinked as soon as it is opened and before any data is written into it, eliminating the
eavesdropping. n

GENERATING DYNAMIC DOCUMENTS
Most of CGI.pm‘s functions deal with creating documents on the fly. Generally you will produce the H
header first, followed by the document itself. CGI.pm provides functions for generating HTTP head
various types as well as for generating HTML. For creating GIF images, see the GD.pm module.

Each of these functions produces a fragment of HTML or HTTP which you can print out directly so t
displays in the browser window, append to a string, or save to a file for later use.

CREATING A STANDARD HTTP HEADER:
Normally the first thing you will do in any CGI script is print out an HTTP header. This tells the bro
what type of document to expect, and gives other optional information, such as the language, expiratio
and whether to cache the document. The header can also be manipulated for special purposes, such
push and pay per view pages.

print $query−>header;

 −or−

print $query−>header(’image/gif’);

 −or−

print $query−>header(’text/html’,’204 No response’);

 −or−
730 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

ose,
and a
 tells the

g named

fy any

e, the

he the
:

ing all
eresting

NPH
plorer,

where,

you
r and

nother
tion to

NPH
print $query−>header(−type=>’image/gif’,
 −nph=>1,
 −status=>’402 Payment required’,
 −expires=>’+3d’,
 −cookie=>$cookie,
 −Cost=>’$2.00’);

header() returns the Content−type: header. You can provide your own MIME type if you cho
otherwise it defaults to text/html. An optional second parameter specifies the status code
human−readable message. For example, you can specify 204, "No response" to create a script that
browser to do nothing at all.

The last example shows the named argument style for passing arguments to the CGI methods usin
parameters. Recognized parameters are −type, −status, −expires, and −cookie. Any other named
parameters will be stripped of their initial hyphens and turned into header fields, allowing you to speci
HTTP header you desire. Internal underscores will be turned into hyphens:

 print $query−>header(−Content_length=>3002);

Most browsers will not cache the output from CGI scripts. Every time the browser reloads the pag
script is invoked anew. You can change this behavior with the −expires parameter. When you specify an
absolute or relative expiration interval with this parameter, some browsers and proxy servers will cac
script‘s output until the indicated expiration date. The following forms are all valid for the −expires field

+30s 30 seconds from now
+10m ten minutes from now
+1h one hour from now
−1d yesterday (i.e. "ASAP!")
now immediately
+3M in three months
+10y in ten years time
Thursday, 25−Apr−1999 00:40:33 GMT at the indicated time & date

The −cookie parameter generates a header that tells the browser to provide a "magic cookie" dur
subsequent transactions with your script. Netscape cookies have a special format that includes int
attributes such as expiration time. Use the cookie() method to create and retrieve session cookies.

The −nph parameter, if set to a true value, will issue the correct headers to work with a
(no−parse−header) script. This is important to use with certain servers, such as Microsoft Internet Ex
which expect all their scripts to be NPH.

GENERATING A REDIRECTION HEADER
 print $query−>redirect(’http://somewhere.else/in/movie/land’);

Sometimes you don‘t want to produce a document yourself, but simply redirect the browser else
perhaps choosing a URL based on the time of day or the identity of the user.

The redirect() function redirects the browser to a different URL. If you use redirection like this,
should not print out a header as well. As of version 2.0, we produce both the unofficial Location: heade
the official URI: header. This should satisfy most servers and browsers.

One hint I can offer is that relative links may not work correctly when you generate a redirection to a
document on your site. This is due to a well−intentioned optimization that some servers use. The solu
this is to use the full URL (including the http: part) of the document you are redirecting to.

You can also use named arguments:

 print $query−>redirect(−uri=>’http://somewhere.else/in/movie/land’,
 −nph=>1);

The −nph parameter, if set to a true value, will issue the correct headers to work with a
18−Oct−1998 Version 5.005_02 731

CGI Perl Programmers Reference Guide CGI

plorer,

The
trols

al. In
ee below
OLOR

ion,

the

ader
e/value
g like

TTP
 it in

ADING
(no−parse−header) script. This is important to use with certain servers, such as Microsoft Internet Ex
which expect all their scripts to be NPH.

CREATING THE HTML DOCUMENT HEADER
 print $query−>start_html(−title=>’Secrets of the Pyramids’,

 −author=>’fred@capricorn.org’,
 −base=>’true’,
 −target=>’_blank’,
 −meta=>{’keywords’=>’pharaoh secret mummy’,

 ’copyright’=>’copyright 1996 King Tut’},
 −style=>{’src’=>’/styles/style1.css’},
 −BGCOLOR=>’blue’);

After creating the HTTP header, most CGI scripts will start writing out an HTML document.
start_html() routine creates the top of the page, along with a lot of optional information that con
the page‘s appearance and behavior.

This method returns a canned HTML header and the opening <BODY tag. All parameters are option
the named parameter form, recognized parameters are −title, −author, −base, −xbase and −target (s
for the explanation). Any additional parameters you provide, such as the Netscape unofficial BGC
attribute, are added to the <BODY tag. Additional parameters must be proceeded by a hyphen.

The argument −xbase allows you to provide an HREF for the <BASE tag different from the current locat
as in

 −xbase=>"http://home.mcom.com/"

All relative links will be interpreted relative to this tag.

The argument −target allows you to provide a default target frame for all the links and fill−out forms on
page. See the Netscape documentation on frames for details of how to manipulate this.

 −target=>"answer_window"

All relative links will be interpreted relative to this tag. You add arbitrary meta information to the he
with the −meta argument. This argument expects a reference to an associative array containing nam
pairs of meta information. These will be turned into a series of header <META tags that look somethin
this:

 <META NAME="keywords" CONTENT="pharaoh secret mummy">
 <META NAME="description" CONTENT="copyright 1996 King Tut">

There is no support for the HTTP−EQUIV type of <META tag. This is because you can modify the H
header directly with the header() method. For example, if you want to send the Refresh: header, do
the header() method:

 print $q−>header(−Refresh=>’10; URL=http://www.capricorn.com’);

The −style tag is used to incorporate cascading stylesheets into your code. See the section on CASC
STYLESHEETS for more information.

You can place other arbitrary HTML elements to the <HEAD section with the −head tag. For example, to
place the rarely−used <LINK element in the head section, use this:

 print $q−>start_html(−head=>Link({−rel=>’next’,
 −href=>’http://www.capricorn.com/s2.html’}));

To incorporate multiple HTML elements into the <HEAD section, just pass an array reference:

 print $q−>start_html(−head=>[
 Link({−rel=>’next’,

 −href=>’http://www.capricorn.com/s2.html’}),
 Link({−rel=>’previous’,
732 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

 the
nce of
s loaded
ill not
ed by it

age is
ed in the

 have

e latter
r than

 list of
ects of
 −href=>’http://www.capricorn.com/s1.html’})
]

);

JAVASCRIPTING: The −script, −noScript, −onLoad, −onMouseOver, −onMouseOut and −onUnload
parameters are used to add Netscape JavaScript calls to your pages. −script should point to a block of text
containing JavaScript function definitions. This block will be placed within a <SCRIPT block inside
HTML (not HTTP) header. The block is placed in the header in order to give your page a fighting cha
having all its JavaScript functions in place even if the user presses the stop button before the page ha
completely. CGI.pm attempts to format the script in such a way that JavaScript−naive browsers w
choke on the code: unfortunately there are some browsers, such as Chimera for Unix, that get confus
nevertheless.

The −onLoad and −onUnload parameters point to fragments of JavaScript code to execute when the p
respectively opened and closed by the browser. Usually these parameters are calls to functions defin
−script field:

 $query = new CGI;
 print $query−>header;
 $JSCRIPT=<<END;
 // Ask a silly question
 function riddle_me_this() {

 var r = prompt("What walks on four legs in the morning, " +
 "two legs in the afternoon, " +
 "and three legs in the evening?");

 response(r);
 }
 // Get a silly answer
 function response(answer) {

 if (answer == "man")
 alert("Right you are!");
 else
 alert("Wrong! Guess again.");

 }
 END
 print $query−>start_html(−title=>’The Riddle of the Sphinx’,

 −script=>$JSCRIPT);

Use the −noScript parameter to pass some HTML text that will be displayed on browsers that do not
JavaScript (or browsers where JavaScript is turned off).

Netscape 3.0 recognizes several attributes of the <SCRIPT tag, including LANGUAGE and SRC. Th
is particularly interesting, as it allows you to keep the JavaScript code in a file or CGI script rathe
cluttering up each page with the source. To use these attributes pass a HASH reference in the −script
parameter containing one or more of −language, −src, or −code:

 print $q−>start_html(−title=>’The Riddle of the Sphinx’,
 −script=>{−language=>’JAVASCRIPT’,

 −src=>’/javascript/sphinx.js’}
);

 print $q−>(−title=>’The Riddle of the Sphinx’,
 −script=>{−language=>’PERLSCRIPT’},

 −code=>’print "hello world!\n;"’
);

A final feature allows you to incorporate multiple <SCRIPT sections into the header. Just pass the
script sections as an array reference. this allows you to specify different source files for different dial
18−Oct−1998 Version 5.005_02 733

CGI Perl Programmers Reference Guide CGI

ses to
le. Use

scape

ion
rs but
JavaScript. Example:

 print $q−>start_html(−title=>’The Riddle of the Sphinx’,
 −script=>[
 { −language => ’JavaScript1.0’,
 −src => ’/javascript/utilities10.js’
 },
 { −language => ’JavaScript1.1’,
 −src => ’/javascript/utilities11.js’
 },
 { −language => ’JavaScript1.2’,
 −src => ’/javascript/utilities12.js’
 },
 { −language => ’JavaScript28.2’,
 −src => ’/javascript/utilities219.js’
 }
]
);
 </pre>

If this looks a bit extreme, take my advice and stick with straight CGI scripting.

See

 http://home.netscape.com/eng/mozilla/2.0/handbook/javascript/

for more information about JavaScript.

The old−style positional parameters are as follows:

Parameters:
1. The title

2. The author‘s e−mail address (will create a <LINK REV="MADE" tag if present

3. A ‘true’ flag if you want to include a <BASE tag in the header. This helps resolve relative addres
absolute ones when the document is moved, but makes the document hierarchy non−portab
with care!

4, 5, 6...
Any other parameters you want to include in the <BODY tag. This is a good place to put Net
extensions, such as colors and wallpaper patterns.

ENDING THE HTML DOCUMENT:
print $query−>end_html

This ends an HTML document by printing the </BODY</HTML tags.

CREATING A SELF−REFERENCING URL THAT PRESERVES STATE INFORMATION:
 $myself = $query−>self_url;
 print "I’m talking to myself.";

self_url() will return a URL, that, when selected, will reinvoke this script with all its state informat
intact. This is most useful when you want to jump around within the document using internal ancho
you don‘t want to disrupt the current contents of the form(s). Something like this will do the trick.

 $myself = $query−>self_url;
 print "See table 1";
 print "See table 2";
 print "See for yourself";
734 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

 full

ters.

 and

ags.
u can
end to
If you want more control over what‘s returned, using the url() method instead.

You can also retrieve the unprocessed query string with query_string() :

 $the_string = $query−>query_string;

OBTAINING THE SCRIPT‘S URL
 $full_url = $query−>url();
 $full_url = $query−>url(−full=>1); #alternative syntax
 $relative_url = $query−>url(−relative=>1);
 $absolute_url = $query−>url(−absolute=>1);
 $url_with_path = $query−>url(−path_info=>1);
 $url_with_path_and_query = $query−>url(−path_info=>1,−query=>1);

url() returns the script‘s URL in a variety of formats. Called without any arguments, it returns the
form of the URL, including host name and port number

 http://your.host.com/path/to/script.cgi

You can modify this format with the following named arguments:

−absolute
If true, produce an absolute URL, e.g.

 /path/to/script.cgi

−relative
Produce a relative URL. This is useful if you want to reinvoke your script with different parame
For example:

 script.cgi

−full
Produce the full URL, exactly as if called without any arguments. This overrides the −relative
−absolute arguments.

−path (−path_info)
Append the additional path information to the URL. This can be combined with −full , −absolute or
−relative. −path_info is provided as a synonym.

−query (−query_string)
Append the query string to the URL. This can be combined with −full , −absolute or −relative.
−query_string is provided as a synonym.

CREATING STANDARD HTML ELEMENTS:
CGI.pm defines general HTML shortcut methods for most, if not all of the HTML 3 and HTML 4 t
HTML shortcuts are named after a single HTML element and return a fragment of HTML text that yo
then print or manipulate as you like. Each shortcut returns a fragment of HTML code that you can app
a string, save to a file, or, most commonly, print out so that it displays in the browser window.

This example shows how to use the HTML methods:

 $q = new CGI;
 print $q−>blockquote(

 "Many years ago on the island of",
 $q−>a({href=>"http://crete.org/"},"Crete"),
 "there lived a minotaur named",
 $q−>strong("Fred."),
),

 $q−>hr;
18−Oct−1998 Version 5.005_02 735

CGI Perl Programmers Reference Guide CGI

pace

 get a

between

e array

ked as

me as
s of the

ument
ple,
This results in the following HTML code (extra newlines have been added for readability):

 <blockquote>
 Many years ago on the island of
 Crete there lived
 a minotaur named Fred.
 </blockquote>
 <hr>

If you find the syntax for calling the HTML shortcuts awkward, you can import them into your names
and dispense with the object syntax completely (see the next section for more details):

 use CGI ’:standard’;
 print blockquote(
 "Many years ago on the island of",
 a({href=>"http://crete.org/"},"Crete"),
 "there lived a minotaur named",
 strong("Fred."),
),
 hr;

PROVIDING ARGUMENTS TO HTML SHORTCUTS
The HTML methods will accept zero, one or multiple arguments. If you provide no arguments, you
single tag:

 print hr; # <HR>

If you provide one or more string arguments, they are concatenated together with spaces and placed
opening and closing tags:

 print h1("Chapter","1"); # <H1>Chapter 1</H1>"

If the first argument is an associative array reference, then the keys and values of the associativ
become the HTML tag‘s attributes:

 print a({−href=>’fred.html’,−target=>’_new’},
 "Open a new frame");

 Open a new frame

You may dispense with the dashes in front of the attribute names if you prefer:

 print img {src=>’fred.gif’,align=>’LEFT’};

Sometimes an HTML tag attribute has no argument. For example, ordered lists can be mar
COMPACT. The syntax for this is an argument that that points to an undef string:

 print ol({compact=>undef},li(’one’),li(’two’),li(’three’));

Prior to CGI.pm version 2.41, providing an empty (‘’) string as an attribute argument was the sa
providing undef. However, this has changed in order to accomodate those who want to create tag
form <IMG ALT="". The difference is shown in these two pieces of code:

 CODE RESULT
 img({alt=>undef})
 img({alt=>’’}) <IMT ALT="">

THE DISTRIBUTIVE PROPERTY OF HTML SHORTCUTS
One of the cool features of the HTML shortcuts is that they are distributive. If you give them an arg
consisting of a reference to a list, the tag will be distributed across each element of the list. For exam
here‘s one way to make an ordered list:
736 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

re using
at
change
 print ul(
 li({−type=>’disc’},[’Sneezy’,’Doc’,’Sleepy’,’Happy’]);
);

This example will result in HTML output that looks like this:

 <LI TYPE="disc">Sneezy
 <LI TYPE="disc">Doc
 <LI TYPE="disc">Sleepy
 <LI TYPE="disc">Happy

This is extremely useful for creating tables. For example:

 print table({−border=>undef},
 caption(’When Should You Eat Your Vegetables?’),
 Tr({−align=>CENTER,−valign=>TOP},
 [
 th([’Vegetable’, ’Breakfast’,’Lunch’,’Dinner’]),
 td([’Tomatoes’ , ’no’, ’yes’, ’yes’]),
 td([’Broccoli’ , ’no’, ’no’, ’yes’]),
 td([’Onions’ , ’yes’,’yes’, ’yes’])
]
)
);

HTML SHORTCUTS AND LIST INTERPOLATION
Consider this bit of code:

 print blockquote(em(’Hi’),’mom!’));

It will ordinarily return the string that you probably expect, namely:

 <BLOCKQUOTE>Hi mom!</BLOCKQUOTE>

Note the space between the element "Hi" and the element "mom!". CGI.pm puts the extra space the
array interpolation, which is controlled by the magic $" variable. Sometimes this extra space is not wh
you want, for example, when you are trying to align a series of images. In this case, you can simply
the value of $" to an empty string.

 {
 local($") = ’’;
 print blockquote(em(’Hi’),’mom!’));
 }

I suggest you put the code in a block as shown here. Otherwise the change to $" will affect all subsequent
code until you explicitly reset it.

NON−STANDARD HTML SHORTCUTS
A few HTML tags don‘t follow the standard pattern for various reasons.

comment() generates an HTML comment (<!— comment —). Call it like

 print comment(’here is my comment’);

Because of conflicts with built−in Perl functions, the following functions begin with initial caps:

 Select
 Tr
 Link
 Delete
18−Oct−1998 Version 5.005_02 737

CGI Perl Programmers Reference Guide CGI

r tags
gs. It‘s

 query

alue to

 This
 your

r

ipt to

you
In addition, start_html() , end_html() , start_form() , end_form() ,
start_multipart_form() and all the fill−out form tags are special. See their respective sections.

CREATING FILL−OUT FORMS:
General note The various form−creating methods all return strings to the caller, containing the tag o
that will create the requested form element. You are responsible for actually printing out these strin
set up this way so that you can place formatting tags around the form elements.

Another note The default values that you specify for the forms are only used the first time the script is
invoked (when there is no query string). On subsequent invocations of the script (when there is a
string), the former values are used even if they are blank.

If you want to change the value of a field from its previous value, you have two choices:

(1) call the param() method to set it.

(2) use the −override (alias −force) parameter (a new feature in version 2.15). This forces the default v
be used, regardless of the previous value:

 print $query−>textfield(−name=>’field_name’,
 −default=>’starting value’,
 −override=>1,
 −size=>50,
 −maxlength=>80);

Yet another note By default, the text and labels of form elements are escaped according to HTML rules.
means that you can safely use "<CLICK ME" as the label for a button. However, it also interferes with
ability to incorporate special HTML character sequences, such as Á, into your fields. If you wish
to turn off automatic escaping, call the autoEscape() method with a false value immediately afte
creating the CGI object:

 $query = new CGI;
 $query−>autoEscape(undef);

CREATING AN ISINDEX TAG
 print $query−>isindex(−action=>$action);

 −or−

 print $query−>isindex($action);

Prints out an <ISINDEX tag. Not very exciting. The parameter −action specifies the URL of the scr
process the query. The default is to process the query with the current script.

STARTING AND ENDING A FORM
 print $query−>startform(−method=>$method,

 −action=>$action,
 −encoding=>$encoding);

 <... various form stuff ...>
 print $query−>endform;

−or−

 print $query−>startform($method,$action,$encoding);
 <... various form stuff ...>
 print $query−>endform;

startform() will return a <FORM tag with the optional method, action and form encoding that
specify. The defaults are:

 method: POST
 action: this script
738 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

efore

 with
GI.pm

n very
 "file
of this

GI.pm

 to

he
nctions.
ted to
y and
urself.

 and

ns of
 encoding: application/x−www−form−urlencoded

endform() returns the closing </FORM tag.

Startform() ‘s encoding method tells the browser how to package the various fields of the form b
sending the form to the server. Two values are possible:

application/x−www−form−urlencoded
This is the older type of encoding used by all browsers prior to Netscape 2.0. It is compatible
many CGI scripts and is suitable for short fields containing text data. For your convenience, C
stores the name of this encoding type in $CGI::URL_ENCODED.

multipart/form−data
This is the newer type of encoding introduced by Netscape 2.0. It is suitable for forms that contai
large fields or that are intended for transferring binary data. Most importantly, it enables the
upload" feature of Netscape 2.0 forms. For your convenience, CGI.pm stores the name
encoding type in &CGI::MULTIPART

Forms that use this type of encoding are not easily interpreted by CGI scripts unless they use C
or another library designed to handle them.

For compatibility, the startform() method uses the older form of encoding by default. If you want
use the newer form of encoding by default, you can call start_multipart_form() instead of
startform() .

JAVASCRIPTING: The −name and −onSubmit parameters are provided for use with JavaScript. T
−name parameter gives the form a name so that it can be identified and manipulated by JavaScript fu
−onSubmit should point to a JavaScript function that will be executed just before the form is submit
your server. You can use this opportunity to check the contents of the form for consistenc
completeness. If you find something wrong, you can put up an alert box or maybe fix things up yo
You can abort the submission by returning false from this function.

Usually the bulk of JavaScript functions are defined in a <SCRIPT block in the HTML header
−onSubmit points to one of these function call. See start_html() for details.

CREATING A TEXT FIELD
 print $query−>textfield(−name=>’field_name’,

 −default=>’starting value’,
 −size=>50,
 −maxlength=>80);

−or−

 print $query−>textfield(’field_name’,’starting value’,50,80);

textfield() will return a text input field.

Parameters
1. The first parameter is the required name for the field (−name).

2. The optional second parameter is the default starting value for the field contents (−default).

3. The optional third parameter is the size of the field in
 characters (−size).

4. The optional fourth parameter is the maximum number of characters the
 field will accept (−maxlength).

As with all these methods, the field will be initialized with its previous contents from earlier invocatio
the script. When the form is processed, the value of the text field can be retrieved with:

 $value = $query−>param(’foo’);
18−Oct−1998 Version 5.005_02 739

CGI Perl Programmers Reference Guide CGI

e its

r will
u like.
t field.

try

he

e of
If you want to reset it from its initial value after the script has been called once, you can do so like this:

 $query−>param(’foo’,"I’m taking over this value!");

NEW AS OF VERSION 2.15: If you don‘t want the field to take on its previous value, you can forc
current value by using the −override (alias −force) parameter:

 print $query−>textfield(−name=>’field_name’,
 −default=>’starting value’,
 −override=>1,
 −size=>50,
 −maxlength=>80);

JAVASCRIPTING: You can also provide −onChange, −onFocus, −onBlur , −onMouseOver,
−onMouseOut and −onSelect parameters to register JavaScript event handlers. The onChange handle
be called whenever the user changes the contents of the text field. You can do text validation if yo
onFocus and onBlur are called respectively when the insertion point moves into and out of the tex
onSelect is called when the user changes the portion of the text that is selected.

CREATING A BIG TEXT FIELD
 print $query−>textarea(−name=>’foo’,

 −default=>’starting value’,
 −rows=>10,
 −columns=>50);

−or

 print $query−>textarea(’foo’,’starting value’,10,50);

textarea() is just like textfield, but it allows you to specify rows and columns for a multiline text en
box. You can provide a starting value for the field, which can be long and contain multiple lines.

JAVASCRIPTING: The −onChange, −onFocus, −onBlur , −onMouseOver, −onMouseOut, and
−onSelect parameters are recognized. See textfield() .

CREATING A PASSWORD FIELD
 print $query−>password_field(−name=>’secret’,

−value=>’starting value’,
−size=>50,
−maxlength=>80);

−or−

 print $query−>password_field(’secret’,’starting value’,50,80);

password_field() is identical to textfield() , except that its contents will be starred out on t
web page.

JAVASCRIPTING: The −onChange, −onFocus, −onBlur , −onMouseOver, −onMouseOut and −onSelect
parameters are recognized. See textfield() .

CREATING A FILE UPLOAD FIELD
 print $query−>filefield(−name=>’uploaded_file’,

 −default=>’starting value’,
 −size=>50,
 −maxlength=>80);

−or−

 print $query−>filefield(’uploaded_file’,’starting value’,50,80);

filefield() will return a file upload field for Netscape 2.0 browsers. In order to take full advantag
this you must use the new multipart encoding scheme for the form. You can do this either by calling
startform() with an encoding type of $CGI::MULTIPART , or by calling the new method
740 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

ault file

tarting
ious

 later

cept

erl file

at of
 other

hen and
ing file
start_multipart_form() instead of vanilla startform() .

Parameters
1. The first parameter is the required name for the field (−name).

2. The optional second parameter is the starting value for the field contents to be used as the def
name (−default).

The beta2 version of Netscape 2.0 currently doesn‘t pay any attention to this field, and so the s
value will always be blank. Worse, the field loses its "sticky" behavior and forgets its prev
contents. The starting value field is called for in the HTML specification, however, and possibly
versions of Netscape will honor it.

3. The optional third parameter is the size of the field in characters (−size).

4. The optional fourth parameter is the maximum number of characters the field will ac
(−maxlength).

When the form is processed, you can retrieve the entered filename by calling param() .

 $filename = $query−>param(’uploaded_file’);

In Netscape Navigator 2.0, the filename that gets returned is the full local filename on the remote user‘s
machine. If the remote user is on a Unix machine, the filename will follow Unix conventions:

/path/to/the/file

On an MS−DOS/Windows and OS/2 machines, the filename will follow DOS conventions:

C:\PATH\TO\THE\FILE.MSW

On a Macintosh machine, the filename will follow Mac conventions:

HD 40:Desktop Folder:Sort Through:Reminders

The filename returned is also a file handle. You can read the contents of the file using standard P
reading calls:

Read a text file and print it out
while (<$filename>) {
 print;
}

Copy a binary file to somewhere safe
open (OUTFILE,">>/usr/local/web/users/feedback");
while ($bytesread=read($filename,$buffer,1024)) {
 print OUTFILE $buffer;
}

When a file is uploaded the browser usually sends along some information along with it in the form
headers. The information usually includes the MIME content type. Future browsers may send
information as well (such as modification date and size). To retrieve this information, call uploadInfo() .
 It returns a reference to an associative array containing all the document headers.

 $filename = $query−>param(’uploaded_file’);
 $type = $query−>uploadInfo($filename)−>{’Content−Type’};
 unless ($type eq ’text/html’) {

 die "HTML FILES ONLY!";
 }

If you are using a machine that recognizes "text" and "binary" data modes, be sure to understand w
how to use them (see the Camel book). Otherwise you may find that binary files are corrupted dur
uploads.
18−Oct−1998 Version 5.005_02 741

CGI Perl Programmers Reference Guide CGI

nce to a

d, the

or the
 to an
nk, the
JAVASCRIPTING: The −onChange, −onFocus, −onBlur , −onMouseOver, −onMouseOut and −onSelect
parameters are recognized. See textfield() for details.

CREATING A POPUP MENU
 print $query−>popup_menu(’menu_name’,

 [’eenie’,’meenie’,’minie’],
 ’meenie’);

 −or−

 %labels = (’eenie’=>’your first choice’,
 ’meenie’=>’your second choice’,
 ’minie’=>’your third choice’);

 print $query−>popup_menu(’menu_name’,
 [’eenie’,’meenie’,’minie’],
 ’meenie’,\%labels);

−or (named parameter style)−

 print $query−>popup_menu(−name=>’menu_name’,
 −values=>[’eenie’,’meenie’,’minie’],
 −default=>’meenie’,
 −labels=>\%labels);

popup_menu() creates a menu.

1. The required first argument is the menu‘s name (−name).

2. The required second argument (−values) is an array reference containing the list of menu items in the
menu. You can pass the method an anonymous array, as shown in the example, or a refere
named array, such as "\@foo".

3. The optional third parameter (−default) is the name of the default menu choice. If not specifie
first item will be the default. The values of the previous choice will be maintained across queries.

4. The optional fourth parameter (−labels) is provided for people who want to use different values f
user−visible label inside the popup menu nd the value returned to your script. It‘s a pointer
associative array relating menu values to user−visible labels. If you leave this parameter bla
menu values will be displayed by default. (You can also leave a label undefined if you want to).

When the form is processed, the selected value of the popup menu can be retrieved using:

 $popup_menu_value = $query−>param(’menu_name’);

JAVASCRIPTING: popup_menu() recognizes the following event handlers: −onChange, −onFocus,
−onMouseOver, −onMouseOut, and −onBlur . See the textfield() section for details on when these
handlers are called.

CREATING A SCROLLING LIST
 print $query−>scrolling_list(’list_name’,

[’eenie’,’meenie’,’minie’,’moe’],
[’eenie’,’moe’],5,’true’);

 −or−

 print $query−>scrolling_list(’list_name’,
[’eenie’,’meenie’,’minie’,’moe’],
[’eenie’,’moe’],5,’true’,
\%labels);

−or−

 print $query−>scrolling_list(−name=>’list_name’,
−values=>[’eenie’,’meenie’,’minie’,’moe’],
742 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

p menu,

 to be
d, then
se the

tiple).

els for

r name

values).
 used for
ur script

 to be
d, then
−default=>[’eenie’,’moe’],
−size=>5,
−multiple=>’true’,
−labels=>\%labels);

scrolling_list() creates a scrolling list.

Parameters:
1. The first and second arguments are the list name (−name) and values (−values). As in the popu

the second argument should be an array reference.

2. The optional third argument (−default) can be either a reference to a list containing the values
selected by default, or can be a single value to select. If this argument is missing or undefine
nothing is selected when the list first appears. In the named parameter version, you can u
synonym "−defaults" for this parameter.

3. The optional fourth argument is the size of the list (−size).

4. The optional fifth argument can be set to true to allow multiple simultaneous selections (−mul
Otherwise only one selection will be allowed at a time.

5. The optional sixth argument is a pointer to an associative array containing long user−visible lab
the list items (−labels). If not provided, the values will be displayed.

When this form is processed, all selected list items will be returned as a list under the paramete
‘list_name’. The values of the selected items can be retrieved with:

 @selected = $query−>param(’list_name’);

JAVASCRIPTING: scrolling_list() recognizes the following event handlers: −onChange,
−onFocus, −onMouseOver, −onMouseOut and −onBlur . See textfield() for the description of when
these handlers are called.

CREATING A GROUP OF RELATED CHECKBOXES
 print $query−>checkbox_group(−name=>’group_name’,

−values=>[’eenie’,’meenie’,’minie’,’moe’],
−default=>[’eenie’,’moe’],
−linebreak=>’true’,
−labels=>\%labels);

 print $query−>checkbox_group(’group_name’,
[’eenie’,’meenie’,’minie’,’moe’],
[’eenie’,’moe’],’true’,\%labels);

 HTML3−COMPATIBLE BROWSERS ONLY:

 print $query−>checkbox_group(−name=>’group_name’,
−values=>[’eenie’,’meenie’,’minie’,’moe’],
−rows=2,−columns=>2);

checkbox_group() creates a list of checkboxes that are related by the same name.

Parameters:
1. The first and second arguments are the checkbox name and values, respectively (−name and −

As in the popup menu, the second argument should be an array reference. These values are
the user−readable labels printed next to the checkboxes as well as for the values passed to yo
in the query string.

2. The optional third argument (−default) can be either a reference to a list containing the values
checked by default, or can be a single value to checked. If this argument is missing or undefine
nothing is selected when the list first appears.
18−Oct−1998 Version 5.005_02 743

CGI Perl Programmers Reference Guide CGI

n the
r on a

to the
 used

eters

s and
ulate

adings
single

r name

em

pt
 group.

r the

efault.

 If not

. If not
3. The optional fourth argument (−linebreak) can be set to true to place line breaks betwee
checkboxes so that they appear as a vertical list. Otherwise, they will be strung togethe
horizontal line.

4. The optional fifth argument is a pointer to an associative array relating the checkbox values
user−visible labels that will be printed next to them (−labels). If not provided, the values will be
as the default.

5. HTML3−compatible browsers (such as Netscape) can take advantage of the optional param
−rows, and −columns. These parameters cause checkbox_group() to return an HTML3
compatible table containing the checkbox group formatted with the specified number of row
columns. You can provide just the −columns parameter if you wish; checkbox_group will calc
the correct number of rows for you.

To include row and column headings in the returned table, you can use the −rowheaders and
−colheaders parameters. Both of these accept a pointer to an array of headings to use. The he
are just decorative. They don‘t reorganize the interpretation of the checkboxes — they‘re still a
named unit.

When the form is processed, all checked boxes will be returned as a list under the paramete
‘group_name’. The values of the "on" checkboxes can be retrieved with:

 @turned_on = $query−>param(’group_name’);

The value returned by checkbox_group() is actually an array of button elements. You can capture th
and use them within tables, lists, or in other creative ways:

 @h = $query−>checkbox_group(−name=>’group_name’,−values=>\@values);
 &use_in_creative_way(@h);

JAVASCRIPTING: checkbox_group() recognizes the −onClick parameter. This specifies a JavaScri
code fragment or function call to be executed every time the user clicks on any of the buttons in the
You can retrieve the identity of the particular button clicked on using the "this" variable.

CREATING A STANDALONE CHECKBOX
 print $query−>checkbox(−name=>’checkbox_name’,

 −checked=>’checked’,
 −value=>’ON’,
 −label=>’CLICK ME’);

−or−

 print $query−>checkbox(’checkbox_name’,’checked’,’ON’,’CLICK ME’);

checkbox() is used to create an isolated checkbox that isn‘t logically related to any others.

Parameters:
1. The first parameter is the required name for the checkbox (−name). It will also be used fo

user−readable label printed next to the checkbox.

2. The optional second parameter (−checked) specifies that the checkbox is turned on by d
Synonyms are −selected and −on.

3. The optional third parameter (−value) specifies the value of the checkbox when it is checked.
provided, the word "on" is assumed.

4. The optional fourth parameter (−label) is the user−readable label to be attached to the checkbox
provided, the checkbox name is used.

The value of the checkbox can be retrieved using:

 $turned_on = $query−>param(’checkbox_name’);
744 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

p on

els that
n

d, the
 with

uttons,

utton
es are

eters

u can
er of

ings are
ingle

and
JAVASCRIPTING: checkbox() recognizes the −onClick parameter. See checkbox_group() for
further details.

CREATING A RADIO BUTTON GROUP
 print $query−>radio_group(−name=>’group_name’,

 −values=>[’eenie’,’meenie’,’minie’],
 −default=>’meenie’,
 −linebreak=>’true’,
 −labels=>\%labels);

−or−

 print $query−>radio_group(’group_name’,[’eenie’,’meenie’,’minie’],
 ’meenie’,’true’,\%labels);

 HTML3−COMPATIBLE BROWSERS ONLY:

 print $query−>radio_group(−name=>’group_name’,
 −values=>[’eenie’,’meenie’,’minie’,’moe’],
 −rows=2,−columns=>2);

radio_group() creates a set of logically−related radio buttons (turning one member of the grou
turns the others off)

Parameters:
1. The first argument is the name of the group and is required (−name).

2. The second argument (−values) is the list of values for the radio buttons. The values and the lab
appear on the page are identical. Pass an array reference in the second argument, either using a
anonymous array, as shown, or by referencing a named array as in "\@foo".

3. The optional third parameter (−default) is the name of the default button to turn on. If not specifie
first item will be the default. You can provide a nonexistent button name, such as "−" to start up
no buttons selected.

4. The optional fourth parameter (−linebreak) can be set to ‘true’ to put line breaks between the b
creating a vertical list.

5. The optional fifth parameter (−labels) is a pointer to an associative array relating the radio b
values to user−visible labels to be used in the display. If not provided, the values themselv
displayed.

6. HTML3−compatible browsers (such as Netscape) can take advantage of the optional param
−rows, and −columns. These parameters cause radio_group() to return an HTML3 compatible
table containing the radio group formatted with the specified number of rows and columns. Yo
provide just the −columns parameter if you wish; radio_group will calculate the correct numb
rows for you.

To include row and column headings in the returned table, you can use the −rowheader and
−colheader parameters. Both of these accept a pointer to an array of headings to use. The head
just decorative. They don‘t reorganize the interpetation of the radio buttons — they‘re still a s
named unit.

When the form is processed, the selected radio button can be retrieved using:

 $which_radio_button = $query−>param(’group_name’);

The value returned by radio_group() is actually an array of button elements. You can capture them
use them within tables, lists, or in other creative ways:

 @h = $query−>radio_group(−name=>’group_name’,−values=>\@values);
 &use_in_creative_way(@h);
18−Oct−1998 Version 5.005_02 745

CGI Perl Programmers Reference Guide CGI

veral
lso be
tly and

sed to

 script

faults,

riable

ter style

place
y:
CREATING A SUBMIT BUTTON
 print $query−>submit(−name=>’button_name’,

−value=>’value’);

−or−

 print $query−>submit(’button_name’,’value’);

submit() will create the query submission button. Every form should have one of these.

Parameters:
1. The first argument (−name) is optional. You can give the button a name if you have se

submission buttons in your form and you want to distinguish between them. The name will a
used as the user−visible label. Be aware that a few older browsers don‘t deal with this correc
never send back a value from a button.

2. The second argument (−value) is also optional. This gives the button a value that will be pas
your script in the query string.

You can figure out which button was pressed by using different values for each one:

 $which_one = $query−>param(’button_name’);

JAVASCRIPTING: radio_group() recognizes the −onClick parameter. See checkbox_group()
for further details.

CREATING A RESET BUTTON
 print $query−>reset

reset() creates the "reset" button. Note that it restores the form to its value from the last time the
was called, NOT necessarily to the defaults.

CREATING A DEFAULT BUTTON
 print $query−>defaults(’button_label’)

defaults() creates a button that, when invoked, will cause the form to be completely reset to its de
wiping out all the changes the user ever made.

CREATING A HIDDEN FIELD
print $query−>hidden(−name=>’hidden_name’,

 −default=>[’value1’,’value2’...]);

−or−

print $query−>hidden(’hidden_name’,’value1’,’value2’...);

hidden() produces a text field that can‘t be seen by the user. It is useful for passing state va
information from one invocation of the script to the next.

Parameters:
1. The first argument is required and specifies the name of this field (−name).

2. The second argument is also required and specifies its value (−default). In the named parame
of calling, you can provide a single value here or a reference to a whole list

Fetch the value of a hidden field this way:

 $hidden_value = $query−>param(’hidden_name’);

Note, that just like all the other form elements, the value of a hidden field is "sticky". If you want to re
a hidden field with some other values after the script has been called once you‘ll have to do it manuall

 $query−>param(’hidden_name’,’new’,’values’,’here’);
746 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

d to
ned to

ed the
pe

in state

 create
a list of
equent

ookie
tscape
quits

n the
 name
f the
ain
CREATING A CLICKABLE IMAGE BUTTON
 print $query−>image_button(−name=>’button_name’,

−src=>’/source/URL’,
−align=>’MIDDLE’);

−or−

 print $query−>image_button(’button_name’,’/source/URL’,’MIDDLE’);

image_button() produces a clickable image. When it‘s clicked on the position of the click is returne
your script as "button_name.x" and "button_name.y", where "button_name" is the name you‘ve assig
it.

JAVASCRIPTING: image_button() recognizes the −onClick parameter. See checkbox_group()
for further details.

Parameters:
1. The first argument (−name) is required and specifies the name of this field.

2. The second argument (−src) is also required and specifies the URL

3. The third option (−align, optional) is an alignment type, and may be TOP, BOTTOM or MIDDLE

Fetch the value of the button this way:
 $x = $query− param(‘button_name.x’);
 $y = $query− param(‘button_name.y’);

CREATING A JAVASCRIPT ACTION BUTTON
 print $query−>button(−name=>’button_name’,

 −value=>’user visible label’,
 −onClick=>"do_something()");

−or−

 print $query−>button(’button_name’,"do_something()");

button() produces a button that is compatible with Netscape 2.0‘s JavaScript. When it‘s press
fragment of JavaScript code pointed to by the −onClick parameter will be executed. On non−Netsca
browsers this form element will probably not even display.

NETSCAPE COOKIES
Netscape browsers versions 1.1 and higher support a so−called "cookie" designed to help mainta
within a browser session. CGI.pm has several methods that support cookies.

A cookie is a name=value pair much like the named parameters in a CGI query string. CGI scripts
one or more cookies and send them to the browser in the HTTP header. The browser maintains
cookies that belong to a particular Web server, and returns them to the CGI script during subs
interactions.

In addition to the required name=value pair, each cookie has several optional attributes:

1. an expiration time
This is a time/date string (in a special GMT format) that indicates when a cookie expires. The c
will be saved and returned to your script until this expiration date is reached if the user exits Ne
and restarts it. If an expiration date isn‘t specified, the cookie will remain active until the user
Netscape.

2. a domain
This is a partial or complete domain name for which the cookie is valid. The browser will retur
cookie to any host that matches the partial domain name. For example, if you specify a domain
of ".capricorn.com", then Netscape will return the cookie to Web servers running on any o
machines "www.capricorn.com", "www2.capricorn.com", "feckless.capricorn.com", etc. Dom
18−Oct−1998 Version 5.005_02 747

CGI Perl Programmers Reference Guide CGI

 ".edu".
ookie

fore
rned

By

rring

ookie
ing and

e array

n the

 by
names must contain at least two periods to prevent attempts to match on top level domains like
If no domain is specified, then the browser will only return the cookie to servers on the host the c
originated from.

3. a path
If you provide a cookie path attribute, the browser will check it against your script‘s URL be
returning the cookie. For example, if you specify the path "/cgi−bin", then the cookie will be retu
to each of the scripts "/cgi−bin/tally.pl", "/cgi−bin/order.pl", and
"/cgi−bin/customer_service/complain.pl", but not to the script "/cgi−private/site_admin.pl".
default, path is set to "/", which causes the cookie to be sent to any CGI script on your site.

4. a "secure" flag
If the "secure" attribute is set, the cookie will only be sent to your script if the CGI request is occu
on a secure channel, such as SSL.

The interface to Netscape cookies is the cookie() method:

 $cookie = $query−>cookie(−name=>’sessionID’,
 −value=>’xyzzy’,
 −expires=>’+1h’,
 −path=>’/cgi−bin/database’,
 −domain=>’.capricorn.org’,
 −secure=>1);

 print $query−>header(−cookie=>$cookie);

cookie() creates a new cookie. Its parameters include:

−name
The name of the cookie (required). This can be any string at all. Although Netscape limits its c
names to non−whitespace alphanumeric characters, CGI.pm removes this restriction by escap
unescaping cookies behind the scenes.

−value
The value of the cookie. This can be any scalar value, array reference, or even associativ
reference. For example, you can store an entire associative array into a cookie this way:

$cookie=$query−>cookie(−name=>’family information’,
 −value=>\%childrens_ages);

−path
The optional partial path for which this cookie will be valid, as described above.

−domain
The optional partial domain for which this cookie will be valid, as described above.

−expires
The optional expiration date for this cookie. The format is as described in the section o
header() method:

"+1h" one hour from now

−secure
If set to true, this cookie will only be used within a secure SSL session.

The cookie created by cookie() must be incorporated into the HTTP header within the string returned
the header() method:

print $query−>header(−cookie=>$my_cookie);

To create multiple cookies, give header() an array reference:
748 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

ie named
‘s

2.01, at
ength of
re it in

e of the

 frame

 the
ecify

very

 If a
cript‘s
e frame

med
$cookie1 = $query−>cookie(−name=>’riddle_name’,
 −value=>"The Sphynx’s Question");

$cookie2 = $query−>cookie(−name=>’answers’,
 −value=>\%answers);

print $query−>header(−cookie=>[$cookie1,$cookie2]);

To retrieve a cookie, request it by name by calling cookie() method without the −value parameter:

use CGI;
$query = new CGI;
%answers = $query−>cookie(−name=>’answers’);
$query−>cookie(’answers’) will work too!

The cookie and CGI namespaces are separate. If you have a parameter named ‘answers’ and a cook
‘answers‘, the values retrieved by param() and cookie() are independent of each other. However, it
simple to turn a CGI parameter into a cookie, and vice−versa:

 # turn a CGI parameter into a cookie
 $c=$q−>cookie(−name=>’answers’,−value=>[$q−>param(’answers’)]);
 # vice−versa
 $q−>param(−name=>’answers’,−value=>[$q−>cookie(’answers’)]);

See the cookie.cgi example script for some ideas on how to use cookies effectively.

NOTE: There appear to be some (undocumented) restrictions on Netscape cookies. In Netscape
least, I haven‘t been able to set more than three cookies at a time. There may also be limits on the l
cookies. If you need to store a lot of information, it‘s probably better to create a unique session ID, sto
a cookie, and use the session ID to locate an external file/database saved on the server‘s sid
connection.

WORKING WITH NETSCAPE FRAMES
It‘s possible for CGI.pm scripts to write into several browser panels and windows using Netscape‘s
mechanism. There are three techniques for defining new frames programmatically:

1. Create a <Frameset document
After writing out the HTTP header, instead of creating a standard HTML document using
start_html() call, create a <FRAMESET document that defines the frames on the page. Sp
your script(s) (with appropriate parameters) as the SRC for each of the frames.

There is no specific support for creating <FRAMESET sections in CGI.pm, but the HTML is
simple to write. See the frame documentation in Netscape‘s home pages for details

 http://home.netscape.com/assist/net_sites/frames.html

2. Specify the destination for the document in the HTTP header
You may provide a −target parameter to the header() method:

 print $q−>header(−target=>’ResultsWindow’);

This will tell Netscape to load the output of your script into the frame named "ResultsWindow".
frame of that name doesn‘t already exist, Netscape will pop up a new window and load your s
document into that. There are a number of magic names that you can use for targets. See th
documents on Netscape‘s home pages for details.

3. Specify the destination for the document in the <FORM tag
You can specify the frame to load in the FORM tag itself. With CGI.pm it looks like this:

 print $q−>startform(−target=>’ResultsWindow’);

When your script is reinvoked by the form, its output will be loaded into the frame na
"ResultsWindow". If one doesn‘t already exist a new window will be created.
18−Oct−1998 Version 5.005_02 749

CGI Perl Programmers Reference Guide CGI

t form

to your
 a

 In the

 a
The script "frameset.cgi" in the examples directory shows one way to create pages in which the fill−ou
and the response live in side−by−side frames.

LIMITED SUPPORT FOR CASCADING STYLE SHEETS
CGI.pm has limited support for HTML3‘s cascading style sheets (css). To incorporate a stylesheet in
document, pass the start_html() method a −style parameter. The value of this parameter may be
scalar, in which case it is incorporated directly into a <STYLE section, or it may be a hash reference.
latter case you should provide the hash with one or more of −src or −code. −src points to a URL where an
externally−defined stylesheet can be found. −code points to a scalar value to be incorporated into
<STYLE section. Style definitions in −code override similarly−named ones in −src, hence the name
"cascading."

You may also specify the type of the stylesheet by adding the optional −type parameter to the hash pointed
to by −style. If not specified, the style defaults to ‘text/css’.

To refer to a style within the body of your document, add the −class parameter to any HTML element:

 print h1({−class=>’Fancy’},’Welcome to the Party’);

Or define styles on the fly with the −style parameter:

 print h1({−style=>’Color: red;’},’Welcome to Hell’);

You may also use the new span() element to apply a style to a section of text:

 print span({−style=>’Color: red;’},
 h1(’Welcome to Hell’),
 "Where did that handbasket get to?"
);

Note that you must import the ":html3" definitions to have the span() method available. Here‘s a quick
and dirty example of using CSS‘s. See the CSS specification at
http://www.w3.org/pub/WWW/TR/Wd−css−1.html for more information.

 use CGI qw/:standard :html3/;

 #here’s a stylesheet incorporated directly into the page
 $newStyle=<<END;
 <!−−
 P.Tip {

margin−right: 50pt;
margin−left: 50pt;

 color: red;
 }
 P.Alert {

font−size: 30pt;
 font−family: sans−serif;
 color: red;
 }
 −−>
 END
 print header();
 print start_html(−title=>’CGI with Style’,

 −style=>{−src=>’http://www.capricorn.com/style/st1.css’,
 −code=>$newStyle}

);
 print h1(’CGI with Style’),
 p({−class=>’Tip’},

 "Better read the cascading style sheet spec before playing with this!"),
 span({−style=>’color: magenta’},
750 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

 list of
 worry

 manner,

y as a

for

placed
 "Look Mom, no hands!",
 p(),
 "Whooo wee!"
);

 print end_html;

DEBUGGING
If you are running the script from the command line or in the perl debugger, you can pass the script a
keywords or parameter=value pairs on the command line or from standard input (you don‘t have to
about tricking your script into reading from environment variables). You can pass keywords like this:

 your_script.pl keyword1 keyword2 keyword3

or this:

 your_script.pl keyword1+keyword2+keyword3

or this:

 your_script.pl name1=value1 name2=value2

or this:

 your_script.pl name1=value1&name2=value2

or even as newline−delimited parameters on standard input.

When debugging, you can use quotes and backslashes to escape characters in the familiar shell
letting you place spaces and other funny characters in your parameter=value pairs:

 your_script.pl "name1=’I am a long value’" "name2=two\ words"

DUMPING OUT ALL THE NAME/VALUE PAIRS
The dump() method produces a string consisting of all the query‘s name/value pairs formatted nicel
nested list. This is useful for debugging purposes:

 print $query−>dump

Produces something that looks like:

 name1

value1
value2

 name2

value1

You can pass a value of ‘true’ to dump() in order to get it to print the results out as plain text, suitable
incorporating into a <PRE section.

As a shortcut, as of version 1.56 you can interpolate the entire CGI object into a string and it will be re
with the a nice HTML dump shown above:

 $query=new CGI;
 print "<H2>Current Values</H2> $query\n";
18−Oct−1998 Version 5.005_02 751

CGI Perl Programmers Reference Guide CGI

s are as

ingle

 Glob

ersion
cookie

te it
okie,

empt

ath
path
n will
l path

 e.g.

le for
FETCHING ENVIRONMENT VARIABLES
Some of the more useful environment variables can be fetched through this interface. The method
follows:

accept()
Return a list of MIME types that the remote browser accepts. If you give this method a s
argument corresponding to a MIME type, as in $query− accept(‘text/html’), it will return a floating
point value corresponding to the browser‘s preference for this type from 0.0 (don‘t want) to 1.0.
types (e.g. text/*) in the browser‘s accept list are handled correctly.

raw_cookie()
Returns the HTTP_COOKIE variable, an HTTP extension implemented by Netscape browsers v
1.1 and higher. Cookies have a special format, and this method call just returns the raw form (?
dough). See cookie() for ways of setting and retrieving cooked cookies.

Called with no parameters, raw_cookie() returns the packed cookie structure. You can separa
into individual cookies by splitting on the character sequence "; ". Called with the name of a co
retrieves the unescaped form of the cookie. You can use the regular cookie() method to get the
names, or use the raw_fetch() method from the CGI::Cookie module.

user_agent()
Returns the HTTP_USER_AGENT variable. If you give this method a single argument, it will att
to pattern match on it, allowing you to do something like $query− user_agent(netscape);

path_info()
Returns additional path information from the script URL. E.G. fetching
/cgi−bin/your_script/additional/stuff will result in $query− path_info() returning "additional/stuff".

NOTE: The Microsoft Internet Information Server is broken with respect to additional p
information. If you use the Perl DLL library, the IIS server will attempt to execute the additional
information as a Perl script. If you use the ordinary file associations mapping, the path informatio
be present in the environment, but incorrect. The best thing to do is to avoid using additiona
information in CGI scripts destined for use with IIS.

path_translated()
As per path_info() but returns the additional path information translated into a physical path,
"/usr/local/etc/httpd/htdocs/additional/stuff".

The Microsoft IIS is broken with respect to the translated path as well.

remote_host()
Returns either the remote host name or IP address. if the former is unavailable.

script_name()
Return the script name as a partial URL, for self−refering scripts.

referer()
Return the URL of the page the browser was viewing prior to fetching your script. Not availab
all browsers.

auth_type ()
Return the authorization/verification method in use for this script, if any.

server_name ()
Returns the name of the server, usually the machine‘s host name.

virtual_host ()
When using virtual hosts, returns the name of the host that the browser attempted to contact
752 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

works

 header
age of
rs.

 at the
oft‘s
ng the

t the

will
eed to

lement
se into
de and
server_software ()
Returns the server software and version number.

remote_user ()
Return the authorization/verification name used for user verification, if this script is protected.

user_name ()
Attempt to obtain the remote user‘s name, using a variety of different techniques. This only
with older browsers such as Mosaic. Netscape does not reliably report the user name!

request_method()
Returns the method used to access your script, usually one of ‘POST‘, ‘GET’ or ‘HEAD’.

USING NPH SCRIPTS
NPH, or "no−parsed−header", scripts bypass the server completely by sending the complete HTTP
directly to the browser. This has slight performance benefits, but is of most use for taking advant
HTTP extensions that are not directly supported by your server, such as server push and PICS heade

Servers use a variety of conventions for designating CGI scripts as NPH. Many Unix servers look
beginning of the script‘s name for the prefix "nph−". The Macintosh WebSTAR server and Micros
Internet Information Server, in contrast, try to decide whether a program is an NPH script by examini
first line of script output.

CGI.pm supports NPH scripts with a special NPH mode. When in this mode, CGI.pm will outpu
necessary extra header information when the header() and redirect() methods are called.

The Microsoft Internet Information Server requires NPH mode. As of version 2.30, CGI.pm
automatically detect when the script is running under IIS and put itself into this mode. You do not n
do this manually, although it won‘t hurt anything if you do.

There are a number of ways to put CGI.pm into NPH mode:

In the use statement
Simply add the "−nph" pragmato the list of symbols to be imported into your script:

 use CGI qw(:standard −nph)

By calling the nph() method:
Call nph() with a non−zero parameter at any point after using CGI.pm in your program.

 CGI−>nph(1)

By using −nph parameters in the header() and redirect() statements:
 print $q−>header(−nph=>1);

Server Push
CGI.pm provides three simple functions for producing multipart documents of the type needed to imp
server push. These functions were graciously provided by Ed Jordan <ed@fidalgo.net. To import the
your namespace, you must import the ":push" set. You are also advised to put the script into NPH mo
to set $| to 1 to avoid buffering problems.

Here is a simple script that demonstrates server push:

 #!/usr/local/bin/perl
 use CGI qw/:push −nph/;
 $| = 1;
 print multipart_init(−boundary=>’−−−−−−−−−−−−−−−−here we go!’);
 while (1) {
 print multipart_start(−type=>’text/plain’),
 "The current time is ",scalar(localtime),"\n",
18−Oct−1998 Version 5.005_02 753

CGI Perl Programmers Reference Guide CGI

s

o use
ou.

/html

r how
many
it runs
tically.

m will
ive an
mote

 space
 cases,

ctivate

s. If
sage.

mum

will
 multipart_end;
 sleep 1;
 }

This script initializes server push by calling multipart_init() . It then enters an infinite loop in which
it begins a new multipart section by calling multipart_start() , prints the current local time, and end
a multipart section with multipart_end() . It then sleeps a second, and begins again.

multipart_init()
 multipart_init(−boundary=>$boundary);

Initialize the multipart system. The −boundary argument specifies what MIME boundary string t
to separate parts of the document. If not provided, CGI.pm chooses a reasonable boundary for y

multipart_start()
 multipart_start(−type=>$type)

Start a new part of the multipart document using the specified MIME type. If not specified, text
is assumed.

multipart_end()
 multipart_end()

End a part. You must remember to call multipart_end() once for each multipart_start() .

Users interested in server push applications should also have a look at the CGI::Push module.

Avoiding Denial of Service Attacks
A potential problem with CGI.pm is that, by default, it attempts to process form POSTings no matte
large they are. A wily hacker could attack your site by sending a CGI script a huge POST of
megabytes. CGI.pm will attempt to read the entire POST into a variable, growing hugely in size until
out of memory. While the script attempts to allocate the memory the system may slow down drama
This is a form of denial of service attack.

Another possible attack is for the remote user to force CGI.pm to accept a huge file upload. CGI.p
accept the upload and store it in a temporary directory even if your script doesn‘t expect to rece
uploaded file. CGI.pm will delete the file automatically when it terminates, but in the meantime the re
user may have filled up the server‘s disk space, causing problems for other programs.

The best way to avoid denial of service attacks is to limit the amount of memory, CPU time and disk
that CGI scripts can use. Some Web servers come with built−in facilities to accomplish this. In other
you can use the shell limit or ulimit commands to put ceilings on CGI resource usage.

CGI.pm also has some simple built−in protections against denial of service attacks, but you must a
them before you can use them. These take the form of two global variables in the CGI name space:

$CGI::POST_MAX
If set to a non−negative integer, this variable puts a ceiling on the size of POSTings, in byte
CGI.pm detects a POST that is greater than the ceiling, it will immediately exit with an error mes
This value will affect both ordinary POSTs and multipart POSTs, meaning that it limits the maxi
size of file uploads as well. You should set this to a reasonably high value, such as 1 megabyte.

$CGI::DISABLE_UPLOADS
If set to a non−zero value, this will disable file uploads completely. Other fill−out form values
work as usual.

You can use these variables in either of two ways.
754 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

med

o
 above.

se" is

in the
ures of

cripts

t I do
h, but
1. On a script−by−script basis
Set the variable at the top of the script, right after the "use" statement:

 use CGI qw/:standard/;
 use CGI::Carp ’fatalsToBrowser’;
 $CGI::POST_MAX=1024 * 100; # max 100K posts
 $CGI::DISABLE_UPLOADS = 1; # no uploads

2. Globally for all scripts
Open up CGI.pm, find the definitions for $POST_MAX and $DISABLE_UPLOADS, and set them to
the desired values. You‘ll find them towards the top of the file in a subroutine na
initialize_globals() .

Since an attempt to send a POST larger than $POST_MAX bytes will cause a fatal error, you might want t
use CGI::Carp to echo the fatal error message to the browser window as shown in the example
Otherwise the remote user will see only a generic "Internal Server" error message. See the CGI::Carp
manual page for more details.

COMPATIBILITY WITH CGI−LIB.PL
To make it easier to port existing programs that use cgi−lib.pl the compatibility routine "ReadPar
provided. Porting is simple:

OLD VERSION
 require "cgi−lib.pl";
 &ReadParse;
 print "The value of the antique is $in{antique}.\n";

NEW VERSION
 use CGI;
 CGI::ReadParse
 print "The value of the antique is $in{antique}.\n";

CGI.pm‘s ReadParse() routine creates a tied variable named %in, which can be accessed to obta
query variables. Like ReadParse, you can also provide your own variable. Infrequently used feat
ReadParse, such as the creation of @in and $in variables, are not supported.

Once you use ReadParse, you can retrieve the query object itself this way:

 $q = $in{CGI};
 print $q−>textfield(−name=>’wow’,

−value=>’does this really work?’);

This allows you to start using the more interesting features of CGI.pm without rewriting your old s
from scratch.

AUTHOR INFORMATION
Copyright 1995−1997, Lincoln D. Stein. All rights reserved. It may be used and modified freely, bu
request that this copyright notice remain attached to the file. You may modify this module as you wis
if you redistribute a modified version, please attach a note listing the modifications you have made.

Address bug reports and comments to: lstein@genome.wi.mit.edu

CREDITS
Thanks very much to:

Matt Heffron (heffron@falstaff.css.beckman.com)
James Taylor (james.taylor@srs.gov)
Scott Anguish <sanguish@digifix.com
18−Oct−1998 Version 5.005_02 755

CGI Perl Programmers Reference Guide CGI
Mike Jewell (mlj3u@virginia.edu)
Timothy Shimmin (tes@kbs.citri.edu.au)
Joergen Haegg (jh@axis.se)
Laurent Delfosse (delfosse@csgrad1.cs.wvu.edu)
Richard Resnick (applepi1@aol.com)
Craig Bishop (csb@barwonwater.vic.gov.au)
Tony Curtis (tc@vcpc.univie.ac.at)
Tim Bunce (Tim.Bunce@ig.co.uk)
Tom Christiansen (tchrist@convex.com)
Andreas Koenig (k@franz.ww.TU−Berlin.DE)
Tim MacKenzie (Tim.MacKenzie@fulcrum.com.au)
Kevin B. Hendricks (kbhend@dogwood.tyler.wm.edu)
Stephen Dahmen (joyfire@inxpress.net)
Ed Jordan (ed@fidalgo.net)
David Alan Pisoni (david@cnation.com)
Doug MacEachern (dougm@opengroup.org)
Robin Houston (robin@oneworld.org)
...and many many more...

for suggestions and bug fixes.

A COMPLETE EXAMPLE OF A SIMPLE FORM−BASED SCRIPT
#!/usr/local/bin/perl

use CGI;

$query = new CGI;

print $query−>header;
print $query−>start_html("Example CGI.pm Form");
print "<H1> Example CGI.pm Form</H1>\n";
&print_prompt($query);
&do_work($query);
&print_tail;
print $query−>end_html;

sub print_prompt {
 my($query) = @_;

 print $query−>startform;
 print "What’s your name?
";
 print $query−>textfield(’name’);
 print $query−>checkbox(’Not my real name’);

 print "<P>Where can you find English Sparrows?
";
 print $query−>checkbox_group(

 −name=>’Sparrow locations’,
 −values=>[England,France,Spain,Asia,Hoboken],
 −linebreak=>’yes’,
 −defaults=>[England,Asia]);

 print "<P>How far can they fly?
",
$query−>radio_group(

−name=>’how far’,
−values=>[’10 ft’,’1 mile’,’10 miles’,’real far’],
−default=>’1 mile’);

 print "<P>What’s your favorite color? ";
 print $query−>popup_menu(−name=>’Color’,

 −values=>[’black’,’brown’,’red’,’yellow’],
756 Version 5.005_02 18−Oct−1998

CGI Perl Programmers Reference Guide CGI

URLs,
ed in

the
 −default=>’red’);

 print $query−>hidden(’Reference’,’Monty Python and the Holy Grail’);

 print "<P>What have you got there?
";
 print $query−>scrolling_list(

 −name=>’possessions’,
 −values=>[’A Coconut’,’A Grail’,’An Icon’,

 ’A Sword’,’A Ticket’],
 −size=>5,
 −multiple=>’true’);

 print "<P>Any parting comments?
";
 print $query−>textarea(−name=>’Comments’,

 −rows=>10,
 −columns=>50);

 print "<P>",$query−>reset;
 print $query−>submit(’Action’,’Shout’);
 print $query−>submit(’Action’,’Scream’);
 print $query−>endform;
 print "<HR>\n";
}

sub do_work {
 my($query) = @_;
 my(@values,$key);

 print "<H2>Here are the current settings in this form</H2>";

 foreach $key ($query−>param) {
 print "$key −> ";
 @values = $query−>param($key);
 print join(", ",@values),"
\n";
 }
}

sub print_tail {
 print <<END;
<HR>
<ADDRESS>Lincoln D. Stein</ADDRESS>

Home Page
END
}

BUGS
This module has grown large and monolithic. Furthermore it‘s doing many things, such as handling
parsing CGI input, writing HTML, etc., that are also done in the LWP modules. It should be discard
favor of the CGI::* modules, but somehow I continue to work on it.

Note that the code is truly contorted in order to avoid spurious warnings when programs are run with −w
switch.

SEE ALSO
CGI::Carp, URI::URL, CGI::Request, CGI::MiniSvr, CGI::Base, CGI::Form, CGI::Apache, CGI::Switch,
CGI::Push, CGI::Fast
18−Oct−1998 Version 5.005_02 757

CGI::Apache Perl Programmers Reference Guide CGI::Apache

 CGI.

r than

ied by
NAME
CGI::Apache − Make things work with CGI.pm against Perl−Apache API

SYNOPSIS
 require CGI::Apache;

 my $q = new Apache::CGI;

 $q−>print($q−>header);

 #do things just like you do with CGI.pm

DESCRIPTION
When using the Perl−Apache API, your applications are faster, but the enviroment is different than
This module attempts to set−up that environment as best it can.

NOTE 1
This module used to be named Apache::CGI. Sorry for the confusion.

NOTE 2
If you‘re going to inherit from this class, make sure to "use" it after your package declaration rathe
"require" it. This is because CGI.pm does a little magic during the import() step in order to make
autoloading work correctly.

SEE ALSO
perl(1), Apache(3), CGI(3)

AUTHOR
Doug MacEachern <dougm@osf.org>, hacked over by Andreas König <a.koenig@mind.de>, modif
Lincoln Stein <ltlstein@genome.wi.mit.edu<gt
758 Version 5.005_02 18−Oct−1998

CGI::Carp Perl Programmers Reference Guide CGI::Carp

tamped
ce the

‘s error
y may

le for
rs

cripts,
sed to

m

NAME
CGI::Carp − CGI routines for writing to the HTTPD (or other) error log

SYNOPSIS
 use CGI::Carp;

 croak "We’re outta here!";
 confess "It was my fault: $!";
 carp "It was your fault!";
 warn "I’m confused";
 die "I’m dying.\n";

DESCRIPTION
CGI scripts have a nasty habit of leaving warning messages in the error logs that are neither time s
nor fully identified. Tracking down the script that caused the error is a pain. This fixes that. Repla
usual

 use Carp;

with

 use CGI::Carp

And the standard warn() , die () , croak() , confess() and carp() calls will automagically be
replaced with functions that write out nicely time−stamped messages to the HTTP server error log.

For example:

 [Fri Nov 17 21:40:43 1995] test.pl: I’m confused at test.pl line 3.
 [Fri Nov 17 21:40:43 1995] test.pl: Got an error message: Permission denied.
 [Fri Nov 17 21:40:43 1995] test.pl: I’m dying.

REDIRECTING ERROR MESSAGES
By default, error messages are sent to STDERR. Most HTTPD servers direct STDERR to the server
log. Some applications may wish to keep private error logs, distinct from the server‘s error log, or the
wish to direct error messages to STDOUT so that the browser will receive them.

The carpout() function is provided for this purpose. Since carpout() is not exported by default, you
must import it explicitly by saying

 use CGI::Carp qw(carpout);

The carpout() function requires one argument, which should be a reference to an open filehand
writing errors. It should be called in a BEGIN block at the top of the CGI application so that compiler erro
will be caught. Example:

 BEGIN {
 use CGI::Carp qw(carpout);
 open(LOG, ">>/usr/local/cgi−logs/mycgi−log") or
 die("Unable to open mycgi−log: $!\n");
 carpout(LOG);
 }

carpout() does not handle file locking on the log for you at this point.

The real STDERR is not closed — it is moved to SAVEERR. Some servers, when dealing with CGI s
close their connection to the browser when the script closes STDOUT and STDERR. SAVEERR is u
prevent this from happening prematurely.

You can pass filehandles to carpout() in a variety of ways. The "correct" way according to To
Christiansen is to pass a reference to a filehandle GLOB:
18−Oct−1998 Version 5.005_02 759

CGI::Carp Perl Programmers Reference Guide CGI::Carp

r for
 of the

wser"

inimal
onfatal

ith the
 the

ode will
 carpout(*LOG);

This looks weird to mere mortals however, so the following syntaxes are accepted as well:

 carpout(LOG);
 carpout(main::LOG);
 carpout(main’LOG);
 carpout(\LOG);
 carpout(\’main::LOG’);

 ... and so on

FileHandle and other objects work as well.

Use of carpout() is not great for performance, so it is recommended for debugging purposes o
moderate−use applications. A future version of this module may delay redirecting STDERR until one
CGI::Carp methods is called to prevent the performance hit.

MAKING PERL ERRORS APPEAR IN THE BROWSER WINDOW
If you want to send fatal (die, confess) errors to the browser, ask to import the special "fatalsToBro
subroutine:

 use CGI::Carp qw(fatalsToBrowser);
 die "Bad error here";

Fatal errors will now be echoed to the browser as well as to the log. CGI::Carp arranges to send a m
HTTP header to the browser so that even errors that occur in the early compile phase will be seen. N
errors will still be directed to the log file only (unless redirected with carpout).

Changing the default message
By default, the software error message is followed by a note to contact the Webmaster by e−mail w
time and date of the error. If this message is not to your liking, you can change it using
set_message() routine. This is not imported by default; you should import it on the use() line:

 use CGI::Carp qw(fatalsToBrowser set_message);
 set_message("It’s not a bug, it’s a feature!");

You may also pass in a code reference in order to create a custom error message. At run time, your c
be called with the text of the error message that caused the script to die. Example:

 use CGI::Carp qw(fatalsToBrowser set_message);
 BEGIN {
 sub handle_errors {
 my $msg = shift;
 print "<h1>Oh gosh</h1>";
 print "Got an error: $msg";
 }
 set_message(\&handle_errors);
 }

In order to correctly intercept compile−time errors, you should call set_message() from within a
BEGIN{} block.

CHANGE LOG
1.05 carpout() added and minor corrections by Marc Hedlund
 <hedlund@best.com on 11/26/95.

1.06 fatalsToBrowser() no longer aborts for fatal errors within
 eval() statements.

1.08 set_message() added and carpout() expanded to allow for FileHandle
 objects.
760 Version 5.005_02 18−Oct−1998

CGI::Carp Perl Programmers Reference Guide CGI::Carp

se.
1.09 set_message() now allows users to pass a code REFERENCE for
 really custom error messages. croak and carp are now
 exported by default. Thanks to Gunther Birznieks for the
 patches.

1.10 Patch from Chris Dean (ctdean@cogit.com) to allow
 module to run correctly under mod_perl.

AUTHORS
Lincoln D. Stein <lstein@genome.wi.mit.edu. Feel free to redistribute this under the Perl Artistic Licen

SEE ALSO
Carp, CGI::Base, CGI::BasePlus, CGI::Request, CGI::MiniSvr, CGI::Form, CGI::Response
18−Oct−1998 Version 5.005_02 761

CGI::Cookie Perl Programmers Reference Guide CGI::Cookie

o store
e used
.

r value.
 several

ies an
 it to
cies an
 date

n the
 name
f the
mes
 If no
ookie

fore
rned

By
NAME
CGI::Cookie − Interface to Netscape Cookies

SYNOPSIS
 use CGI qw/:standard/;
 use CGI::Cookie;

 # Create new cookies and send them
 $cookie1 = new CGI::Cookie(−name=>’ID’,−value=>123456);
 $cookie2 = new CGI::Cookie(−name=>’preferences’,
 −value=>{ font => Helvetica,
 size => 12 }
);
 print header(−cookie=>[$cookie1,$cookie2]);

 # fetch existing cookies
 %cookies = fetch CGI::Cookie;
 $id = $cookies{’ID’}−>value;

 # create cookies returned from an external source
 %cookies = parse CGI::Cookie($ENV{COOKIE});

DESCRIPTION
CGI::Cookie is an interface to Netscape (HTTP/1.1) cookies, an innovation that allows Web servers t
persistent information on the browser‘s side of the connection. Although CGI::Cookie is intended to b
in conjunction with CGI.pm (and is in fact used by it internally), you can use this module independently

For full information on cookies see

http://www.ics.uci.edu/pub/ietf/http/rfc2109.txt

USING CGI::Cookie
CGI::Cookie is object oriented. Each cookie object has a name and a value. The name is any scala
The value is any scalar or array value (associative arrays are also allowed). Cookies also have
optional attributes, including:

1. expiration date
The expiration date tells the browser how long to hang on to the cookie. If the cookie specif
expiration date in the future, the browser will store the cookie information in a disk file and return
the server every time the user reconnects (until the expiration date is reached). If the cookie spe
expiration date in the past, the browser will remove the cookie from the disk file. If the expiration
is not specified, the cookie will persist only until the user quits the browser.

2. domain
This is a partial or complete domain name for which the cookie is valid. The browser will retur
cookie to any host that matches the partial domain name. For example, if you specify a domain
of ".capricorn.com", then Netscape will return the cookie to Web servers running on any o
machines "www.capricorn.com", "ftp.capricorn.com", "feckless.capricorn.com", etc. Domain na
must contain at least two periods to prevent attempts to match on top level domains like ".edu".
domain is specified, then the browser will only return the cookie to servers on the host the c
originated from.

3. path
If you provide a cookie path attribute, the browser will check it against your script‘s URL be
returning the cookie. For example, if you specify the path "/cgi−bin", then the cookie will be retu
to each of the scripts "/cgi−bin/tally.pl", "/cgi−bin/order.pl", and
"/cgi−bin/customer_service/complain.pl", but not to the script "/cgi−private/site_admin.pl".
default, path is set to "/", which causes the cookie to be sent to any CGI script on your site.
762 Version 5.005_02 18−Oct−1998

CGI::Cookie Perl Programmers Reference Guide CGI::Cookie

rring

e
 (At some

" for

ll be

 with

col is

 in the

ate the

text

rray are
4. secure flag
If the "secure" attribute is set, the cookie will only be sent to your script if the CGI request is occu
on a secure channel, such as SSL.

Creating New Cookies
$c = new CGI::Cookie(−name => ’foo’,

 −value => ’bar’,
 −expires => ’+3M’,
 −domain => ’.capricorn.com’,
 −path => ’/cgi−bin/database’
 −secure => 1

);

Create cookies from scratch with the new method. The −name and −value parameters are required. Th
name must be a scalar value. The value can be a scalar, an array reference, or a hash reference.
point in the future cookies will support one of the Perl object serialization protocols for full generality).

−expires accepts any of the relative or absolute date formats recognized by CGI.pm, for example "+3M
three months in the future. See CGI.pm‘s documentation for details.

−domain points to a domain name or to a fully qualified host name. If not specified, the cookie wi
returned only to the Web server that created it.

−path points to a partial URL on the current server. The cookie will be returned to all URLs beginning
the specified path. If not specified, it defaults to ‘/‘, which returns the cookie to all pages at your site.

−secure if set to a true value instructs the browser to return the cookie only when a cryptographic proto
in use.

Sending the Cookie to the Browser
Within a CGI script you can send a cookie to the browser by creating one or more Set−Cookie: fields
HTTP header. Here is a typical sequence:

 my $c = new CGI::Cookie(−name => ’foo’,
 −value => [’bar’,’baz’],
 −expires => ’+3M’);

 print "Set−Cookie: $c\n";
 print "Content−Type: text/html\n\n";

To send more than one cookie, create several Set−Cookie: fields. Alternatively, you may concaten
cookies together with "; " and send them in one field.

If you are using CGI.pm, you send cookies by providing a −cookie argument to the header() method:

 print header(−cookie=>$c);

Mod_perl users can set cookies using the request object‘s header_out() method:

 $r−>header_out(’Set−Cookie’,$c);

Internally, Cookie overloads the "" operator to call its as_string() method when incorporated into the
HTTP header. as_string() turns the Cookie‘s internal representation into an RFC−compliant
representation. You may call as_string() yourself if you prefer:

 print "Set−Cookie: ",$c−>as_string,"\n";

Recovering Previous Cookies
%cookies = fetch CGI::Cookie;

fetch returns an associative array consisting of all cookies returned by the browser. The keys of the a
the cookie names. You can iterate through the cookies this way:
18−Oct−1998 Version 5.005_02 763

CGI::Cookie Perl Programmers Reference Guide CGI::Cookie

ting

 you are
 Use

sor has a
ed with

s an

u may
ng the
%cookies = fetch CGI::Cookie;
foreach (keys %cookies) {
 do_something($cookies{$_});

 }

In a scalar context, fetch() returns a hash reference, which may be more efficient if you are manipula
multiple cookies.

CGI.pm uses the URL escaping methods to save and restore reserved characters in its cookies. If
trying to retrieve a cookie set by a foreign server, this escaping method may trip you up.
raw_fetch() instead, which has the same semantics as fetch() , but performs no unescaping.

You may also retrieve cookies that were stored in some external form using the parse() class method:

 $COOKIES = ‘cat /usr/tmp/Cookie_stash‘;
 %cookies = parse CGI::Cookie($COOKIES);

Manipulating Cookies
Cookie objects have a series of accessor methods to get and set cookie attributes. Each acces
similar syntax. Called without arguments, the accessor returns the current value of the attribute. Call
an argument, the accessor changes the attribute and returns its new value.

name()
Get or set the cookie‘s name. Example:

$name = $c−>name;
$new_name = $c−>name(’fred’);

value()
Get or set the cookie‘s value. Example:

$value = $c−>value;
@new_value = $c−>value([’a’,’b’,’c’,’d’]);

value() is context sensitive. In an array context it will return the current value of the cookie a
array. In a scalar context it will return the first value of a multivalued cookie.

domain()
Get or set the cookie‘s domain.

path()
Get or set the cookie‘s path.

expires()
Get or set the cookie‘s expiration time.

AUTHOR INFORMATION
be used and modified freely, but I do request that this copyright notice remain attached to the file. Yo
modify this module as you wish, but if you redistribute a modified version, please attach a note listi
modifications you have made.

Address bug reports and comments to: lstein@genome.wi.mit.edu

BUGS
This section intentionally left blank.

SEE ALSO
CGI::Carp, CGI
764 Version 5.005_02 18−Oct−1998

CGI::Fast Perl Programmers Reference Guide CGI::Fast

 Open
nning

g large

ver is
pache.
Server

brary.

r‘s kit.

astCGI

zes, and
−time
st, and

e your

ned to
NAME
CGI::Fast − CGI Interface for Fast CGI

SYNOPSIS
 use CGI::Fast qw(:standard);
 $COUNTER = 0;
 while (new CGI::Fast) {

print header;
print start_html("Fast CGI Rocks");
print
 h1("Fast CGI Rocks"),
 "Invocation number ",b($COUNTER++),

 " PID ",b($$),".",
 hr;

 print end_html;
 }

DESCRIPTION
CGI::Fast is a subclass of the CGI object created by CGI.pm. It is specialized to work well with the
Market FastCGI standard, which greatly speeds up CGI scripts by turning them into persistently ru
server processes. Scripts that perform time−consuming initialization processes, such as loadin
modules or opening persistent database connections, will see large performance improvements.

OTHER PIECES OF THE PUZZLE
In order to use CGI::Fast you‘ll need a FastCGI−enabled Web server. Open Market‘s ser
FastCGI−savvy. There are also freely redistributable FastCGI modules for NCSA httpd 1.5 and A
FastCGI−enabling modules for Microsoft Internet Information Server and Netscape Communications
have been announced.

In addition, you‘ll need a version of the Perl interpreter that has been linked with the FastCGI I/O li
Precompiled binaries are available for several platforms, including DEC Alpha, HP−UX and
SPARC/Solaris, or you can rebuild Perl from source with patches provided in the FastCGI develope
The FastCGI Perl interpreter can be used in place of your normal Perl without ill consequences.

You can find FastCGI modules for Apache and NCSA httpd, precompiled Perl interpreters, and the F
developer‘s kit all at URL:

 http://www.fastcgi.com/

WRITING FASTCGI PERL SCRIPTS
FastCGI scripts are persistent: one or more copies of the script are started up when the server initiali
stay around until the server exits or they die a natural death. After performing whatever one
initialization it needs, the script enters a loop waiting for incoming connections, processing the reque
waiting some more.

A typical FastCGI script will look like this:

 #!/usr/local/bin/perl # must be a FastCGI version of perl!
 use CGI::Fast;
 &do_some_initialization();
 while ($q = new CGI::Fast) {

&process_request($q);
 }

Each time there‘s a new request, CGI::Fast returns a CGI object to your loop. The rest of the tim
script waits in the call to new() . When the server requests that your script be terminated, new() will
return undef. You can of course exit earlier if you choose. A new version of the script will be respaw
take its place (this may be necessary in order to avoid Perl memory leaks in long−running scripts).
18−Oct−1998 Version 5.005_02 765

CGI::Fast Perl Programmers Reference Guide CGI::Fast

g line

like the

 CGI

u may
ng the
CGI.pm‘s default CGI object mode also works. Just modify the loop this way:

 while (new CGI::Fast) {
&process_request;

 }

Calls to header() , start_form() , etc. will all operate on the current request.

INSTALLING FASTCGI SCRIPTS
See the FastCGI developer‘s kit documentation for full details. On the Apache server, the followin
must be added to srm.conf:

 AddType application/x−httpd−fcgi .fcgi

FastCGI scripts must end in the extension .fcgi. For each script you install, you must add something
following to srm.conf:

 AppClass /usr/etc/httpd/fcgi−bin/file_upload.fcgi −processes 2

This instructs Apache to launch two copies of file_upload.fcgi at startup time.

USING FASTCGI SCRIPTS AS CGI SCRIPTS
Any script that works correctly as a FastCGI script will also work correctly when installed as a vanilla
script. However it will not see any performance benefit.

CAVEATS
I haven‘t tested this very much.

AUTHOR INFORMATION
be used and modified freely, but I do request that this copyright notice remain attached to the file. Yo
modify this module as you wish, but if you redistribute a modified version, please attach a note listi
modifications you have made.

Address bug reports and comments to: lstein@genome.wi.mit.edu

BUGS
This section intentionally left blank.

SEE ALSO
CGI::Carp, CGI
766 Version 5.005_02 18−Oct−1998

CGI::Push Perl Programmers Reference Guide CGI::Push

rations,

tine is
h a way
 with

, and an
gnized

w page.
ing the
NAME
CGI::Push − Simple Interface to Server Push

SYNOPSIS
 use CGI::Push qw(:standard);

 do_push(−next_page=>\&next_page,
 −last_page=>\&last_page,
 −delay=>0.5);

 sub next_page {
 my($q,$counter) = @_;
 return undef if $counter >= 10;
 return start_html(’Test’),
 h1(’Visible’),"\n",
 "This page has been called ", strong($counter)," times",
 end_html();
 }

 sub last_page {
 my($q,$counter) = @_;

 return start_html(’Done’),
 h1(’Finished’),
 strong($counter),’ iterations.’,
 end_html;
 }

DESCRIPTION
CGI::Push is a subclass of the CGI object created by CGI.pm. It is specialized for server push ope
which allow you to create animated pages whose content changes at regular intervals.

You provide CGI::Push with a pointer to a subroutine that will draw one page. Every time your subrou
called, it generates a new page. The contents of the page will be transmitted to the browser in suc
that it will replace what was there beforehand. The technique will work with HTML pages as well as
graphics files, allowing you to create animated GIFs.

USING CGI::Push
CGI::Push adds one new method to the standard CGI suite, do_push() . When you call this method, you
pass it a reference to a subroutine that is responsible for drawing each new page, an interval delay
optional subroutine for drawing the last page. Other optional parameters include most of those reco
by the CGI header() method.

You may call do_push() in the object oriented manner or not, as you prefer:

 use CGI::Push;
 $q = new CGI::Push;
 $q−>do_push(−next_page=>\&draw_a_page);

 −or−

 use CGI::Push qw(:standard);
 do_push(−next_page=>\&draw_a_page);

Parameters are as follows:

−next_page
 do_push(−next_page=>\&my_draw_routine);

This required parameter points to a reference to a subroutine responsible for drawing each ne
The subroutine should expect two parameters consisting of the CGI object and a counter indicat
18−Oct−1998 Version 5.005_02 767

CGI::Push Perl Programmers Reference Guide CGI::Push

n
rt the

der to

age of
 should

mally
ither of
e who
 on a

 faster.

lue of
ch

odify

not be
page, to
a

number of times the subroutine has been called. It should return the contents of the page as aarray
of one or more items to print. It can return a false value (or an empty array) in order to abo
redrawing loop and print out the final page (if any)

 sub my_draw_routine {
 my($q,$counter) = @_;
 return undef if $counter > 100;
 return start_html(’testing’),
 h1(’testing’),

 "This page called $counter times";
 }

You are of course free to refer to create and use global variables within your draw routine in or
achieve special effects.

−last_page
This optional parameter points to a reference to the subroutine responsible for drawing the last p
the series. It is called after the −next_page routine returns a false value. The subroutine itself
have exactly the same calling conventions as the −next_page routine.

−type
This optional parameter indicates the content type of each page. It defaults to "text/html". Nor
the module assumes that each page is of a homogenous MIME type. However if you provide e
the magic values "heterogeneous" or "dynamic" (the latter provided for the convenience of thos
hate long parameter names), you can specify the MIME type — and other header fields —
per−page basis. See "heterogeneous pages" for more details.

−delay
This indicates the delay, in seconds, between frames. Smaller delays refresh the page
Fractional values are allowed.

If not specified, −delay will default to 1 second

−cookie, −target, −expires
These have the same meaning as the like−named parameters in CGI::header() .

Heterogeneous Pages
Ordinarily all pages displayed by CGI::Push share a common MIME type. However by providing a va
"heterogeneous" or "dynamic" in the do_push() −type parameter, you can specify the MIME type of ea
page on a case−by−case basis.

If you use this option, you will be responsible for producing the HTTP header for each page. Simply m
your draw routine to look like this:

 sub my_draw_routine {
 my($q,$counter) = @_;
 return header(’text/html’), # note we’re producing the header here

 start_html(’testing’),
 h1(’testing’),

 "This page called $counter times";
 }

You can add any header fields that you like, but some (cookies and status fields included) may
interpreted by the browser. One interesting effect is to display a series of pages, then, after the last
redirect the browser to a new URL. Because redirect() does b<not work, the easiest way is with
−refresh header field, as shown below:

 sub my_draw_routine {
 my($q,$counter) = @_;

return undef if $counter > 10;
768 Version 5.005_02 18−Oct−1998

CGI::Push Perl Programmers Reference Guide CGI::Push

r of
e delay

 On
ion of
ld see

u may
ng the
 return header(’text/html’), # note we’re producing the header here
 start_html(’testing’),

 h1(’testing’),
 "This page called $counter times";

 }

 sub my_last_page {
header(−refresh=>’5; URL=http://somewhere.else/finished.html’,
 −type=>’text/html’),

 start_html(’Moved’),
 h1(’This is the last page’),

’Goodbye!’
 hr,
 end_html;
 }

Changing the Page Delay on the Fly
If you would like to control the delay between pages on a page−by−page basis, call push_delay() from
within your draw routine. push_delay() takes a single numeric argument representing the numbe
seconds you wish to delay after the current page is displayed and before displaying the next one. Th
may be fractional. Without parameters, push_delay() just returns the current delay.

INSTALLING CGI::Push SCRIPTS
Server push scripts must be installed as no−parsed−header (NPH) scripts in order to work correctly.
Unix systems, this is most often accomplished by prefixing the script‘s name with "nph−". Recognit
NPH scripts happens automatically with WebSTAR and Microsoft IIS. Users of other servers shou
their documentation for help.

CAVEATS
This is a new module. It hasn‘t been extensively tested.

AUTHOR INFORMATION
be used and modified freely, but I do request that this copyright notice remain attached to the file. Yo
modify this module as you wish, but if you redistribute a modified version, please attach a note listi
modifications you have made.

Address bug reports and comments to: lstein@genome.wi.mit.edu

BUGS
This section intentionally left blank.

SEE ALSO
CGI::Carp, CGI
18−Oct−1998 Version 5.005_02 769

CGI::Switch Perl Programmers Reference Guide CGI::Switch

 It
NAME
CGI::Switch − Try more than one constructors and return the first object available

SYNOPSIS
 use CGISwitch;

 −or−

 use CGI::Switch This, That, CGI::XA, Foo, Bar, CGI;

 my $q = new CGI::Switch;

DESCRIPTION
Per default the new() method tries to call new() in the three packages Apache::CGI, CGI::XA, and CGI.
returns the first CGI object it succeeds with.

The import method allows you to set up the default order of the modules to be tested.

SEE ALSO
perl(1), Apache(3), CGI(3), CGI::XA(3)

AUTHOR
Andreas König <a.koenig@mind.de>
770 Version 5.005_02 18−Oct−1998

CPAN Perl Programmers Reference Guide CPAN

ncludes
nt) to

) sites

undles

n sessions.
ion. The
ess space

 and

r,
fering

g of an
s of the

 finds
ach as
NAME
CPAN − query, download and build perl modules from CPAN sites

SYNOPSIS
Interactive mode:

 perl −MCPAN −e shell;

Batch mode:

 use CPAN;

 autobundle, clean, install, make, recompile, test

DESCRIPTION
The CPAN module is designed to automate the make and install of perl modules and extensions. It i
some searching capabilities and knows how to use Net::FTP or LWP (or lynx or an external ftp clie
fetch the raw data from the net.

Modules are fetched from one or more of the mirrored CPAN (Comprehensive Perl Archive Network
and unpacked in a dedicated directory.

The CPAN module also supports the concept of named and versioned ‘bundles’ of modules. B
simplify the handling of sets of related modules. See BUNDLES below.

The package contains a session manager and a cache manager. There is no status retained betwee
The session manager keeps track of what has been fetched, built and installed in the current sess
cache manager keeps track of the disk space occupied by the make processes and deletes exc
according to a simple FIFO mechanism.

All methods provided are accessible in a programmer style and in an interactive shell style.

Interactive Mode
The interactive mode is entered by running

 perl −MCPAN −e shell

which puts you into a readline interface. You will have the most fun if you install Term::ReadKey
Term::ReadLine to enjoy both history and command completion.

Once you are on the command line, type ‘h’ and the rest should be self−explanatory.

The most common uses of the interactive modes are

Searching for authors, bundles, distribution files and modules
There are corresponding one−letter commands a, b, d, and m for each of the four categories and anothe
i for any of the mentioned four. Each of the four entities is implemented as a class with slightly dif
methods for displaying an object.

Arguments you pass to these commands are either strings exactly matching the identification strin
object or regular expressions that are then matched case−insensitively against various attribute
objects. The parser recognizes a regular expression only if you enclose it between two slashes.

The principle is that the number of found objects influences how an item is displayed. If the search
one item, the result is displayed as object−>as_string, but if we find more than one, we display e
object−>as_glimpse. E.g.

 cpan> a ANDK
 Author id = ANDK

EMAIL a.koenig@franz.ww.TU−Berlin.DE
FULLNAME Andreas König

 cpan> a /andk/
18−Oct−1998 Version 5.005_02 771

CPAN Perl Programmers Reference Guide CPAN

e action.
 it is a

kage a
od

cess in

it is
the
ending

un of

u enter
 Author id = ANDK
EMAIL a.koenig@franz.ww.TU−Berlin.DE
FULLNAME Andreas König

 cpan> a /and.*rt/
 Author ANDYD (Andy Dougherty)
 Author MERLYN (Randal L. Schwartz)

make, test, install, clean modules or distributions
These commands take any number of arguments and investigate what is necessary to perform th
If the argument is a distribution file name (recognized by embedded slashes), it is processed. If
module, CPAN determines the distribution file in which this module is included and processes that.

Any make or test are run unconditionally. An

 install <distribution_file>

also is run unconditionally. But for

 install <module>

CPAN checks if an install is actually needed for it and prints module up to date in the case that the
distribution file containing the module doesnt need to be updated.

CPAN also keeps track of what it has done within the current session and doesnt try to build a pac
second time regardless if it succeeded or not. The force command takes as a first argument the meth
to invoke (currently: make, test , or install) and executes the command from scratch.

Example:

 cpan> install OpenGL
 OpenGL is up to date.
 cpan> force install OpenGL
 Running make
 OpenGL−0.4/
 OpenGL−0.4/COPYRIGHT
 [...]

A clean command results in a

 make clean

being executed within the distribution file‘s working directory.

readme, look module or distribution
These two commands take only one argument, be it a module or a distribution file. readme
unconditionally runs, displaying the README of the associated distribution file. Look gets and untars (if
not yet done) the distribution file, changes to the appropriate directory and opens a subshell pro
that directory.

Signals
CPAN.pm installs signal handlers for SIGINT and SIGTERM. While you are in the cpan−shell
intended that you can press ^C anytime and return to the cpan−shell prompt. A SIGTERM will cause
cpan−shell to clean up and leave the shell loop. You can emulate the effect of a SIGTERM by s
two consecutive SIGINTs, which usually means by pressing ^C twice.

CPAN.pm ignores a SIGPIPE. If the user sets inactivity_timeout, a SIGALRM is used during the r
the perl Makefile.PL subprocess.

CPAN::Shell
The commands that are available in the shell interface are methods in the package CPAN::Shell. If yo
the shell command, all your input is split by the Text::ParseWords::shellwords() routine which
772 Version 5.005_02 18−Oct−1998

CPAN Perl Programmers Reference Guide CPAN

t of the
a literal

INC.

l cycle
ffect.

mon
n. You
le for

 youre

y. If
CPAN

ammer.
 classical
 with a

lease.
into the

. If a
ay to

erial.
s on
z; so

f class

ailable
ings of
acts like most shells do. The first word is being interpreted as the method to be called and the res
words are treated as arguments to this method. Continuation lines are supported if a line ends with
backslash.

autobundle
autobundle writes a bundle file into the $CPAN::Config−>{cpan_home}/Bundle directory. The
file contains a list of all modules that are both available from CPAN and currently installed within @
The name of the bundle file is based on the current date and a counter.

recompile
recompile() is a very special command in that it takes no argument and runs the make/test/instal
with brute force over all installed dynamically loadable extensions (aka XS modules) with ‘force’ in e
The primary purpose of this command is to finish a network installation. Imagine, you have a com
source tree for two different architectures. You decide to do a completely independent fresh installatio
start on one architecture with the help of a Bundle file produced earlier. CPAN installs the whole Bund
you, but when you try to repeat the job on the second architecture, CPAN responds with a "Foo up to
date" message for all modules. So you invoke CPAN‘s recompile on the second architecture and
done.

Another popular use for recompile is to act as a rescue in case your perl breaks binary compatibilit
one of the modules that CPAN uses is in turn depending on binary compatibility (so you cannot run
commands), then you should try the CPAN::Nox module for recovery.

The four CPAN::* Classes: Author, Bundle, Module, Distribution
Although it may be considered internal, the class hierarchy does matter for both users and progr
CPAN.pm deals with above mentioned four classes, and all those classes share a set of methods. A
single polymorphism is in effect. A metaclass object registers all objects of all kinds and indexes them
string. The strings referencing objects have a separated namespace (well, not completely separated):

 Namespace Class

 words containing a "/" (slash) Distribution
 words starting with Bundle:: Bundle
 everything else Module or Author

Modules know their associated Distribution objects. They always refer to the most recent official re
Developers may mark their releases as unstable development versions (by inserting an underbar
visible version number), so the really hottest and newest distribution file is not always the default
module Foo circulates on CPAN in both version 1.23 and 1.23_90, CPAN.pm offers a convenient w
install version 1.23 by saying

 install Foo

This would install the complete distribution file (say BAR/Foo−1.23.tar.gz) with all accompanying mat
But if you would like to install version 1.23_90, you need to know where the distribution file reside
CPAN relative to the authors/id/ directory. If the author is BAR, this might be BAR/Foo−1.23_90.tar.g
you would have to say

 install BAR/Foo−1.23_90.tar.gz

The first example will be driven by an object of the class CPAN::Module, the second by an object o
CPAN::Distribution.

Programmers interface
If you do not enter the shell, the available shell commands are both available as methods
(CPAN::Shell−>install(...)) and as functions in the calling package (install(...)).

There‘s currently only one class that has a stable interface − CPAN::Shell. All commands that are av
in the CPAN shell are methods of the class CPAN::Shell. Each of the commands that produce list
modules (r , autobundle , u) returns a list of the IDs of all modules within the list.
18−Oct−1998 Version 5.005_02 773

CPAN Perl Programmers Reference Guide CPAN

onding
t
s

shell.

l

PAN
fferent

s
. If you
rces will

hods. It

e man
expand($type,@things)
The IDs of all objects available within a program are strings that can be expanded to the corresp
real objects with the CPAN::Shell−>expand("Module",@things) method. Expand returns a lis
of CPAN::Module objects according to the @things arguments given. In scalar context it only return
the first element of the list.

Programming Examples
This enables the programmer to do operations that combine functionalities that are available in the

 # install everything that is outdated on my disk:
 perl −MCPAN −e ’CPAN::Shell−>install(CPAN::Shell−>r)’

 # install my favorite programs if necessary:
 for $mod (qw(Net::FTP MD5 Data::Dumper)){
 my $obj = CPAN::Shell−>expand(’Module’,$mod);
 $obj−>install;
 }

 # list all modules on my disk that have no VERSION number
 for $mod (CPAN::Shell−>expand("Module","/./")){

next unless $mod−>inst_file;
 # MakeMaker convention for undefined $VERSION:

next unless $mod−>inst_version eq "undef";
print "No VERSION in ", $mod−>id, "\n";

 }

Methods in the four

Cache Manager
Currently the cache manager only keeps track of the build directory ($CPAN::Config− {build_dir}). It is a
simple FIFO mechanism that deletes complete directories below build_dir as soon as the size of al
directories there gets bigger than $CPAN::Config− {build_cache} (in MB). The contents of this cache
may be used for later re−installations that you intend to do manually, but will never be trusted by C
itself. This is due to the fact that the user might use these directories for building modules on di
architectures.

There is another directory ($CPAN::Config− {keep_source_where}) where the original distribution file
are kept. This directory is not covered by the cache manager and must be controlled by the user
choose to have the same directory as build_dir and as keep_source_where directory, then your sou
be deleted with the same fifo mechanism.

Bundles
A bundle is just a perl module in the namespace Bundle:: that does not define any functions or met
usually only contains documentation.

It starts like a perl module with a package declaration and a $VERSION variable. After that the pod section
looks like any other pod with the only difference being that one special pod section exists starting with
(verbatim):

=head1 CONTENTS

In this pod section each line obeys the format

 Module_Name [Version_String] [− optional text]

The only required part is the first field, the name of a module (e.g. Foo::Bar, ie. not the name of the
distribution file). The rest of the line is optional. The comment part is delimited by a dash just as in th
page header.

The distribution of a bundle should follow the same convention as other distributions.
774 Version 5.005_02 18−Oct−1998

CPAN Perl Programmers Reference Guide CPAN

uch a
 your
The
 all

 perl
ay be

al ftp

laxed
termine

od.

ndle a

ing the
, and

f the
if you
end me

, you
st. So
y the

 this

. The
u can
Bundles are treated specially in the CPAN package. If you say ‘install Bundle::Tkkit’ (assuming s
bundle exists), CPAN will install all the modules in the CONTENTS section of the pod. You can install
own Bundles locally by placing a conformant Bundle file somewhere into your @INC path.
autobundle() command which is available in the shell interface does that for you by including
currently installed modules in a snapshot bundle file.

Prerequisites
If you have a local mirror of CPAN and can access all files with "file:" URLs, then you only need a
better than perl5.003 to run this module. Otherwise Net::FTP is strongly recommended. LWP m
required for non−UNIX systems or if your nearest CPAN site is associated with an URL that is not ftp: .

If you have neither Net::FTP nor LWP, there is a fallback mechanism implemented for an extern
command or for an external lynx command.

Finding packages and VERSION
This module presumes that all packages on CPAN

 declare their $VERSION variable in an easy to parse manner. This prerequisite can hardly be re
because it consumes far too much memory to load all packages into the running program just to de
the $VERSION variable. Currently all programs that are dealing with version use something like this

 perl −MExtUtils::MakeMaker −le \
 ’print MM−>parse_version($ARGV[0])’ filename

If you are author of a package and wonder if your $VERSION can be parsed, please try the above meth

 come as compressed or gzipped tarfiles or as zip files and contain a Makefile.PL (well, we try to ha
bit more, but without much enthusiasm).

Debugging
The debugging of this module is pretty difficult, because we have interferences of the software produc
indices on CPAN, of the mirroring process on CPAN, of packaging, of configuration, of synchronicity
of bugs within CPAN.pm.

In interactive mode you can try "o debug" which will list options for debugging the various parts o
package. The output may not be very useful for you as it‘s just a by−product of my own testing, but
have an idea which part of the package may have a bug, it‘s sometimes worth to give it a try and s
more specific output. You should know that "o debug" has built−in completion support.

Floppy, Zip, and all that Jazz
CPAN.pm works nicely without network too. If you maintain machines that are not networked at all
should consider working with file: URLs. Of course, you have to collect your modules somewhere fir
you might use CPAN.pm to put together all you need on a networked machine. Then cop
$CPAN::Config− {keep_source_where} (but not $CPAN::Config− {build_dir}) directory on a floppy.
This floppy is kind of a personal CPAN. CPAN.pm on the non−networked machines works nicely with
floppy.

CONFIGURATION
When the CPAN module is installed, a site wide configuration file is created as CPAN/Config.pm
default values defined there can be overridden in another configuration file: CPAN/MyConfig.pm. Yo
store this file in $HOME/.cpan/CPAN/MyConfig.pm if you want, because $HOME/.cpan is added to
the search path of the CPAN module before the use() or require() statements.

Currently the following keys in the hash reference $CPAN::Config are defined:

 build_cache size of cache for directories to build modules
 build_dir locally accessible directory to build modules
 index_expire after this many days refetch index files
 cpan_home local directory reserved for this package
18−Oct−1998 Version 5.005_02 775

CPAN Perl Programmers Reference Guide CPAN

defined

d for
is
ntents

ist. It

igned
e itself.
ith the

 use is
 gzip location of external program gzip
 inactivity_timeout breaks interactive Makefile.PLs after this
 many seconds inactivity. Set to 0 to never break.
 inhibit_startup_message
 if true, does not print the startup message
 keep_source keep the source in a local directory?
 keep_source_where directory in which to keep the source (if we do)
 make location of external make program
 make_arg arguments that should always be passed to ’make’
 make_install_arg same as make_arg for ’make install’
 makepl_arg arguments passed to ’perl Makefile.PL’
 pager location of external program more (or any pager)
 tar location of external program tar
 unzip location of external program unzip
 urllist arrayref to nearby CPAN sites (or equivalent locations)
 wait_list arrayref to a wait server to try (See CPAN::WAIT)

You can set and query each of these options interactively in the cpan shell with the command set
within the o conf command:

o conf <scalar option>
prints the current value of the scalar option

o conf <scalar option> <value>
Sets the value of the scalar option to value

o conf <list option>
prints the current value of the list option in MakeMaker‘s neatvalue format.

o conf <list option> [shift|pop]
shifts or pops the array in the list option variable

o conf <list option> [unshift|push|splice] <list>
works like the corresponding perl commands.

CD−ROM support
The urllist parameter of the configuration table contains a list of URLs that are to be use
downloading. If the list contains any file URLs, CPAN always tries to get files from there first. Th
feature is disabled for index files. So the recommendation for the owner of a CD−ROM with CPAN co
is: include your local, possibly outdated CD−ROM as a file URL at the end of urllist, e.g.

 o conf urllist push file://localhost/CDROM/CPAN

CPAN.pm will then fetch the index files from one of the CPAN sites that come at the beginning of urll
will later check for each module if there is a local copy of the most recent version.

SECURITY
There‘s no strong security layer in CPAN.pm. CPAN.pm helps you to install foreign, unmasked, uns
code on your machine. We compare to a checksum that comes from the net just as the distribution fil
If somebody has managed to tamper with the distribution file, they may have as well tampered w
CHECKSUMS file. Future development will go towards strong authentification.

EXPORT
Most functions in package CPAN are exported per default. The reason for this is that the primary
intended for the cpan shell or for oneliners.
776 Version 5.005_02 18−Oct−1998

CPAN Perl Programmers Reference Guide CPAN

ssion
AN is

n you
ethod
BUGS
We should give coverage for _all_ of the CPAN and not just the PAUSE part, right? In this discu
CPAN and PAUSE have become equal — but they are not. PAUSE is authors/ and modules/. CP
PAUSE plus the clpa/, doc/, misc/, ports/, src/, scripts/.

Future development should be directed towards a better integration of the other parts.

If a Makefile.PL requires special customization of libraries, prompts the user for special input, etc. the
may find CPAN is not able to build the distribution. In that case, you should attempt the traditional m
of building a Perl module package from a shell.

AUTHOR
Andreas König <a.koenig@mind.de>

SEE ALSO
perl(1), CPAN::Nox(3)
18−Oct−1998 Version 5.005_02 777

CPAN::FirstTime Perl Programmers Reference Guide CPAN::FirstTime
NAME
CPAN::FirstTime − Utility for CPAN::Config file Initialization

SYNOPSIS
CPAN::FirstTime::init()

DESCRIPTION
The init routine asks a few questions and writes a CPAN::Config file. Nothing special.
778 Version 5.005_02 18−Oct−1998

CPAN::Nox Perl Programmers Reference Guide CPAN::Nox

ensions
binary
NAME
CPAN::Nox − Wrapper around CPAN.pm without using any XS module

SYNOPSIS
Interactive mode:

 perl −MCPAN::Nox −e shell;

DESCRIPTION
This package has the same functionality as CPAN.pm, but tries to prevent the usage of compiled ext
during it‘s own execution. It‘s primary purpose is a rescue in case you upgraded perl and broke
compatibility somehow.

SEE ALSO
CPAN(3)
18−Oct−1998 Version 5.005_02 779

Carp Perl Programmers Reference Guide Carp

rstand

it by
NAME
carp − warn of errors (from perspective of caller)

cluck − warn of errors with stack backtrace
 (not exported by default)

croak − die of errors (from perspective of caller)

confess − die of errors with stack backtrace

SYNOPSIS
 use Carp;
 croak "We’re outta here!";

 use Carp qw(cluck);
 cluck "This is how we got here!";

DESCRIPTION
The Carp routines are useful in your own modules because they act like die() or warn() , but report
where the error was in the code they were called from. Thus if you have a routine Foo() that has a
carp() in it, then the carp() will report the error as occurring where Foo() was called, not where
carp() was called.

Forcing a Stack Trace
As a debugging aid, you can force Carp to treat a croak as a confess and a carp as a cluck across all modules.
In other words, force a detailed stack trace to be given. This can be very helpful when trying to unde
why, or from where, a warning or error is being generated.

This feature is enabled by ‘importing’ the non−existant symbol ‘verbose’. You would typically enable
saying

 perl −MCarp=verbose script.pl

or by including the string MCarp=verbose in the PERL5OPT environment variable.
780 Version 5.005_02 18−Oct−1998

Class::Struct Perl Programmers Reference Guide Class::Struct

nd

o fetch its
ee
NAME
Class::Struct − declare struct−like datatypes as Perl classes

SYNOPSIS
 use Class::Struct;
 # declare struct, based on array:
 struct(CLASS_NAME => [ELEMENT_NAME => ELEMENT_TYPE, ...]);
 # declare struct, based on hash:
 struct(CLASS_NAME => { ELEMENT_NAME => ELEMENT_TYPE, ... });

 package CLASS_NAME;
 use Class::Struct;
 # declare struct, based on array, implicit class name:
 struct(ELEMENT_NAME => ELEMENT_TYPE, ...);

 package Myobj;
 use Class::Struct;
 # declare struct with four types of elements:
 struct(s => ’$’, a => ’@’, h => ’%’, c => ’My_Other_Class’);

 $obj = new Myobj; # constructor

 # scalar type accessor:
 $element_value = $obj−>s; # element value
 $obj−>s(’new value’); # assign to element

 # array type accessor:
 $ary_ref = $obj−>a; # reference to whole array
 $ary_element_value = $obj−>a(2); # array element value
 $obj−>a(2, ’new value’); # assign to array element

 # hash type accessor:
 $hash_ref = $obj−>h; # reference to whole hash
 $hash_element_value = $obj−>h(’x’); # hash element value
 $obj−>h(’x’, ’new value’); # assign to hash element

 # class type accessor:
 $element_value = $obj−>c; # object reference
 $obj−>c−>method(...); # call method of object
 $obj−>c(new My_Other_Class); # assign a new object

DESCRIPTION
Class::Struct exports a single function, struct . Given a list of element names and types, a
optionally a class name, struct creates a Perl 5 class that implements a "struct−like" data structure.

The new class is given a constructor method, new, for creating struct objects.

Each element in the struct data has an accessor method, which is used to assign to the element and t
value. The default accessor can be overridden by declaring a sub of the same name in the package. (S
Example 2.)

Each element‘s type can be scalar, array, hash, or class.

The struct() function
The struct function has three forms of parameter−list.

 struct(CLASS_NAME => [ELEMENT_LIST]);
 struct(CLASS_NAME => { ELEMENT_LIST });
 struct(ELEMENT_LIST);
18−Oct−1998 Version 5.005_02 781

Class::Struct Perl Programmers Reference Guide Class::Struct

sumes

 a class
 smaller;

accessor
 if the

 type

y; the

is

second

ses. The

nt).
The first and second forms explicitly identify the name of the class being created. The third form as
the current package name as the class name.

An object of a class created by the first and third forms is based on an array, whereas an object of
created by the second form is based on a hash. The array−based forms will be somewhat faster and
the hash−based forms are more flexible.

The class created by struct must not be a subclass of another class other than UNIVERSAL.

A function named new must not be explicitly defined in a class created by struct .

The ELEMENT_LIST has the form

 NAME => TYPE, ...

Each name−type pair declares one element of the struct. Each element name will be defined as an
method unless a method by that name is explicitly defined; in the latter case, a warning is issued
warning flag (−w) is set.

Element Types and Accessor Methods
The four element types — scalar, array, hash, and class — are represented by strings — ‘$’, ‘@’ , ‘%’ ,
and a class name — optionally preceded by a ‘*’ .

The accessor method provided by struct for an element depends on the declared type of the element.

Scalar (‘$’ or ‘*$’)
The element is a scalar, and is initialized to undef .

The accessor‘s argument, if any, is assigned to the element.

If the element type is ‘$’, the value of the element (after assignment) is returned. If the element
is ‘*$’, a reference to the element is returned.

Array (‘@’ or ‘*@’)
The element is an array, initialized to () .

With no argument, the accessor returns a reference to the element‘s whole array.

With one or two arguments, the first argument is an index specifying one element of the arra
second argument, if present, is assigned to the array element. If the element type is ‘@’ , the accessor
returns the array element value. If the element type is ‘*@’ , a reference to the array element
returned.

Hash (‘%’ or ‘*%’)
The element is a hash, initialized to () .

With no argument, the accessor returns a reference to the element‘s whole hash.

With one or two arguments, the first argument is a key specifying one element of the hash; the
argument, if present, is assigned to the hash element. If the element type is ‘%’ , the accessor returns
the hash element value. If the element type is ‘*%’ , a reference to the hash element is returned.

Class (‘Class_Name’ or ‘*Class_Name’)
The element‘s value must be a reference blessed to the named class or to one of its subclas
element is initialized to the result of calling the new constructor of the named class.

The accessor‘s argument, if any, is assigned to the element. The accessor will croak if this is not an
appropriate object reference.

If the element type does not start with a ‘*’ , the accessor returns the element value (after assignme
If the element type starts with a ‘*’ , a reference to the element itself is returned.
782 Version 5.005_02 18−Oct−1998

Class::Struct Perl Programmers Reference Guide Class::Struct

e

re, we
EXAMPLES

Example 1
Giving a struct element a class type that is also a struct is how structs are nested. Here, timeval
represents a time (seconds and microseconds), and rusage has two elements, each of which is of typ
timeval .

 use Class::Struct;

 struct(rusage => {
 ru_utime => timeval, # seconds
 ru_stime => timeval, # microseconds
 });

 struct(timeval => [
 tv_secs => ’$’,
 tv_usecs => ’$’,
]);

 # create an object:
 my $t = new rusage;
 # $t−>ru_utime and $t−>ru_stime are objects of type timeval.

 # set $t−>ru_utime to 100.0 sec and $t−>ru_stime to 5.0 sec.
 $t−>ru_utime−>tv_secs(100);
 $t−>ru_utime−>tv_usecs(0);
 $t−>ru_stime−>tv_secs(5);
 $t−>ru_stime−>tv_usecs(0);

Example 2
An accessor function can be redefined in order to provide additional checking of values, etc. He
want the count element always to be nonnegative, so we redefine the count accessor accordingly.

 package MyObj;
 use Class::Struct;

 # declare the struct
 struct (’MyObj’, { count => ’$’, stuff => ’%’ });

 # override the default accessor method for ’count’
 sub count {
 my $self = shift;
 if (@_) {
 die ’count must be nonnegative’ if $_[0] < 0;
 $self−>{’count’} = shift;
 warn "Too many args to count" if @_;
 }
 return $self−>{’count’};
 }

 package main;
 $x = new MyObj;
 print "\$x−>count(5) = ", $x−>count(5), "\n";
 # prints ’$x−>count(5) = 5’

 print "\$x−>count = ", $x−>count, "\n";
 # prints ’$x−>count = 5’

 print "\$x−>count(−5) = ", $x−>count(−5), "\n";
 # dies due to negative argument!
18−Oct−1998 Version 5.005_02 783

Class::Struct Perl Programmers Reference Guide Class::Struct
Author and Modification History
Renamed to Class::Struct and modified by Jim Miner, 1997−04−02.

 members() function removed.
 Documentation corrected and extended.
 Use of struct() in a subclass prohibited.
 User definition of accessor allowed.
 Treatment of ’*’ in element types corrected.
 Treatment of classes as element types corrected.
 Class name to struct() made optional.
 Diagnostic checks added.

Originally Class::Template by Dean Roehrich.

 # Template.pm −−− struct/member template builder
 # 12mar95
 # Dean Roehrich
 #
 # changes/bugs fixed since 28nov94 version:
 # − podified
 # changes/bugs fixed since 21nov94 version:
 # − Fixed examples.
 # changes/bugs fixed since 02sep94 version:
 # − Moved to Class::Template.
 # changes/bugs fixed since 20feb94 version:
 # − Updated to be a more proper module.
 # − Added "use strict".
 # − Bug in build_methods, was using @var when @$var needed.
 # − Now using my() rather than local().
 #
 # Uses perl5 classes to create nested data types.
 # This is offered as one implementation of Tom Christiansen’s "structs.pl"
 # idea.
784 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

able

 line in
NAME
Config − access Perl configuration information

SYNOPSIS
 use Config;
 if ($Config{’cc’} =~ /gcc/) {

print "built by gcc\n";
 }

 use Config qw(myconfig config_sh config_vars);

 print myconfig();

 print config_sh();

 config_vars(qw(osname archname));

DESCRIPTION
The Config module contains all the information that was available to the Configure program at Perl build
time (over 900 values).

Shell variables from the config.sh file (written by Configure) are stored in the readonly−variable %Config ,
indexed by their names.

Values stored in config.sh as ‘undef’ are returned as undefined values. The perl exists function can be
used to check if a named variable exists.

myconfig()
Returns a textual summary of the major perl configuration values. See also −V in Switches.

config_sh()
Returns the entire perl configuration information in the form of the original config.sh shell vari
assignment script.

config_vars(@names)
Prints to STDOUT the values of the named configuration variable. Each is printed on a separate
the form:

 name=’value’;

Names which are unknown are output as name=‘UNKNOWN‘;. See also −V:name in Switches.

EXAMPLE
Here‘s a more sophisticated example of using %Config:

 use Config;
 use strict;

 my %sig_num;
 my @sig_name;
 unless($Config{sig_name} && $Config{sig_num}) {

die "No sigs?";
 } else {

my @names = split ’ ’, $Config{sig_name};
@sig_num{@names} = split ’ ’, $Config{sig_num};
foreach (@names) {
 $sig_name[$sig_num{$_}] ||= $_;
}

 }

 print "signal #17 = $sig_name[17]\n";
18−Oct−1998 Version 5.005_02 785

Config Perl Programmers Reference Guide Config

at the

gs are
 variable

e

e
See the

 Mcc

ssible

t you
 if ($sig_num{ALRM}) {
print "SIGALRM is $sig_num{ALRM}\n";

 }

WARNING
Because this information is not stored within the perl executable itself it is possible (but unlikely) th
information does not relate to the actual perl binary which is being used to access it.

The Config module is installed into the architecture and version specific library directory
($Config{installarchlib}) and it checks the perl version number when loaded.

The values stored in config.sh may be either single−quoted or double−quoted. Double−quoted strin
handy for those cases where you need to include escape sequences in the strings. To avoid runtime
interpolation, any $ and @ characters are replaced by \$ and \@, respectively. This isn‘t foolproof, of
course, so don‘t embed \$ or \@ in double−quoted strings unless you‘re willing to deal with th
consequences. (The slashes will end up escaped and the $ or @ will trigger variable interpolation)

GLOSSARY
Most Config variables are determined by the Configure script on platforms supported by it (which is
most UNIX platforms). Some platforms have custom−made Config variables, and may thus not have som
of the variables described below, or may have extraneous variables specific to that particular port.
port specific documentation in such cases.

M

Mcc From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain Mcc and is not useful.

_

_a From Unix.U:

This variable defines the extension used for ordinary libraries. For unix, it is .a. The . is included.
Other possible values include .lib.

_exe
From Unix.U:

This variable defines the extension used for executable files. For unix it is empty. Other po
values include .exe.

_o From Unix.U:

This variable defines the extension used for object files. For unix, it is .o. The . is included. Other
possible values include .obj.

a

afs From afs.U:

This variable is set to true if AFS (Andrew File System) is used on the system, false otherwise. It
is possible to override this with a hint value or command line option, but you‘d better know wha
are doing.

alignbytes
From alignbytes.U:

This variable holds the number of bytes required to align a double. Usual values are 2, 4 and 8.

ansi2knr
From ansi2knr.U:
786 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

 abort.

and is
eges.

, since
nually
in

e ar

endent

e, for

uct the

 this
ls or

 awk
This variable is set if the user needs to run ansi2knr. Currently, this is not supported, so we just

aphostname
From d_gethname.U:

Thie variable contains the command which can be used to compute the host name. The comm
fully qualified by its absolute path, to make it safe when used by a process with super−user privil

apiversion
From patchlevel.U:

This is a number which identifies the lowest version of perl to have an API (for XS extensions)
compatible with the present version. For example, for 5.005_01, the apiversion should be 5.005
5.005_01 should be binary compatible with 5.005. This should probably be incremented ma
somehow, perhaps from patchlevel.h. For now, we‘ll guess maintenance subversions will reta
binary compatibility.

ar From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain ar and is not useful.

archlib
From archlib.U:

This variable holds the name of the directory in which the user wants to put architecture−dep
public library files for $package. It is most often a local directory such as /usr/local/lib. Programs
using this variable must be prepared to deal with filename expansion.

archlibexp
From archlib.U:

This variable is the same as the archlib variable, but is filename expanded at configuration tim
convenient use.

archname
From archname.U:

This variable is a short name to characterize the current architecture. It is used mainly to constr
default archlib.

archobjs
From Unix.U:

This variable defines any additional objects that must be linked in with the program on
architecture. On unix, it is usually empty. It is typically used to include emulations of unix cal
other facilities. For perl on OS/2, for example, this would include os2/os2.obj.

awk From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain awk and is not useful.

b

baserev
From baserev.U:

The base revision level of this package, from the .package file.

bash
From Loc.U:
18−Oct−1998 Version 5.005_02 787

Config Perl Programmers Reference Guide Config

mages

n your

yacc

 The
321 on

ewline.

es to

e cat

 global
This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

bin From bin.U:

This variable holds the name of the directory in which the user wants to put publicly executable i
for the package in question. It is most often a local directory such as /usr/local/bin. Programs using
this variable must be prepared to deal with ~name substitution.

binexp
From bin.U:

This is the same as the bin variable, but is filename expanded at configuration time, for use i
makefiles.

bison
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

byacc
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the b
program. After Configure runs, the value is reset to a plain byacc and is not useful.

byteorder
From byteorder.U:

This variable holds the byte order. In the following, larger digits indicate more significance.
variable byteorder is either 4321 on a big−endian machine, or 1234 on a little−endian, or 87654
a Cray ... or 3412 with weird order !

c

c From n.U:

This variable contains the \c string if that is what causes the echo command to suppress n
Otherwise it is null. Correct usage is

$echo $n "prompt for a question: $c".

castflags
From d_castneg.U:

This variable contains a flag that precise difficulties the compiler has casting odd floating valu
unsigned long:

0 = ok

1 = couldn’t cast < 0

2 = couldn’t cast >= 0x80000000

4 = couldn’t cast in argument expression list

cat From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain cat and is not useful.

cc From cc.U:

This variable holds the name of a command to execute a C compiler which can resolve multiple
references that happen to have the same name. Usual values are cc , Mcc, cc −M , and gcc .
788 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

 be +z.

 library

file to

d to tag

ire the

 tag

omm
cccdlflags
From dlsrc.U:

This variable contains any special flags that might need to be passed with cc −c to compile modules
to be used to create a shared library that will be used for dynamic loading. For hpux, this should
 It is up to the makefile to use it.

ccdlflags
From dlsrc.U:

This variable contains any special flags that might need to be passed to cc to link with a shared
for dynamic loading. It is up to the makefile to use it. For sunos 4.1, it should be empty.

ccflags
From ccflags.U:

This variable contains any additional C compiler flags desired by the user. It is up to the Make
use this.

cf_by
From cf_who.U:

Login name of the person who ran the Configure script and answered the questions. This is use
both config.sh and config_h.SH.

cf_email
From cf_email.U:

Electronic mail address of the person who ran Configure. This can be used by units that requ
user‘s e−mail, like MailList.U .

cf_time
From cf_who.U:

Holds the output of the date command when the configuration file was produced. This is used to
both config.sh and config_h.SH.

chgrp
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

chmod
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

chown
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

clocktype
From d_times.U:

This variable holds the type returned by times() . It can be long, or clock_t on BSD sites (in which
case <sys/types.h should be included).

comm
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the c
18−Oct−1998 Version 5.005_02 789

Config Perl Programmers Reference Guide Config

ms it is
le is

e cp

 cpp

.

 to use

n the

ut the
 can be
piler.
program. After Configure runs, the value is reset to a plain comm and is not useful.

compress
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

contains
From contains.U:

This variable holds the command to do a grep with a proper return status. On most sane syste
simply grep . On insane systems it is a grep followed by a cat followed by a test. This variab
primarily for the use of other Configure units.

cp From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain cp and is not useful.

cpio
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

cpp From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain cpp and is not useful.

cpp_stuff
From cpp_stuff.U:

This variable contains an identification of the catenation mechanism used by the C preprocessor

cppflags
From ccflags.U:

This variable holds the flags that will be passed to the C pre− processor. It is up to the Makefile
it.

cpplast
From cppstdin.U:

This variable has the same functionality as cppminus, only it applies to cpprun and not cppstdin.

cppminus
From cppstdin.U:

This variable contains the second part of the string which will invoke the C preprocessor o
standard input and produce to standard output. This variable will have the value − if cppstdin needs a
minus to specify standard input, otherwise the value is "".

cpprun
From cppstdin.U:

This variable contains the command which will invoke a C preprocessor on standard input and p
output to stdout. It is guaranteed not to be a wrapper and may be a null string if no preprocessor
made directly available. This preprocessor might be different from the one used by the C com
Don‘t forget to append cpplast after the preprocessor options.

cppstdin
From cppstdin.U:
790 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

nd put
bols.

 csh

could

e

ry

r

This variable contains the command which will invoke the C preprocessor on standard input a
the output to stdout. It is primarily used by other Configure units that ask about preprocessor sym

cryptlib
From d_crypt.U:

This variable holds −lcrypt or the path to a libcrypt.a archive if the crypt() function is not defined
in the standard C library. It is up to the Makefile to use this.

csh From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain csh and is not useful.

d

d_Gconvert
From d_gconvert.U:

This variable holds what Gconvert is defined as to convert floating point numbers into strings. It
be gconvert or a more complex macro emulating gconvert with gcvt() or sprintf.

d_access
From d_access.U:

This variable conditionally defines HAS_ACCESS if the access() system call is available to check
for access permissions using real IDs.

d_alarm
From d_alarm.U:

This variable conditionally defines the HAS_ALARM symbol, which indicates to the C program that th
alarm() routine is available.

d_archlib
From archlib.U:

This variable conditionally defines ARCHLIB to hold the pathname of architecture−dependent libra
files for $package. If $archlib is the same as $privlib, then this is set to undef.

d_attribut
From d_attribut.U:

This variable conditionally defines HASATTRIBUTE, which indicates the C compiler can check fo
function attributes, such as printf formats.

d_bcmp
From d_bcmp.U:

This variable conditionally defines the HAS_BCMP symbol if the bcmp() routine is available to
compare strings.

d_bcopy
From d_bcopy.U:

This variable conditionally defines the HAS_BCOPY symbol if the bcopy() routine is available to
copy strings.

d_bsd
From Guess.U:

This symbol conditionally defines the symbol BSD when running on a BSD system.
18−Oct−1998 Version 5.005_02 791

Config Perl Programmers Reference Guide Config

as

s

large

ive

.

e

t

e

d_bsdgetpgrp
From d_getpgrp.U:

This variable conditionally defines USE_BSD_GETPGRP if getpgrp needs one arguments where
USG one needs none.

d_bsdsetpgrp
From d_setpgrp.U:

This variable conditionally defines USE_BSD_SETPGRP if setpgrp needs two arguments wherea
USG one needs none. See also d_setpgid for a POSIX interface.

d_bzero
From d_bzero.U:

This variable conditionally defines the HAS_BZERO symbol if the bzero() routine is available to set
memory to 0.

d_casti32
From d_casti32.U:

This variable conditionally defines CASTI32, which indicates whether the C compiler can cast
floats to 32−bit ints.

d_castneg
From d_castneg.U:

This variable conditionally defines CASTNEG, which indicates wether the C compiler can cast negat
float to unsigned.

d_charvspr
From d_vprintf.U:

This variable conditionally defines CHARVSPRINTF if this system has vsprintf returning type (char*)
 The trend seems to be to declare it as "int vsprintf() ".

d_chown
From d_chown.U:

This variable conditionally defines the HAS_CHOWN symbol, which indicates to the C program that th
chown() routine is available.

d_chroot
From d_chroot.U:

This variable conditionally defines the HAS_CHROOT symbol, which indicates to the C program tha
the chroot() routine is available.

d_chsize
From d_chsize.U:

This variable conditionally defines the CHSIZE symbol, which indicates to the C program that th
chsize() routine is available to truncate files. You might need a −lx to get this routine.

d_closedir
From d_closedir.U:

This variable conditionally defines HAS_CLOSEDIR if closedir() is available.

d_const
From d_const.U:
792 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

is

e

ell

t

of

t

t

rt
This variable conditionally defines the HASCONST symbol, which indicates to the C program that th
C compiler knows about the const type.

d_crypt
From d_crypt.U:

This variable conditionally defines the CRYPT symbol, which indicates to the C program that th
crypt() routine is available to encrypt passwords and the like.

d_csh
From d_csh.U:

This variable conditionally defines the CSH symbol, which indicates to the C program that the C−sh
exists.

d_cuserid
From d_cuserid.U:

This variable conditionally defines the HAS_CUSERID symbol, which indicates to the C program tha
the cuserid() routine is available to get character login names.

d_dbl_dig
From d_dbl_dig.U:

This variable conditionally defines d_dbl_dig if this system‘s header files provide DBL_DIG, which is
the number of significant digits in a double precision number.

d_difftime
From d_difftime.U:

This variable conditionally defines the HAS_DIFFTIME symbol, which indicates to the C program
that the difftime() routine is available.

d_dirnamlen
From i_dirent.U:

This variable conditionally defines DIRNAMLEN, which indicates to the C program that the length
directory entry names is provided by a d_namelen field.

d_dlerror
From d_dlerror.U:

This variable conditionally defines the HAS_DLERROR symbol, which indicates to the C program tha
the dlerror() routine is available.

d_dlopen
From d_dlopen.U:

This variable conditionally defines the HAS_DLOPEN symbol, which indicates to the C program tha
the dlopen() routine is available.

d_dlsymun
From d_dlsymun.U:

This variable conditionally defines DLSYM_NEEDS_UNDERSCORE, which indicates that we need to
prepend an underscore to the symbol name before calling dlsym() .

d_dosuid
From d_dosuid.U:

This variable conditionally defines the symbol DOSUID, which tells the C program that it should inse
setuid emulation code on hosts which have setuid #! scripts disabled.
18−Oct−1998 Version 5.005_02 793

Config Perl Programmers Reference Guide Config

a

t

t

d_dup2
From d_dup2.U:

This variable conditionally defines HAS_DUP2 if dup2() is available to duplicate file descriptors.

d_endgrent
From d_endgrent.U:

This variable conditionally defines the HAS_ENDGRENT symbol, which indicates to the C program
that the endgrent() routine is available for sequential access of the group database.

d_endhent
From d_endhent.U:

This variable conditionally defines HAS_ENDHOSTENT if endhostent() is available to close
whatever was being used for host queries.

d_endnent
From d_endnent.U:

This variable conditionally defines HAS_ENDNETENT if endnetent() is available to close
whatever was being used for network queries.

d_endpent
From d_endpent.U:

This variable conditionally defines HAS_ENDPROTOENT if endprotoent() is available to close
whatever was being used for protocol queries.

d_endpwent
From d_endpwent.U:

This variable conditionally defines the HAS_ENDPWENT symbol, which indicates to the C program
that the endpwent() routine is available for sequential access of the passwd database.

d_endsent
From d_endsent.U:

This variable conditionally defines HAS_ENDSERVENT if endservent() is available to close
whatever was being used for service queries.

d_eofnblk
From nblock_io.U:

This variable conditionally defines EOF_NONBLOCK if EOF can be seen when reading from
non−blocking I/O source.

d_eunice
From Guess.U:

This variable conditionally defines the symbols EUNICE and VAX, which alerts the C program that i
must deal with ideosyncracies of VMS.

d_fchmod
From d_fchmod.U:

This variable conditionally defines the HAS_FCHMOD symbol, which indicates to the C program tha
the fchmod() routine is available to change mode of opened files.

d_fchown
From d_fchown.U:
794 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

t

s who
_set,

e

ns
This variable conditionally defines the HAS_FCHOWN symbol, which indicates to the C program tha
the fchown() routine is available to change ownership of opened files.

d_fcntl
From d_fcntl.U:

This variable conditionally defines the HAS_FCNTL symbol, and indicates whether the fcntl()
function exists

d_fd_macros
From d_fd_set.U:

This variable contains the eventual value of the HAS_FD_MACROS symbol, which indicates if your C
compiler knows about the macros which manipulate an fd_set.

d_fd_set
From d_fd_set.U:

This variable contains the eventual value of the HAS_FD_SET symbol, which indicates if your C
compiler knows about the fd_set typedef.

d_fds_bits
From d_fd_set.U:

This variable contains the eventual value of the HAS_FDS_BITS symbol, which indicates if your
fd_set typedef contains the fds_bits member. If you have an fd_set typedef, but the dweeb
installed it did a half−fast job and neglected to provide the macros to manipulate an fd
HAS_FDS_BITS will let us know how to fix the gaffe.

d_fgetpos
From d_fgetpos.U:

This variable conditionally defines HAS_FGETPOS if fgetpos() is available to get the file position
indicator.

d_flexfnam
From d_flexfnam.U:

This variable conditionally defines the FLEXFILENAMES symbol, which indicates that the system
supports filenames longer than 14 characters.

d_flock
From d_flock.U:

This variable conditionally defines HAS_FLOCK if flock() is available to do file locking.

d_fork
From d_fork.U:

This variable conditionally defines the HAS_FORK symbol, which indicates to the C program that th
fork() routine is available.

d_fpathconf
From d_pathconf.U:

This variable conditionally defines the HAS_FPATHCONF symbol, which indicates to the C program
that the pathconf() routine is available to determine file−system related limits and optio
associated with a given open file descriptor.

d_fsetpos
From d_fsetpos.U:
18−Oct−1998 Version 5.005_02 795

Config Perl Programmers Reference Guide Config

e or
This variable conditionally defines HAS_FSETPOS if fsetpos() is available to set the file position
indicator.

d_ftime
From d_ftime.U:

This variable conditionally defines the HAS_FTIME symbol, which indicates that the ftime()
routine exists. The ftime() routine is basically a sub−second accuracy clock.

d_getgrent
From d_getgrent.U:

This variable conditionally defines the HAS_GETGRENT symbol, which indicates to the C program
that the getgrent() routine is available for sequential access of the group database.

d_getgrps
From d_getgrps.U:

This variable conditionally defines the HAS_GETGROUPS symbol, which indicates to the C program
that the getgroups() routine is available to get the list of process groups.

d_gethbyaddr
From d_gethbyad.U:

This variable conditionally defines the HAS_GETHOSTBYADDR symbol, which indicates to the C
program that the gethostbyaddr() routine is available to look up hosts by their IP addresses.

d_gethbyname
From d_gethbynm.U:

This variable conditionally defines the HAS_GETHOSTBYNAME symbol, which indicates to the C
program that the gethostbyname() routine is available to look up host names in some data bas
other.

d_gethent
From d_gethent.U:

This variable conditionally defines HAS_GETHOSTENT if gethostent() is available to look up
host names in some data base or another.

d_gethname
From d_gethname.U:

This variable conditionally defines the HAS_GETHOSTNAME symbol, which indicates to the C
program that the gethostname() routine may be used to derive the host name.

d_gethostprotos
From d_gethostprotos.U:

This variable conditionally defines the HAS_GETHOST_PROTOS symbol, which indicates to the C
program that <netdb.h supplies prototypes for the various gethost*() functions. See also
netdbtype.U for probing for various netdb types.

d_getlogin
From d_getlogin.U:

This variable conditionally defines the HAS_GETLOGIN symbol, which indicates to the C program
that the getlogin() routine is available to get the login name.

d_getnbyaddr
From d_getnbyad.U:
796 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

.

t

gram

t

This variable conditionally defines the HAS_GETNETBYADDR symbol, which indicates to the C
program that the getnetbyaddr() routine is available to look up networks by their IP addresses.

d_getnbyname
From d_getnbynm.U:

This variable conditionally defines the HAS_GETNETBYNAME symbol, which indicates to the C
program that the getnetbyname() routine is available to look up networks by their names.

d_getnent
From d_getnent.U:

This variable conditionally defines HAS_GETNETENT if getnetent() is available to look up
network names in some data base or another.

d_getnetprotos
From d_getnetprotos.U:

This variable conditionally defines the HAS_GETNET_PROTOS symbol, which indicates to the C
program that <netdb.h supplies prototypes for the various getnet*() functions. See also
netdbtype.U for probing for various netdb types.

d_getpbyname
From d_getprotby.U:

This variable conditionally defines the HAS_GETPROTOBYNAME symbol, which indicates to the C
program that the getprotobyname() routine is available to look up protocols by their name.

d_getpbynumber
From d_getprotby.U:

This variable conditionally defines the HAS_GETPROTOBYNUMBER symbol, which indicates to the C
program that the getprotobynumber() routine is available to look up protocols by their number

d_getpent
From d_getpent.U:

This variable conditionally defines HAS_GETPROTOENT if getprotoent() is available to look up
protocols in some data base or another.

d_getpgid
From d_getpgid.U:

This variable conditionally defines the HAS_GETPGID symbol, which indicates to the C program tha
the getpgid(pid) function is available to get the process group id.

d_getpgrp2
From d_getpgrp2.U:

This variable conditionally defines the HAS_GETPGRP2 symbol, which indicates to the C pro
that the getpgrp2() (as in DG/UX) routine is available to get the current process group.

d_getpgrp
From d_getpgrp.U:

This variable conditionally defines HAS_GETPGRP if getpgrp() is available to get the current
process group.

d_getppid
From d_getppid.U:

This variable conditionally defines the HAS_GETPPID symbol, which indicates to the C program tha
the getppid() routine is available to get the parent process ID .
18−Oct−1998 Version 5.005_02 797

Config Perl Programmers Reference Guide Config

ably

s

d_getprior
From d_getprior.U:

This variable conditionally defines HAS_GETPRIORITY if getpriority() is available to get a
process‘s priority.

d_getprotoprotos
From d_getprotoprotos.U:

This variable conditionally defines the HAS_GETPROTO_PROTOS symbol, which indicates to the C
program that <netdb.h supplies prototypes for the various getproto*() functions. See also
netdbtype.U for probing for various netdb types.

d_getpwent
From d_getpwent.U:

This variable conditionally defines the HAS_GETPWENT symbol, which indicates to the C program
that the getpwent() routine is available for sequential access of the passwd database.

d_getsbyname
From d_getsrvby.U:

This variable conditionally defines the HAS_GETSERVBYNAME symbol, which indicates to the C
program that the getservbyname() routine is available to look up services by their name.

d_getsbyport
From d_getsrvby.U:

This variable conditionally defines the HAS_GETSERVBYPORT symbol, which indicates to the C
program that the getservbyport() routine is available to look up services by their port.

d_getsent
From d_getsent.U:

This variable conditionally defines HAS_GETSERVENT if getservent() is available to look up
network services in some data base or another.

d_getservprotos
From d_getservprotos.U:

This variable conditionally defines the HAS_GETSERV_PROTOS symbol, which indicates to the C
program that <netdb.h supplies prototypes for the various getserv*() functions. See also
netdbtype.U for probing for various netdb types.

d_gettimeod
From d_ftime.U:

This variable conditionally defines the HAS_GETTIMEOFDAY symbol, which indicates that the
gettimeofday() system call exists (to obtain a sub−second accuracy clock). You should prob
include <sys/resource.h.

d_gnulibc
From d_gnulibc.U:

Defined if we‘re dealing with the GNU C Library.

d_grpasswd
From i_grp.U:

This variable conditionally defines GRPASSWD, which indicates that struct group in <grp.h contain
gr_passwd.
798 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

at

t

t

d_htonl
From d_htonl.U:

This variable conditionally defines HAS_HTONL if htonl() and its friends are available to do
network order byte swapping.

d_index
From d_strchr.U:

This variable conditionally defines HAS_INDEX if index() and rindex() are available for string
searching.

d_inetaton
From d_inetaton.U:

This variable conditionally defines the HAS_INET_ATON symbol, which indicates to the C program
that the inet_aton() function is available to parse IP address dotted−quad strings.

d_isascii
From d_isascii.U:

This variable conditionally defines the HAS_ISASCII constant, which indicates to the C program th
isascii() is available.

d_killpg
From d_killpg.U:

This variable conditionally defines the HAS_KILLPG symbol, which indicates to the C program tha
the killpg() routine is available to kill process groups.

d_lchown
From d_lchown.U:

This variable conditionally defines the HAS_LCHOWN symbol, which indicates to the C program tha
the lchown() routine is available to operate on a symbolic link (instead of following the link).

d_link
From d_link.U:

This variable conditionally defines HAS_LINK if link() is available to create hard links.

d_locconv
From d_locconv.U:

This variable conditionally defines HAS_LOCALECONV if localeconv() is available for numeric
and monetary formatting conventions.

d_lockf
From d_lockf.U:

This variable conditionally defines HAS_LOCKF if lockf() is available to do file locking.

d_longdbl
From d_longdbl.U:

This variable conditionally defines HAS_LONG_DOUBLE if the long double type is supported.

d_longlong
From d_longlong.U:

This variable conditionally defines HAS_LONG_LONG if the long long type is supported.
18−Oct−1998 Version 5.005_02 799

Config Perl Programmers Reference Guide Config

e

.

t

t

t

t

t

e

t

d_lstat
From d_lstat.U:

This variable conditionally defines HAS_LSTAT if lstat() is available to do file stats on symbolic
links.

d_mblen
From d_mblen.U:

This variable conditionally defines the HAS_MBLEN symbol, which indicates to the C program that th
mblen() routine is available to find the number of bytes in a multibye character.

d_mbstowcs
From d_mbstowcs.U:

This variable conditionally defines the HAS_MBSTOWCS symbol, which indicates to the C program
that the mbstowcs() routine is available to convert a multibyte string into a wide character string

d_mbtowc
From d_mbtowc.U:

This variable conditionally defines the HAS_MBTOWC symbol, which indicates to the C program tha
the mbtowc() routine is available to convert multibyte to a wide character.

d_memcmp
From d_memcmp.U:

This variable conditionally defines the HAS_MEMCMP symbol, which indicates to the C program tha
the memcmp() routine is available to compare blocks of memory.

d_memcpy
From d_memcpy.U:

This variable conditionally defines the HAS_MEMCPY symbol, which indicates to the C program tha
the memcpy() routine is available to copy blocks of memory.

d_memmove
From d_memmove.U:

This variable conditionally defines the HAS_MEMMOVE symbol, which indicates to the C program tha
the memmove() routine is available to copy potentatially overlapping blocks of memory.

d_memset
From d_memset.U:

This variable conditionally defines the HAS_MEMSET symbol, which indicates to the C program tha
the memset() routine is available to set blocks of memory.

d_mkdir
From d_mkdir.U:

This variable conditionally defines the HAS_MKDIR symbol, which indicates to the C program that th
mkdir() routine is available to create directories..

d_mkfifo
From d_mkfifo.U:

This variable conditionally defines the HAS_MKFIFO symbol, which indicates to the C program tha
the mkfifo() routine is available.
800 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

t

)

t

t

t

t

cial

e

d
is
d_mktime
From d_mktime.U:

This variable conditionally defines the HAS_MKTIME symbol, which indicates to the C program tha
the mktime() routine is available.

d_msg
From d_msg.U:

This variable conditionally defines the HAS_MSG symbol, which indicates that the entire msg*(2
library is present.

d_msgctl
From d_msgctl.U:

This variable conditionally defines the HAS_MSGCTL symbol, which indicates to the C program tha
the msgctl() routine is available.

d_msgget
From d_msgget.U:

This variable conditionally defines the HAS_MSGGET symbol, which indicates to the C program tha
the msgget() routine is available.

d_msgrcv
From d_msgrcv.U:

This variable conditionally defines the HAS_MSGRCV symbol, which indicates to the C program tha
the msgrcv() routine is available.

d_msgsnd
From d_msgsnd.U:

This variable conditionally defines the HAS_MSGSND symbol, which indicates to the C program tha
the msgsnd() routine is available.

d_mymalloc
From mallocsrc.U:

This variable conditionally defines MYMALLOC in case other parts of the source want to take spe
action if MYMALLOC is used. This may include different sorts of profiling or error detection.

d_nice
From d_nice.U:

This variable conditionally defines the HAS_NICE symbol, which indicates to the C program that th
nice() routine is available.

d_oldpthreads
From usethreads.U:

This variable conditionally defines the OLD_PTHREADS_API symbol, and indicates that Perl shoul
be built to use the old draft POSIX threads API . This is only potneially meaningful if usethreads
set.

d_oldsock
From d_socket.U:

This variable conditionally defines the OLDSOCKET symbol, which indicates that the BSD socket
interface is based on 4.1c and not 4.2.
18−Oct−1998 Version 5.005_02 801

Config Perl Programmers Reference Guide Config

he C

ns

e

d

e

e

it
d_open3
From d_open3.U:

This variable conditionally defines the HAS_OPEN3 manifest constant, which indicates to t
program that the 3 argument version of the open(2) function is available.

d_pathconf
From d_pathconf.U:

This variable conditionally defines the HAS_PATHCONF symbol, which indicates to the C program
that the pathconf() routine is available to determine file−system related limits and optio
associated with a given filename.

d_pause
From d_pause.U:

This variable conditionally defines the HAS_PAUSE symbol, which indicates to the C program that th
pause() routine is available to suspend a process until a signal is received.

d_phostname
From d_gethname.U:

This variable conditionally defines the PHOSTNAME symbol, which contains the shell comman
which, when fed to popen() , may be used to derive the host name.

d_pipe
From d_pipe.U:

This variable conditionally defines the HAS_PIPE symbol, which indicates to the C program that th
pipe() routine is available to create an inter−process channel.

d_poll
From d_poll.U:

This variable conditionally defines the HAS_POLL symbol, which indicates to the C program that th
poll() routine is available to poll active file descriptors.

d_portable
From d_portable.U:

This variable conditionally defines the PORTABLE symbol, which indicates to the C program that
should not assume that it is running on the machine it was compiled on.

d_pthread_yield
From d_pthread_y.U:

This variable conditionally defines the HAS_PTHREAD_YIELD symbol if the pthread_yield routine is
available to yield the execution of the current thread.

d_pthreads_created_joinable
From d_pthreadj.U:

This variable conditionally defines the PTHREADS_CREATED_JOINABLE symbol if pthreads are
created in the joinable (aka undetached) state.

d_pwage
From i_pwd.U:

This variable conditionally defines PWAGE, which indicates that struct passwd contains pw_age.
802 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

s

.

s

s

.

s

.

t

d_pwchange
From i_pwd.U:

This variable conditionally defines PWCHANGE, which indicates that struct passwd contain
pw_change.

d_pwclass
From i_pwd.U:

This variable conditionally defines PWCLASS, which indicates that struct passwd contains pw_class

d_pwcomment
From i_pwd.U:

This variable conditionally defines PWCOMMENT, which indicates that struct passwd contain
pw_comment.

d_pwexpire
From i_pwd.U:

This variable conditionally defines PWEXPIRE, which indicates that struct passwd contain
pw_expire.

d_pwgecos
From i_pwd.U:

This variable conditionally defines PWGECOS, which indicates that struct passwd contains pw_gecos

d_pwpasswd
From i_pwd.U:

This variable conditionally defines PWPASSWD, which indicates that struct passwd contain
pw_passwd.

d_pwquota
From i_pwd.U:

This variable conditionally defines PWQUOTA, which indicates that struct passwd contains pw_quota

d_readdir
From d_readdir.U:

This variable conditionally defines HAS_READDIR if readdir() is available to read directory
entries.

d_readlink
From d_readlink.U:

This variable conditionally defines the HAS_READLINK symbol, which indicates to the C program
that the readlink() routine is available to read the value of a symbolic link.

d_rename
From d_rename.U:

This variable conditionally defines the HAS_RENAME symbol, which indicates to the C program tha
the rename() routine is available to rename files.

d_rewinddir
From d_readdir.U:

This variable conditionally defines HAS_REWINDDIR if rewinddir() is available.
18−Oct−1998 Version 5.005_02 803

Config Perl Programmers Reference Guide Config

)

t

*

e

d_rmdir
From d_rmdir.U:

This variable conditionally defines HAS_RMDIR if rmdir() is available to remove directories.

d_safebcpy
From d_safebcpy.U:

This variable conditionally defines the HAS_SAFE_BCOPY symbol if the bcopy() routine can do
overlapping copies.

d_safemcpy
From d_safemcpy.U:

This variable conditionally defines the HAS_SAFE_MEMCPY symbol if the memcpy() routine can do
overlapping copies.

d_sanemcmp
From d_sanemcmp.U:

This variable conditionally defines the HAS_SANE_MEMCMP symbol if the memcpy() routine is
available and can be used to compare relative magnitudes of chars with their high bits set.

d_sched_yield
From d_pthread_y.U:

This variable conditionally defines the HAS_SCHED_YIELD symbol if the sched_yield routine is
available to yield the execution of the current thread.

d_seekdir
From d_readdir.U:

This variable conditionally defines HAS_SEEKDIR if seekdir() is available.

d_select
From d_select.U:

This variable conditionally defines HAS_SELECT if select() is available to select active file
descriptors. A <sys/time.h inclusion may be necessary for the timeout field.

d_sem
From d_sem.U:

This variable conditionally defines the HAS_SEM symbol, which indicates that the entire sem*(2
library is present.

d_semctl
From d_semctl.U:

This variable conditionally defines the HAS_SEMCTL symbol, which indicates to the C program tha
the semctl() routine is available.

d_semctl_semid_ds
From d_union_senum.U:

This variable conditionally defines USE_SEMCTL_SEMID_DS, which indicates that struct semid_ds
is to be used for semctl IPC_STAT.

d_semctl_semun
From d_union_senum.U:

This variable conditionally defines USE_SEMCTL_SEMUN, which indicates that union semun is to b
804 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

t

e

t

t

 or
used for semctl IPC_STAT.

d_semget
From d_semget.U:

This variable conditionally defines the HAS_SEMGET symbol, which indicates to the C program tha
the semget() routine is available.

d_semop
From d_semop.U:

This variable conditionally defines the HAS_SEMOP symbol, which indicates to the C program that th
semop() routine is available.

d_setegid
From d_setegid.U:

This variable conditionally defines the HAS_SETEGID symbol, which indicates to the C program tha
the setegid() routine is available to change the effective gid of the current program.

d_seteuid
From d_seteuid.U:

This variable conditionally defines the HAS_SETEUID symbol, which indicates to the C program tha
the seteuid() routine is available to change the effective uid of the current program.

d_setgrent
From d_setgrent.U:

This variable conditionally defines the HAS_SETGRENT symbol, which indicates to the C program
that the setgrent() routine is available for initializing sequential access to the group database.

d_setgrps
From d_setgrps.U:

This variable conditionally defines the HAS_SETGROUPS symbol, which indicates to the C program
that the setgroups() routine is available to set the list of process groups.

d_sethent
From d_sethent.U:

This variable conditionally defines HAS_SETHOSTENT if sethostent() is available.

d_setlinebuf
From d_setlnbuf.U:

This variable conditionally defines the HAS_SETLINEBUF symbol, which indicates to the C program
that the setlinebuf() routine is available to change stderr or stdout from block−buffered
unbuffered to a line−buffered mode.

d_setlocale
From d_setlocale.U:

This variable conditionally defines HAS_SETLOCALE if setlocale() is available to handle
locale−specific ctype implementations.

d_setnent
From d_setnent.U:

This variable conditionally defines HAS_SETNETENT if setnetent() is available.
18−Oct−1998 Version 5.005_02 805

Config Perl Programmers Reference Guide Config

gram

t

.

l

l

d_setpent
From d_setpent.U:

This variable conditionally defines HAS_SETPROTOENT if setprotoent() is available.

d_setpgid
From d_setpgid.U:

This variable conditionally defines the HAS_SETPGID symbol if the setpgid(pid, gpid) function is
available to set process group ID .

d_setpgrp2
From d_setpgrp2.U:

This variable conditionally defines the HAS_SETPGRP2 symbol, which indicates to the C pro
that the setpgrp2() (as in DG/UX) routine is available to set the current process group.

d_setpgrp
From d_setpgrp.U:

This variable conditionally defines HAS_SETPGRP if setpgrp() is available to set the curren
process group.

d_setprior
From d_setprior.U:

This variable conditionally defines HAS_SETPRIORITY if setpriority() is available to set a
process‘s priority.

d_setpwent
From d_setpwent.U:

This variable conditionally defines the HAS_SETPWENT symbol, which indicates to the C program
that the setpwent() routine is available for initializing sequential access to the passwd database

d_setregid
From d_setregid.U:

This variable conditionally defines HAS_SETREGID if setregid() is available to change the rea
and effective gid of the current process.

d_setresgid
From d_setregid.U:

This variable conditionally defines HAS_SETRESGID if setresgid() is available to change the
real, effective and saved gid of the current process.

d_setresuid
From d_setreuid.U:

This variable conditionally defines HAS_SETREUID if setresuid() is available to change the
real, effective and saved uid of the current process.

d_setreuid
From d_setreuid.U:

This variable conditionally defines HAS_SETREUID if setreuid() is available to change the rea
and effective uid of the current process.

d_setrgid
From d_setrgid.U:
806 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

t

t

p

t

le

)

e

t

e

This variable conditionally defines the HAS_SETRGID symbol, which indicates to the C program tha
the setrgid() routine is available to change the real gid of the current program.

d_setruid
From d_setruid.U:

This variable conditionally defines the HAS_SETRUID symbol, which indicates to the C program tha
the setruid() routine is available to change the real uid of the current program.

d_setsent
From d_setsent.U:

This variable conditionally defines HAS_SETSERVENT if setservent() is available.

d_setsid
From d_setsid.U:

This variable conditionally defines HAS_SETSID if setsid() is available to set the process grou
ID .

d_setvbuf
From d_setvbuf.U:

This variable conditionally defines the HAS_SETVBUF symbol, which indicates to the C program tha
the setvbuf() routine is available to change buffering on an open stdio stream.

d_sfio
From d_sfio.U:

This variable conditionally defines the USE_SFIO symbol, and indicates whether sfio is availab
(and should be used).

d_shm
From d_shm.U:

This variable conditionally defines the HAS_SHM symbol, which indicates that the entire shm*(2
library is present.

d_shmat
From d_shmat.U:

This variable conditionally defines the HAS_SHMAT symbol, which indicates to the C program that th
shmat() routine is available.

d_shmatprototype
From d_shmat.U:

This variable conditionally defines the HAS_SHMAT_PROTOTYPE symbol, which indicates that
sys/shm.h has a prototype for shmat.

d_shmctl
From d_shmctl.U:

This variable conditionally defines the HAS_SHMCTL symbol, which indicates to the C program tha
the shmctl() routine is available.

d_shmdt
From d_shmdt.U:

This variable conditionally defines the HAS_SHMDT symbol, which indicates to the C program that th
shmdt() routine is available.
18−Oct−1998 Version 5.005_02 807

Config Perl Programmers Reference Guide Config

t

.

g

n

n

d_shmget
From d_shmget.U:

This variable conditionally defines the HAS_SHMGET symbol, which indicates to the C program tha
the shmget() routine is available.

d_sigaction
From d_sigaction.U:

This variable conditionally defines the HAS_SIGACTION symbol, which indicates that the Vr4
sigaction() routine is available.

d_sigsetjmp
From d_sigsetjmp.U:

This variable conditionally defines the HAS_SIGSETJMP symbol, which indicates that the
sigsetjmp() routine is available to call setjmp() and optionally save the process‘s signal mask

d_socket
From d_socket.U:

This variable conditionally defines HAS_SOCKET, which indicates that the BSD socket interface is
supported.

d_sockpair
From d_socket.U:

This variable conditionally defines the HAS_SOCKETPAIR symbol, which indicates that the BSD
socketpair() is supported.

d_statblks
From d_statblks.U:

This variable conditionally defines USE_STAT_BLOCKS if this system has a stat structure declarin
st_blksize and st_blocks.

d_stdio_cnt_lval
From d_stdstdio.U:

This variable conditionally defines STDIO_CNT_LVALUE if the FILE_cnt macro can be used as a
lvalue.

d_stdio_ptr_lval
From d_stdstdio.U:

This variable conditionally defines STDIO_PTR_LVALUE if the FILE_ptr macro can be used as a
lvalue.

d_stdiobase
From d_stdstdio.U:

This variable conditionally defines USE_STDIO_BASE if this system has a FILE structure declaring
a usable _base field (or equivalent) in stdio.h.

d_stdstdio
From d_stdstdio.U:

This variable conditionally defines USE_STDIO_PTR if this system has a FILE structure declaring
usable _ptr and _cnt fields (or equivalent) in stdio.h.
808 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

essage

t

t

t

d_strchr
From d_strchr.U:

This variable conditionally defines HAS_STRCHR if strchr() and strrchr() are available for
string searching.

d_strcoll
From d_strcoll.U:

This variable conditionally defines HAS_STRCOLL if strcoll() is available to compare strings
using collating information.

d_strctcpy
From d_strctcpy.U:

This variable conditionally defines the USE_STRUCT_COPY symbol, which indicates to the C
program that this C compiler knows how to copy structures.

d_strerrm
From d_strerror.U:

This variable holds what Strerrr is defined as to translate an error code condition into an error m
string. It could be strerror or a more complex macro emulating strrror with sys_errlist[], or the
unknown string when both strerror and sys_errlist are missing.

d_strerror
From d_strerror.U:

This variable conditionally defines HAS_STRERROR if strerror() is available to translate error
numbers to strings.

d_strtod
From d_strtod.U:

This variable conditionally defines the HAS_STRTOD symbol, which indicates to the C program tha
the strtod() routine is available to provide better numeric string conversion than atof() .

d_strtol
From d_strtol.U:

This variable conditionally defines the HAS_STRTOL symbol, which indicates to the C program tha
the strtol() routine is available to provide better numeric string conversion than atoi() and
friends.

d_strtoul
From d_strtoul.U:

This variable conditionally defines the HAS_STRTOUL symbol, which indicates to the C program tha
the strtoul() routine is available to provide conversion of strings to unsigned long.

d_strxfrm
From d_strxfrm.U:

This variable conditionally defines HAS_STRXFRM if strxfrm() is available to transform strings.

d_suidsafe
From d_dosuid.U:

This variable conditionally defines SETUID_SCRIPTS_ARE_SECURE_NOW if setuid scripts can be
secure. This test looks in /dev/fd/.
18−Oct−1998 Version 5.005_02 809

Config Perl Programmers Reference Guide Config

t

t

r

l

d_symlink
From d_symlink.U:

This variable conditionally defines the HAS_SYMLINK symbol, which indicates to the C program tha
the symlink() routine is available to create symbolic links.

d_syscall
From d_syscall.U:

This variable conditionally defines HAS_SYSCALL if syscall() is available call arbitrary system
calls.

d_sysconf
From d_sysconf.U:

This variable conditionally defines the HAS_SYSCONF symbol, which indicates to the C program tha
the sysconf() routine is available to determine system related limits and options.

d_sysernlst
From d_strerror.U:

This variable conditionally defines HAS_SYS_ERRNOLIST if sys_errnolist[] is available to translate
error numbers to the symbolic name.

d_syserrlst
From d_strerror.U:

This variable conditionally defines HAS_SYS_ERRLIST if sys_errlist[] is available to translate erro
numbers to strings.

d_system
From d_system.U:

This variable conditionally defines HAS_SYSTEM if system() is available to issue a shel
command.

d_tcgetpgrp
From d_tcgtpgrp.U:

This variable conditionally defines the HAS_TCGETPGRP symbol, which indicates to the C program
that the tcgetpgrp() routine is available. to get foreground process group ID .

d_tcsetpgrp
From d_tcstpgrp.U:

This variable conditionally defines the HAS_TCSETPGRP symbol, which indicates to the C program
that the tcsetpgrp() routine is available to set foreground process group ID .

d_telldir
From d_readdir.U:

This variable conditionally defines HAS_TELLDIR if telldir() is available.

d_time
From d_time.U:

This variable conditionally defines the HAS_TIME symbol, which indicates that the time() routine
exists. The time() routine is normaly provided on UNIX systems.

d_times
From d_times.U:
810 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

e

e

t

This variable conditionally defines the HAS_TIMES symbol, which indicates that the times()
routine exists. The times() routine is normaly provided on UNIX systems. You may have to include
<sys/times.h.

d_truncate
From d_truncate.U:

This variable conditionally defines HAS_TRUNCATE if truncate() is available to truncate files.

d_tzname
From d_tzname.U:

This variable conditionally defines HAS_TZNAME if tzname[] is available to access timezone names.

d_umask
From d_umask.U:

This variable conditionally defines the HAS_UMASK symbol, which indicates to the C program that th
umask() routine is available. to set and get the value of the file creation mask.

d_uname
From d_gethname.U:

This variable conditionally defines the HAS_UNAME symbol, which indicates to the C program that th
uname() routine may be used to derive the host name.

d_union_semun
From d_union_senum.U:

This variable conditionally defines HAS_UNION_SEMUN if the union semun is defined by including
<sys/sem.h.

d_vfork
From d_vfork.U:

This variable conditionally defines the HAS_VFORK symbol, which indicates the vfork() routine is
available.

d_void_closedir
From d_closedir.U:

This variable conditionally defines VOID_CLOSEDIR if closedir() does not return a value.

d_voidsig
From d_voidsig.U:

This variable conditionally defines VOIDSIG if this system declares "void (*signal(...))() " in
signal.h. The old way was to declare it as "int (*signal(...))() ".

d_voidtty
From i_sysioctl.U:

This variable conditionally defines USE_IOCNOTTY to indicate that the ioctl() call with
TIOCNOTTY should be used to void tty association. Otherwise (on USG probably), it is enough to
close the standard file decriptors and do a setpgrp() .

d_volatile
From d_volatile.U:

This variable conditionally defines the HASVOLATILE symbol, which indicates to the C program tha
this C compiler knows about the volatile declaration.
18−Oct−1998 Version 5.005_02 811

Config Perl Programmers Reference Guide Config

t

t

r

 date

ersions

older
d_vprintf
From d_vprintf.U:

This variable conditionally defines the HAS_VPRINTF symbol, which indicates to the C program tha
the vprintf() routine is available to printf with a pointer to an argument list.

d_wait4
From d_wait4.U:

This variable conditionally defines the HAS_WAIT4 symbol, which indicates the wait4() routine is
available.

d_waitpid
From d_waitpid.U:

This variable conditionally defines HAS_WAITPID if waitpid() is available to wait for child
process.

d_wcstombs
From d_wcstombs.U:

This variable conditionally defines the HAS_WCSTOMBS symbol, which indicates to the C program
that the wcstombs() routine is available to convert wide character strings to multibyte strings.

d_wctomb
From d_wctomb.U:

This variable conditionally defines the HAS_WCTOMB symbol, which indicates to the C program tha
the wctomb() routine is available to convert a wide character to a multibyte.

d_xenix
From Guess.U:

This variable conditionally defines the symbol XENIX, which alerts the C program that it runs unde
Xenix.

date
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain date and is not useful.

db_hashtype
From i_db.U:

This variable contains the type of the hash structure element in the <db.h header file. In older v
of DB, it was int, while in newer ones it is u_int32_t.

db_prefixtype
From i_db.U:

This variable contains the type of the prefix structure element in the <db.h header file. In
versions of DB, it was int, while in newer ones it is size_t.

direntrytype
From i_dirent.U:

This symbol is set to struct direct or struct dirent depending on whether dirent is
available or not. You should use this pseudo type to portably declare your directory entries.
812 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

at perl

ed

d

 echo

egrep

to the
dlext
From dlext.U:

This variable contains the extension that is to be used for the dynamically loaded modules th
generaties.

dlsrc
From dlsrc.U:

This variable contains the name of the dynamic loading file that will be used with the package.

doublesize
From doublesize.U:

This variable contains the value of the DOUBLESIZE symbol, which indicates to the C program how
many bytes there are in a double.

dynamic_ext
From Extensions.U:

This variable holds a list of XS extension files we want to link dynamically into the package. It is us
by Makefile.

e

eagain
From nblock_io.U:

This variable bears the symbolic errno code set by read() when no data is present on the file an
non−blocking I/O was enabled (otherwise, read() blocks naturally).

ebcdic
From ebcdic.U:

This variable conditionally defines EBCDIC if this system uses EBCDIC encoding. Among other
things, this means that the character ranges are not contiguous. See trnl.U

echo
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain echo and is not useful.

egrep
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain egrep and is not useful.

emacs
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

eunicefix
From Init.U :

When running under Eunice this variable contains a command which will convert a shell script
proper form of text file for it to be executable by the shell. On other systems it is a no−op.
18−Oct−1998 Version 5.005_02 813

Config Perl Programmers Reference Guide Config

 expr

s

 find

 On
 make

ed to

which

which
exe_ext
From Unix.U:

This is an old synonym for _exe.

expr
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain expr and is not useful.

extensions
From Extensions.U:

This variable holds a list of all extension files (both XS and non−xs linked into the package. It i
propagated to Config.pm and is typically used to test whether a particular extesion is available.

f

find
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain find and is not useful.

firstmakefile
From Unix.U:

This variable defines the first file searched by make. On unix, it is makefile (then Makefile).
case−insensitive systems, it might be something else. This is only used to deal with convoluted
depend tricks.

flex
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

fpostype
From fpostype.U:

This variable defines Fpos_t to be something like fpost_t, long, uint, or whatever type is us
declare file positions in libc.

freetype
From mallocsrc.U:

This variable contains the return type of free() . It is usually void, but occasionally int.

full_csh
From d_csh.U:

This variable contains the full pathname to csh , whether or not the user has specified
portability . This is only used in the compiled C program, and we assume that all systems
can share this executable will have the same full pathname to csh.

full_sed
From Loc_sed.U:

This variable contains the full pathname to sed , whether or not the user has specified
portability . This is only used in the compiled C program, and we assume that all systems
can share this executable will have the same full pathname to sed.
814 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

2.

eclare

 grep

for the
),

 gzip
g

gccversion
From cc.U:

If GNU cc (gcc) is used, this variable holds 1 or 2 to indicate whether the compiler is version 1 or
This is used in setting some of the default cflags. It is set to ‘’ if not gcc.

gidtype
From gidtype.U:

This variable defines Gid_t to be something like gid_t, int, ushort, or whatever type is used to d
the return type of getgid() . Typically, it is the type of group ids in the kernel.

grep
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain grep and is not useful.

groupcat
From nis.U:

This variable contains a command that produces the text of the /etc/group file. This is normally "cat
/etc/group", but can be "ypcat group" when NIS is used.

groupstype
From groupstype.U:

This variable defines Groups_t to be something like gid_t, int, ushort, or whatever type is used
second argument to getgroups() and setgroups() . Usually, this is the same as gidtype (gid_t
but sometimes it isn‘t.

gzip
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain gzip and is not useful.

h

h_fcntl
From h_fcntl.U:

This is variable gets set in various places to tell i_fcntl that <fcntl.h should be included.

h_sysfile
From h_sysfile.U:

This is variable gets set in various places to tell i_sys_file that <sys/file.h should be included.

hint
From Oldconfig.U:

Gives the type of hints used for previous answers. May be one of default , recommended or
previous .

hostcat
From nis.U:

This variable contains a command that produces the text of the /etc/hosts file. This is normally "cat
/etc/hosts", but can be "ypcat hosts" when NIS is used.
18−Oct−1998 Version 5.005_02 815

Config Perl Programmers Reference Guide Config

ning
 large

m

de

.h

ld

.h

t

ay
t

huge
From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program run
with a huge memory model. If the huge model is not supported, contains the flag to produce
model programs. It is up to the Makefile to use this.

i

i_arpainet
From i_arpainet.U:

This variable conditionally defines the I_ARPA_INET symbol, and indicates whether a C progra
should include <arpa/inet.h.

i_bsdioctl
From i_sysioctl.U:

This variable conditionally defines the I_SYS_BSDIOCTL symbol, which indicates to the C program
that <sys/bsdioctl.h exists and should be included.

i_db
From i_db.U:

This variable conditionally defines the I_DB symbol, and indicates whether a C program may inclu
Berkeley‘s DB include file <db.h.

i_dbm
From i_dbm.U:

This variable conditionally defines the I_DBM symbol, which indicates to the C program that <dbm
exists and should be included.

i_dirent
From i_dirent.U:

This variable conditionally defines I_DIRENT , which indicates to the C program that it shou
include <dirent.h.

i_dld
From i_dld.U:

This variable conditionally defines the I_DLD symbol, which indicates to the C program that <dld
(GNU dynamic loading) exists and should be included.

i_dlfcn
From i_dlfcn.U:

This variable conditionally defines the I_DLFCN symbol, which indicates to the C program tha
<dlfcn.h exists and should be included.

i_fcntl
From i_fcntl.U:

This variable controls the value of I_FCNTL (which tells the C program to include <fcntl.h).

i_float
From i_float.U:

This variable conditionally defines the I_FLOAT symbol, and indicates whether a C program m
include <float.h to get symbols like DBL_MAX or DBL_MIN, i.e. machine dependent floating poin
values.
816 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

t

ld

ay

ld

ld

ay

ld

t

ld

t

i_gdbm
From i_gdbm.U:

This variable conditionally defines the I_GDBM symbol, which indicates to the C program tha
<gdbm.h exists and should be included.

i_grp
From i_grp.U:

This variable conditionally defines the I_GRP symbol, and indicates whether a C program shou
include <grp.h.

i_limits
From i_limits.U:

This variable conditionally defines the I_LIMITS symbol, and indicates whether a C program m
include <limits.h to get symbols like WORD_BIT and friends.

i_locale
From i_locale.U:

This variable conditionally defines the I_LOCALE symbol, and indicates whether a C program shou
include <locale.h.

i_malloc
From i_malloc.U:

This variable conditionally defines the I_MALLOC symbol, and indicates whether a C program shou
include <malloc.h.

i_math
From i_math.U:

This variable conditionally defines the I_MATH symbol, and indicates whether a C program m
include <math.h.

i_memory
From i_memory.U:

This variable conditionally defines the I_MEMORY symbol, and indicates whether a C program shou
include <memory.h.

i_ndbm
From i_ndbm.U:

This variable conditionally defines the I_NDBM symbol, which indicates to the C program tha
<ndbm.h exists and should be included.

i_netdb
From i_netdb.U:

This variable conditionally defines the I_NETDB symbol, and indicates whether a C program shou
include <netdb.h.

i_neterrno
From i_neterrno.U:

This variable conditionally defines the I_NET_ERRNO symbol, which indicates to the C program tha
<net/errno.h exists and should be included.
18−Oct−1998 Version 5.005_02 817

Config Perl Programmers Reference Guide Config

ld

e

tead of

ld

it

t

t

t

e

m

i_niin
From i_niin.U:

This variable conditionally defines I_NETINET_IN , which indicates to the C program that it shou
include <netinet/in.h. Otherwise, you may try <sys/in.h.

i_pwd
From i_pwd.U:

This variable conditionally defines I_PWD, which indicates to the C program that it should includ
<pwd.h.

i_rpcsvcdbm
From i_dbm.U:

This variable conditionally defines the I_RPCSVC_DBM symbol, which indicates to the C program
that <rpcsvc/dbm.h exists and should be included. Some System V systems might need this ins
<dbm.h.

i_sfio
From i_sfio.U:

This variable conditionally defines the I_SFIO symbol, and indicates whether a C program shou
include <sfio.h.

i_sgtty
From i_termio.U:

This variable conditionally defines the I_SGTTY symbol, which indicates to the C program that
should include <sgtty.h rather than <termio.h.

i_stdarg
From i_varhdr.U:

This variable conditionally defines the I_STDARG symbol, which indicates to the C program tha
<stdarg.h exists and should be included.

i_stddef
From i_stddef.U:

This variable conditionally defines the I_STDDEF symbol, which indicates to the C program tha
<stddef.h exists and should be included.

i_stdlib
From i_stdlib.U:

This variable conditionally defines the I_STDLIB symbol, which indicates to the C program tha
<stdlib.h exists and should be included.

i_string
From i_string.U:

This variable conditionally defines the I_STRING symbol, which indicates that <string.h should b
included rather than <strings.h.

i_sysdir
From i_sysdir.U:

This variable conditionally defines the I_SYS_DIR symbol, and indicates whether a C progra
should include <sys/dir.h.
818 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

m

t

ld

t

m

m

ld

tl

m

i_sysfile
From i_sysfile.U:

This variable conditionally defines the I_SYS_FILE symbol, and indicates whether a C progra
should include <sys/file.h to get R_OK and friends.

i_sysfilio
From i_sysioctl.U:

This variable conditionally defines the I_SYS_FILIO symbol, which indicates to the C program tha
<sys/filio.h exists and should be included in preference to <sys/ioctl.h.

i_sysin
From i_niin.U:

This variable conditionally defines I_SYS_IN , which indicates to the C program that it shou
include <sys/in.h instead of <netinet/in.h.

i_sysioctl
From i_sysioctl.U:

This variable conditionally defines the I_SYS_IOCTL symbol, which indicates to the C program tha
<sys/ioctl.h exists and should be included.

i_sysndir
From i_sysndir.U:

This variable conditionally defines the I_SYS_NDIR symbol, and indicates whether a C progra
should include <sys/ndir.h.

i_sysparam
From i_sysparam.U:

This variable conditionally defines the I_SYS_PARAM symbol, and indicates whether a C progra
should include <sys/param.h.

i_sysresrc
From i_sysresrc.U:

This variable conditionally defines the I_SYS_RESOURCE symbol, and indicates whether a C
program should include <sys/resource.h.

i_sysselct
From i_sysselct.U:

This variable conditionally defines I_SYS_SELECT, which indicates to the C program that it shou
include <sys/select.h in order to get the definition of struct timeval.

i_syssockio
From i_sysioctl.U:

This variable conditionally defines I_SYS_SOCKIO to indicate to the C program that socket ioc
codes may be found in <sys/sockio.h instead of <sys/ioctl.h.

i_sysstat
From i_sysstat.U:

This variable conditionally defines the I_SYS_STAT symbol, and indicates whether a C progra
should include <sys/stat.h.
18−Oct−1998 Version 5.005_02 819

Config Perl Programmers Reference Guide Config

ld

t

m

m

ld

ld

it

e

e

ld
i_systime
From i_time.U:

This variable conditionally defines I_SYS_TIME , which indicates to the C program that it shou
include <sys/time.h.

i_systimek
From i_time.U:

This variable conditionally defines I_SYS_TIME_KERNEL, which indicates to the C program that i
should include <sys/time.h with KERNEL defined.

i_systimes
From i_systimes.U:

This variable conditionally defines the I_SYS_TIMES symbol, and indicates whether a C progra
should include <sys/times.h.

i_systypes
From i_systypes.U:

This variable conditionally defines the I_SYS_TYPES symbol, and indicates whether a C progra
should include <sys/types.h.

i_sysun
From i_sysun.U:

This variable conditionally defines I_SYS_UN, which indicates to the C program that it shou
include <sys/un.h to get UNIX domain socket definitions.

i_syswait
From i_syswait.U:

This variable conditionally defines I_SYS_WAIT , which indicates to the C program that it shou
include <sys/wait.h.

i_termio
From i_termio.U:

This variable conditionally defines the I_TERMIO symbol, which indicates to the C program that
should include <termio.h rather than <sgtty.h.

i_termios
From i_termio.U:

This variable conditionally defines the I_TERMIOS symbol, which indicates to the C program that th
POSIX <termios.h file is to be included.

i_time
From i_time.U:

This variable conditionally defines I_TIME , which indicates to the C program that it should includ
<time.h.

i_unistd
From i_unistd.U:

This variable conditionally defines the I_UNISTD symbol, and indicates whether a C program shou
include <unistd.h.
820 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

ld

ay

ld

ld

y

extra
i_utime
From i_utime.U:

This variable conditionally defines the I_UTIME symbol, and indicates whether a C program shou
include <utime.h.

i_values
From i_values.U:

This variable conditionally defines the I_VALUES symbol, and indicates whether a C program m
include <values.h to get symbols like MAXLONG and friends.

i_varargs
From i_varhdr.U:

This variable conditionally defines I_VARARGS, which indicates to the C program that it shou
include <varargs.h.

i_varhdr
From i_varhdr.U:

Contains the name of the header to be included to get va_dcl definition. Typically one of varargs.h or
stdarg.h.

i_vfork
From i_vfork.U:

This variable conditionally defines the I_VFORK symbol, and indicates whether a C program shou
include vfork.h.

incpath
From usrinc.U:

This variable must preceed the normal include path to get hte right one, as in
$incpath/usr/include or $incpath/usr/lib . Value can be "" or /bsd43 on mips.

inews
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

installarchlib
From archlib.U:

This variable is really the same as archlibexp but may differ on those systems using AFS. For extra
portability, only this variable should be used in makefiles.

installbin
From bin.U:

This variable is the same as binexp unless AFS is running in which case the user is explicitel
prompted for it. This variable should always be used in your makefiles for maximum portability.

installman1dir
From man1dir.U:

This variable is really the same as man1direxp, unless you are using AFS in which case it points to the
read/write location whereas man1direxp only points to the read−only access location. For
portability, you should only use this variable within your makefiles.
18−Oct−1998 Version 5.005_02 821

Config Perl Programmers Reference Guide Config

extra

 for

y

ning

stems,
installman3dir
From man3dir.U:

This variable is really the same as man3direxp, unless you are using AFS in which case it points to the
read/write location whereas man3direxp only points to the read−only access location. For
portability, you should only use this variable within your makefiles.

installprivlib
From privlib.U:

This variable is really the same as privlibexp but may differ on those systems using AFS. For extra
portability, only this variable should be used in makefiles.

installscript
From scriptdir.U:

This variable is usually the same as scriptdirexp, unless you are on a system running AFS, in which
case they may differ slightly. You should always use this variable within your makefiles
portability.

installsitearch
From sitearch.U:

This variable is really the same as sitearchexp but may differ on those systems using AFS. For extra
portability, only this variable should be used in makefiles.

installsitelib
From sitelib.U:

This variable is really the same as sitelibexp but may differ on those systems using AFS. For extra
portability, only this variable should be used in makefiles.

intsize
From intsize.U:

This variable contains the value of the INTSIZE symbol, which indicates to the C program how man
bytes there are in an int.

k

known_extensions
From Extensions.U:

This variable holds a list of all XS extensions included in the package.

ksh From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

l

large
From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program run
with a large memory model. It is up to the Makefile to use this.

ld From dlsrc.U:

This variable indicates the program to be used to link libraries for dynamic loading. On some sy
it is ld . On ELF systems, it should be $cc. Mostly, we‘ll try to respect the hint file setting.
822 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

to use

 less

t

.

 the c

 line
lddlflags
From dlsrc.U:

This variable contains any special flags that might need to be passed to $ld to create a shared library
suitable for dynamic loading. It is up to the makefile to use it. For hpux, it should be −b. For sunos
4.1, it is empty.

ldflags
From ccflags.U:

This variable contains any additional C loader flags desired by the user. It is up to the Makefile
this.

less
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain less and is not useful.

lib_ext
From Unix.U:

This is an old synonym for _a.

libc
From libc.U:

This variable contains the location of the C library.

libperl
From libperl.U:

The perl executable is obtained by linking perlmain.c with libperl, any static extensions (usually jus
DynaLoader), and any other libraries needed on this system. libperl is usually libperl.a, but can also
be libperl.so.xxx if the user wishes to build a perl executable with a shared library.

libpth
From libpth.U:

This variable holds the general path used to find libraries. It is intended to be used by other units

libs
From libs.U:

This variable holds the additional libraries we want to use. It is up to the Makefile to deal with it.

libswanted
From Myinit.U :

This variable holds a list of all the libraries we want to search. The order is chosen to pick up
library ahead of ucb or bsd libraries for SVR4.

line
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain line and is not useful.

lint
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.
18−Oct−1998 Version 5.005_02 823

Config Perl Programmers Reference Guide Config

kefile

e ln

 It can

priate
 the

d to be

he ls

eclare
lkflags
From ccflags.U:

This variable contains any additional C partial linker flags desired by the user. It is up to the Ma
to use this.

ln From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain ln and is not useful.

lns From lns.U:

This variable holds the name of the command to make symbolic links (if they are supported).
be used in the Makefile. It is either ln −s or ln

locincpth
From ccflags.U:

This variable contains a list of additional directories to be searched by the compiler. The appro
−I directives will be added to ccflags. This is intended to simplify setting local directories from
Configure command line. It‘s not much, but it parallels the loclibpth stuff in libpth.U.

loclibpth
From libpth.U:

This variable holds the paths used to find local libraries. It is prepended to libpth, and is intende
easily set from the command line.

longdblsize
From d_longdbl.U:

This variable contains the value of the LONG_DOUBLESIZE symbol, which indicates to the C
program how many bytes there are in a long double, if this system supports long doubles.

longlongsize
From d_longlong.U:

This variable contains the value of the LONGLONGSIZE symbol, which indicates to the C program
how many bytes there are in a long long, if this system supports long long.

longsize
From intsize.U:

This variable contains the value of the LONGSIZE symbol, which indicates to the C program how
many bytes there are in a long.

lp From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

lpr From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

ls From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of t
program. After Configure runs, the value is reset to a plain ls and is not useful.

lseektype
From lseektype.U:

This variable defines lseektype to be something like off_t, long, or whatever type is used to d
824 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

make

be
are:

an

rating

rating

t is the
be

e, for
lseek offset‘s type in the kernel (which also appears to be lseek‘s return type).

m

mail
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

mailx
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

make
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain make and is not useful.

make_set_make
From make.U:

Some versions of make set the variable MAKE. Others do not. This variable contains the string to
included in Makefile.SH so that MAKE is set if needed, and not if not needed. Possible values
make_set_make=# # If your make program handles this for you,
make_set_make=MAKE=$make # if it doesn‘t. I used a comment character so that we c
distinguish a set value (from a previous config.sh or Configure −D option) from an uncomputed
value.

mallocobj
From mallocsrc.U:

This variable contains the name of the malloc.o that this package generates, if that malloc.o is
preferred over the system malloc. Otherwise the value is null. This variable is intended for gene
Makefiles. See mallocsrc.

mallocsrc
From mallocsrc.U:

This variable contains the name of the malloc.c that comes with the package, if that malloc.c is
preferred over the system malloc. Otherwise the value is null. This variable is intended for gene
Makefiles.

malloctype
From mallocsrc.U:

This variable contains the kind of ptr returned by malloc and realloc.

man1dir
From man1dir.U:

This variable contains the name of the directory in which manual source pages are to be put. I
responsibility of the Makefile.SH to get the value of this into the proper command. You must
prepared to do the ~name expansion yourself.

man1direxp
From man1dir.U:

This variable is the same as the man1dir variable, but is filename expanded at configuration tim
convenient use in makefiles.
18−Oct−1998 Version 5.005_02 825

Config Perl Programmers Reference Guide Config

t is the
be

e, for

ning
duce

" and

kdir

 values
ated.

type is

more
man1ext
From man1dir.U:

This variable contains the extension that the manual page should have: one of n, l , or 1. The Makefile
must supply the .. See man1dir.

man3dir
From man3dir.U:

This variable contains the name of the directory in which manual source pages are to be put. I
responsibility of the Makefile.SH to get the value of this into the proper command. You must
prepared to do the ~name expansion yourself.

man3direxp
From man3dir.U:

This variable is the same as the man3dir variable, but is filename expanded at configuration tim
convenient use in makefiles.

man3ext
From man3dir.U:

This variable contains the extension that the manual page should have: one of n, l , or 3. The Makefile
must supply the .. See man3dir.

medium
From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program run
with a medium memory model. If the medium model is not supported, contains the flag to pro
large model programs. It is up to the Makefile to use this.

mips_type
From usrinc.U:

This variable holds the environment type for the mips system. Possible values are "BSD 4.3
"System V".

mkdir
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the m
program. After Configure runs, the value is reset to a plain mkdir and is not useful.

models
From models.U:

This variable contains the list of memory models supported by this system. Possible component
are none, split, unsplit, small, medium, large, and huge. The component values are space separ

modetype
From modetype.U:

This variable defines modetype to be something like mode_t, int, unsigned short, or whatever
used to declare file modes for system calls.

more
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain more and is not useful.
826 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

ended

t
te host

t
 from

les

line.
mv From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

myarchname
From archname.U:

This variable holds the architecture name computed by Configure in a previous run. It is not int
to be perused by any user and should never be set in a hint file.

mydomain
From myhostname.U:

This variable contains the eventual value of the MYDOMAIN symbol, which is the domain of the hos
the program is going to run on. The domain must be appended to myhostname to form a comple
name. The dot comes with mydomain, and need not be supplied by the program.

myhostname
From myhostname.U:

This variable contains the eventual value of the MYHOSTNAME symbol, which is the name of the hos
the program is going to run on. The domain is not kept with hostname, but must be gotten
mydomain. The dot comes with mydomain, and need not be supplied by the program.

myuname
From Oldconfig.U:

The output of uname −a if available, otherwise the hostname. On Xenix, pseudo variab
assignments in the output are stripped, thank you. The whole thing is then lower−cased.

n

n From n.U:

This variable contains the −n flag if that is what causes the echo command to suppress new
Otherwise it is null. Correct usage is

$echo $n "prompt for a question: $c".

netdb_hlen_type
From netdbtype.U:

This variable holds the type used for the 2nd argument to gethostbyaddr() . Usually, this is int or
size_t or unsigned. This is only useful if you have gethostbyaddr() , naturally.

netdb_host_type
From netdbtype.U:

This variable holds the type used for the 1st argument to gethostbyaddr() . Usually, this is char *
or void *, possibly with or without a const prefix. This is only useful if you have
gethostbyaddr() , naturally.

netdb_name_type
From netdbtype.U:

This variable holds the type used for the argument to gethostbyname() . Usually, this is char * or
const char *. This is only useful if you have gethostbyname() , naturally.

netdb_net_type
From netdbtype.U:

This variable holds the type used for the 1st argument to getnetbyaddr() . Usually, this is int or
long. This is only useful if you have getnetbyaddr() , naturally.
18−Oct−1998 Version 5.005_02 827

Config Perl Programmers Reference Guide Config

e nm

at can
ic is
l*

ilt.

nroff

 try

se

e can‘t
nm From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain nm and is not useful.

nm_opt
From usenm.U:

This variable holds the options that may be necessary for nm.

nm_so_opt
From usenm.U:

This variable holds the options that may be necessary for nm to work on a shared library but th
not be used on an archive library. Currently, this is only used by Linux, where nm —dynam
required to get symbols from an ELF library which has been stripped, but nm —dynamic is *fata
on an archive library. Maybe Linux should just always set usenm=false.

nonxs_ext
From Extensions.U:

This variable holds a list of all non−xs extensions included in the package. All of them will be bu

nroff
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain nroff and is not useful.

o

o_nonblock
From nblock_io.U:

This variable bears the symbol value to be used during open() or fcntl() to turn on non−blocking
I/O for a file descriptor. If you wish to switch between blocking and non−blocking, you may
ioctl(FIOSNBIO) instead, but that is only supported by some devices.

obj_ext
From Unix.U:

This is an old synonym for _o.

optimize
From ccflags.U:

This variable contains any optimizer/debugger flag that should be used. It is up to the Makefile to u
it.

orderlib
From orderlib.U:

This variable is true if the components of libraries must be ordered (with ‘lorder $* | tsort‘) before
placing them in an archive. Set to false if ranlib or ar can generate random libraries.

osname
From Oldconfig.U:

This variable contains the operating system name (e.g. sunos, solaris, hpux, etc.). It can be useful later
on for setting defaults. Any spaces are replaced with underscores. It is set to a null string if w
figure it out.
828 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

et to ‘’
.g. if

 use of

the full

shell

 perl

e

e pg
osvers
From Oldconfig.U:

This variable contains the operating system version (e.g. 4.1.3, 5.2, etc.). It is primarily used for
helping select an appropriate hints file, but might be useful elsewhere for setting defaults. It is s
if we can‘t figure it out. We try to be flexible about how much of the version number to keep, e
4.1.1, 4.1.2, and 4.1.3 are essentially the same for this package, hints files might just be os_4.0 or
os_4.1, etc., not keeping separate files for each little release.

p

package
From package.U:

This variable contains the name of the package being constructed. It is primarily intended for the
later Configure units.

pager
From pager.U:

This variable contains the name of the preferred pager on the system. Usual values are (
pathnames of) more, less, pg, or cat.

passcat
From nis.U:

This variable contains a command that produces the text of the /etc/passwd file. This is normally "cat
/etc/passwd", but can be "ypcat passwd" when NIS is used.

patchlevel
From patchlevel.U:

The patchlevel level of this package. The value of patchlevel comes from the patchlevel.h file.

path_sep
From Unix.U:

This is an old synonym for p_ in Head.U, the character used to separate elements in the command
search PATH.

perl
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain perl and is not useful.

perladmin
From perladmin.U:

Electronic mail address of the perl5 administrator.

perlpath
From perlpath.U:

This variable contains the eventual value of the PERLPATH symbol, which contains the name of th
perl interpreter to be used in shell scripts and in the "eval exec " idiom.

pg From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain pg and is not useful.
18−Oct−1998 Version 5.005_02 829

Config Perl Programmers Reference Guide Config

e
n is or

 to

. This

ually,

kage.

is

 or
phostname
From myhostname.U:

This variable contains the eventual value of the PHOSTNAME symbol, which is a command that can b
fed to popen() to get the host name. The program should probably not presume that the domai
isn‘t there already.

pidtype
From pidtype.U:

This variable defines PIDTYPE to be something like pid_t, int, ushort, or whatever type is used
declare process ids in the kernel.

plibpth
From libpth.U:

Holds the private path used by Configure to find out the libraries. Its value is prepend to libpth
variable takes care of special machines, like the mips. Usually, it should be empty.

pmake
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

pr From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

prefix
From prefix.U:

This variable holds the name of the directory below which the user will install the package. Us
this is /usr/local, and executables go in /usr/local/bin, library stuff in /usr/local/lib, man pages in
/usr/local/man, etc. It is only used to set defaults for things in bin.U, mansrc.U, privlib.U, or
scriptdir.U.

prefixexp
From prefix.U:

This variable holds the full absolute path of the directory below which the user will install the pac
 Derived from prefix.

privlib
From privlib.U:

This variable contains the eventual value of the PRIVLIB symbol, which is the name of the private
library for this package. It may have a ~ on the front. It is up to the makefile to eventually create th
directory while performing installation (with ~ substitution).

privlibexp
From privlib.U:

This variable is the ~name expanded version of privlib, so that you may use it directly in Makefiles
shell scripts.

prototype
From prototype.U:

This variable holds the eventual value of CAN_PROTOTYPE, which indicates the C compiler can
handle funciton prototypes.
830 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

y

raries.

me
ence

e rm

 or

r the
ounted

s not

 sed
ptrsize
From ptrsize.U:

This variable contains the value of the PTRSIZE symbol, which indicates to the C program how man
bytes there are in a pointer.

r

randbits
From randbits.U:

This variable contains the eventual value of the RANDBITS symbol, which indicates to the C program
how many bits of random number the rand() function produces.

ranlib
From orderlib.U:

This variable is set to the pathname of the ranlib program, if it is needed to generate random lib
Set to : if ar can generate random libraries or if random libraries are not supported

rd_nodata
From nblock_io.U:

This variable holds the return code from read() when no data is present. It should be −1, but so
systems return 0 when O_NDELAY is used, which is a shame because you cannot make the differ
between no data and an EOF.. Sigh!

rm From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain rm and is not useful.

rmail
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

runnm
From usenm.U:

This variable contains true or false depending whether the nm extraction should be performed
not, according to the value of usenm and the flags on the Configure command line.

s

scriptdir
From scriptdir.U:

This variable holds the name of the directory in which the user wants to put publicly scripts fo
package in question. It is either the same directory as for binaries, or a special one that can be m
across different architectures, like /usr/share. Programs must be prepared to deal with ~name
expansion.

scriptdirexp
From scriptdir.U:

This variable is the same as scriptdir, but is filename expanded at configuration time, for program
wanting to bother with it.

sed From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain sed and is not useful.
18−Oct−1998 Version 5.005_02 831

Config Perl Programmers Reference Guide Config

this is

dmail

e shell

iable
selecttype
From selecttype.U:

This variable holds the type used for the 2nd, 3rd, and 4th arguments to select. Usually,
fd_set * , if HAS_FD_SET is defined, and int * otherwise. This is only useful if you have
select() , naturally.

sendmail
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the sen
program. After Configure runs, the value is reset to a plain sendmail and is not useful.

sh From sh.U:

This variable contains the full pathname of the shell used on this system to execute Bourn
scripts. Usually, this will be /bin/sh, though it‘s possible that some systems will have /bin/ksh,
/bin/pdksh, /bin/ash, /bin/bash, or even something such as D:/bin/sh.exe. This unit comes before
Options.U, so you can‘t set sh with a −D option, though you can override this (and startsh) with −O
−Dsh=/bin/whatever −Dstartsh=whatever

shar
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

sharpbang
From spitshell.U:

This variable contains the string #! if this system supports that construct.

shmattype
From d_shmat.U:

This symbol contains the type of pointer returned by shmat() . It can be void * or char * .

shortsize
From intsize.U:

This variable contains the value of the SHORTSIZE symbol which indicates to the C program how
many bytes there are in a short.

shrpenv
From libperl.U:

If the user builds a shared libperl.so, then we need to tell the perl executable where it will be able to
find the installed libperl.so. One way to do this on some systems is to set the environment var
LD_RUN_PATH to the directory that will be the final location of the shared libperl.so. The makefile
can use this with something like

$shrpenv $(C<CC>) −o perl F<perlmain.o> $libperl $libs

Typical values are

shrpenv="env C<LD_RUN_PATH>=$F<archlibexp/C<CORE>>"

or

shrpenv=’’

See the main perl F<Makefile.SH> for actual working usage.
Alternatively, we might be able to use a command line option such as −R $archlibexp/CORE
(Solaris, NetBSD) or −Wl,−rpath $archlibexp/CORE (Linux).
832 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

table for
ed

onding
ue of

is

s or

is

 or

sed to
shsharp
From spitshell.U:

This variable tells further Configure units whether your sh can handle # comments.

sig_name
From sig_name.U:

This variable holds the signal names, space separated. The leading SIG in signal name is removed. A
ZERO is prepended to the list. This is currently not used.

sig_name_init
From sig_name.U:

This variable holds the signal names, enclosed in double quotes and separated by commas, sui
use in the SIG_NAME definition below. A ZERO is prepended to the list, and the list is terminat
with a plain 0. The leading SIG in signal names is removed. See sig_num.

sig_num
From sig_name.U:

This variable holds the signal numbers, comma separated. A 0 is prepended to the list (corresp
to the fake SIGZERO), and the list is terminated with a 0. Those numbers correspond to the val
the signal listed in the same place within the sig_name list.

signal_t
From d_voidsig.U:

This variable holds the type of the signal handler (void or int).

sitearch
From sitearch.U:

This variable contains the eventual value of the SITEARCH symbol, which is the name of the private
library for this package. It may have a ~ on the front. It is up to the makefile to eventually create th
directory while performing installation (with ~ substitution).

sitearchexp
From sitearch.U:

This variable is the ~name expanded version of sitearch, so that you may use it directly in Makefile
shell scripts.

sitelib
From sitelib.U:

This variable contains the eventual value of the SITELIB symbol, which is the name of the private
library for this package. It may have a ~ on the front. It is up to the makefile to eventually create th
directory while performing installation (with ~ substitution).

sitelibexp
From sitelib.U:

This variable is the ~name expanded version of sitelib, so that you may use it directly in Makefiles
shell scripts.

sizetype
From sizetype.U:

This variable defines sizetype to be something like size_t, unsigned long, or whatever type is u
declare length parameters for string functions.
18−Oct−1998 Version 5.005_02 833

Config Perl Programmers Reference Guide Config

ning

) on the

 sort

ed,

s either

t will
a space.

and set
sleep
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

smail
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

small
From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program run
with a small memory model. It is up to the Makefile to use this.

so From so.U:

This variable holds the extension used to identify shared libraries (also known as shared objects
system. Usually set to so .

sockethdr
From d_socket.U:

This variable has any cpp −I flags needed for socket support.

socketlib
From d_socket.U:

This variable has the names of any libraries needed for socket support.

sort
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain sort and is not useful.

spackage
From package.U:

This variable contains the name of the package being constructed, with the first letter uppercasi.e.
suitable for starting sentences.

spitshell
From spitshell.U:

This variable contains the command necessary to spit out a runnable shell on this system. It i
cat or a grep −v for # comments.

split
From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program tha
run in separate I and D space, for those machines that support separation of instruction and dat
It is up to the Makefile to use this.

src From src.U:

This variable holds the path to the package source. It is up to the Makefile to use this variable
VPATH accordingly to find the sources remotely.
834 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

s that
h that

t runs
iom:

it runs

 by

of

of
ssizetype
From ssizetype.U:

This variable defines ssizetype to be something like ssize_t, long or int. It is used by function
return a count of bytes or an error condition. It must be a signed type. We will pick a type suc
sizeof(SSize_t) == sizeof(Size_t).

startperl
From startperl.U:

This variable contains the string to put on the front of a perl script to make sure (hopefully) that i
with perl and not some shell. Of course, that leading line must be followed by the classical perl id

eval ’exec perl −S $0 ${1+C<$@>}’

if $running_under_some_shell;

to guarantee perl startup should the shell execute the script. Note
that this magic incatation is not understood by csh.

startsh
From startsh.U:

This variable contains the string to put on the front of a shell script to make sure (hopefully) that
with sh and not some other shell.

static_ext
From Extensions.U:

This variable holds a list of XS extension files we want to link statically into the package. It is used
Makefile.

stdchar
From stdchar.U:

This variable conditionally defines STDCHAR to be the type of char used in stdio.h. It has the values
"unsigned char" or char .

stdio_base
From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to access the _base field (or equivalent)
stdio.h‘s FILE structure. This will be used to define the macro FILE_base(fp).

stdio_bufsiz
From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to determine the number of bytes store in the I/O
buffer pointer to by the _base field (or equivalent) of stdio.h‘s FILE structure. This will be used to
define the macro FILE_bufsiz(fp).

stdio_cnt
From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to access the _cnt field (or equivalent)
stdio.h‘s FILE structure. This will be used to define the macro FILE_cnt(fp).

stdio_filbuf
From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to tell stdio to refill it‘s internal buffers (?). This
will be used to define the macro FILE_filbuf(fp).
18−Oct−1998 Version 5.005_02 835

Config Perl Programmers Reference Guide Config

ere the
ual for

e tee

 test
stdio_ptr
From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to access the _ptr field (or equivalent) of stdio.h‘s
FILE structure. This will be used to define the macro FILE_ptr(fp).

strings
From i_string.U:

This variable holds the full path of the string header that will be used. Typically /usr/include/string.h
or /usr/include/strings.h.

submit
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

subversion
From patchlevel.U:

The subversion level of this package. The value of subversion comes from the patchlevel.h file. This is
unique to perl.

sysman
From sysman.U:

This variable holds the place where the manual is located on this system. It is not the place wh
user wants to put his manual pages. Rather it is the place where Configure may look to find man
unix commands (section 1 of the manual usually). See mansrc.

t

tail
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

tar From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

tbl From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

tee From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain tee and is not useful.

test
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain test and is not useful.

timeincl
From i_time.U:

This variable holds the full path of the included time header(s).

timetype
From d_time.U:
836 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

touch

he tr

Typical

eclare

name

 uniq

rc and

ersion
n less
This variable holds the type returned by time() . It can be long, or time_t on BSD sites (in which case
<sys/types.h should be included). Anyway, the type Time_t should be used.

touch
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain touch and is not useful.

tr From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of t
program. After Configure runs, the value is reset to a plain tr and is not useful.

trnl
From trnl.U :

This variable contains the value to be passed to the tr(1) command to transliterate a newline.
values are \012 and \n . This is needed for EBCDIC systems where newline is not necessarily \012 .

troff
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

u

uidtype
From uidtype.U:

This variable defines Uid_t to be something like uid_t, int, ushort, or whatever type is used to d
user ids in the kernel.

uname
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the u
program. After Configure runs, the value is reset to a plain uname and is not useful.

uniq
From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the
program. After Configure runs, the value is reset to a plain uniq and is not useful.

usedl
From dlsrc.U:

This variable indicates if the the system supports dynamic loading of some sort. See also dls
dlobj.

usemymalloc
From mallocsrc.U:

This variable contains y if the malloc that comes with this package is desired over the system‘s v
of malloc. People often include special versions of malloc for effiency, but such versions are ofte
portable. See also mallocsrc and mallocobj. If this is y , then −lmalloc is removed from $libs.

usenm
From usenm.U:

This variable contains true or false depending whether the nm extraction is wanted or not.
18−Oct−1998 Version 5.005_02 837

Config Perl Programmers Reference Guide Config

ed.
tension

n

.

ailable
ettings

ilt

fork is

 get the
rder to
useopcode
From Extensions.U:

This variable holds either true or false to indicate whether the Opcode extension should be us
The sole use for this currently is to allow an easy mechanism for users to skip the Opcode ex
from the Configure command line.

useperlio
From useperlio.U:

This variable conditionally defines the USE_PERLIO symbol, and indicates that the PerlIO abstractio
should be used throughout.

useposix
From Extensions.U:

This variable holds either true or false to indicate whether the POSIX extension should be used
The sole use for this currently is to allow an easy mechanism for hints files to indicate that POSIX will
not compile on a particular system.

usesfio
From d_sfio.U:

This variable is set to true when the user agrees to use sfio. It is set to false when sfio is not av
or when the user explicitely requests not to use sfio. It is here primarily so that command−line s
can override the auto−detection of d_sfio without running into a "WHOA THERE".

useshrplib
From libperl.U:

This variable is set to yes if the user wishes to build a shared libperl, and no otherwise.

usethreads
From usethreads.U:

This variable conditionally defines the USE_THREADS symbol, and indicates that Perl should be bu
to use threads.

usevfork
From d_vfork.U:

This variable is set to true when the user accepts to use vfork. It is set to false when no v
available or when the user explicitely requests not to use vfork.

usrinc
From usrinc.U:

This variable holds the path of the include files, which is usually /usr/include. It is mainly used by
other Configure units.

uuname
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

v

version
From patchlevel.U:

The full version number of this package. This combines baserev, patchlevel, and subversion to
full version number, including any possible subversions. Care is taken to use the C locale in o
838 Version 5.005_02 18−Oct−1998

Config Perl Programmers Reference Guide Config

e zip

how to
get something like 5.004 instead of 5,004. This is unique to perl.

vi From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

voidflags
From voidflags.U:

This variable contains the eventual value of the VOIDFLAGS symbol, which indicates how much
support of the void type is given by this compiler. See VOIDFLAGS for more info.

z

zcat
From Loc.U:

This variable is defined but not used by Configure. The value is a plain ‘’ and is not useful.

zip From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of th
program. After Configure runs, the value is reset to a plain zip and is not useful.

NOTE
This module contains a good example of how to use tie to implement a cache and an example of
make a tied variable readonly to those outside of it.
18−Oct−1998 Version 5.005_02 839

Cwd Perl Programmers Reference Guide Cwd

ent. It

se

asure

y

atural
ailing

pt
h

NAME
getcwd − get pathname of current working directory

SYNOPSIS
 use Cwd;
 $dir = cwd;

 use Cwd;
 $dir = getcwd;

 use Cwd;
 $dir = fastgetcwd;

 use Cwd ’chdir’;
 chdir "/tmp";
 print $ENV{’PWD’};

 use Cwd ’abs_path’;
 print abs_path($ENV{’PWD’});

 use Cwd ’fast_abs_path’;
 print fast_abs_path($ENV{’PWD’});

DESCRIPTION
The getcwd() function re−implements the getcwd(3) (or getwd(3)) functions in Perl.

The abs_path() function takes a single argument and returns the absolute pathname for that argum
uses the same algoritm as getcwd() . (actually getcwd() is abs_path("."))

The fastcwd() function looks the same as getcwd() , but runs faster. It‘s also more dangerous becau
it might conceivably chdir() you out of a directory that it can‘t chdir() you back into. If fastcwd
encounters a problem it will return undef but will probably leave you in a different directory. For a me
of extra security, if everything appears to have worked, the fastcwd() function will check that it leaves
you in the same directory that it started in. If it has changed it will die with the message "Unstable director
path, current directory changed unexpectedly". That should never happen.

The fast_abs_path() function looks the same as abs_path() , but runs faster. And like fastcwd()
is more dangerous.

The cwd() function looks the same as getcwd and fastgetcwd but is implemented using the most n
and safe form for the current architecture. For most systems it is identical to ‘pwd‘ (but without the tr
line terminator).

It is recommended that cwd (or another *cwd() function) is used in all code to ensure portability.

If you ask to override your chdir() built−in function, then your PWD environment variable will be ke
up to date. (See Overriding Builtin Functions.) Note that it will only be kept up to date if all packages whic
use chdir import it from Cwd.
840 Version 5.005_02 18−Oct−1998

Data::Dumper Perl Programmers Reference Guide Data::Dumper

an also
erential

d set the

 a name
s and

tself, so

es
s. The
 can
rence
NAME
Data::Dumper − stringified perl data structures, suitable for both printing and eval

SYNOPSIS
 use Data::Dumper;

 # simple procedural interface
 print Dumper($foo, $bar);

 # extended usage with names
 print Data::Dumper−>Dump([$foo, $bar], [qw(foo *ary)]);

 # configuration variables
 {
 local $Data::Dump::Purity = 1;
 eval Data::Dumper−>Dump([$foo, $bar], [qw(foo *ary)]);
 }

 # OO usage
 $d = Data::Dumper−>new([$foo, $bar], [qw(foo *ary)]);
 ...
 print $d−>Dump;
 ...
 $d−>Purity(1)−>Terse(1)−>Deepcopy(1);
 eval $d−>Dump;

DESCRIPTION
Given a list of scalars or reference variables, writes out their contents in perl syntax. The references c
be objects. The contents of each variable is output in a single Perl statement. Handles self−ref
structures correctly.

The return value can be eval ed to get back an identical copy of the original reference structure.

Any references that are the same as one of those passed in will be named $VARn (where n is a numeric
suffix), and other duplicate references to substructures within $VARn will be appropriately labeled using
arrow notation. You can specify names for individual values to be dumped if you use the Dump() method,
or you can change the default $VAR prefix to something else. See $Data::Dumper::Varname and
$Data::Dumper::Terse below.

The default output of self−referential structures can be eval ed, but the nested references to $VARn will be
undefined, since a recursive structure cannot be constructed using one Perl statement. You shoul
Purity flag to 1 to get additional statements that will correctly fill in these references.

In the extended usage form, the references to be dumped can be given user−specified names. If
begins with a * , the output will describe the dereferenced type of the supplied reference for hashe
arrays, and coderefs. Output of names will be avoided where possible if the Terse flag is set.

In many cases, methods that are used to set the internal state of the object will return the object i
method calls can be conveniently chained together.

Several styles of output are possible, all controlled by setting the Indent flag. See
Configuration Variables or Methods below for details.

Methods

PACKAGE−new(ARRAYREF [, ARRAYREF])
Returns a newly created Data::Dumper object. The first argument is an anonymous array of valu
to be dumped. The optional second argument is an anonymous array of names for the value
names need not have a leading $ sign, and must be comprised of alphanumeric characters. You
begin a name with a * to specify that the dereferenced type must be dumped instead of the refe
18−Oct−1998 Version 5.005_02 841

Data::Dumper Perl Programmers Reference Guide Data::Dumper

ces (in
ng any
 and

 were
t of

e

 to
r,

inserted
mping

rwise,

ments,

 When

 The

ble

ng the
re
itself, for ARRAY and HASH references.

The prefix specified by $Data::Dumper::Varname will be used with a numeric suffix if the
name for a value is undefined.

Data::Dumper will catalog all references encountered while dumping the values. Cross−referen
the form of names of substructures in perl syntax) will be inserted at all possible points, preservi
structural interdependencies in the original set of values. Structure traversal is depth−first,
proceeds in order from the first supplied value to the last.

$OBJ−Dump or PACKAGE−Dump(ARRAYREF [, ARRAYREF])
Returns the stringified form of the values stored in the object (preserving the order in which they
supplied to new), subject to the configuration options below. In an array context, it returns a lis
strings corresponding to the supplied values.

The second form, for convenience, simply calls the new method on its arguments before dumping th
object immediately.

$OBJ−Dumpxs or PACKAGE−Dumpxs(ARRAYREF [, ARRAYREF])
This method is available if you were able to compile and install the XSUB extension
Data::Dumper . It is exactly identical to the Dump method above, only about 4 to 5 times faste
since it is written entirely in C.

$OBJ−Seen([HASHREF])
Queries or adds to the internal table of already encountered references. You must use Reset to
explicitly clear the table if needed. Such references are not dumped; instead, their names are
wherever they are encountered subsequently. This is useful especially for properly du
subroutine references.

Expects a anonymous hash of name = value pairs. Same rules apply for names as in new. If no
argument is supplied, will return the "seen" list of name = value pairs, in an array context. Othe
returns the object itself.

$OBJ−Values([ARRAYREF])
Queries or replaces the internal array of values that will be dumped. When called without argu
returns the values. Otherwise, returns the object itself.

$OBJ−Names([ARRAYREF])
Queries or replaces the internal array of user supplied names for the values that will be dumped.
called without arguments, returns the names. Otherwise, returns the object itself.

$OBJ−Reset
Clears the internal table of "seen" references and returns the object itself.

Functions

Dumper(LIST)
Returns the stringified form of the values in the list, subject to the configuration options below.
values will be named $VARn in the output, where n is a numeric suffix. Will return a list of strings in
an array context.

DumperX(LIST)
Identical to the Dumper() function above, but this calls the XSUB implementation. Only availa
if you were able to compile and install the XSUB extensions in Data::Dumper .

Configuration Variables or Methods
Several configuration variables can be used to control the kind of output generated when usi
procedural interface. These variables are usually local ized in a block so that other parts of the code a
not affected by the change.
842 Version 5.005_02 18−Oct−1998

Data::Dumper Perl Programmers Reference Guide Data::Dumper

 to query

ogether

t any
an still

h level
puts a
). Style
 on its

es.
. The

an space
ters
lty, the

r than
hat

invoke
of the
kage.

that the
 empty

emit a

any
erent
 via the

 only be
These variables determine the default state of the object created by calling the new method, but cannot be
used to alter the state of the object thereafter. The equivalent method names should be used instead
or set the internal state of the object.

The method forms return the object itself when called with arguments, so that they can be chained t
nicely.

$Data::Dumper::Indent or $OBJ−Indent([NEWVAL])
Controls the style of indentation. It can be set to 0, 1, 2 or 3. Style 0 spews output withou
newlines, indentation, or spaces between list items. It is the most compact format possible that c
be called valid perl. Style 1 outputs a readable form with newlines but no fancy indentation (eac
in the structure is simply indented by a fixed amount of whitespace). Style 2 (the default) out
very readable form which takes into account the length of hash keys (so the hash value lines up
3 is like style 2, but also annotates the elements of arrays with their index (but the comment is
own line, so array output consumes twice the number of lines). Style 2 is the default.

$Data::Dumper::Purity or $OBJ−Purity([NEWVAL])
Controls the degree to which the output can be eval ed to recreate the supplied reference structur
Setting it to 1 will output additional perl statements that will correctly recreate nested references
default is 0.

$Data::Dumper::Pad or $OBJ−Pad([NEWVAL])
Specifies the string that will be prefixed to every line of the output. Empty string by default.

$Data::Dumper::Varname or $OBJ−Varname([NEWVAL])
Contains the prefix to use for tagging variable names in the output. The default is "VAR".

$Data::Dumper::Useqq or $OBJ−Useqq([NEWVAL])
When set, enables the use of double quotes for representing string values. Whitespace other th
will be represented as [\n\t\r] , "unsafe" characters will be backslashed, and unprintable charac
will be output as quoted octal integers. Since setting this variable imposes a performance pena
default is 0. The Dumpxs() method does not honor this flag yet.

$Data::Dumper::Terse or $OBJ−Terse([NEWVAL])
When set, Data::Dumper will emit single, non−self−referential values as atoms/terms rathe
statements. This means that the $VARn names will be avoided where possible, but be advised t
such output may not always be parseable by eval .

$Data::Dumper::Freezer or $OBJ−Freezer([NEWVAL])
Can be set to a method name, or to an empty string to disable the feature. Data::Dumper will
that method via the object before attempting to stringify it. This method can alter the contents
object (if, for instance, it contains data allocated from C), and even rebless it in a different pac
The client is responsible for making sure the specified method can be called via the object, and
object ends up containing only perl data types after the method has been called. Defaults to an
string.

$Data::Dumper::Toaster or $OBJ−Toaster([NEWVAL])
Can be set to a method name, or to an empty string to disable the feature. Data::Dumper will
method call for any objects that are to be dumped using the syntax bless(DATA,
CLASS)−METHOD(). Note that this means that the method specified will have to perform
modifications required on the object (like creating new state within it, and/or reblessing it in a diff
package) and then return it. The client is responsible for making sure the method can be called
object, and that it returns a valid object. Defaults to an empty string.

$Data::Dumper::Deepcopy or $OBJ−Deepcopy([NEWVAL])
Can be set to a boolean value to enable deep copies of structures. Cross−referencing will then
done when absolutely essential (i.e., to break reference cycles). Default is 0.
18−Oct−1998 Version 5.005_02 843

Data::Dumper Perl Programmers Reference Guide Data::Dumper

uoting
ys in

.
 builtin.

th these
ee their
$Data::Dumper::Quotekeys or $OBJ−Quotekeys([NEWVAL])
Can be set to a boolean value to control whether hash keys are quoted. A false value will avoid q
hash keys when it looks like a simple string. Default is 1, which will always enclose hash ke
quotes.

$Data::Dumper::Bless or $OBJ−Bless([NEWVAL])
Can be set to a string that specifies an alternative to the bless builtin operator used to create objects
A function with the specified name should exist, and should accept the same arguments as the
Default is bless .

Exports

Dumper

EXAMPLES
Run these code snippets to get a quick feel for the behavior of this module. When you are through wi
examples, you may want to add or change the various configuration variables described above, to s
behavior. (See the testsuite in the Data::Dumper distribution for more examples.)

 use Data::Dumper;

 package Foo;
 sub new {bless {’a’ => 1, ’b’ => sub { return "foo" }}, $_[0]};

 package Fuz; # a weird REF−REF−SCALAR object
 sub new {bless \($_ = \ ’fu\’z’), $_[0]};

 package main;
 $foo = Foo−>new;
 $fuz = Fuz−>new;
 $boo = [1, [], "abcd", *foo,
 {1 => ’a’, 023 => ’b’, 0x45 => ’c’},
 \\"p\q\’r", $foo, $fuz];

 ########
 # simple usage
 ########

 $bar = eval(Dumper($boo));
 print($@) if $@;
 print Dumper($boo), Dumper($bar); # pretty print (no array indices)

 $Data::Dumper::Terse = 1; # don’t output names where feasible
 $Data::Dumper::Indent = 0; # turn off all pretty print
 print Dumper($boo), "\n";

 $Data::Dumper::Indent = 1; # mild pretty print
 print Dumper($boo);

 $Data::Dumper::Indent = 3; # pretty print with array indices
 print Dumper($boo);

 $Data::Dumper::Useqq = 1; # print strings in double quotes
 print Dumper($boo);

 ########
 # recursive structures
 ########

 @c = (’c’);
 $c = \@c;
844 Version 5.005_02 18−Oct−1998

Data::Dumper Perl Programmers Reference Guide Data::Dumper
 $b = {};
 $a = [1, $b, $c];
 $b−>{a} = $a;
 $b−>{b} = $a−>[1];
 $b−>{c} = $a−>[2];
 print Data::Dumper−>Dump([$a,$b,$c], [qw(a b c)]);

 $Data::Dumper::Purity = 1; # fill in the holes for eval
 print Data::Dumper−>Dump([$a, $b], [qw(*a b)]); # print as @a
 print Data::Dumper−>Dump([$b, $a], [qw(*b a)]); # print as %b

 $Data::Dumper::Deepcopy = 1; # avoid cross−refs
 print Data::Dumper−>Dump([$b, $a], [qw(*b a)]);

 $Data::Dumper::Purity = 0; # avoid cross−refs
 print Data::Dumper−>Dump([$b, $a], [qw(*b a)]);

 ########
 # object−oriented usage
 ########

 $d = Data::Dumper−>new([$a,$b], [qw(a b)]);
 $d−>Seen({’*c’ => $c}); # stash a ref without printing it
 $d−>Indent(3);
 print $d−>Dump;
 $d−>Reset−>Purity(0); # empty the seen cache
 print join "−−−−\n", $d−>Dump;

 ########
 # persistence
 ########

 package Foo;
 sub new { bless { state => ’awake’ }, shift }
 sub Freeze {
 my $s = shift;

print STDERR "preparing to sleep\n";
$s−>{state} = ’asleep’;
return bless $s, ’Foo::ZZZ’;

 }

 package Foo::ZZZ;
 sub Thaw {
 my $s = shift;

print STDERR "waking up\n";
$s−>{state} = ’awake’;
return bless $s, ’Foo’;

 }

 package Foo;
 use Data::Dumper;
 $a = Foo−>new;
 $b = Data::Dumper−>new([$a], [’c’]);
 $b−>Freezer(’Freeze’);
 $b−>Toaster(’Thaw’);
 $c = $b−>Dump;
 print $c;
 $d = eval $c;
 print Data::Dumper−>Dump([$d], [’d’]);
18−Oct−1998 Version 5.005_02 845

Data::Dumper Perl Programmers Reference Guide Data::Dumper

h a
ons of

 being
and a
us
e string

at your
nd

u can
 ########
 # symbol substitution (useful for recreating CODE refs)
 ########

 sub foo { print "foo speaking\n" }
 *other = \&foo;
 $bar = [\&other];
 $d = Data::Dumper−>new([\&other,$bar],[’*other’,’bar’]);
 $d−>Seen({ ’*foo’ => \&foo });
 print $d−>Dump;

BUGS
Due to limitations of Perl subroutine call semantics, you cannot pass an array or hash. Prepend it wit\ to
pass its reference instead. This will be remedied in time, with the arrival of prototypes in later versi
Perl. For now, you need to use the extended usage form, and prepend the name with a * to output it as a
hash or array.

Data::Dumper cheats with CODE references. If a code reference is encountered in the structure
processed, an anonymous subroutine that contains the string ‘"DUMMY"’ will be inserted in its place,
warning will be printed if Purity is set. You can eval the result, but bear in mind that the anonymo
sub that gets created is just a placeholder. Someday, perl will have a switch to cache−on−demand th
representation of a compiled piece of code, I hope. If you have prior knowledge of all the code refs th
data structures are likely to have, you can use the Seen method to pre−seed the internal reference table a
make the dumped output point to them, instead. See EXAMPLES above.

The Useqq flag is not honored by Dumpxs() (it always outputs strings in single quotes).

SCALAR objects have the weirdest looking bless workaround.

AUTHOR
Gurusamy Sarathy gsar@umich.edu

Copyright (c) 1996−98 Gurusamy Sarathy. All rights reserved. This program is free software; yo
redistribute it and/or modify it under the same terms as Perl itself.

VERSION
Version 2.09 (9 July 1998)

SEE ALSO
perl(1)
846 Version 5.005_02 18−Oct−1998

Devel::SelfStubber Perl Programmers Reference Guide Devel::SelfStubber

 or

u can
lled, it

ss A,
t to be
t finds
 B, then

re stubs

ad
ooner
fore the
s.

 future
fLoader
NAME
Devel::SelfStubber − generate stubs for a SelfLoading module

SYNOPSIS
To generate just the stubs:

 use Devel::SelfStubber;
 Devel::SelfStubber−>stub(’MODULENAME’,’MY_LIB_DIR’);

or to generate the whole module with stubs inserted correctly

 use Devel::SelfStubber;
 $Devel::SelfStubber::JUST_STUBS=0;
 Devel::SelfStubber−>stub(’MODULENAME’,’MY_LIB_DIR’);

MODULENAME is the Perl module name, e.g. Devel::SelfStubber, NOT ‘Devel/SelfStubber’
‘Devel/SelfStubber.pm’.

MY_LIB_DIR defaults to ’.’ if not present.

DESCRIPTION
Devel::SelfStubber prints the stubs you need to put in the module before the __DATA__ token (or yo
get it to print the entire module with stubs correctly placed). The stubs ensure that if a method is ca
will get loaded. They are needed specifically for inherited autoloaded methods.

This is best explained using the following example:

Assume four classes, A,B,C & D.

A is the root class, B is a subclass of A, C is a subclass of B, and D is another subclass of A.

 A
 / \
 B D
 /
 C

If D calls an autoloaded method ‘foo’ which is defined in class A, then the method is loaded into cla
then executed. If C then calls method ‘foo‘, and that method was reimplemented in class B, but se
autoloaded, then the lookup mechanism never gets to the AUTOLOAD mechanism in B because it firs
the method already loaded in A, and so erroneously uses that. If the method foo had been stubbed in
the lookup mechanism would have found the stub, and correctly loaded and used the sub from B.

So, for classes and subclasses to have inheritance correctly work with autoloading, you need to ensu
are loaded.

The SelfLoader can load stubs automatically at module initialization with the statement
‘SelfLoader−>load_stubs() ‘;, but you may wish to avoid having the stub loading overhe
associated with your initialization (though note that the SelfLoader::load_stubs method will be called s
or later − at latest when the first sub is being autoloaded). In this case, you can put the sub stubs be
__DATA__ token. This can be done manually, but this module allows automatic generation of the stub

By default it just prints the stubs, but you can set the global $Devel::SelfStubber::JUST_STUBS to
0 and it will print out the entire module with the stubs positioned correctly.

At the very least, this is useful to see what the SelfLoader thinks are stubs − in order to ensure
versions of the SelfStubber remain in step with the SelfLoader, the SelfStubber actually uses the Sel
to determine which stubs are needed.
18−Oct−1998 Version 5.005_02 847

DirHandle Perl Programmers Reference Guide DirHandle

 to
NAME
DirHandle − supply object methods for directory handles

SYNOPSIS
 use DirHandle;
 $d = new DirHandle ".";
 if (defined $d) {
 while (defined($_ = $d−>read)) { something($_); }
 $d−>rewind;
 while (defined($_ = $d−>read)) { something_else($_); }
 undef $d;
 }

DESCRIPTION
The DirHandle method provide an alternative interface to the opendir() , closedir() ,
readdir() , and rewinddir() functions.

The only objective benefit to using DirHandle is that it avoids namespace pollution by creating globs
hold directory handles.
848 Version 5.005_02 18−Oct−1998

DynaLoader Perl Programmers Reference Guide DynaLoader

n many

 a new

er the

namic

ibraries
library
 that

of
NAME
DynaLoader − Dynamically load C libraries into Perl code

dl_error() , dl_findfile() , dl_expandspec() , dl_load_file() , dl_find_symbol() ,
dl_find_symbol_anywhere() , dl_undef_symbols() , dl_install_xsub() ,
dl_load_flags() , bootstrap() − routines used by DynaLoader modules

SYNOPSIS
 package YourPackage;
 require DynaLoader;
 @ISA = qw(... DynaLoader ...);
 bootstrap YourPackage;

 # optional method for ’global’ loading
 sub dl_load_flags { 0x01 }

DESCRIPTION
This document defines a standard generic interface to the dynamic linking mechanisms available o
platforms. Its primary purpose is to implement automatic dynamic loading of Perl modules.

This document serves as both a specification for anyone wishing to implement the DynaLoader for
platform and as a guide for anyone wishing to use the DynaLoader directly in an application.

The DynaLoader is designed to be a very simple high−level interface that is sufficiently general to cov
requirements of SunOS, HP−UX, NeXT, Linux, VMS and other platforms.

It is also hoped that the interface will cover the needs of OS/2, NT etc and also allow pseudo−dy
linking (using ld −A at runtime).

It must be stressed that the DynaLoader, by itself, is practically useless for accessing non−Perl l
because it provides almost no Perl−to−C ‘glue’. There is, for example, no mechanism for calling a C
function or supplying arguments. A C::DynaLib module is available from CPAN sites which performs
function for some common system types.

DynaLoader Interface Summary

 @dl_library_path
 @dl_resolve_using
 @dl_require_symbols
 $dl_debug
 @dl_librefs
 @dl_modules
 Implemented in:
 bootstrap($modulename) Perl
 @filepaths = dl_findfile(@names) Perl
 $flags = $modulename−>dl_load_flags Perl
 $symref = dl_find_symbol_anywhere($symbol) Perl

 $libref = dl_load_file($filename, $flags) C
 $symref = dl_find_symbol($libref, $symbol) C
 @symbols = dl_undef_symbols() C
 dl_install_xsub($name, $symref [, $filename]) C
 $message = dl_error C

@dl_library_path
The standard/default list of directories in which dl_findfile() will search for libraries etc.
Directories are searched in order: $dl_library_path[0], [1], ... etc

@dl_library_path is initialised to hold the list of ‘normal’ directories (/usr/lib, etc) determined by
Configure ($Config{‘libpth‘}). This should ensure portability across a wide range
18−Oct−1998 Version 5.005_02 849

DynaLoader Perl Programmers Reference Guide DynaLoader

m the

shift
rch

ories.

he
olute

efined

. For
t
here
n

his is

ix, a

ave the
ch as

ication

e (see
platforms.

@dl_library_path should also be initialised with any other directories that can be determined fro
environment at runtime (such as LD_LIBRARY_PATH for SunOS).

After initialisation @dl_library_path can be manipulated by an application using push and un
before calling dl_findfile() . Unshift can be used to add directories to the front of the sea
order either to save search time or to override libraries with the same name in the ‘normal’ direct

The load function that dl_load_file() calls may require an absolute pathname. T
dl_findfile() function and @dl_library_path can be used to search for and return the abs
pathname for the library/object that you wish to load.

@dl_resolve_using
A list of additional libraries or other shared objects which can be used to resolve any und
symbols that might be generated by a later call to load_file() .

This is only required on some platforms which do not handle dependent libraries automatically
example the Socket Perl extension library (auto/Socket/Socket.so) contains references to many socke
functions which need to be resolved when it‘s loaded. Most platforms will automatically know w
to find the ‘dependent’ library (e.g., /usr/lib/libsocket.so). A few platforms need to be told the locatio
of the dependent library explicitly. Use @dl_resolve_using for this.

Example usage:

 @dl_resolve_using = dl_findfile(’−lsocket’);

@dl_require_symbols
A list of one or more symbol names that are in the library/object file to be dynamically loaded. T
only required on some platforms.

@dl_librefs
An array of the handles returned by successful calls to dl_load_file() , made by bootstrap, in the
order in which they were loaded. Can be used with dl_find_symbol() to look for a symbol in any
of the loaded files.

@dl_modules
An array of module (package) names that have been bootstrap‘ed.

dl_error()
Syntax:

 $message = dl_error();

Error message text from the last failed DynaLoader function. Note that, similar to errno in un
successful function call does not reset this message.

Implementations should detect the error as soon as it occurs in any of the other functions and s
corresponding message for later retrieval. This will avoid problems on some platforms (su
SunOS) where the error message is very temporary (e.g., dlerror()).

$dl_debug
Internal debugging messages are enabled when $dl_debug is set true. Currently setting
$dl_debug only affects the Perl side of the DynaLoader. These messages should help an appl
developer to resolve any DynaLoader usage problems.

$dl_debug is set to $ENV{‘PERL_DL_DEBUG‘} if defined.

For the DynaLoader developer/porter there is a similar debugging variable added to the C cod
dlutils.c) and enabled if Perl was built with the −DDEBUGGING flag. This can also be set via the
PERL_DL_DEBUG environment variable. Set to 1 for minimal information or higher for more.
850 Version 5.005_02 18−Oct−1998

DynaLoader Perl Programmers Reference Guide DynaLoader

mes
lt and

ill be

s may

mbolic

que

mbols
dl_findfile()
Syntax:

 @filepaths = dl_findfile(@names)

Determine the full paths (including file suffix) of one or more loadable files given their generic na
and optionally one or more directories. Searches directories in @dl_library_path by defau
returns an empty list if no files were found.

Names can be specified in a variety of platform independent forms. Any names in the form −lname
are converted into libname.*, where .* is an appropriate suffix for the platform.

If a name does not already have a suitable prefix and/or suffix then the corresponding file w
searched for by trying combinations of prefix and suffix appropriate to the platform: "$name.o",
"lib$name.*" and "$name".

If any directories are included in @names they are searched before @dl_library_path. Directorie
be specified as −Ldir . Any other names are treated as filenames to be searched for.

Using arguments of the form −Ldir and −lname is recommended.

Example:

 @dl_resolve_using = dl_findfile(qw(−L/usr/5lib −lposix));

dl_expandspec()
Syntax:

 $filepath = dl_expandspec($spec)

Some unusual systems, such as VMS, require special filename handling in order to deal with sy
names for files (i.e., VMS‘s Logical Names).

To support these systems a dl_expandspec() function can be implemented either in the dl_*.xs
file or code can be added to the autoloadable dl_expandspec() function in DynaLoader.pm. See
DynaLoader.pm for more information.

dl_load_file()
Syntax:

 $libref = dl_load_file($filename, $flags)

Dynamically load $filename, which must be the path to a shared object or library. An opa
‘library reference’ is returned as a handle for the loaded object. Returns undef on error.

The $flags argument to alters dl_load_file behaviour. Assigned bits:

 0x01 make symbols available for linking later dl_load_file’s.
 (only known to work on Solaris 2 using dlopen(RTLD_GLOBAL))
 (ignored under VMS; this is a normal part of image linking)

(On systems that provide a handle for the loaded object such as SunOS and HPUX, $libref will be
that handle. On other systems $libref will typically be $filename or a pointer to a buffer
containing $filename. The application should not examine or alter $libref in any way.)

This is the function that does the real work. It should use the current values of @dl_require_sy
and @dl_resolve_using if required.

 SunOS: dlopen($filename)
 HP−UX: shl_load($filename)
 Linux: dld_create_reference(@dl_require_symbols); dld_link($filename)
 NeXT: rld_load($filename, @dl_resolve_using)
 VMS: lib$find_image_symbol($filename,$dl_require_symbols[0])
18−Oct−1998 Version 5.005_02 851

DynaLoader Perl Programmers Reference Guide DynaLoader

hoice

ch has
dard

te

t and

 by

(The dlopen() function is also used by Solaris and some versions of Linux, and is a common c
when providing a "wrapper" on other mechanisms as is done in the OS/2 port.)

dl_loadflags()
Syntax:

 $flags = dl_loadflags $modulename;

Designed to be a method call, and to be overridden by a derived class (i.e. a class whi
DynaLoader in its @ISA). The definition in DynaLoader itself returns 0, which produces stan
behavior from dl_load_file() .

dl_find_symbol()
Syntax:

 $symref = dl_find_symbol($libref, $symbol)

Return the address of the symbol $symbol or undef if not found. If the target system has separa
functions to search for symbols of different types then dl_find_symbol() should search for
function symbols first and then other types.

The exact manner in which the address is returned in $symref is not currently defined. The only
initial requirement is that $symref can be passed to, and understood by, dl_install_xsub() .

 SunOS: dlsym($libref, $symbol)
 HP−UX: shl_findsym($libref, $symbol)
 Linux: dld_get_func($symbol) and/or dld_get_symbol($symbol)
 NeXT: rld_lookup("_$symbol")
 VMS: lib$find_image_symbol($libref,$symbol)

dl_find_symbol_anywhere()
Syntax:

 $symref = dl_find_symbol_anywhere($symbol)

Applies dl_find_symbol() to the members of @dl_librefs and returns the first match found.

dl_undef_symbols()
Example

 @symbols = dl_undef_symbols()

Return a list of symbol names which remain undefined after load_file() . Returns () if not
known. Don‘t worry if your platform does not provide a mechanism for this. Most do not need i
hence do not provide it, they just return an empty list.

dl_install_xsub()
Syntax:

 dl_install_xsub($perl_name, $symref [, $filename])

Create a new Perl external subroutine named $perl_name using $symref as a pointer to the
function which implements the routine. This is simply a direct call to newXSUB() . Returns a
reference to the installed function.

The $filename parameter is used by Perl to identify the source file for the function if required
die() , caller() or the debugger. If $filename is not defined then "DynaLoader" will be used.

bootstrap()
Syntax:

bootstrap($module)
852 Version 5.005_02 18−Oct−1998

DynaLoader Perl Programmers Reference Guide DynaLoader

rrent

e

nders,
elf and

ynamic

nuary
This is the normal entry point for automatic dynamic loading in Perl.

It performs the following actions:

 locates an auto/$module directory by searching @INC

 uses dl_findfile() to determine the filename to load

 sets @dl_require_symbols to ("boot_$module")

 executes an auto/$module/$module.bs file if it exists (typically used to add to
@dl_resolve_using any files which are required to load the module on the cu
platform)

 calls dl_load_flags() to determine how to load the file.

 calls dl_load_file() to load the file

 calls dl_undef_symbols() and warns if any symbols are undefined

 calls dl_find_symbol() for "boot_$module"

 calls dl_install_xsub() to install it as "${module}::bootstrap"

 calls &{"${module}::bootstrap"} to bootstrap the module (actually it uses th
function reference returned by dl_install_xsub for speed)

AUTHOR
Tim Bunce, 11 August 1994.

This interface is based on the work and comments of (in no particular order): Larry Wall, Robert Sa
Dean Roehrich, Jeff Okamoto, Anno Siegel, Thomas Neumann, Paul Marquess, Charles Bailey, mys
others.

Larry Wall designed the elegant inherited bootstrap mechanism and implemented the first Perl 5 d
loader using it.

Solaris global loading added by Nick Ing−Simmons with design/coding assistance from Tim Bunce, Ja
1996.
18−Oct−1998 Version 5.005_02 853

English Perl Programmers Reference Guide English

ariables

For
NAME
English − use nice English (or awk) names for ugly punctuation variables

SYNOPSIS
 use English;
 ...
 if ($ERRNO =~ /denied/) { ... }

DESCRIPTION
This module provides aliases for the built−in variables whose names no one seems to like to read. V
with side−effects which get triggered just by accessing them (like $0) will still be affected.

For those variables that have an awk version, both long and short English alternatives are provided.
example, the $/ variable can be referred to either $RS or $INPUT_RECORD_SEPARATOR if you are
using the English module.

See perlvar for a complete list of these.
854 Version 5.005_02 18−Oct−1998

Env Perl Programmers Reference Guide Env

thod is

 with

 don‘t

efined
NAME
Env − perl module that imports environment variables

SYNOPSIS
 use Env;
 use Env qw(PATH HOME TERM);

DESCRIPTION
Perl maintains environment variables in a pseudo−hash named %ENV. For when this access me
inconvenient, the Perl module Env allows environment variables to be treated as simple variables.

The Env::import() function ties environment variables with suitable names to global Perl variables
the same names. By default it does so with all existing environment variables (keys %ENV). If the import
function receives arguments, it takes them to be a list of environment variables to tie; it‘s okay if they
yet exist.

After an environment variable is tied, merely use it like a normal variable. You may access its value

 @path = split(/:/, $PATH);

or modify it

 $PATH .= ":.";

however you‘d like. To remove a tied environment variable from the environment, assign it the und
value

 undef $PATH;

AUTHOR
Chip Salzenberg <chip@fin.uucp>
18−Oct−1998 Version 5.005_02 855

Errno Perl Programmers Reference Guide Errno

bute it
NAME
Errno − System errno constants

SYNOPSIS
 use Errno qw(EINTR EIO :POSIX);

DESCRIPTION
Errno defines and conditionally exports all the error constants defined in your system errno.h include
file. It has a single export tag, :POSIX , which will export all POSIX defined error numbers.

Errno also makes %! magic such that each element of %! has a non−zero value only if $! is set to that
value, eg

 use Errno;

 unless (open(FH, "/fangorn/spouse")) {
 if ($!{ENOENT}) {
 warn "Get a wife!\n";
 } else {
 warn "This path is barred: $!";
 }
 }

AUTHOR
Graham Barr <gbarr@pobox.com

COPYRIGHT
Copyright (c) 1997−8 Graham Barr. All rights reserved. This program is free software; you can redistri
and/or modify it under the same terms as Perl itself.
856 Version 5.005_02 18−Oct−1998

Exporter Perl Programmers Reference Guide Exporter

er

d

OK in
es.

g

able.)

ion of

which
 are in
NAME
Exporter − Implements default import method for modules

SYNOPSIS
In module ModuleName.pm:

 package ModuleName;
 require Exporter;
 @ISA = qw(Exporter);

 @EXPORT = qw(...); # symbols to export by default
 @EXPORT_OK = qw(...); # symbols to export on request
 %EXPORT_TAGS = tag => [...]; # define names for sets of symbols

In other files which wish to use ModuleName:

 use ModuleName; # import default symbols into my package

 use ModuleName qw(...); # import listed symbols into my package

 use ModuleName (); # do not import any symbols

DESCRIPTION
The Exporter module implements a default import method which many modules choose to inherit rath
than implement their own.

Perl automatically calls the import method when processing a use statement for a module. Modules an
use are documented in perlfunc and perlmod. Understanding the concept of modules and how the use
statement operates is important to understanding the Exporter.

Selecting What To Export
Do not export method names!

Do not export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export try to use @EXPORT_
preference to @EXPORT and avoid short or common symbol names to reduce the risk of name clash

Generally anything not exported is still accessible from outside the module using the
ModuleName::item_name (or $blessed_ref−>method) syntax. By convention you can use a leadin
underscore on names to informally indicate that they are ‘internal’ and not for public use.

(It is actually possible to get private functions by saying:

 my $subref = sub { ... };
 &$subref;

But there‘s no way to call that directly as a method, since a method must have a name in the symbol t

As a general rule, if the module is trying to be object oriented then export nothing. If it‘s just a collect
functions then @EXPORT_OK anything but use @EXPORT with caution.

Other module design guidelines can be found in perlmod.

Specialised Import Lists
If the first entry in an import list begins with !, : or / then the list is treated as a series of specifications
either add to or delete from the list of names to import. They are processed left to right. Specifications
the form:

 [!]name This name only
 [!]:DEFAULT All names in @EXPORT
 [!]:tag All names in $EXPORT_TAGS{tag} anonymous list
 [!]/pattern/ All names in @EXPORT and @EXPORT_OK which match
18−Oct−1998 Version 5.005_02 857

Exporter Perl Programmers Reference Guide Exporter

e first
extra

ed

ly call

and

 on

t used

kage
A leading ! indicates that matching names should be deleted from the list of names to import. If th
specification is a deletion it is treated as though preceded by :DEFAULT. If you just want to import
names in addition to the default set you will still need to include :DEFAULT explicitly.

e.g., Module.pm defines:

 @EXPORT = qw(A1 A2 A3 A4 A5);
 @EXPORT_OK = qw(B1 B2 B3 B4 B5);
 %EXPORT_TAGS = (T1 => [qw(A1 A2 B1 B2)], T2 => [qw(A1 A2 B3 B4)]);

 Note that you cannot use tags in @EXPORT or @EXPORT_OK.
 Names in EXPORT_TAGS must also appear in @EXPORT or @EXPORT_OK.

An application using Module can say something like:

 use Module qw(:DEFAULT :T2 !B3 A3);

Other examples include:

 use Socket qw(!/^[AP]F_/ !SOMAXCONN !SOL_SOCKET);
 use POSIX qw(:errno_h :termios_h !TCSADRAIN !/^EXIT/);

Remember that most patterns (using //) will need to be anchored with a leading ^, e.g., /^EXIT/ rather than
/EXIT/ .

You can say BEGIN { $Exporter::Verbose=1 } to see how the specifications are being process
and what is actually being imported into modules.

Exporting without using Export‘s import method
Exporter has a special method, ‘export_to_level’ which is used in situations where you can‘t direct
Export‘s import method. The export_to_level method looks like:

MyPackage−export_to_level($where_to_export, @what_to_export);

where $where_to_export is an integer telling how far up the calling stack to export your symbols,
@what_to_export is an array telling what symbols *to* export (usually this is @_).

For example, suppose that you have a module, A, which already has an import function:

package A;

@ISA = qw(Exporter); @EXPORT_OK = qw ($b);

sub import {
 $A::b = 1; # not a very useful import method
}

and you want to Export symbol $A::b back to the module that called package A. Since Exporter relies
the import method to work, via inheritance, as it stands Exporter::import() will never get called.
Instead, say the following:

package A; @ISA = qw(Exporter); @EXPORT_OK = qw ($b);

sub import {
 $A::b = 1;
 A−export_to_level(1, @_);
}

This will export the symbols one level ‘above’ the current package − ie: to the program or module tha
package A.

Note: Be careful not to modify ‘@_’ at all before you call export_to_level − or people using your pac
will get very unexplained results!
858 Version 5.005_02 18−Oct−1998

Exporter Perl Programmers Reference Guide Exporter

ll to
he

l
ers with

lies to

ity to
of the

ols are
ils. The

ng lazy
eone

ols to

ger a
OK.
Module Version Checking
The Exporter module will convert an attempt to import a number from a module into a ca
$module_name−>require_version($value). This can be used to validate that the version of t
module being used is greater than or equal to the required version.

The Exporter module supplies a default require_version method which checks the value of $VERSION in the
exporting module.

Since the default require_version method treats the $VERSION number as a simple numeric value it wil
regard version 1.10 as lower than 1.9. For this reason it is strongly recommended that you use numb
at least two decimal places, e.g., 1.09.

Managing Unknown Symbols
In some situations you may want to prevent certain symbols from being exported. Typically this app
extensions which have functions or constants that may not exist on some systems.

The names of any symbols that cannot be exported should be listed in the @EXPORT_FAIL array.

If a module attempts to import any of these symbols the Exporter will give the module an opportun
handle the situation before generating an error. The Exporter will call an export_fail method with a list
failed symbols:

 @failed_symbols = $module_name−>export_fail(@failed_symbols);

If the export_fail method returns an empty list then no error is recorded and all the requested symb
exported. If the returned list is not empty then an error is generated for each symbol and the export fa
Exporter provides a default export_fail method which simply returns the list unchanged.

Uses for the export_fail method include giving better error messages for some symbols and performi
architectural checks (put more symbols into @EXPORT_FAIL by default and then take them out if som
actually tries to use them and an expensive check shows that they are usable on that platform).

Tag Handling Utility Functions
Since the symbols listed within %EXPORT_TAGS must also appear in either @EXPORT or
@EXPORT_OK, two utility functions are provided which allow you to easily add tagged sets of symb
@EXPORT or @EXPORT_OK:

 %EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

 Exporter::export_tags(’foo’); # add aa, bb and cc to @EXPORT
 Exporter::export_ok_tags(’bar’); # add aa, cc and dd to @EXPORT_OK

Any names which are not tags are added to @EXPORT or @EXPORT_OK unchanged but will trig
warning (with −w) to avoid misspelt tags names being silently added to @EXPORT or @EXPORT_
Future versions may make this a fatal error.
18−Oct−1998 Version 5.005_02 859

ExtUtils::Command Perl Programmers Reference Guide ExtUtils::Command

ers on
NAME
ExtUtils::Command − utilities to replace common UNIX commands in Makefiles etc.

SYNOPSIS
 perl −MExtUtils::Command −e cat files... > destination
 perl −MExtUtils::Command −e mv source... destination
 perl −MExtUtils::Command −e cp source... destination
 perl −MExtUtils::Command −e touch files...
 perl −MExtUtils::Command −e rm_f file...
 perl −MExtUtils::Command −e rm_rf directories...
 perl −MExtUtils::Command −e mkpath directories...
 perl −MExtUtils::Command −e eqtime source destination
 perl −MExtUtils::Command −e chmod mode files...
 perl −MExtUtils::Command −e test_f file

DESCRIPTION
The module is used in Win32 port to replace common UNIX commands. Most commands are wrap
generic modules File::Path and File::Basename.

cat Concatenates all files mentioned on command line to STDOUT.

eqtime src dst
Sets modified time of dst to that of src

rm_f files....
Removes directories − recursively (even if readonly)

rm_f files....
Removes files (even if readonly)

touch files ...
Makes files exist, with current timestamp

mv source... destination
Moves source to destination. Multiple sources are allowed if destination is an existing directory.

cp source... destination
Copies source to destination. Multiple sources are allowed if destination is an existing directory.

chmod mode files...
Sets UNIX like permissions ‘mode’ on all the files.

mkpath directory...
Creates directory, including any parent directories.

test_f file
Tests if a file exists

BUGS
Should probably be Auto/Self loaded.

SEE ALSO
ExtUtils::MakeMaker, ExtUtils::MM_Unix, ExtUtils::MM_Win32

AUTHOR
Nick Ing−Simmons <nick@ni−s.u−net.com.
860 Version 5.005_02 18−Oct−1998

ExtUtils::Embed Perl Programmers Reference Guide ExtUtils::Embed

/C++

n

er
NAME
ExtUtils::Embed − Utilities for embedding Perl in C/C++ applications

SYNOPSIS
 perl −MExtUtils::Embed −e xsinit
 perl −MExtUtils::Embed −e ldopts

DESCRIPTION
ExtUtils::Embed provides utility functions for embedding a Perl interpreter and extensions in your C
applications. Typically, an application Makefile will invoke ExtUtils::Embed functions while building your
application.

@EXPORT
ExtUtils::Embed exports the following functions:

xsinit() , ldopts() , ccopts() , perl_inc() , ccflags() , ccdlflags() , xsi_header() ,
xsi_protos() , xsi_body()

FUNCTIONS

xsinit()
Generate C/C++ code for the XS initializer function.

When invoked as ‘perl −MExtUtils::Embed −e xsinit —‘ the following options are
recognized:

−o <output filename> (Defaults to perlxsi.c)

−o STDOUT will print to STDOUT.

−std (Write code for extensions that are linked with the current Perl.)

Any additional arguments are expected to be names of modules to generate code for.

When invoked with parameters the following are accepted and optional:

xsinit($filename,$std,[@modules])

Where,

$filename is equivalent to the −o option.

$std is boolean, equivalent to the −std option.

[@modules] is an array ref, same as additional arguments mentioned above.

Examples
 perl −MExtUtils::Embed −e xsinit −− −o xsinit.c Socket

This will generate code with an xs_init function that glues the perl Socket::bootstrap function to the
C boot_Socket function and writes it to a file named "xsinit.c".

Note that DynaLoader is a special case where it must call boot_DynaLoader directly.

 perl −MExtUtils::Embed −e xsinit

This will generate code for linking with DynaLoader and each static extension found i
$Config{static_ext} . The code is written to the default file name perlxsi.c.

 perl −MExtUtils::Embed −e xsinit −− −o xsinit.c −std DBI DBD::Oracle

Here, code is written for all the currently linked extensions along with code for DBI and
DBD::Oracle.

If you have a working DynaLoader then there is rarely any need to statically link in any oth
18−Oct−1998 Version 5.005_02 861

ExtUtils::Embed Perl Programmers Reference Guide ExtUtils::Embed

e

.

rate

rint it

 from

 with
extensions.

ldopts()
Output arguments for linking the Perl library and extensions to your application.

When invoked as ‘perl −MExtUtils::Embed −e ldopts —‘ the following options are
recognized:

−std

Output arguments for linking the Perl library and any extensions linked with the current Perl.

−I <path1:path2>

Search path for ModuleName.a archives. Default path is @INC. Library archives are expected to b
found as /some/path/auto/ModuleName/ModuleName.a For example, when looking for Socket.a
relative to a search path, we should find auto/Socket/Socket.a

When looking for DBD::Oracle relative to a search path, we should find auto/DBD/Oracle/Oracle.a

Keep in mind, you can always supply /my/own/path/ModuleName.a as an additional linker argument

— <list of linker args>

Additional linker arguments to be considered.

Any additional arguments found before the — token are expected to be names of modules to gene
code for.

When invoked with parameters the following are accepted and optional:

ldopts($std,[@modules],[@link_args],$path)

Where,

$std is boolean, equivalent to the −std option.

[@modules] is equivalent to additional arguments found before the — token.

[@link_args] is equivalent to arguments found after the — token.

$path is equivalent to the −I option.

In addition, when ldopts is called with parameters, it will return the argument string rather than p
to STDOUT.

Examples
 perl −MExtUtils::Embed −e ldopts

This will print arguments for linking with libperl.a, DynaLoader and extensions found in
$Config{static_ext} . This includes libraries found in $Config{libs} and the first
ModuleName.a library for each extension that is found by searching @INC or the path specifed by the
−I option. In addition, when ModuleName.a is found, additional linker arguments are picked up
the extralibs.ld file in the same directory.

 perl −MExtUtils::Embed −e ldopts −− −std Socket

This will do the same as the above example, along with printing additional arguments for linking
the Socket extension.

 perl −MExtUtils::Embed −e ldopts −− DynaLoader

This will print arguments for linking with just the DynaLoader extension and libperl.a.

 perl −MExtUtils::Embed −e ldopts −− −std Msql −− −L/usr/msql/lib −lmsql
862 Version 5.005_02 18−Oct−1998

ExtUtils::Embed Perl Programmers Reference Guide ExtUtils::Embed

d for

he
Any arguments after the second ‘—’ token are additional linker arguments that will be examine
potential conflict. If there is no conflict, the additional arguments will be part of the output.

perl_inc()
For including perl header files this function simply prints:

 −I$Config{archlibexp}/CORE

So, rather than having to say:

 perl −MConfig −e ’print "−I$Config{archlibexp}/CORE"’

Just say:

 perl −MExtUtils::Embed −e perl_inc

ccflags() , ccdlflags()
These functions simply print $Config{ccflags} and $Config{ccdlflags}

ccopts()
This function combines perl_inc() , ccflags() and ccdlflags() into one.

xsi_header()
This function simply returns a string defining the same EXTERN_C macro as perlmain.c along with
#including perl.h and EXTERN.h.

xsi_protos(@modules)
This function returns a string of boot_$ModuleName prototypes for each @modules.

xsi_body(@modules)
This function returns a string of calls to newXS() that glue the module bootstrap function to
boot_ModuleName for each @modules.

xsinit() uses the xsi_* functions to generate most of it‘s code.

EXAMPLES
For examples on how to use ExtUtils::Embed for building C/C++ applications with embedded perl, see t
eg/ directory and perlembed.

SEE ALSO
perlembed

AUTHOR
Doug MacEachern <dougm@osf.org>

Based on ideas from Tim Bunce <Tim.Bunce@ig.co.uk> and minimod.pl by Andreas Koenig
<k@anna.in−berlin.de> and Tim Bunce.
18−Oct−1998 Version 5.005_02 863

ExtUtils::Install Perl Programmers Reference Guide ExtUtils::Install

e

−do−it
ries to
from"

 install

the
than

ker

nt is a

onding
ctory.
NAME
ExtUtils::Install − install files from here to there

SYNOPSIS
use ExtUtils::Install;

install($hashref,$verbose,$nonono);

uninstall($packlistfile,$verbose,$nonono);

pm_to_blib($hashref);

DESCRIPTION
Both install() and uninstall() are specific to the way ExtUtils::MakeMaker handles th
installation and deinstallation of perl modules. They are not designed as general purpose tools.

install() takes three arguments. A reference to a hash, a verbose switch and a don‘t−really
switch. The hash ref contains a mapping of directories: each key/value pair is a combination of directo
be copied. Key is a directory to copy from, value is a directory to copy to. The whole tree below the "
directory will be copied preserving timestamps and permissions.

There are two keys with a special meaning in the hash: "read" and "write". After the copying is done,
will write the list of target files to the file named by $hashref−>{write}. If there is another file named
by $hashref−>{read}, the contents of this file will be merged into the written file. The read and
written file may be identical, but on AFS it is quite likely, people are installing to a different directory
the one where the files later appear.

install_default() takes one or less arguments. If no arguments are specified, it takes $ARGV[0] as
if it was specified as an argument. The argument is the value of MakeMaker‘s FULLEXT key, like
Tk/Canvas. This function calls install() with the same arguments as the defaults the MakeMa
would use.

The argumement−less form is convenient for install scripts like

 perl −MExtUtils::Install −e install_default Tk/Canvas

Assuming this command is executed in a directory with populated blib directory, it will proceed as if the
blib was build by MakeMaker on this machine. This is useful for binary distributions.

uninstall() takes as first argument a file containing filenames to be unlinked. The second argume
verbose switch, the third is a no−don‘t−really−do−it−now switch.

pm_to_blib() takes a hashref as the first argument and copies all keys of the hash to the corresp
values efficiently. Filenames with the extension pm are autosplit. Second argument is the autosplit dire
864 Version 5.005_02 18−Oct−1998

ExtUtils::Installed Perl Programmers Reference Guide ExtUtils::Installed

ed. It
. In
 the

s. The

lists are

 name

s from
rs are

 just
d will

s from
 "all",
aining
er the
cified

es

 in the
ument
NAME
ExtUtils::Installed − Inventory management of installed modules

SYNOPSIS
 use ExtUtils::Installed;
 my ($inst) = ExtUtils::Installed−>new();
 my (@modules) = $inst−>modules();
 my (@missing) = $inst−>validate("DBI");
 my $all_files = $inst−>files("DBI");
 my $files_below_usr_local = $inst−>files("DBI", "all", "/usr/local");
 my $all_dirs = $inst−>directories("DBI");
 my $dirs_below_usr_local = $inst−>directory_tree("DBI", "prog");
 my $packlist = $inst−>packlist("DBI");

DESCRIPTION
ExtUtils::Installed provides a standard way to find out what core and module files have been install
uses the information stored in .packlist files created during installation to provide this information
addition it provides facilities to classify the installed files and to extract directory information from
.packlist files.

USAGE
The new() function searches for all the installed .packlists on the system, and stores their content
.packlists can be queried with the functions described below.

FUNCTIONS

new()
This takes no parameters, and searches for all the installed .packlists on the system. The pack
read using the ExtUtils::packlist module.

modules()
This returns a list of the names of all the installed modules. The perl ‘core’ is given the special
‘Perl’.

files()
This takes one mandatory parameter, the name of a module. It returns a list of all the filename
the package. To obtain a list of core perl files, use the module name ‘Perl’. Additional paramete
allowed. The first is one of the strings "prog", "man" or "all", to select either just program files,
manual files or all files. The remaining parameters are a list of directories. The filenames returne
be restricted to those under the specified directories.

directories()
This takes one mandatory parameter, the name of a module. It returns a list of all the directorie
the package. Additional parameters are allowed. The first is one of the strings "prog", "man" or
to select either just program directories, just manual directories or all directories. The rem
parameters are a list of directories. The directories returned will be restricted to those und
specified directories. This method returns only the leaf directories that contain files from the spe
module.

directory_tree()
This is identical in operation to directory() , except that it includes all the intermediate directori
back up to the specified directories.

validate()
This takes one mandatory parameter, the name of a module. It checks that all the files listed
modules .packlist actually exist, and returns a list of any missing files. If an optional second arg
which evaluates to true is given any missing files will be removed from the .packlist
18−Oct−1998 Version 5.005_02 865

ExtUtils::Installed Perl Programmers Reference Guide ExtUtils::Installed
packlist()
This returns the ExtUtils::Packlist object for the specified module.

version()
This returns the version number for the specified module.

EXAMPLE
See the example in ExtUtils::Packlist.

AUTHOR
Alan Burlison <Alan.Burlison@uk.sun.com
866 Version 5.005_02 18−Oct−1998

ExtUtils::Liblist Perl Programmers Reference Guide ExtUtils::Liblist

 those

.

Only

e may
s in

tform.
object

ral

ctory,
 OS/2

 object
NAME
ExtUtils::Liblist − determine libraries to use and how to use them

SYNOPSIS
require ExtUtils::Liblist;

ExtUtils::Liblist::ext($self, $potential_libs, $verbose);

DESCRIPTION
This utility takes a list of libraries in the form −llib1 −llib2 −llib3 and prints out lines suitable for
inclusion in an extension Makefile. Extra library paths may be included with the form
−L/another/path this will affect the searches for all subsequent libraries.

It returns an array of four scalar values: EXTRALIBS, BSLOADLIBS, LDLOADLIBS, and
LD_RUN_PATH. Some of these don‘t mean anything on VMS and Win32. See the details about
platform specifics below.

Dependent libraries can be linked in one of three ways:

 For static extensions
by the ld command when the perl binary is linked with the extension library. See EXTRALIBS below

 For dynamic extensions
by the ld command when the shared object is built/linked. See LDLOADLIBS below.

 For dynamic extensions
by the DynaLoader when the shared object is loaded. See BSLOADLIBS below.

EXTRALIBS
List of libraries that need to be linked with when linking a perl binary which includes this extension
those libraries that actually exist are included. These are written to a file and used when linking perl.

LDLOADLIBS and LD_RUN_PATH
List of those libraries which can or must be linked into the shared library when created using ld. Thes
be static or dynamic libraries. LD_RUN_PATH is a colon separated list of the directorie
LDLOADLIBS. It is passed as an environment variable to the process that links the shared library.

BSLOADLIBS
List of those libraries that are needed but can be linked in dynamically at run time on this pla
SunOS/Solaris does not need this because ld records the information (from LDLOADLIBS) into the
file. This list is used to create a .bs (bootstrap) file.

PORTABILITY
This module deals with a lot of system dependencies and has quite a few architecture specific ifs in the code.

VMS implementation
The version of ext() which is executed under VMS differs from the Unix−OS/2 version in seve
respects:

 Input library and path specifications are accepted with or without the −l and −L prefices used by Unix
linkers. If neither prefix is present, a token is considered a directory to search if it is in fact a dire
and a library to search for otherwise. Authors who wish their extensions to be portable to Unix or
should use the Unix prefixes, since the Unix−OS/2 version of ext() requires them.

 Wherever possible, shareable images are preferred to object libraries, and object libraries to plain
files. In accordance with VMS naming conventions, ext() looks for files named libshr and librtl; it also
looks for liblib and liblib to accomodate Unix conventions used in some ported software.
18−Oct−1998 Version 5.005_02 867

ExtUtils::Liblist Perl Programmers Reference Guide ExtUtils::Liblist

return
ommand

out or

for
uld be

ral

 by

ary

n

ore
e

is in

le

ce of

are

in

it.
, as

 put

ince
tween
 For each library that is found, an appropriate directive for a linker options file is generated. The
values are space−separated strings of these directives, rather than elements used on the linker c
line.

 LDLOADLIBS contains both the libraries found based on $potential_libs and the CRTLs, if any,
specified in Config.pm. EXTRALIBS contains just those libraries found based on
$potential_libs. BSLOADLIBS and LD_RUN_PATH are always empty.

In addition, an attempt is made to recognize several common Unix library names, and filter them
convert them to their VMS equivalents, as appropriate.

In general, the VMS version of ext() should properly handle input from extensions originally designed
a Unix or VMS environment. If you encounter problems, or discover cases where the search co
improved, please let us know.

Win32 implementation
The version of ext() which is executed under Win32 differs from the Unix−OS/2 version in seve
respects:

 If $potential_libs is empty, the return value will be empty. Otherwise, the libraries specified
$Config{libs} (see Config.pm) will be appended to the list of $potential_libs. The libraries
will be searched for in the directories specified in $potential_libs as well as in
$Config{libpth}. For each library that is found, a space−separated list of fully qualified libr
pathnames is generated.

 Input library and path specifications are accepted with or without the −l and −L prefices used by Unix
linkers.

An entry of the form −La:\foo specifies the a:\foo directory to look for the libraries that follow.

An entry of the form −lfoo specifies the library foo , which may be spelled differently depending o
what kind of compiler you are using. If you are using GCC, it gets translated to libfoo.a , but for other
win32 compilers, it becomes foo.lib . If no files are found by those translated names, one m
attempt is made to find them using either foo.a or libfoo.lib , depending on whether GCC or som
other win32 compiler is being used, respectively.

If neither the −L or −l prefix is present in an entry, the entry is considered a directory to search if it
fact a directory, and a library to search for otherwise. The $Config{lib_ext} suffix will be
appended to any entries that are not directories and don‘t already have the suffix.

Note that the −L and <−l prefixes are not required, but authors who wish their extensions to be portab
to Unix or OS/2 should use the prefixes, since the Unix−OS/2 version of ext() requires them.

 Entries cannot be plain object files, as many Win32 compilers will not handle object files in the pla
libraries.

 Entries in $potential_libs beginning with a colon and followed by alphanumeric characters
treated as flags. Unknown flags will be ignored.

An entry that matches /:nodefault/i disables the appending of default libraries found
$Config{libs} (this should be only needed very rarely).

An entry that matches /:nosearch/i disables all searching for the libraries specified after
Translation of −Lfoo and −lfoo still happens as appropriate (depending on compiler being used
reflected by $Config{cc}), but the entries are not verified to be valid files or directories.

An entry that matches /:search/i reenables searching for the libraries specified after it. You can
it at the end to enable searching for default libraries specified by $Config{libs}.

 The libraries specified may be a mixture of static libraries and import libraries (to link with DLLs). S
both kinds are used pretty transparently on the win32 platform, we do not attempt to distinguish be
them.
868 Version 5.005_02 18−Oct−1998

ExtUtils::Liblist Perl Programmers Reference Guide ExtUtils::Liblist

uotes if

ext
ly
th
 LDLOADLIBS and EXTRALIBS are always identical under Win32, and BSLOADLIBS and
LD_RUN_PATH are always empty (this may change in future).

 You must make sure that any paths and path components are properly surrounded with double−q
they contain spaces. For example, $potential_libs could be (literally):

"−Lc:\Program Files\vc\lib" msvcrt.lib "la test\foo bar.lib"

Note how the first and last entries are protected by quotes in order to protect the spaces.

 Since this module is most often used only indirectly from extension Makefile.PL files, here is an
example Makefile.PL entry to add a library to the build process for an extension:

 LIBS => [’−lgl’]

When using GCC, that entry specifies that MakeMaker should first look for libgl.a (followed by
gl.a) in all the locations specified by $Config{libpth}.

When using a compiler other than GCC, the above entry will search for gl.lib (followed by
libgl.lib).

If the library happens to be in a location not in $Config{libpth}, you need:

 LIBS => [’−Lc:\gllibs −lgl’]

Here is a less often used example:

 LIBS => [’−lgl’, ’:nosearch −Ld:\mesalibs −lmesa −luser32’]

This specifies a search for library gl as before. If that search fails to find the library, it looks at the n
item in the list. The :nosearch flag will prevent searching for the libraries that follow, so it simp
returns the value as −Ld:\mesalibs −lmesa −luser32 , since GCC can use that value as is wi
its linker.

When using the Visual C compiler, the second item is returned as −libpath:d:\mesalibs
mesa.lib user32.lib .

When using the Borland compiler, the second item is returned as −Ld:\mesalibs mesa.lib
user32.lib , and MakeMaker takes care of moving the −Ld:\mesalibs to the correct place in the
linker command line.

SEE ALSO
ExtUtils::MakeMaker
18−Oct−1998 Version 5.005_02 869

ExtUtils::MM_OS2 Perl Programmers Reference Guide ExtUtils::MM_OS2

s the
NAME
ExtUtils::MM_OS2 − methods to override UN*X behaviour in ExtUtils::MakeMaker

SYNOPSIS
 use ExtUtils::MM_OS2; # Done internally by ExtUtils::MakeMaker if needed

DESCRIPTION
See ExtUtils::MM_Unix for a documentation of the methods provided there. This package override
implementation of these methods, not the semantics.
870 Version 5.005_02 18−Oct−1998

ExtUtils::MM_Unix Perl Programmers Reference Guide ExtUtils::MM_Unix

aker.
ackage
e of
. We
within

es to

to the
 driven

itably

o). All

ssive

emove
nfuses

name

mpiler
inition
NAME
ExtUtils::MM_Unix − methods used by ExtUtils::MakeMaker

SYNOPSIS
require ExtUtils::MM_Unix;

DESCRIPTION
The methods provided by this package are designed to be used in conjunction with ExtUtils::MakeM
When MakeMaker writes a Makefile, it creates one or more objects that inherit their methods from a p
MM. MM itself doesn‘t provide any methods, but it ISA ExtUtils::MM_Unix class. The inheritance tre
MM lets operating specific packages take the responsibility for all the methods provided by MM_Unix
are trying to reduce the number of the necessary overrides by defining rather primitive operations
ExtUtils::MM_Unix.

If you are going to write a platform specific MM package, please try to limit the necessary overrid
primitive methods, and if it is not possible to do so, let‘s work out how to achieve that gain.

If you are overriding any of these methods in your Makefile.PL (in the MY class), please report that
makemaker mailing list. We are trying to minimize the necessary method overrides and switch to data
Makefile.PLs wherever possible. In the long run less methods will be overridable via the MY class.

METHODS
The following description of methods is still under development. Please refer to the code for not su
documented sections and complain loudly to the makemaker mailing list.

Not all of the methods below are overridable in a Makefile.PL. Overridable methods are marked as (
methods are overridable by a platform specific MM_*.pm file (See ExtUtils::MM_VMS) and
ExtUtils::MM_OS2).

Preloaded methods

canonpath
No physical check on the filesystem, but a logical cleanup of a path. On UNIX eliminated succe
slashes and successive "/.".

catdir
Concatenate two or more directory names to form a complete path ending with a directory. But r
the trailing slash from the resulting string, because it doesn‘t look good, isn‘t necessary and co
OS2. Of course, if this is the root directory, don‘t cut off the trailing slash :−)

catfile
Concatenate one or more directory names and a filename to form a complete path ending with a file

curdir
Returns a string representing of the current directory. "." on UNIX.

rootdir
Returns a string representing of the root directory. "/" on UNIX.

updir
Returns a string representing of the parent directory. ".." on UNIX.

SelfLoaded methods

c_o (o)
Defines the suffix rules to compile different flavors of C files to object files.

cflags (o)
Does very much the same as the cflags script in the perl distribution. It doesn‘t return the whole co
command line, but initializes all of its parts. The const_cccmd method then actually returns the def
18−Oct−1998 Version 5.005_02 871

ExtUtils::MM_Unix Perl Programmers Reference Guide ExtUtils::MM_Unix

 these
e same

 make
of the CCCMD macro which uses these parts.

clean (o)
Defines the clean target.

const_cccmd (o)
Returns the full compiler call for C programs and stores the definition in CONST_CCCMD.

const_config (o)
Defines a couple of constants in the Makefile that are imported from %Config.

const_loadlibs (o)
Defines EXTRALIBS, LDLOADLIBS, BSLOADLIBS, LD_RUN_PATH. See ExtUtils::Liblist for
details.

constants (o)
Initializes lots of constants and .SUFFIXES and .PHONY

depend (o)
Same as macro for the depend attribute.

dir_target (o)
Takes an array of directories that need to exist and returns a Makefile entry for a .exists file in
directories. Returns nothing, if the entry has already been processed. We‘re helpless though, if th
directory comes as $(FOO) _and_ as "bar". Both of them get an entry, that‘s why we use "::".

dist (o)
Defines a lot of macros for distribution support.

dist_basics (o)
Defines the targets distclean, distcheck, skipcheck, manifest.

dist_ci (o)
Defines a check in target for RCS.

dist_core (o)
Defeines the targets dist, tardist, zipdist, uutardist, shdist

dist_dir (o)
Defines the scratch directory target that will hold the distribution before tar−ing (or shar−ing).

dist_test (o)
Defines a target that produces the distribution in the scratchdirectory, and runs ‘perl Makefile.PL;
;make test’ in that subdirectory.

dlsyms (o)
Used by AIX and VMS to define DL_FUNCS and DL_VARS and write the *.exp files.

dynamic (o)
Defines the dynamic target.

dynamic_bs (o)
Defines targets for bootstrap files.

dynamic_lib (o)
Defines how to produce the *.so (or equivalent) files.

exescan
Deprecated method. Use libscan instead.
872 Version 5.005_02 18−Oct−1998

ExtUtils::MM_Unix Perl Programmers Reference Guide ExtUtils::MM_Unix

only if

oes

,

file in

ory that
extliblist
Called by init_others, and calls ext ExtUtils::Liblist. See ExtUtils::Liblist for details.

file_name_is_absolute
Takes as argument a path and returns true, if it is an absolute path.

find_perl
Finds the executables PERL and FULLPERL

Methods to actually produce chunks of text for the Makefile
The methods here are called for each MakeMaker object in the order specified by
@ExtUtils::MakeMaker::MM_Sections.

fixin
Inserts the sharpbang or equivalent magic number to a script

force (o)
Just writes FORCE:

guess_name
Guess the name of this package by examining the working directory‘s name. MakeMaker calls this
the developer has not supplied a NAME attribute.

has_link_code
Returns true if C, XS, MYEXTLIB or similar objects exist within this object that need a compiler. D
not descend into subdirectories as needs_linking() does.

init_dirscan
Initializes DIR, XS, PM, C, O_FILES, H, PL_FILES, MAN*PODS, EXE_FILES.

init_main
Initializes NAME, FULLEXT, BASEEXT, PARENT_NAME, DLBASE, PERL_SRC, PERL_LIB
PERL_ARCHLIB, PERL_INC, INSTALLDIRS, INST_*, INSTALL*, PREFIX, CONFIG, AR,
AR_STATIC_ARGS, LD, OBJ_EXT, LIB_EXT, EXE_EXT, MAP_TARGET, LIBPERL_A,
VERSION_FROM, VERSION, DISTNAME, VERSION_SYM.

init_others
Initializes EXTRALIBS, BSLOADLIBS, LDLOADLIBS, LIBS, LD_RUN_PATH, OBJECT,
BOOTDEP, PERLMAINCC, LDFROM, LINKTYPE, NOOP, FIRST_MAKEFILE, MAKEFILE,
NOECHO, RM_F, RM_RF, TEST_F, TOUCH, CP, MV, CHMOD, UMASK_NULL

install (o)
Defines the install target.

installbin (o)
Defines targets to install EXE_FILES.

libscan (o)
Takes a path to a file that is found by init_dirscan and returns false if we don‘t want to include this
the library. Mainly used to exclude RCS, CVS, and SCCS directories from installation.

linkext (o)
Defines the linkext target which in turn defines the LINKTYPE.

lsdir
Takes as arguments a directory name and a regular expression. Returns all entries in the direct
match the regular expression.
18−Oct−1998 Version 5.005_02 873

ExtUtils::MM_Unix Perl Programmers Reference Guide ExtUtils::MM_Unix

ns of

ctories.

ithout

‘t need
rt of a

ript. On

alue is
macro (o)
Simple subroutine to insert the macros defined by the macro attribute into the Makefile.

makeaperl (o)
Called by staticmake. Defines how to write the Makefile to produce a static new perl.

By default the Makefile produced includes all the static extensions in the perl library. (Purified versio
library files, e.g., DynaLoader_pure_p1_c0_032.a are automatically ignored to avoid link errors.)

makefile (o)
Defines how to rewrite the Makefile.

manifypods (o)
Defines targets and routines to translate the pods into manpages and put them into the INST_* dire

maybe_command
Returns true, if the argument is likely to be a command.

maybe_command_in_dirs
method under development. Not yet used. Ask Ilya :−)

needs_linking (o)
Does this module need linking? Looks into subdirectory objects (see also has_link_code())

nicetext
misnamed method (will have to be changed). The MM_Unix method just returns the argument w
further processing.

On VMS used to insure that colons marking targets are preceded by space − most Unix Makes don
this, but it‘s necessary under VMS to distinguish the target delimiter from a colon appearing as pa
filespec.

parse_version
parse a file and return what you think is $VERSION in this file set to

parse_abstract
parse a file and return what you think is the ABSTRACT

pasthru (o)
Defines the string that is passed to recursive make calls in subdirectories.

path
Takes no argument, returns the environment variable PATH as an array.

perl_script
Takes one argument, a file name, and returns the file name, if the argument is likely to be a perl sc
MM_Unix this is true for any ordinary, readable file.

perldepend (o)
Defines the dependency from all *.h files that come with the perl distribution.

ppd
Defines target that creates a PPD (Perl Package Description) file for a binary distribution.

perm_rw (o)
Returns the attribute PERM_RW or the string 644 . Used as the string that is passed to the chmod
command to set the permissions for read/writeable files. MakeMaker chooses 644 because it has turned
out in the past that relying on the umask provokes hard−to−track bugreports. When the return v
874 Version 5.005_02 18−Oct−1998

ExtUtils::MM_Unix Perl Programmers Reference Guide ExtUtils::MM_Unix

. See

tants

e after

tribute in

the slash
used by the perl function chmod, it is interpreted as an octal value.

perm_rwx (o)
Returns the attribute PERM_RWX or the string 755 , i.e. the string that is passed to the chmod command
to set the permissions for executable files. See also perl_rw.

pm_to_blib
Defines target that copies all files in the hash PM to their destination and autosplits them
ExtUtils::Install/DESCRIPTION

post_constants (o)
Returns an empty string per default. Dedicated to overrides from within Makefile.PL after all cons
have been defined.

post_initialize (o)
Returns an empty string per default. Used in Makefile.PLs to add some chunk of text to the Makefil
the object is initialized.

postamble (o)
Returns an empty string. Can be used in Makefile.PLs to write some text to the Makefile at the end.

prefixify
Check a path variable in $self from %Config, if it contains a prefix, and replace it with another one.

Takes as arguments an attribute name, a search prefix and a replacement prefix. Changes the at
the object.

processPL (o)
Defines targets to run *.PL files.

realclean (o)
Defines the realclean target.

replace_manpage_separator
Takes the name of a package, which may be a nested package, in the form Foo/Bar and replaces
with :: . Returns the replacement.

static (o)
Defines the static target.

static_lib (o)
Defines how to produce the *.a (or equivalent) files.

staticmake (o)
Calls makeaperl.

subdir_x (o)
Helper subroutine for subdirs

subdirs (o)
Defines targets to process subdirectories.

test (o)
Defines the test targets.

test_via_harness (o)
Helper method to write the test targets
18−Oct−1998 Version 5.005_02 875

ExtUtils::MM_Unix Perl Programmers Reference Guide ExtUtils::MM_Unix

.

ake

UNIX

ported.
test_via_script (o)
Other helper method for test.

tool_autosplit (o)
Defines a simple perl call that runs autosplit. May be deprecated by pm_to_blib soon.

tools_other (o)
Defines SHELL, LD, TOUCH, CP, MV, RM_F, RM_RF, CHMOD, UMASK_NULL in the Makefile
Also defines the perl programs MKPATH, WARN_IF_OLD_PACKLIST, MOD_INSTALL.
DOC_INSTALL, and UNINSTALL.

tool_xsubpp (o)
Determines typemaps, xsubpp version, prototype behaviour.

top_targets (o)
Defines the targets all, subdirs, config, and O_FILES

writedoc
Obsolete, depecated method. Not used since Version 5.21.

xs_c (o)
Defines the suffix rules to compile XS files to C.

xs_o (o)
Defines suffix rules to go from XS to object files directly. This is only intended for broken m
implementations.

perl_archive
This is internal method that returns path to libperl.a equivalent to be linked to dynamic extensions.
does not have one but OS2 and Win32 do.

export_list
This is internal method that returns name of a file that is passed to linker to define symbols to be ex
UNIX does not have one but OS2 and Win32 do.

SEE ALSO
ExtUtils::MakeMaker
876 Version 5.005_02 18−Oct−1998

ExtUtils::MM_VMS Perl Programmers Reference Guide ExtUtils::MM_VMS

s the

nts of

ctory
lso
 avoid

ctory
not
efault

ctory

ctory

ue to
on of
ore

ctory.
t

NAME
ExtUtils::MM_VMS − methods to override UN*X behaviour in ExtUtils::MakeMaker

SYNOPSIS
 use ExtUtils::MM_VMS; # Done internally by ExtUtils::MakeMaker if needed

DESCRIPTION
See ExtUtils::MM_Unix for a documentation of the methods provided there. This package override
implementation of these methods, not the semantics.

Methods always loaded

eliminate_macros
Expands MM[KS]/Make macros in a text string, using the contents of identically named eleme
%$self, and returns the result as a file specification in Unix syntax.

fixpath
Catchall routine to clean up problem MM[SK]/Make macros. Expands macros in any dire
specification, in order to avoid juxtaposing two VMS−syntax directories when MM[SK] is run. A
expands expressions which are all macro, so that we can tell how long the expansion is, and
overrunning DCL‘s command buffer when MM[KS] is running.

If optional second argument has a TRUE value, then the return string is a VMS−syntax dire
specification, if it is FALSE, the return string is a VMS−syntax file specification, and if it is
specified, fixpath() checks to see whether it matches the name of a directory in the current d
directory, and returns a directory or file specification accordingly.

catdir
Concatenates a list of file specifications, and returns the result as a VMS−syntax dire
specification.

catfile
Concatenates a list of file specifications, and returns the result as a VMS−syntax dire
specification.

wraplist
Converts a list into a string wrapped at approximately 80 columns.

curdir (override)
Returns a string representing of the current directory.

rootdir (override)
Returns a string representing of the root directory.

updir (override)
Returns a string representing of the parent directory.

SelfLoaded methods
Those methods which override default MM_Unix methods are marked "(override)", while methods uniq
MM_VMS are marked "(specific)". For overridden methods, documentation is limited to an explanati
why this method overrides the MM_Unix method; see the ExtUtils::MM_Unix documentation for m
details.

guess_name (override)
Try to determine name of extension being built. We begin with the name of the current dire
Since VMS filenames are case−insensitive, however, we look for a .pm file whose name matches tha
of the current directory (presumably the ‘main’ .pm file for this extension), and try to find a package
statement from which to obtain the Mixed::Case package name.
18−Oct−1998 Version 5.005_02 877

ExtUtils::MM_VMS Perl Programmers Reference Guide ExtUtils::MM_VMS

tch an

nix

 Also

 this
ly one

oo.h>

) long
args.
find_perl (override)
Use VMS file specification syntax and CLI commands to find and invoke Perl images.

path (override)
Translate logical name DCL$PATH as a searchlist, rather than trying to split string value of
$ENV{‘PATH‘}.

maybe_command (override)
Follows VMS naming conventions for executable files. If the name passed in doesn‘t exactly ma
executable file, appends .Exe (or equivalent) to check for executable image, and .Com to check for
DCL procedure. If this fails, checks directories in DCL$PATH and finally Sys$System: for an
executable file having the name specified, with or without the .Exe−equivalent suffix.

maybe_command_in_dirs (override)
Uses DCL argument quoting on test command line.

perl_script (override)
If name passed in doesn‘t specify a readable file, appends .com or .pl and tries again, since it‘s
customary to have file types on all files under VMS.

file_name_is_absolute (override)
Checks for VMS directory spec as well as Unix separators.

replace_manpage_separator
Use as separator a character which is legal in a VMS−syntax file name.

init_others (override)
Provide VMS−specific forms of various utility commands, then hand off to the default MM_U
method.

constants (override)
Fixes up numerous file and directory macros to insure VMS syntax regardless of input syntax.
adds a few VMS−specific macros and makes lists of files comma−separated.

cflags (override)
Bypass shell script and produce qualifiers for CC directly (but warn user if a shell script for
extension exists). Fold multiple /Defines into one, since some C compilers pay attention to on
instance of this qualifier on the command line.

const_cccmd (override)
Adds directives to point C preprocessor to the right place when handling #include <sys/f
directives. Also constructs CC command line a bit differently than MM_Unix method.

pm_to_blib (override)
DCL still accepts a maximum of 255 characters on a command line, so we write the (potentially
list of file names to a temp file, then persuade Perl to read it instead of the command line to find

tool_autosplit (override)
Use VMS−style quoting on command line.

tool_sxubpp (override)
Use VMS−style quoting on xsubpp command line.

xsubpp_version (override)
Test xsubpp exit status according to VMS rules ($sts & 1 ==> good) rather than Unix rules ($sts
== 0 ==> good).
878 Version 5.005_02 18−Oct−1998

ExtUtils::MM_VMS Perl Programmers Reference Guide ExtUtils::MM_VMS

under
 file
source

e, and

build

st of

mand
tools_other (override)
Adds a few MM[SK] macros, and shortens some the installatin commands, in order to stay
DCL‘s 255−character limit. Also changes EQUALIZE_TIMESTAMP to set revision date of target
to one second later than source file, since MMK interprets precisely equal revision dates for a
and target file as a sign that the target needs to be updated.

dist (override)
Provide VMSish defaults for some values, then hand off to default MM_Unix method.

c_o (override)
Use VMS syntax on command line. In particular, $(DEFINE) and $(PERL_INC) have been pulled
into $(CCCMD). Also use MM[SK] macros.

xs_c (override)
Use MM[SK] macros.

xs_o (override)
Use MM[SK] macros, and VMS command line for C compiler.

top_targets (override)
Use VMS quoting on command line for Version_check.

dlsyms (override)
Create VMS linker options files specifying universal symbols for this extension‘s shareable imag
listing other shareable images or libraries to which it should be linked.

dynamic_lib (override)
Use VMS Link command.

dynamic_bs (override)
Use VMS−style quoting on Mkbootstrap command line.

static_lib (override)
Use VMS commands to manipulate object library.

manifypods (override)
Use VMS−style quoting on command line, and VMS logical name to specify fallback location at
time if we can‘t find pod2man.

processPL (override)
Use VMS−style quoting on command line.

installbin (override)
Stay under DCL‘s 255 character command line limit once again by splitting potentially long li
files across multiple lines in realclean target.

subdir_x (override)
Use VMS commands to change default directory.

clean (override)
Split potentially long list of files across multiple commands (in order to stay under the magic com
line limit). Also use MM[SK] commands for handling subdirectories.

realclean (override)
Guess what we‘re working around? Also, use MM[SK] for subdirectories.

dist_basics (override)
Use VMS−style quoting on command line.
18−Oct−1998 Version 5.005_02 879

ExtUtils::MM_VMS Perl Programmers Reference Guide ExtUtils::MM_VMS

 in a

nix

namic
ormal

elimiter
dist_core (override)
Syntax for invoking VMS_Share differs from that for Unix shar, so shdist target actions are
VMS−specific.

dist_dir (override)
Use VMS−style quoting on command line.

dist_test (override)
Use VMS commands to change default directory, and use VMS−style quoting on command line.

install (override)
Work around DCL‘s 255 character limit several times,and use VMS−style command line quoting
few cases.

perldepend (override)
Use VMS−style syntax for files; it‘s cheaper to just do it directly here than to have the MM_U
method call catfile repeatedly. Also, if we have to rebuild Config.pm, use MM[SK] to do it.

makefile (override)
Use VMS commands and quoting.

test (override)
Use VMS commands for handling subdirectories.

test_via_harness (override)
Use VMS−style quoting on command line.

test_via_script (override)
Use VMS−style quoting on command line.

makeaperl (override)
Undertake to build a new set of Perl images using VMS commands. Since VMS does dy
loading, it‘s not necessary to statically link each extension into the Perl image, so this isn‘t the n
build path. Consequently, it hasn‘t really been tested, and may well be incomplete.

nicetext (override)
Insure that colons marking targets are preceded by space, in order to distinguish the target d
from a colon appearing as part of a filespec.
880 Version 5.005_02 18−Oct−1998

ExtUtils::MM_Win32 Perl Programmers Reference Guide ExtUtils::MM_Win32

s the

with a

ssive

l script.

. See

.

ake
NAME
ExtUtils::MM_Win32 − methods to override UN*X behaviour in ExtUtils::MakeMaker

SYNOPSIS
 use ExtUtils::MM_Win32; # Done internally by ExtUtils::MakeMaker if needed

DESCRIPTION
See ExtUtils::MM_Unix for a documentation of the methods provided there. This package override
implementation of these methods, not the semantics.

catfile
Concatenate one or more directory names and a filename to form a complete path ending
filename

constants (o)
Initializes lots of constants and .SUFFIXES and .PHONY

static_lib (o)
Defines how to produce the *.a (or equivalent) files.

dynamic_bs (o)
Defines targets for bootstrap files.

dynamic_lib (o)
Defines how to produce the *.so (or equivalent) files.

canonpath
No physical check on the filesystem, but a logical cleanup of a path. On UNIX eliminated succe
slashes and successive "/.".

perl_script
Takes one argument, a file name, and returns the file name, if the argument is likely to be a per
On MM_Unix this is true for any ordinary, readable file.

pm_to_blib
Defines target that copies all files in the hash PM to their destination and autosplits them
ExtUtils::Install/DESCRIPTION

test_via_harness (o)
Helper method to write the test targets

tool_autosplit (override)
Use Win32 quoting on command line.

tools_other (o)
Win32 overrides.

Defines SHELL, LD, TOUCH, CP, MV, RM_F, RM_RF, CHMOD, UMASK_NULL in the Makefile
Also defines the perl programs MKPATH, WARN_IF_OLD_PACKLIST, MOD_INSTALL.
DOC_INSTALL, and UNINSTALL.

xs_o (o)
Defines suffix rules to go from XS to object files directly. This is only intended for broken m
implementations.

top_targets (o)
Defines the targets all, subdirs, config, and O_FILES
18−Oct−1998 Version 5.005_02 881

ExtUtils::MM_Win32 Perl Programmers Reference Guide ExtUtils::MM_Win32
manifypods (o)
We don‘t want manpage process. XXX add pod2html support later.

dist_ci (o)
Same as MM_Unix version (changes command−line quoting).

dist_core (o)
Same as MM_Unix version (changes command−line quoting).

pasthru (o)
Defines the string that is passed to recursive make calls in subdirectories.
882 Version 5.005_02 18−Oct−1998

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

n the

idden.

L. Is
 single

sist of
he
NAME
ExtUtils::MakeMaker − create an extension Makefile

SYNOPSIS
use ExtUtils::MakeMaker;

WriteMakefile(ATTRIBUTE => VALUE [, ...]);

which is really

MM−>new(\%att)−>flush;

DESCRIPTION
This utility is designed to write a Makefile for an extension module from a Makefile.PL. It is based o
Makefile.SH model provided by Andy Dougherty and the perl5−porters.

It splits the task of generating the Makefile into several subroutines that can be individually overr
Each subroutine returns the text it wishes to have written to the Makefile.

MakeMaker is object oriented. Each directory below the current directory that contains a Makefile.P
treated as a separate object. This makes it possible to write an unlimited number of Makefiles with a
invocation of WriteMakefile() .

How To Write A Makefile.PL
The short answer is: Don‘t.

 Always begin with h2xs.
 Always begin with h2xs!
 ALWAYS BEGIN WITH H2XS!

even if you‘re not building around a header file, and even if you don‘t have an XS component.

Run h2xs(1) before you start thinking about writing a module. For so called pm−only modules that con
*.pm files only, h2xs has the −X switch. This will generate dummy files of all kinds that are useful for t
module developer.

The medium answer is:

 use ExtUtils::MakeMaker;
 WriteMakefile(NAME => "Foo::Bar");

The long answer is the rest of the manpage :−)

Default Makefile Behaviour
The generated Makefile enables the user of the extension to invoke

 perl Makefile.PL # optionally "perl Makefile.PL verbose"
 make
 make test # optionally set TEST_VERBOSE=1
 make install # See below

The Makefile to be produced may be altered by adding arguments of the form KEY=VALUE. E.g.

 perl Makefile.PL PREFIX=/tmp/myperl5

Other interesting targets in the generated Makefile are

 make config # to check if the Makefile is up−to−date
 make clean # delete local temp files (Makefile gets renamed)
 make realclean # delete derived files (including ./blib)
 make ci # check in all the files in the MANIFEST file
 make dist # see below the Distribution Support section
18−Oct−1998 Version 5.005_02 883

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

s
 of perl

f the

ee

et

g

ies to
IRS

tall a

s into
make test
MakeMaker checks for the existence of a file named test.pl in the current directory and if it exists it add
commands to the test target of the generated Makefile that will execute the script with the proper set
−I options.

MakeMaker also checks for any files matching glob("t/*.t"). It will add commands to the test target o
generated Makefile that execute all matching files via the Test::Harness module with the −I switches set
correctly.

make testdb
A useful variation of the above is the target testdb . It runs the test under the Perl debugger (s
perldebug). If the file test.pl exists in the current directory, it is used for the test.

If you want to debug some other testfile, set TEST_FILE variable thusly:

 make testdb TEST_FILE=t/mytest.t

By default the debugger is called using −d option to perl. If you want to specify some other option, s
TESTDB_SW variable:

 make testdb TESTDB_SW=−Dx

make install
make alone puts all relevant files into directories that are named by the macros INST_LIB,
INST_ARCHLIB, INST_SCRIPT, INST_MAN1DIR, and INST_MAN3DIR. All these default to somethin
below ./blib if you are not building below the perl source directory. If you are building below the perl
source, INST_LIB and INST_ARCHLIB default to
 ../../lib, and INST_SCRIPT is not defined.

The install target of the generated Makefile copies the files found below each of the INST_* director
their INSTALL* counterparts. Which counterparts are chosen depends on the setting of INSTALLD
according to the following table:

 INSTALLDIRS set to
 perl site

 INST_ARCHLIB INSTALLARCHLIB INSTALLSITEARCH
 INST_LIB INSTALLPRIVLIB INSTALLSITELIB
 INST_BIN INSTALLBIN
 INST_SCRIPT INSTALLSCRIPT
 INST_MAN1DIR INSTALLMAN1DIR
 INST_MAN3DIR INSTALLMAN3DIR

The INSTALL... macros in turn default to their %Config ($Config{installprivlib},
$Config{installarchlib}, etc.) counterparts.

You can check the values of these variables on your system with

 perl ’−V:install.*’

And to check the sequence in which the library directories are searched by perl, run

 perl −le ’print join $/, @INC’

PREFIX and LIB attribute
PREFIX and LIB can be used to set several INSTALL* attributes in one go. The quickest way to ins
module in a non−standard place might be

 perl Makefile.PL LIB=~/lib

This will install the module‘s architecture−independent files into ~/lib, the architecture−dependent file
~/lib/$archname/auto.
884 Version 5.005_02 18−Oct−1998

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

make.
 XXX

en the
s

l.

as been

he AFS

ing. On
with the
akefile

und in
 on
 new
gh for
Another way to specify many INSTALL directories with a single parameter is PREFIX.

 perl Makefile.PL PREFIX=~

This will replace the string specified by $Config{prefix} in all $Config{install*} values.

Note, that in both cases the tilde expansion is done by MakeMaker, not by perl by default, nor by
Conflicts between parmeters LIB, PREFIX and the various INSTALL* arguments are resolved so that

If the user has superuser privileges, and is not working on AFS (Andrew File System) or relatives, th
defaults for INSTALLPRIVLIB, INSTALLARCHLIB, INSTALLSCRIPT, etc. will be appropriate, and thi
incantation will be the best:

 perl Makefile.PL; make; make test
 make install

make install per default writes some documentation of what has been done into the file
$(INSTALLARCHLIB)/perllocal.pod. This feature can be bypassed by calling make pure_instal

AFS users
will have to specify the installation directories as these most probably have changed since perl itself h
installed. They will have to do this by calling

 perl Makefile.PL INSTALLSITELIB=/afs/here/today \
INSTALLSCRIPT=/afs/there/now INSTALLMAN3DIR=/afs/for/manpages

 make

Be careful to repeat this procedure every time you recompile an extension, unless you are sure t
installation directories are still valid.

Static Linking of a new Perl Binary
An extension that is built with the above steps is ready to use on systems supporting dynamic load
systems that do not support dynamic loading, any newly created extension has to be linked together
available resources. MakeMaker supports the linking process by creating appropriate targets in the M
whenever an extension is built. You can invoke the corresponding section of the makefile with

 make perl

That produces a new perl binary in the current directory with all extensions linked in that can be fo
INST_ARCHLIB , SITELIBEXP, and PERL_ARCHLIB. To do that, MakeMaker writes a new Makefile,
UNIX, this is called Makefile.aperl (may be system dependent). If you want to force the creation of a
perl, it is recommended, that you delete this Makefile.aperl, so the directories are searched−throu
linkable libraries again.

The binary can be installed into the directory where perl normally resides on your machine with

 make inst_perl

To produce a perl binary with a different name than perl , either say

 perl Makefile.PL MAP_TARGET=myperl
 make myperl
 make inst_perl

or say

 perl Makefile.PL
 make myperl MAP_TARGET=myperl
 make inst_perl MAP_TARGET=myperl

In any case you will be prompted with the correct invocation of the inst_perl target that installs the new
binary into INSTALLBIN.
18−Oct−1998 Version 5.005_02 885

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

ading.

B and
ere

ed perl
u can
nsions

perl.

t
s a

fined

 in the

 the
ed
. If
me
e it

ifferent
d in the
uthor
make inst_perl per default writes some documentation of what has been done into the file
$(INSTALLARCHLIB)/perllocal.pod. This can be bypassed by calling make pure_inst_perl.

Warning: the inst_perl: target will most probably overwrite your existing perl binary. Use with care!

Sometimes you might want to build a statically linked perl although your system supports dynamic lo
In this case you may explicitly set the linktype with the invocation of the Makefile.PL or make:

 perl Makefile.PL LINKTYPE=static # recommended

or

 make LINKTYPE=static # works on most systems

Determination of Perl Library and Installation Locations
MakeMaker needs to know, or to guess, where certain things are located. Especially INST_LI
INST_ARCHLIB (where to put the files during the make(1) run), PERL_LIB and PERL_ARCHLIB (wh
to read existing modules from), and PERL_INC (header files and libperl*.*).

Extensions may be built either using the contents of the perl source directory tree or from the install
library. The recommended way is to build extensions after you have run ‘make install’ on perl itself. Yo
do that in any directory on your hard disk that is not below the perl source tree. The support for exte
below the ext directory of the perl distribution is only good for the standard extensions that come with

If an extension is being built below the ext/ directory of the perl source then MakeMaker will se
PERL_SRC automatically (e.g., ../..). If PERL_SRC is defined and the extension is recognized a
standard extension, then other variables default to the following:

 PERL_INC = PERL_SRC
 PERL_LIB = PERL_SRC/lib
 PERL_ARCHLIB = PERL_SRC/lib
 INST_LIB = PERL_LIB
 INST_ARCHLIB = PERL_ARCHLIB

If an extension is being built away from the perl source then MakeMaker will leave PERL_SRC unde
and default to using the installed copy of the perl library. The other variables default to the following:

 PERL_INC = $archlibexp/CORE
 PERL_LIB = $privlibexp
 PERL_ARCHLIB = $archlibexp
 INST_LIB = ./blib/lib
 INST_ARCHLIB = ./blib/arch

If perl has not yet been installed then PERL_SRC can be defined on the command line as shown
previous section.

Which architecture dependent directory?
If you don‘t want to keep the defaults for the INSTALL* macros, MakeMaker helps you to minimize
typing needed: the usual relationship between INSTALLPRIVLIB and INSTALLARCHLIB is determin
by Configure at perl compilation time. MakeMaker supports the user who sets INSTALLPRIVLIB
INSTALLPRIVLIB is set, but INSTALLARCHLIB not, then MakeMaker defaults the latter to be the sa
subdirectory of INSTALLPRIVLIB as Configure decided for the counterparts in %Config , otherwis
defaults to INSTALLPRIVLIB. The same relationship holds for INSTALLSITELIB and
INSTALLSITEARCH.

MakeMaker gives you much more freedom than needed to configure internal variables and get d
results. It is worth to mention, that make(1) also lets you configure most of the variables that are use
Makefile. But in the majority of situations this will not be necessary, and should only be done, if the a
of a package recommends it (or you know what you‘re doing).
886 Version 5.005_02 18−Oct−1998

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

ribute

 and

ags

tributes,

ue pair
er AIX
in the

er AIX
sion

T is

ile.PL

clean
Using Attributes and Parameters
The following attributes can be specified as arguments to WriteMakefile() or as NAME=VALUE pairs
on the command line:

C Ref to array of *.c file names. Initialised from a directory scan and the values portion of the XS att
hash. This is not currently used by MakeMaker but may be handy in Makefile.PLs.

CCFLAGS
String that will be included in the compiler call command line between the arguments INC
OPTIMIZE.

CONFIG
Arrayref. E.g. [qw(archname manext)] defines ARCHNAME & MANEXT from config.sh. MakeMaker
will add to CONFIG the following values anyway: ar cc cccdlflags ccdlflags dlext dlsrc ld lddlfl
ldflags libc lib_ext obj_ext ranlib sitelibexp sitearchexp so

CONFIGURE
CODE reference. The subroutine should return a hash reference. The hash may contain further at
e.g. {LIBS => ...}, that have to be determined by some evaluation method.

DEFINE
Something like "−DHAVE_UNISTD_H"

DIR
Ref to array of subdirectories containing Makefile.PLs e.g. [‘sdbm’] in ext/SDBM_File

DISTNAME
Your name for distributing the package (by tar file). This defaults to NAME above.

DL_FUNCS
Hashref of symbol names for routines to be made available as universal symbols. Each key/val
consists of the package name and an array of routine names in that package. Used only und
(export lists) and VMS (linker options) at present. The routine names supplied will be expanded
same way as XSUB names are expanded by the XS() macro. Defaults to

 {"$(NAME)" => ["boot_$(NAME)"] }

e.g.

 {"RPC" => [qw(boot_rpcb rpcb_gettime getnetconfigent)],
 "NetconfigPtr" => [’DESTROY’] }

DL_VARS
Array of symbol names for variables to be made available as universal symbols. Used only und
(export lists) and VMS (linker options) at present. Defaults to []. (e.g. [qw(Foo_ver
Foo_numstreams Foo_tree)])

EXCLUDE_EXT
Array of extension names to exclude when doing a static build. This is ignored if INCLUDE_EX
present. Consult INCLUDE_EXT for more details. (e.g. [qw(Socket POSIX)])

This attribute may be most useful when specified as a string on the commandline: perl Makef
EXCLUDE_EXT=‘Socket Safe’

EXE_FILES
Ref to array of executable files. The files will be copied to the INST_SCRIPT directory. Make real
will delete them from there again.
18−Oct−1998 Version 5.005_02 887

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

on the
your

idden.

 with
or. If
itly

. If
ill be

ile.PL

is

chlib
 with

to
NO_VC
In general any generated Makefile checks for the current version of MakeMaker and the versi
Makefile was built under. If NO_VC is set, the version check is neglected. Do not write this into
Makefile.PL, use it interactively instead.

FIRST_MAKEFILE
The name of the Makefile to be produced. Defaults to the contents of MAKEFILE, but can be overr
This is used for the second Makefile that will be produced for the MAP_TARGET.

FULLPERL
Perl binary able to run this extension.

H Ref to array of *.h file names. Similar to C.

IMPORTS
IMPORTS is only used on OS/2.

INC
Include file dirs eg: "−I/usr/5include −I/path/to/inc"

INCLUDE_EXT
Array of extension names to be included when doing a static build. MakeMaker will normally build
all of the installed extensions when doing a static build, and that is usually the desired behavi
INCLUDE_EXT is present then MakeMaker will build only with those extensions which are explic
mentioned. (e.g. [qw(Socket POSIX)])

It is not necessary to mention DynaLoader or the current extension when filling in INCLUDE_EXT
the INCLUDE_EXT is mentioned but is empty then only DynaLoader and the current extension w
included in the build.

This attribute may be most useful when specified as a string on the commandline: perl Makef
INCLUDE_EXT=‘POSIX Socket Devel::Peek’

INSTALLARCHLIB
Used by ‘make install‘, which copies files from INST_ARCHLIB to this directory if INSTALLDIRS
set to perl.

INSTALLBIN
Directory to install binary files (e.g. tkperl) into.

INSTALLDIRS
Determines which of the two sets of installation directories to choose: installprivlib and installar
versus installsitelib and installsitearch. The first pair is chosen with INSTALLDIRS=perl, the second
INSTALLDIRS=site. Default is site.

INSTALLMAN1DIR
This directory gets the man pages at ‘make install’ time. Defaults to $Config{installman1dir}.

INSTALLMAN3DIR
This directory gets the man pages at ‘make install’ time. Defaults to $Config{installman3dir}.

INSTALLPRIVLIB
Used by ‘make install‘, which copies files from INST_LIB to this directory if INSTALLDIRS is set
perl.

INSTALLSCRIPT
Used by ‘make install’ which copies files from INST_SCRIPT to this directory.
888 Version 5.005_02 18−Oct−1998

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

to

is

ke

ve a
.

 see

st one

 do not

INSTALLSITELIB
Used by ‘make install‘, which copies files from INST_LIB to this directory if INSTALLDIRS is set
site (default).

INSTALLSITEARCH
Used by ‘make install‘, which copies files from INST_ARCHLIB to this directory if INSTALLDIRS
set to site (default).

INST_ARCHLIB
Same as INST_LIB for architecture dependent files.

INST_BIN
Directory to put real binary files during ‘make’. These will be copied to INSTALLBIN during ‘ma
install’

INST_EXE
Old name for INST_SCRIPT. Deprecated. Please use INST_SCRIPT if you need to use it.

INST_LIB
Directory where we put library files of this extension while building it.

INST_MAN1DIR
Directory to hold the man pages at ‘make’ time

INST_MAN3DIR
Directory to hold the man pages at ‘make’ time

INST_SCRIPT
Directory, where executable files should be installed during ‘make’. Defaults to "./blib/bin", just to ha
dummy location during testing. make install will copy the files in INST_SCRIPT to INSTALLSCRIPT

LDFROM
defaults to "$(OBJECT)" and is used in the ld command to specify what files to link/load from (also
dynamic_lib below for how to specify ld flags)

LIBPERL_A
The filename of the perllibrary that will be used together with this extension. Defaults to libperl.a.

LIB
LIB can only be set at perl Makefile.PL time. It has the effect of setting both INSTALLPRIVLIB
and INSTALLSITELIB to that value regardless any

LIBS
An anonymous array of alternative library specifications to be searched for (in order) until at lea
library is found. E.g.

 ’LIBS’ => ["−lgdbm", "−ldbm −lfoo", "−L/path −ldbm.nfs"]

Mind, that any element of the array contains a complete set of arguments for the ld command. So
specify

 ’LIBS’ => ["−ltcl", "−ltk", "−lX11"]

See ODBM_File/Makefile.PL for an example, where an array is needed. If you specify a scalar as in

 ’LIBS’ => "−ltcl −ltk −lX11"

MakeMaker will turn it into an array with one element.
18−Oct−1998 Version 5.005_02 889

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

king

ndled

OD
sted at

inary.

ld be

, and
lean

ands.

ll
LINKTYPE
‘static’ or ‘dynamic’ (default unless usedl=undef in config.sh). Should only be used to force static lin
(also see linkext below).

MAKEAPERL
Boolean which tells MakeMaker, that it should include the rules to make a perl. This is ha
automatically as a switch by MakeMaker. The user normally does not need it.

MAKEFILE
The name of the Makefile to be produced.

MAN1PODS
Hashref of pod−containing files. MakeMaker will default this to all EXE_FILES files that include P
directives. The files listed here will be converted to man pages and installed as was reque
Configure time.

MAN3PODS
Hashref of .pm and .pod files. MakeMaker will default this to all
 .pod and any .pm files that include POD directives. The files listed
here will be converted to man pages and installed as was requested at Configure time.

MAP_TARGET
If it is intended, that a new perl binary be produced, this variable may hold a name for that b
Defaults to perl

MYEXTLIB
If the extension links to a library that it builds set this to the name of the library (see SDBM_File)

NAME
Perl module name for this extension (DBD::Oracle). This will default to the directory name but shou
explicitly defined in the Makefile.PL.

NEEDS_LINKING
MakeMaker will figure out, if an extension contains linkable code anywhere down the directory tree
will set this variable accordingly, but you can speed it up a very little bit, if you define this boo
variable yourself.

NOECHO
Defaults to @. By setting it to an empty string you can generate a Makefile that echos all comm
Mainly used in debugging MakeMaker itself.

NORECURS
Boolean. Attribute to inhibit descending into subdirectories.

OBJECT
List of object files, defaults to ‘$(BASEEXT)$(OBJ_EXT)‘, but can be a long string containing a
object files, e.g. "tkpBind.o tkpButton.o tkpCanvas.o"

OPTIMIZE
Defaults to −O. Set it to −g to turn debugging on. The flag is passed to subdirectory makes.

PERL
Perl binary for tasks that can be done by miniperl

PERLMAINCC
The call to the program that is able to compile perlmain.c. Defaults to $(CC).
890 Version 5.005_02 18−Oct−1998

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

L file

ing

 A
ride

, if
 and
 of

ile) are
e only

e the
e it, if

an the
 A
 The
PERL_ARCHLIB
Same as above for architecture dependent files

PERL_LIB
Directory containing the Perl library to use.

PERL_SRC
Directory containing the Perl source code (use of this should be avoided, it may be undefined)

PERM_RW
Desired Permission for read/writable files. Defaults to 644 . See also perm_rw.

PERM_RWX
Desired permission for executable files. Defaults to 755 . See also perm_rwx.

PL_FILES
Ref to hash of files to be processed as perl programs. MakeMaker will default to any found *.P
(except Makefile.PL) being keys and the basename of the file being the value. E.g.

 {’foobar.PL’ => ’foobar’}

The *.PL files are expected to produce output to the target files themselves.

PM
Hashref of .pm files and *.pl files to be installed. e.g.

 {’name_of_file.pm’ => ’$(INST_LIBDIR)/install_as.pm’}

By default this will include *.pm and *.pl and the files found in the PMLIBDIRS directories. Defin
PM in the Makefile.PL will override PMLIBDIRS.

PMLIBDIRS
Ref to array of subdirectories containing library files. Defaults to [‘lib‘, $(BASEEXT)]. The directories
will be scanned and any files they contain will be installed in the corresponding location in the library.
libscan() method can be used to alter the behaviour. Defining PM in the Makefile.PL will over
PMLIBDIRS.

PREFIX
Can be used to set the three INSTALL* attributes in one go (except for probably INSTALLMAN1DIR
it is not below PREFIX according to %Config). They will have PREFIX as a common directory node
will branch from that node into lib/, lib/ARCHNAME or whatever Configure decided at the build time
your perl (unless you override one of them, of course).

PREREQ_PM
Hashref: Names of modules that need to be available to run this extension (e.g. Fcntl for SDBM_F
the keys of the hash and the desired version is the value. If the required version number is 0, w
check if any version is installed already.

SKIP
Arryref. E.g. [qw(name1 name2)] skip (do not write) sections of the Makefile. Caution! Do not us
SKIP attribute for the neglectible speedup. It may seriously damage the resulting Makefile. Only us
you really need it.

TYPEMAPS
Ref to array of typemap file names. Use this when the typemaps are in some directory other th
current directory or when they are not named typemap. The last typemap in the list takes precedence.
typemap in the current directory has highest precedence, even if it isn‘t listed in TYPEMAPS.
default system typemap has lowest precedence.
18−Oct−1998 Version 5.005_02 891

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

mine
s one

on

rrect,
ange

r any

ibute.
VERSION
Your version number for distributing the package. This defaults to 0.1.

VERSION_FROM
Instead of specifying the VERSION in the Makefile.PL you can let MakeMaker parse a file to deter
the version number. The parsing routine requires that the file named by VERSION_FROM contain
single line to compute the version number. The first line in the file that contains the regular expressi

 /([\$*])(([\w\:\’]*)\bVERSION)\b.*\=/

will be evaluated with eval() and the value of the named variable after the eval() will be assigned to
the VERSION attribute of the MakeMaker object. The following lines will be parsed o.k.:

 $VERSION = ’1.00’;
 *VERSION = \’1.01’;
 ($VERSION) = ’$Revision: 1.222 $ ’ =~ /\$Revision:\s+([^\s]+)/;
 $FOO::VERSION = ’1.10’;
 *FOO::VERSION = \’1.11’;

but these will fail:

 my $VERSION = ’1.01’;
 local $VERSION = ’1.02’;
 local $FOO::VERSION = ’1.30’;

The file named in VERSION_FROM is not added as a dependency to Makefile. This is not really co
but it would be a major pain during development to have to rewrite the Makefile for any smallish ch
in that file. If you want to make sure that the Makefile contains the correct VERSION macro afte
change of the file, you would have to do something like

 depend => { Makefile => ’$(VERSION_FROM)’ }

See attribute depend below.

XS
Hashref of .xs files. MakeMaker will default this. e.g.

 {’name_of_file.xs’ => ’name_of_file.c’}

The .c files will automatically be included in the list of files deleted by a make clean.

XSOPT
String of options to pass to xsubpp. This might include −C++ or −extern . Do not include typemaps
here; the TYPEMAP parameter exists for that purpose.

XSPROTOARG
May be set to an empty string, which is identical to −prototypes , or −noprototypes . See the
xsubpp documentation for details. MakeMaker defaults to the empty string.

XS_VERSION
Your version number for the .xs file of this package. This defaults to the value of the VERSION attr

Additional lowercase attributes
can be used to pass parameters to the methods which implement that part of the Makefile.

clean
 {FILES => "*.xyz foo"}
892 Version 5.005_02 18−Oct−1998

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

get file
on your
ich

afely.

rivate
kefile.

t find
ities

it the
depend
 {ANY_TARGET => ANY_DEPENDECY, ...}

dist
 {TARFLAGS => ’cvfF’, COMPRESS => ’gzip’, SUFFIX => ’.gz’,
 SHAR => ’shar −m’, DIST_CP => ’ln’, ZIP => ’/bin/zip’,
 ZIPFLAGS => ’−rl’, DIST_DEFAULT => ’private tardist’ }

If you specify COMPRESS, then SUFFIX should also be altered, as it is needed to tell make the tar
of the compression. Setting DIST_CP to ln can be useful, if you need to preserve the timestamps
files. DIST_CP can take the values ‘cp‘, which copies the file, ‘ln‘, which links the file, and ‘best’ wh
copies symbolic links and links the rest. Default is ‘best’.

dynamic_lib
 {ARMAYBE => ’ar’, OTHERLDFLAGS => ’...’, INST_DYNAMIC_DEP => ’...’}

installpm
Deprecated as of MakeMaker 5.23. See ExtUtils::MM_Unix/pm_to_blib.

linkext
 {LINKTYPE => ’static’, ’dynamic’ or ’’}

NB: Extensions that have nothing but *.pm files had to say

 {LINKTYPE => ’’}

with Pre−5.0 MakeMakers. Since version 5.00 of MakeMaker such a line can be deleted s
MakeMaker recognizes, when there‘s nothing to be linked.

macro
 {ANY_MACRO => ANY_VALUE, ...}

realclean
 {FILES => ’$(INST_ARCHAUTODIR)/*.xyz’}

tool_autosplit
 {MAXLEN =E<gt> 8}

Overriding MakeMaker Methods
If you cannot achieve the desired Makefile behaviour by specifying attributes you may define p
subroutines in the Makefile.PL. Each subroutines returns the text it wishes to have written to the Ma
To override a section of the Makefile you can either say:

sub MY::c_o { "new literal text" }

or you can edit the default by saying something like:

sub MY::c_o {
 package MY; # so that "SUPER" works right
 my $inherited = shift−>SUPER::c_o(@_);
 $inherited =~ s/old text/new text/;
 $inherited;
}

If you are running experiments with embedding perl as a library into other applications, you migh
MakeMaker is not sufficient. You‘d better have a look at ExtUtils::Embed which is a collection of util
for embedding.

If you still need a different solution, try to develop another subroutine that fits your needs and subm
diffs to perl5−porters@perl.org or comp.lang.perl.moderated as appropriate.
18−Oct−1998 Version 5.005_02 893

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

ates
eir

te
e as in

ash
erride

om the

(See

tion as

ame

on
e

For a complete description of all MakeMaker methods see ExtUtils::MM_Unix.

Here is a simple example of how to add a new target to the generated Makefile:

 sub MY::postamble {
’

 $(MYEXTLIB): sdbm/Makefile
 cd sdbm && $(MAKE) all

 ’;
 }

Hintsfile support
MakeMaker.pm uses the architecture specific information from Config.pm. In addition it evalu
architecture specific hints files in a hints/ directory. The hints files are expected to be named like th
counterparts in PERL_SRC/hints , but with an .pl file name extension (eg. next_3_2.pl). They are
simply eval ed by MakeMaker within the WriteMakefile() subroutine, and can be used to execu
commands as well as to include special variables. The rules which hintsfile is chosen are the sam
Configure.

The hintsfile is eval() ed immediately after the arguments given to WriteMakefile are stuffed into a h
reference $self but before this reference becomes blessed. So if you want to do the equivalent to ov
or create an attribute you would say something like

 $self−>{LIBS} = [’−ldbm −lucb −lc’];

Distribution Support
For authors of extensions MakeMaker provides several Makefile targets. Most of the support comes fr
ExtUtils::Manifest module, where additional documentation can be found.

make distcheck
reports which files are below the build directory but not in the MANIFEST file and vice versa.
ExtUtils::Manifest::fullcheck() for details)

make skipcheck
reports which files are skipped due to the entries in the MANIFEST.SKIP file (See
ExtUtils::Manifest::skipcheck() for details)

make distclean
does a realclean first and then the distcheck. Note that this is not needed to build a new distribu
long as you are sure, that the MANIFEST file is ok.

make manifest
rewrites the MANIFEST file, adding all remaining files found (See
ExtUtils::Manifest::mkmanifest() for details)

make distdir
Copies all the files that are in the MANIFEST file to a newly created directory with the n
$(DISTNAME)−$(VERSION). If that directory exists, it will be removed first.

make disttest
Makes a distdir first, and runs a perl Makefile.PL , a make, and a make test in that directory.

make tardist
First does a distdir. Then a command $(PREOP) which defaults to a null command, followed by
$(TOUNIX), which defaults to a null command under UNIX, and will convert files in distributi
directory to UNIX format otherwise. Next it runs tar on that directory into a tarfile and deletes th
directory. Finishes with a command $(POSTOP) which defaults to a null command.
894 Version 5.005_02 18−Oct−1998

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker

s
ith a

and

 of the

al
ild

ency in
make dist
Defaults to $(DIST_DEFAULT) which in turn defaults to tardist.

make uutardist
Runs a tardist first and uuencodes the tarfile.

make shdist
First does a distdir. Then a command $(PREOP) which defaults to a null command. Next it run
shar on that directory into a sharfile and deletes the intermediate directory again. Finishes w
command $(POSTOP) which defaults to a null command. Note: For shdist to work properly a shar
program that can handle directories is mandatory.

make zipdist
First does a distdir. Then a command $(PREOP) which defaults to a null command. Runs $(ZIP)
$(ZIPFLAGS) on that directory into a zipfile. Then deletes that directory. Finishes with a comm
$(POSTOP) which defaults to a null command.

make ci
Does a $(CI) and a $(RCS_LABEL) on all files in the MANIFEST file.

Customization of the dist targets can be done by specifying a hash reference to the dist attribute
WriteMakefile call. The following parameters are recognized:

 CI (’ci −u’)
 COMPRESS (’gzip −−best’)
 POSTOP (’@ :’)
 PREOP (’@ :’)
 TO_UNIX (depends on the system)
 RCS_LABEL (’rcs −q −Nv$(VERSION_SYM):’)
 SHAR (’shar’)
 SUFFIX (’.gz’)
 TAR (’tar’)
 TARFLAGS (’cvf’)
 ZIP (’zip’)
 ZIPFLAGS (’−r’)

An example:

 WriteMakefile(’dist’ => { COMPRESS=>"bzip2", SUFFIX=>".bz2" })

Disabling an extension
If some events detected in Makefile.PL imply that there is no way to create the Module, but this is a norm
state of things, then you can create a Makefile which does nothing, but succeeds on all the "usual" bu
targets. To do so, use

 ExtUtils::MakeMaker::WriteEmptyMakefile();

instead of WriteMakefile() .

This may be useful if other modules expect this module to be built OK, as opposed to work OK (say, this
system−dependent module builds in a subdirectory of some other distribution, or is listed as a depend
a CPAN::Bundle, but the functionality is supported by different means on the current architecture).

SEE ALSO
ExtUtils::MM_Unix, ExtUtils::Manifest, ExtUtils::testlib, ExtUtils::Install, ExtUtils::Embed

AUTHORS
Andy Dougherty <doughera@lafcol.lafayette.edu, Andreas König <A.Koenig@franz.ww.TU−Berlin.DE,
Tim Bunce <Tim.Bunce@ig.co.uk. VMS support by Charles Bailey <bailey@genetics.upenn.edu. OS/2
18−Oct−1998 Version 5.005_02 895

ExtUtils::MakeMaker Perl Programmers Reference Guide ExtUtils::MakeMaker
support by Ilya Zakharevich <ilya@math.ohio−state.edu. Contact the makemaker mailing list
mailto:makemaker@franz.ww.tu−berlin.de , if you have any questions.
896 Version 5.005_02 18−Oct−1998

ExtUtils::Manifest Perl Programmers Reference Guide ExtUtils::Manifest

ble

in
in a
re TAB

nc.

ill

ctory.

k lines

third

 by
lines
rp
NAME
ExtUtils::Manifest − utilities to write and check a MANIFEST file

SYNOPSIS
require ExtUtils::Manifest;

ExtUtils::Manifest::mkmanifest;

ExtUtils::Manifest::manicheck;

ExtUtils::Manifest::filecheck;

ExtUtils::Manifest::fullcheck;

ExtUtils::Manifest::skipcheck;

ExtUtild::Manifest::manifind();

ExtUtils::Manifest::maniread($file);

ExtUtils::Manifest::manicopy($read,$target,$how);

DESCRIPTION
Mkmanifest() writes all files in and below the current directory to a file named in the global varia
$ExtUtils::Manifest::MANIFEST (which defaults to MANIFEST) in the current directory. It works
similar to

 find . −print

but in doing so checks each line in an existing MANIFEST file and includes any comments that are found
the existing MANIFEST file in the new one. Anything between white space and an end of line with
MANIFEST file is considered to be a comment. Filenames and comments are seperated by one or mo
characters in the output. All files that match any regular expression in a file MANIFEST.SKIP (if such a file
exists) are ignored.

Manicheck() checks if all the files within a MANIFEST in the current directory really do exist. It only
reports discrepancies and exits silently if MANIFEST and the tree below the current directory are in sy

Filecheck() finds files below the current directory that are not mentioned in the MANIFEST file. An
optional file MANIFEST.SKIP will be consulted. Any file matching a regular expression in such a file w
not be reported as missing in the MANIFEST file.

Fullcheck() does both a manicheck() and a filecheck() .

Skipcheck() lists all the files that are skipped due to your MANIFEST.SKIP file.

Manifind() retruns a hash reference. The keys of the hash are the files found below the current dire

Maniread($file) reads a named MANIFEST file (defaults to MANIFEST in the current directory) and
returns a HASH reference with files being the keys and comments being the values of the HASH. Blan
and lines which start with # in the MANIFEST file are discarded.

Manicopy($read,$target,$how) copies the files that are the keys in the HASH %$read to the named
target directory. The HASH reference $read is typically returned by the maniread() function. This
function is useful for producing a directory tree identical to the intended distribution tree. The
parameter $how can be used to specify a different methods of "copying". Valid values are cp , which
actually copies the files, ln which creates hard links, and best which mostly links the files but copies any
symbolic link to make a tree without any symbolic link. Best is the default.

MANIFEST.SKIP
The file MANIFEST.SKIP may contain regular expressions of files that should be ignored
mkmanifest() and filecheck() . The regular expressions should appear one on each line. Blank
and lines which start with # are skipped. Use \# if you need a regular expression to start with a sha
18−Oct−1998 Version 5.005_02 897

ExtUtils::Manifest Perl Programmers Reference Guide ExtUtils::Manifest

t
t

character. A typical example:

 \bRCS\b
 ^MANIFEST\.
 ^Makefile$
 ~$
 \.html$
 \.old$
 ^blib/
 ^MakeMaker−\d

EXPORT_OK
&mkmanifest, &manicheck, &filecheck, &fullcheck, &maniread, and &manicopy are
exportable.

GLOBAL VARIABLES
$ExtUtils::Manifest::MANIFEST defaults to MANIFEST. Changing it results in both a differen
MANIFEST and a different MANIFEST.SKIP file. This is useful if you want to maintain differen
distributions for different audiences (say a user version and a developer version including RCS).

$ExtUtils::Manifest::Quiet defaults to 0. If set to a true value, all functions act silently.

DIAGNOSTICS
All diagnostic output is sent to STDERR.

Not in MANIFEST: file
is reported if a file is found, that is missing in the MANIFEST file which is excluded by a regular
expression in the file MANIFEST.SKIP .

No such file: file
is reported if a file mentioned in a MANIFEST file does not exist.

MANIFEST: $!
is reported if MANIFEST could not be opened.

Added to MANIFEST: file
is reported by mkmanifest() if $Verbose is set and a file is added to MANIFEST. $Verbose is
set to 1 by default.

SEE ALSO
ExtUtils::MakeMaker which has handy targets for most of the functionality.

AUTHOR
Andreas Koenig <koenig@franz.ww.TU−Berlin.DE
898 Version 5.005_02 18−Oct−1998

ExtUtils::Mkbootstrap Perl Programmers Reference Guide ExtUtils::Mkbootstrap

s,

ith

a

NAME
ExtUtils::Mkbootstrap − make a bootstrap file for use by DynaLoader

SYNOPSIS
mkbootstrap

DESCRIPTION
Mkbootstrap typically gets called from an extension Makefile.

There is no *.bs file supplied with the extension. Instead a *_BS file which has code for the special case
like posix for berkeley db on the NeXT.

This file will get parsed, and produce a maybe empty @DynaLoader::dl_resolve_using array for
the current architecture. That will be extended by $BSLOADLIBS, which was computed by
ExtUtils::Liblist::ext() . If this array still is empty, we do nothing, else we write a .bs file w
an @DynaLoader::dl_resolve_using array.

The *_BS file can put some code into the generated *.bs file by placing it in $bscode. This is a handy
‘escape’ mechanism that may prove useful in complex situations.

If @DynaLoader::dl_resolve_using contains −L* or −l* entries then Mkbootstrap will automatically add
dl_findfile() call to the generated *.bs file.
18−Oct−1998 Version 5.005_02 899

ExtUtils::Mksymlists Perl Programmers Reference Guide ExtUtils::Mksymlists

hared
n the

in

ken.
nd each
n. For

as
 If
ME.

t is
should

ion), if
tribute

n. Its
mes are

m the
 If it is

at‘s
dditional
NAME
ExtUtils::Mksymlists − write linker options files for dynamic extension

SYNOPSIS
 use ExtUtils::Mksymlists;
 Mksymlists({ NAME => $name ,
 DL_VARS => [$var1, $var2, $var3],
 DL_FUNCS => { $pkg1 => [$func1, $func2],
 $pkg2 => [$func3] });

DESCRIPTION
ExtUtils::Mksymlists produces files used by the linker under some OSs during the creation of s
libraries for dynamic extensions. It is normally called from a MakeMaker−generated Makefile whe
extension is built. The linker option file is generated by calling the function Mksymlists , which is
exported by default from ExtUtils::Mksymlists . It takes one argument, a list of key−value pairs,
which the following keys are recognized:

NAME
This gives the name of the extension (e.g. Tk::Canvas) for which the linker option file will be
produced.

DL_FUNCS
This is identical to the DL_FUNCS attribute available via MakeMaker, from which it is usually ta
Its value is a reference to an associative array, in which each key is the name of a package, a
value is an a reference to an array of function names which should be exported by the extensio
instance, one might say DL_FUNCS => { Homer::Iliad => [qw(trojans greeks)
], Homer::Odyssey => [qw(travellers family suitors)] } . The function
names should be identical to those in the XSUB code; Mksymlists will alter the names written to
the linker option file to match the changes made by xsubpp. In addition, if none of the functions in a
list begin with the string boot_, Mksymlists will add a bootstrap function for that package, just
xsubpp does. (If a boot_<pkg> function is present in the list, it is passed through unchanged.)
DL_FUNCS is not specified, it defaults to the bootstrap function for the extension specified in NA

DL_VARS
This is identical to the DL_VARS attribute available via MakeMaker, and, like DL_FUNCS, i
usually specified via MakeMaker. Its value is a reference to an array of variable names which
be exported by the extension.

FILE
This key can be used to specify the name of the linker option file (minus the OS−specific extens
for some reason you do not want to use the default value, which is the last word of the NAME at
(e.g. for Tk::Canvas, FILE defaults to ‘Canvas’).

FUNCLIST
This provides an alternate means to specify function names to be exported from the extensio
value is a reference to an array of function names to be exported by the extension. These na
passed through unaltered to the linker options file.

DLBASE
This item specifies the name by which the linker knows the extension, which may be different fro
name of the extension itself (for instance, some linkers add an ‘_’ to the name of the extension).
not specified, it is derived from the NAME attribute. It is presently used only by OS2.

When calling Mksymlists , one should always specify the NAME attribute. In most cases, this is all th
necessary. In the case of unusual extensions, however, the other attributes can be used to provide a
information to the linker.
900 Version 5.005_02 18−Oct−1998

ExtUtils::Mksymlists Perl Programmers Reference Guide ExtUtils::Mksymlists
AUTHOR
Charles Bailey <bailey@genetics.upenn.edu>

REVISION
Last revised 14−Feb−1996, for Perl 5.002.
18−Oct−1998 Version 5.005_02 901

ExtUtils::Packlist Perl Programmers Reference Guide ExtUtils::Packlist

d write
dition,
 list of

cript to

 the
ed with

 from

nd the
s an
h each
a hash

d, the

d, the

to true
f the
NAME
ExtUtils::Packlist − manage .packlist files

SYNOPSIS
 use ExtUtils::Packlist;
 my ($pl) = ExtUtils::Packlist−>new(’.packlist’);
 $pl−>read(’/an/old/.packlist’);
 my @missing_files = $pl−>validate();
 $pl−>write(’/a/new/.packlist’);

 $pl−>{’/some/file/name’}++;
 or
 $pl−>{’/some/other/file/name’} = { type => ’file’,
 from => ’/some/file’ };

DESCRIPTION
ExtUtils::Packlist provides a standard way to manage .packlist files. Functions are provided to read an
.packlist files. The original .packlist format is a simple list of absolute pathnames, one per line. In ad
this package supports an extended format, where as well as a filename each line may contain a
attributes in the form of a space separated list of key=value pairs. This is used by the installperl s
differentiate between files and links, for example.

USAGE
The hash reference returned by the new() function can be used to examine and modify the contents of
.packlist. Items may be added/deleted from the .packlist by modifying the hash. If the value associat
a hash key is a scalar, the entry written to the .packlist by any subsequent write() will be a simple
filename. If the value is a hash, the entry written will be the filename followed by the key=value pairs
the hash. Reading back the .packlist will recreate the original entries.

FUNCTIONS

new()
This takes an optional parameter, the name of a .packlist. If the file exists, it will be opened a
contents of the file will be read. The new() method returns a reference to a hash. This hash hold
entry for each line in the .packlist. In the case of old−style .packlists, the value associated wit
key is undef. In the case of new−style .packlists, the value associated with each key is
containing the key=value pairs following the filename in the .packlist.

read()
This takes an optional parameter, the name of the .packlist to be read. If no file is specifie
.packlist specified to new() will be read. If the .packlist does not exist, Carp::croak will be called.

write()
This takes an optional parameter, the name of the .packlist to be written. If no file is specifie
.packlist specified to new() will be overwritten.

validate()
This checks that every file listed in the .packlist actually exists. If an argument which evaluates
is given, any missing files will be removed from the internal hash. The return value is a list o
missing files, which will be empty if they all exist.

packlist_file()
This returns the name of the associated .packlist file

EXAMPLE
Here‘s modrm, a little utility to cleanly remove an installed module.

 #!/usr/local/bin/perl −w
902 Version 5.005_02 18−Oct−1998

ExtUtils::Packlist Perl Programmers Reference Guide ExtUtils::Packlist
 use strict;
 use IO::Dir;
 use ExtUtils::Packlist;
 use ExtUtils::Installed;

 sub emptydir($) {
my ($dir) = @_;
my $dh = IO::Dir−>new($dir) || return(0);
my @count = $dh−>read();
$dh−>close();
return(@count == 2 ? 1 : 0);

 }

 # Find all the installed packages
 print("Finding all installed modules...\n");
 my $installed = ExtUtils::Installed−>new();

 foreach my $module (grep(!/^Perl$/, $installed−>modules())) {
 my $version = $installed−>version($module) || "???";
 print("Found module $module Version $version\n");
 print("Do you want to delete $module? [n] ");
 my $r = <STDIN>; chomp($r);
 if ($r && $r =~ /^y/i) {

 # Remove all the files
 foreach my $file (sort($installed−>files($module))) {
 print("rm $file\n");
 unlink($file);
 }
 my $pf = $installed−>packlist($module)−>packlist_file();
 print("rm $pf\n");
 unlink($pf);
 foreach my $dir (sort($installed−>directory_tree($module))) {
 if (emptydir($dir)) {

print("rmdir $dir\n");
rmdir($dir);

 }
 }

 }
 }

AUTHOR
Alan Burlison <Alan.Burlison@uk.sun.com
18−Oct−1998 Version 5.005_02 903

ExtUtils::testlib Perl Programmers Reference Guide ExtUtils::testlib
NAME
ExtUtils::testlib − add blib/* directories to @INC

SYNOPSIS
use ExtUtils::testlib;

DESCRIPTION
After an extension has been built and before it is installed it may be desirable to test it bypassing make
test . By adding

 use ExtUtils::testlib;

to a test program the intermediate directories used by make are added to @INC.
904 Version 5.005_02 18−Oct−1998

xsubpp Perl Programmers Reference Guide xsubpp

tions
piler uses

. This

ble
NAME
xsubpp − compiler to convert Perl XS code into C code

SYNOPSIS
xsubpp [−v] [−C++] [−except] [−s pattern] [−prototypes] [−noversioncheck] [−nolinenumbers]
[−typemap typemap] [−object_capi]... file.xs

DESCRIPTION
xsubpp will compile XS code into C code by embedding the constructs necessary to let C func
manipulate Perl values and creates the glue necessary to let Perl access those functions. The com
typemaps to determine how to map C function parameters and variables to Perl values.

The compiler will search for typemap files called typemap. It will use the following search path to find
default typemaps, with the rightmost typemap taking precedence.

../../../typemap:../../typemap:../typemap:typemap

OPTIONS

−C++ Adds ‘‘extern "C"‘’ to the C code.

−except
Adds exception handling stubs to the C code.

−typemap typemap
Indicates that a user−supplied typemap should take precedence over the default typemaps
option may be used multiple times, with the last typemap having the highest precedence.

−v Prints the xsubpp version number to standard output, then exits.

−prototypes
By default xsubpp will not automatically generate prototype code for all xsubs. This flag will ena
prototypes.

−noversioncheck
Disables the run time test that determines if the object file (derived from the .xs file) and the .pm
files have the same version number.

−nolinenumbers
Prevents the inclusion of ‘#line’ directives in the output.

−object_capi
Compile code as C in a PERL_OBJECT environment.

back

ENVIRONMENT
No environment variables are used.

AUTHOR
Larry Wall

MODIFICATION HISTORY
See the file changes.pod.

SEE ALSO
perl(1), perlxs(1), perlxstut(1)
18−Oct−1998 Version 5.005_02 905

Fatal Perl Programmers Reference Guide Fatal

y fail
ithout

e
erators
NAME
Fatal − replace functions with equivalents which succeed or die

SYNOPSIS
 use Fatal qw(open close);

 sub juggle { . . . }
 import Fatal ’juggle’;

DESCRIPTION
Fatal provides a way to conveniently replace functions which normally return a false value when the
with equivalents which halt execution if they are not successful. This lets you use these functions w
having to test their return values explicitly on each call. Errors are reported via die , so you can trap them
using $SIG{__DIE__} if you wish to take some action before the program exits.

The do−or−die equivalents are set up simply by calling Fatal‘s import routine, passing it the names of th
functions to be replaced. You may wrap both user−defined functions and overridable CORE op
(except exec , system which cannot be expressed via prototypes) in this way.

AUTHOR
Lionel.Cons@cern.ch

prototype updates by Ilya Zakharevich ilya@math.ohio−state.edu
906 Version 5.005_02 18−Oct−1998

Fcntl Perl Programmers Reference Guide Fcntl

d
This

s args

XEC

AY,

REAT,

d in
NAME
Fcntl − load the C Fcntl.h defines

SYNOPSIS
 use Fcntl;
 use Fcntl qw(:DEFAULT :flock);

DESCRIPTION
This module is just a translation of the C fnctl.h file. Unlike the old mechanism of requiring a translate
fnctl.ph file, this uses the h2xs program (see the Perl source distribution) and your native C compiler.
means that it has a far more likely chance of getting the numbers right.

NOTE
Only #define symbols get translated; you must still correctly pack up your own arguments to pass a
for locking functions, etc.

EXPORTED SYMBOLS
By default your system‘s F_* and O_* constants (eg, F_DUPFD and O_CREAT) and the FD_CLOE
constant are exported into your namespace.

You can request that the flock() constants (LOCK_SH, LOCK_EX, LOCK_NB and LOCK_UN) be
provided by using the tag :flock . See Exporter.

You can request that the old constants (FAPPEND, FASYNC, FCREAT, FDEFER, FEXCL, FNDEL
FNONBLOCK, FSYNC, FTRUNC) be provided for compatibility reasons by using the tag :Fcompat . For
new applications the newer versions of these constants are suggested (O_APPEND, O_ASYNC, O_C
O_DEFER, O_EXCL, O_NDELAY, O_NONBLOCK, O_SYNC, O_TRUNC).

Please refer to your native fcntl() and open() documentation to see what constants are implemente
your system.
18−Oct−1998 Version 5.005_02 907

File::Basename Perl Programmers Reference Guide File::Basename

erating

OS"
ls to

the file
 UNIX

OS",
out

 some of

n

nput

n

t

NAME
fileparse − split a pathname into pieces

basename − extract just the filename from a path

dirname − extract just the directory from a path

SYNOPSIS
 use File::Basename;

 ($name,$path,$suffix) = fileparse($fullname,@suffixlist)
 fileparse_set_fstype($os_string);
 $basename = basename($fullname,@suffixlist);
 $dirname = dirname($fullname);

 ($name,$path,$suffix) = fileparse("lib/File/Basename.pm","\.pm");
 fileparse_set_fstype("VMS");
 $basename = basename("lib/File/Basename.pm",".pm");
 $dirname = dirname("lib/File/Basename.pm");

DESCRIPTION
These routines allow you to parse file specifications into useful pieces using the syntax of different op
systems.

fileparse_set_fstype
You select the syntax via the routine fileparse_set_fstype() .

If the argument passed to it contains one of the substrings "VMS", "MSDOS", "MacOS", "Amiga
or "MSWin32", the file specification syntax of that operating system is used in future cal
fileparse() , basename() , and dirname() . If it contains none of these substrings, UNIX
syntax is used. This pattern matching is case−insensitive. If you‘ve selected VMS syntax, and
specification you pass to one of these routines contains a "/", they assume you are using
emulation and apply the UNIX syntax rules instead, for that function call only.

If the argument passed to it contains one of the substrings "VMS", "MSDOS", "MacOS", "Amiga
"os2", "MSWin32" or "RISCOS", then the pattern matching for suffix removal is performed with
regard for case, since those systems are not case−sensitive when opening existing files (though
them preserve case on file creation).

If you haven‘t called fileparse_set_fstype() , the syntax is chosen by examining the builti
variable $^O according to these rules.

fileparse
The fileparse() routine divides a file specification into three parts: a leading path, a file name,
and a suffix. The path contains everything up to and including the last directory separator in the i
file specification. The remainder of the input file specification is then divided into name and suffix
based on the optional patterns you specify in @suffixlist . Each element of this list is interpreted
as a regular expression, and is matched against the end of name. If this succeeds, the matching portio
of name is removed and prepended to suffix. By proper use of @suffixlist , you can remove file
types or versions for examination.

You are guaranteed that if you concatenate path, name, and suffix together in that order, the resul
will denote the same file as the input file specification.

EXAMPLES
Using UNIX file syntax:

 ($base,$path,$type) = fileparse(’/virgil/aeneid/draft.book7’,
 ’\.book\d+’);
908 Version 5.005_02 18−Oct−1998

File::Basename Perl Programmers Reference Guide File::Basename

. It is

ing
lling
ry
ned.)
shell
would yield

 $base eq ’draft’
 $path eq ’/virgil/aeneid/’,
 $type eq ’.book7’

Similarly, using VMS syntax:

 ($name,$dir,$type) = fileparse(’Doc_Root:[Help]Rhetoric.Rnh’,
 ’\..*’);

would yield

 $name eq ’Rhetoric’
 $dir eq ’Doc_Root:[Help]’
 $type eq ’.Rnh’

basename
The basename() routine returns the first element of the list produced by calling fileparse()
with the same arguments, except that it always quotes metacharacters in the given suffixes
provided for programmer compatibility with the UNIX shell command basename(1).

dirname
The dirname() routine returns the directory portion of the input file specification. When us
VMS or MacOS syntax, this is identical to the second element of the list produced by ca
fileparse() with the same input file specification. (Under VMS, if there is no directo
information in the input file specification, then the current default device and directory are retur
When using UNIX or MSDOS syntax, the return value conforms to the behavior of the UNIX
command dirname(1). This is usually the same as the behavior of fileparse() , but differs in some
cases. For example, for the input file specification lib/, fileparse() considers the directory name
to be lib/, while dirname() considers the directory name to be .).
18−Oct−1998 Version 5.005_02 909

File::CheckTree Perl Programmers Reference Guide File::CheckTree

 file
rpreted
.
tion.
lity. If
NAME
validate − run many filetest checks on a tree

SYNOPSIS
 use File::CheckTree;

 $warnings += validate(q{
/vmunix −e || die
/boot −e || die
/bin cd
 csh −ex
 csh !−ug
 sh −ex
 sh !−ug
/usr −d || warn "What happened to $file?\n"

 });

DESCRIPTION
The validate() routine takes a single multiline string consisting of lines containing a filename plus a
test to try on it. (The file test may also be a "cd", causing subsequent relative filenames to be inte
relative to that directory.) After the file test you may put || die to make it a fatal error if the file test fails
The default is || warn . The file test may optionally have a "!’ prepended to test for the opposite condi
 If you do a cd and then list some relative filenames, you may want to indent them slightly for readabi
you supply your own die() or warn() message, you can use $file to interpolate the filename.

Filetests may be bunched: "−rwx" tests for all of −r , −w, and −x . Only the first failed test of the bunch will
produce a warning.

The routine returns the number of warnings issued.
910 Version 5.005_02 18−Oct−1998

File::Compare Perl Programmers Reference Guide File::Compare

file or a

ly by

r was

hip
NAME
File::Compare − Compare files or filehandles

SYNOPSIS
 use File::Compare;

if (compare("file1","file2") == 0) {
 print "They’re equal\n";
}

DESCRIPTION
The File::Compare::compare function compares the contents of two sources, each of which can be a
file handle. It is exported from File::Compare by default.

File::Compare::cmp is a synonym for File::Compare::compare. It is exported from File::Compare on
request.

RETURN
File::Compare::compare return 0 if the files are equal, 1 if the files are unequal, or −1 if an erro
encountered.

AUTHOR
File::Compare was written by Nick Ing−Simmons. Its original documentation was written by C
Salzenberg.
18−Oct−1998 Version 5.005_02 911

File::Copy Perl Programmers Reference Guide File::Copy

ment
t is a

e

le to a

umber
 the
up to

e to be
en the

nd
with a

s for

the
 Unix

tors,
NAME
File::Copy − Copy files or filehandles

SYNOPSIS
 use File::Copy;

copy("file1","file2");
 copy("Copy.pm",*STDOUT);’

move("/dev1/fileA","/dev2/fileB");

 use POSIX;
use File::Copy cp;

$n=FileHandle−>new("/dev/null","r");
cp($n,"x");’

DESCRIPTION
The File::Copy module provides two basic functions, copy and move, which are useful for getting the
contents of a file from one place to another.

 The copy function takes two parameters: a file to copy from and a file to copy to. Either argu
may be a string, a FileHandle reference or a FileHandle glob. Obviously, if the first argumen
filehandle of some sort, it will be read from, and if it is a file name it will be opened for reading.
Likewise, the second argument will be written to (and created if need be).

Note that passing in files as handles instead of names may lead to loss of information on som
operating systems; it is recommended that you use file names whenever possible. Files are opened
in binary mode where applicable. To get a consistent behavour when copying from a filehand
file, use binmode on the filehandle.

An optional third parameter can be used to specify the buffer size used for copying. This is the n
of bytes from the first file, that wil be held in memory at any given time, before being written to
second file. The default buffer size depends upon the file, but will generally be the whole file (
2Mb), or 1k for filehandles that do not reference files (eg. sockets).

You may use the syntax use File::Copy "cp" to get at the "cp" alias for this function. The
syntax is exactly the same.

 The move function also takes two parameters: the current name and the intended name of the fil
moved. If the destination already exists and is a directory, and the source is not a directory, th
source file will be renamed into the directory specified by the destination.

If possible, move() will simply rename the file. Otherwise, it copies the file to the new location a
deletes the original. If an error occurs during this copy−and−delete process, you may be left
(possibly partial) copy of the file under the destination name.

You may use the "mv" alias for this function in the same way that you may use the "cp" alia
copy .

File::Copy also provides the syscopy routine, which copies the file specified in the first parameter to
file specified in the second parameter, preserving OS−specific attributes and file structure. For
systems, this is equivalent to the simple copy routine. For VMS systems, this calls the rmscopy routine
(see below). For OS/2 systems, this calls the syscopy XSUB directly.

Special behavior if syscopy is defined (VMS and OS/2)
If both arguments to copy are not file handles, then copy will perform a "system copy" of the input file to a
new output file, in order to preserve file attributes, indexed file structure, etc. The buffer size parameter is
ignored. If either argument to copy is a handle to an opened file, then data is copied using Perl opera
and no effort is made to preserve file attributes or record structure.
912 Version 5.005_02 18−Oct−1998

File::Copy Perl Programmers Reference Guide File::Copy

.

heriting

sary.

tes of
 from

ill be

,
ted as
 if bit 1

n no
n all
aults to

y

The system copy routine may also be called directly under VMS and OS/2 as File::Copy::syscopy
(or under VMS as File::Copy::rmscopy , which is the routine that does the actual work for syscopy)

rmscopy($from,$to[,$date_flag])
The first and second arguments may be strings, typeglobs, typeglob references, or objects in
from IO::Handle; they are used in all cases to obtain the filespec of the input and output files,
respectively. The name and type of the input file are used as defaults for the output file, if neces

A new version of the output file is always created, which inherits the structure and RMS attribu
the input file, except for owner and protections (and possibly timestamps; see below). All data
the input file is copied to the output file; if either of the first two parameters to rmscopy is a file
handle, its position is unchanged. (Note that this means a file handle pointing to the output file w
associated with an old version of that file after rmscopy returns, not the newly created version.)

The third parameter is an integer flag, which tells rmscopy how to handle timestamps. If it is < 0
none of the input file‘s timestamps are propagated to the output file. If it is > 0, then it is interpre
a bitmask: if bit 0 (the LSB) is set, then timestamps other than the revision date are propagated;
is set, the revision date is propagated. If the third parameter to rmscopy is 0, then it behaves much
like the DCL COPY command: if the name or type of the output file was explicitly specified, the
timestamps are propagated, but if they were taken implicitly from the input filespec, the
timestamps other than the revision date are propagated. If this parameter is not supplied, it def
0.

Like copy , rmscopy returns 1 on success. If an error occurs, it sets $!, deletes the output file, and
returns 0.

RETURN
All functions return 1 on success, 0 on failure. $! will be set if an error was encountered.

AUTHOR
File::Copy was written by Aaron Sherman <ajs@ajs.com> in 1995, and updated by Charles Baile
<bailey@genetics.upenn.edu> in 1996.
18−Oct−1998 Version 5.005_02 913

File::DosGlob Perl Programmers Reference Guide File::DosGlob

 with
tory

lashes
f you are

either

dose of

ing

7)
NAME
File::DosGlob − DOS like globbing and then some

SYNOPSIS
 require 5.004;

 # override CORE::glob in current package
 use File::DosGlob ’glob’;

 # override CORE::glob in ALL packages (use with extreme caution!)
 use File::DosGlob ’GLOBAL_glob’;

 @perlfiles = glob "..\\pe?l/*.p?";
 print <..\\pe?l/*.p?>;

 # from the command line (overrides only in main::)
 > perl −MFile::DosGlob=glob −e "print <../pe*/*p?>"

DESCRIPTION
A module that implements DOS−like globbing with a few enhancements. It is largely compatible
perlglob.exe (the M$ setargv.obj version) in all but one respect—it understands wildcards in direc
components.

For example, <..\\l*b\\file/*glob.p? will work as expected (in that it will find something like
’..\lib\File/DosGlob.pm’ alright). Note that all path components are case−insensitive, and that backs
and forward slashes are both accepted, and preserved. You may have to double the backslashes i
putting them in literally, due to double−quotish parsing of the pattern by perl.

Spaces in the argument delimit distinct patterns, so glob(‘*.exe *.dll’) globs all filenames that end
in .exe or .dll . If you want to put in literal spaces in the glob pattern, you can escape them with
double quotes, or backslashes. e.g. glob(‘c:/"Program Files"/*/*.dll’) , or
glob(‘c:/Program\ Files/*/*.dll’) . The argument is tokenized using
Text::ParseWords::parse_line() , so see Text::ParseWords for details of the quoting rules used.

Extending it to csh patterns is left as an exercise to the reader.

EXPORTS (by request only)
glob()

BUGS
Should probably be built into the core, and needs to stop pandering to DOS habits. Needs a
optimizium too.

AUTHOR
Gurusamy Sarathy <gsar@umich.edu

HISTORY

 Support for globally overriding glob() (GSAR 3−JUN−98)

 Scalar context, independent iterator context fixes (GSAR 15−SEP−97)

 A few dir−vs−file optimizations result in glob importation being 10 times faster than us
perlglob.exe, and using perlglob.bat is only twice as slow as perlglob.exe (GSAR 28−MAY−97)

 Several cleanups prompted by lack of compatible perlglob.exe under Borland (GSAR 27−MAY−9

 Initial version (GSAR 20−FEB−97)
914 Version 5.005_02 18−Oct−1998

File::DosGlob Perl Programmers Reference Guide File::DosGlob
SEE ALSO
perl

perlglob.bat

Text::ParseWords
18−Oct−1998 Version 5.005_02 915

File::Find Perl Programmers Reference Guide File::Find

 each

r

al
NAME
find − traverse a file tree

finddepth − traverse a directory structure depth−first

SYNOPSIS
 use File::Find;
 find(\&wanted, ’/foo’,’/bar’);
 sub wanted { ... }

 use File::Find;
 finddepth(\&wanted, ’/foo’,’/bar’);
 sub wanted { ... }

DESCRIPTION
The first argument to find() is either a hash reference describing the operations to be performed for
file, or a code reference. If it is a hash reference, then the value for the key wanted should be a code
reference. This code reference is called the wanted() function below.

Currently the only other supported key for the above hash is bydepth , in presense of which the walk ove
directories is performed depth−first. Entry point finddepth() is a shortcut for specifying { bydepth
= 1} in the first argument of find() .

The wanted() function does whatever verifications you want. $File::Find::dir contains the current
directory name, and $_ the current filename within that directory. $File::Find::name contains
"$File::Find::dir/$_". You are chdir() ‘d to $File::Find::dir when the function is
called. The function may set $File::Find::prune to prune the tree.

File::Find assumes that you don‘t alter the $_ variable. If you do then make sure you return it to its origin
value before exiting your function.

This library is useful for the find2perl tool, which when fed,

 find2perl / −name .nfs* −mtime +7 \
−exec rm −f {} \; −o −fstype nfs −prune

produces something like:

 sub wanted {
 /^\.nfs.*$/ &&
 (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_)) &&
 int(−M _) > 7 &&
 unlink($_)
 ||
 ($nlink || (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_))) &&
 $dev < 0 &&
 ($File::Find::prune = 1);
 }

Set the variable $File::Find::dont_use_nlink if you‘re using AFS, since AFS cheats.

finddepth is just like find , except that it does a depth−first search.

Here‘s another interesting wanted function. It will find all symlinks that don‘t resolve:

 sub wanted {
−l && !−e && print "bogus link: $File::Find::name\n";

 }
916 Version 5.005_02 18−Oct−1998

File::Find Perl Programmers Reference Guide File::Find
BUGS
There is no way to make find or finddepth follow symlinks.
18−Oct−1998 Version 5.005_02 917

File::Path Perl Programmers Reference Guide File::Path

ed

ed.

ture,

below

le,

e
in the
lts to

 write

be
NAME
File::Path − create or remove a series of directories

SYNOPSIS
use File::Path

mkpath([‘/foo/bar/baz‘, ‘blurfl/quux‘], 1, 0711);

rmtree([‘foo/bar/baz‘, ‘blurfl/quux‘], 1, 1);

DESCRIPTION
The mkpath function provides a convenient way to create directories, even if your mkdir kernel call won‘t
create more than one level of directory at a time. mkpath takes three arguments:

 the name of the path to create, or a reference to a list of paths to create,

 a boolean value, which if TRUE will cause mkpath to print the name of each directory as it is creat
(defaults to FALSE), and

 the numeric mode to use when creating the directories (defaults to 0777)

It returns a list of all directories (including intermediates, determined using the Unix ‘/’ separator) creat

Similarly, the rmtree function provides a convenient way to delete a subtree from the directory struc
much like the Unix command rm −r . rmtree takes three arguments:

 the root of the subtree to delete, or a reference to a list of roots. All of the files and directories
each root, as well as the roots themselves, will be deleted.

 a boolean value, which if TRUE will cause rmtree to print a message each time it examines a fi
giving the name of the file, and indicating whether it‘s using rmdir or unlink to remove it, or that
it‘s skipping it. (defaults to FALSE)

 a boolean value, which if TRUE will cause rmtree to skip any files to which you do not have delet
access (if running under VMS) or write access (if running under another OS). This will change
future when a criterion for ‘delete permission’ under OSs other than VMS is settled. (defau
FALSE)

It returns the number of files successfully deleted. Symlinks are treated as ordinary files.

NOTE: If the third parameter is not TRUE, rmtree is unsecure in the face of failure or interruption. Files
and directories which were not deleted may be left with permissions reset to allow world read and
access. Note also that the occurrence of errors in rmtree can be determined only by trapping diagnostic
messages using $SIG{__WARN__}; it is not apparent from the return value. Therefore, you must
extremely careful about using rmtree($foo,$bar,0 in situations where security is an issue.

AUTHORS
Tim Bunce <Tim.Bunce@ig.co.uk and Charles Bailey <bailey@genetics.upenn.edu

REVISION
Current $VERSION is 1.0401.
918 Version 5.005_02 18−Oct−1998

File::stat Perl Programmers Reference Guide File::stat

ructure
time,

ng the

s
a the

s, you
NAME
File::stat − by−name interface to Perl‘s built−in stat() functions

SYNOPSIS
 use File::stat;
 $st = stat($file) or die "No $file: $!";
 if (($st−>mode & 0111) && $st−>nlink > 1)) {
 print "$file is executable with lotsa links\n";
 }

 use File::stat qw(:FIELDS);
 stat($file) or die "No $file: $!";
 if (($st_mode & 0111) && $st_nlink > 1)) {
 print "$file is executable with lotsa links\n";
 }

DESCRIPTION
This module‘s default exports override the core stat() and lstat() functions, replacing them with
versions that return "File::stat" objects. This object has methods that return the similarly named st
field name from the stat(2) function; namely, dev, ino, mode, nlink, uid, gid, rdev, size, atime, mtime, c
blksize, and blocks.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your stat() and lstat() functions.) Access these
fields as variables named with a preceding st_ in front their method names. Thus, $stat_obj−>dev()
corresponds to $st_dev if you import the fields.

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
18−Oct−1998 Version 5.005_02 919

File::Spec Perl Programmers Reference Guide File::Spec

called
nating
sed on
arles

ilable in

es (like
rating

d

NAME
File::Spec − portably perform operations on file names

SYNOPSIS
use File::Spec;

$x=File::Spec−>catfile(‘a‘,‘b‘,‘c’);

which returns ‘a/b/c’ under Unix.

DESCRIPTION
This module is designed to support operations commonly performed on file specifications (usually
"file names", but not to be confused with the contents of a file, or Perl‘s file handles), such as concate
several directory and file names into a single path, or determining whether a path is rooted. It is ba
code directly taken from MakeMaker 5.17, code written by Andreas König, Andy Dougherty, Ch
Bailey, Ilya Zakharevich, Paul Schinder, and others.

Since these functions are different for most operating systems, each set of OS specific routines is ava
a separate module, including:

File::Spec::Unix
File::Spec::Mac
File::Spec::OS2
File::Spec::Win32
File::Spec::VMS

The module appropriate for the current OS is automatically loaded by File::Spec. Since some modul
VMS) make use of OS specific facilities, it may not be possible to load all modules under all ope
systems.

Since File::Spec is object oriented, subroutines should not called directly, as in:

File::Spec::catfile(’a’,’b’);

but rather as class methods:

File::Spec−>catfile(’a’,’b’);

For a reference of available functions, pleaes consult File::Spec::Unix, which contains the entire set, an
inherited by the modules for other platforms. For further information, please see File::Spec::Mac,
File::Spec::OS2, File::Spec::Win32, or File::Spec::VMS.

SEE ALSO
File::Spec::Unix, File::Spec::Mac, File::Spec::OS2, File::Spec::Win32, File::Spec::VMS,
ExtUtils::MakeMaker

AUTHORS
Kenneth Albanowski <kjahds@kjahds.com, Andy Dougherty <doughera@lafcol.lafayette.edu, Andreas
König <A.Koenig@franz.ww.TU−Berlin.DE, Tim Bunce <Tim.Bunce@ig.co.uk. VMS support by Charles
Bailey <bailey@genetics.upenn.edu. OS/2 support by Ilya Zakharevich <ilya@math.ohio−state.edu. Mac
support by Paul Schinder <schinder@pobox.com.
920 Version 5.005_02 18−Oct−1998

File::Spec::Mac Perl Programmers Reference Guide File::Spec::Mac

trailing
nment.

 using
d. Each
 They

 first

except

LWP,
like in

ename.
ame, so
NAME
File::Spec::Mac − File::Spec for MacOS

SYNOPSIS
require File::Spec::Mac;

DESCRIPTION
Methods for manipulating file specifications.

METHODS

canonpath
On MacOS, there‘s nothing to be done. Returns what it‘s given.

catdir
Concatenate two or more directory names to form a complete path ending with a directory. Put a
: on the end of the complete path if there isn‘t one, because that‘s what‘s done in MacPerl‘s enviro

The fundamental requirement of this routine is that

 File::Spec−>catdir(split(":",$path)) eq $path

But because of the nature of Macintosh paths, some additional possibilities are allowed to make
this routine give resonable results for some common situations. Here are the rules that are use
argument has its trailing ":" removed. Each argument, except the first, has its leading ":" removed.
are then joined together by a ":".

So

 File::Spec−>catdir("a","b") = "a:b:"
 File::Spec−>catdir("a:",":b") = "a:b:"
 File::Spec−>catdir("a:","b") = "a:b:"
 File::Spec−>catdir("a",":b") = "a:b"
 File::Spec−>catdir("a","","b") = "a::b"

etc.

To get a relative path (one beginning with :), begin the first argument with : or put a "" as the
argument.

If you don‘t want to worry about these rules, never allow a ":" on the ends of any of the arguments
at the beginning of the first.

Under MacPerl, there is an additional ambiguity. Does the user intend that

 File::Spec−>catfile("LWP","Protocol","http.pm")

be relative or absolute? There‘s no way of telling except by checking for the existance of LWP: or :
and even there he may mean a dismounted volume or a relative path in a different directory (
@INC). So those checks aren‘t done here. This routine will treat this as absolute.

catfile
Concatenate one or more directory names and a filename to form a complete path ending with a fil
Since this uses catdir, the same caveats apply. Note that the leading : is removed from the filen
that

 File::Spec−>catfile($ENV{HOME},"file");

and

 File::Spec−>catfile($ENV{HOME},":file");
18−Oct−1998 Version 5.005_02 921

File::Spec::Mac Perl Programmers Reference Guide File::Spec::Mac

olume,
latform

e can be
 drive
uish

acOS.
give the same answer, as one might expect.

curdir
Returns a string representing of the current directory.

rootdir
Returns a string representing the root directory. Under MacPerl, returns the name of the startup v
since that‘s the closest in concept, although other volumes aren‘t rooted there. On any other p
returns ‘’, since there‘s no common way to indicate "root directory" across all Macs.

updir
Returns a string representing the parent directory.

file_name_is_absolute
Takes as argument a path and returns true, if it is an absolute path. In the case where a nam
either relative or absolute (for example, a folder named "HD" in the current working directory on a
named "HD"), relative wins. Use ":" in the appropriate place in the path if you want to disting
unambiguously.

path
Returns the null list for the MacPerl application, since the concept is usually meaningless under M
But if you‘re using the MacPerl tool under MPW, it gives back $ENV{Commands} suitably split, as is
done in :lib:ExtUtils:MM_Mac.pm.

SEE ALSO
File::Spec
922 Version 5.005_02 18−Oct−1998

File::Spec::OS2 Perl Programmers Reference Guide File::Spec::OS2

es the
NAME
File::Spec::OS2 − methods for OS/2 file specs

SYNOPSIS
 use File::Spec::OS2; # Done internally by File::Spec if needed

DESCRIPTION
See File::Spec::Unix for a documentation of the methods provided there. This package overrid
implementation of these methods, not the semantics.
18−Oct−1998 Version 5.005_02 923

File::Spec::Unix Perl Programmers Reference Guide File::Spec::Unix

ssive

emove
nfuses

name

ly ’.‘,
NAME
File::Spec::Unix − methods used by File::Spec

SYNOPSIS
require File::Spec::Unix;

DESCRIPTION
Methods for manipulating file specifications.

METHODS

canonpath
No physical check on the filesystem, but a logical cleanup of a path. On UNIX eliminated succe
slashes and successive "/.".

catdir
Concatenate two or more directory names to form a complete path ending with a directory. But r
the trailing slash from the resulting string, because it doesn‘t look good, isn‘t necessary and co
OS2. Of course, if this is the root directory, don‘t cut off the trailing slash :−)

catfile
Concatenate one or more directory names and a filename to form a complete path ending with a file

curdir
Returns a string representing of the current directory. "." on UNIX.

rootdir
Returns a string representing of the root directory. "/" on UNIX.

updir
Returns a string representing of the parent directory. ".." on UNIX.

no_upwards
Given a list of file names, strip out those that refer to a parent directory. (Does not strip symlinks, on
’..‘, and equivalents.)

file_name_is_absolute
Takes as argument a path and returns true, if it is an absolute path.

path
Takes no argument, returns the environment variable PATH as an array.

join
join is the same as catfile.

nativename
TBW.

SEE ALSO
File::Spec
924 Version 5.005_02 18−Oct−1998

File::Spec::VMS Perl Programmers Reference Guide File::Spec::VMS

es the

ctory

ctory
NAME
File::Spec::VMS − methods for VMS file specs

SYNOPSIS
 use File::Spec::VMS; # Done internally by File::Spec if needed

DESCRIPTION
See File::Spec::Unix for a documentation of the methods provided there. This package overrid
implementation of these methods, not the semantics.

Methods always loaded

catdir
Concatenates a list of file specifications, and returns the result as a VMS−syntax dire
specification.

catfile
Concatenates a list of file specifications, and returns the result as a VMS−syntax dire
specification.

curdir (override)
Returns a string representing of the current directory.

rootdir (override)
Returns a string representing of the root directory.

updir (override)
Returns a string representing of the parent directory.

path (override)
Translate logical name DCL$PATH as a searchlist, rather than trying to split string value of
$ENV{‘PATH‘}.

file_name_is_absolute (override)
Checks for VMS directory spec as well as Unix separators.
18−Oct−1998 Version 5.005_02 925

File::Spec::Win32 Perl Programmers Reference Guide File::Spec::Win32

es the

with a

ssive
NAME
File::Spec::Win32 − methods for Win32 file specs

SYNOPSIS
 use File::Spec::Win32; # Done internally by File::Spec if needed

DESCRIPTION
See File::Spec::Unix for a documentation of the methods provided there. This package overrid
implementation of these methods, not the semantics.

catfile
Concatenate one or more directory names and a filename to form a complete path ending
filename

canonpath
No physical check on the filesystem, but a logical cleanup of a path. On UNIX eliminated succe
slashes and successive "/.".
926 Version 5.005_02 18−Oct−1998

FileCache Perl Programmers Reference Guide FileCache

ame
um.
NAME
FileCache − keep more files open than the system permits

SYNOPSIS
 cacheout $path;
 print $path @data;

DESCRIPTION
The cacheout function will make sure that there‘s a filehandle open for writing available as the pathn
you give it. It automatically closes and re−opens files if you exceed your system file descriptor maxim

BUGS
sys/param.h lies with its NOFILE define on some systems, so you may have to set
$FileCache::cacheout_maxopen yourself.
18−Oct−1998 Version 5.005_02 927

FileHandle Perl Programmers Reference Guide FileHandle

the

h

r the
pace
 a file

value

st of
NAME
FileHandle − supply object methods for filehandles

SYNOPSIS
 use FileHandle;

 $fh = new FileHandle;
 if ($fh−>open("< file")) {
 print <$fh>;
 $fh−>close;
 }

 $fh = new FileHandle "> FOO";
 if (defined $fh) {
 print $fh "bar\n";
 $fh−>close;
 }

 $fh = new FileHandle "file", "r";
 if (defined $fh) {
 print <$fh>;
 undef $fh; # automatically closes the file
 }

 $fh = new FileHandle "file", O_WRONLY|O_APPEND;
 if (defined $fh) {
 print $fh "corge\n";
 undef $fh; # automatically closes the file
 }

 $pos = $fh−>getpos;
 $fh−>setpos($pos);

 $fh−>setvbuf($buffer_var, _IOLBF, 1024);

 ($readfh, $writefh) = FileHandle::pipe;

 autoflush STDOUT 1;

DESCRIPTION
NOTE: This class is now a front−end to the IO::* classes.

FileHandle::new creates a FileHandle , which is a reference to a newly created symbol (see
Symbol package). If it receives any parameters, they are passed to FileHandle::open ; if the open
fails, the FileHandle object is destroyed. Otherwise, it is returned to the caller.

FileHandle::new_from_fd creates a FileHandle like new does. It requires two parameters, whic
are passed to FileHandle::fdopen ; if the fdopen fails, the FileHandle object is destroyed.
Otherwise, it is returned to the caller.

FileHandle::open accepts one parameter or two. With one parameter, it is just a front end fo
built−in open function. With two parameters, the first parameter is a filename that may include whites
or other special characters, and the second parameter is the open mode, optionally followed by
permission value.

If FileHandle::open receives a Perl mode string ("", "+<", etc.) or a POSIX fopen() mode string
("w", "r+", etc.), it uses the basic Perl open operator.

If FileHandle::open is given a numeric mode, it passes that mode and the optional permissions
to the Perl sysopen operator. For convenience, FileHandle::import tries to import the O_XXX
constants from the Fcntl module. If dynamic loading is not available, this may fail, but the re
928 Version 5.005_02 18−Oct−1998

FileHandle Perl Programmers Reference Guide FileHandle

file

macros
 as a

e

cept

le, and
FileHandle will still work.

FileHandle::fdopen is like open except that its first parameter is not a filename but rather a
handle name, a FileHandle object, or a file descriptor number.

If the C functions fgetpos() and fsetpos() are available, then FileHandle::getpos returns an
opaque value that represents the current position of the FileHandle, and FileHandle::setpos uses that
value to return to a previously visited position.

If the C function setvbuf() is available, then FileHandle::setvbuf sets the buffering policy for the
FileHandle. The calling sequence for the Perl function is the same as its C counterpart, including the
_IOFBF , _IOLBF , and _IONBF, except that the buffer parameter specifies a scalar variable to use
buffer. WARNING: A variable used as a buffer by FileHandle::setvbuf must not be modified in any
way until the FileHandle is closed or until FileHandle::setvbuf is called again, or memory corruption
may result!

See perlfunc for complete descriptions of each of the following supported FileHandle methods, which are
just front ends for the corresponding built−in functions:

 close
 fileno
 getc
 gets
 eof
 clearerr
 seek
 tell

See perlvar for complete descriptions of each of the following supported FileHandle methods:

 autoflush
 output_field_separator
 output_record_separator
 input_record_separator
 input_line_number
 format_page_number
 format_lines_per_page
 format_lines_left
 format_name
 format_top_name
 format_line_break_characters
 format_formfeed

Furthermore, for doing normal I/O you might need these:

$fh− print
See print.

$fh− printf
See printf.

$fh− getline
This works like <$fh described in I/O Operators in perlop except that it‘s more readable and can b
safely called in an array context but still returns just one line.

$fh− getlines
This works like <$fh when called in an array context to read all the remaining lines in a file, ex
that it‘s more readable. It will also croak() if accidentally called in a scalar context.

There are many other functions available since FileHandle is descended from IO::File, IO::Seekab
18−Oct−1998 Version 5.005_02 929

FileHandle Perl Programmers Reference Guide FileHandle
IO::Handle. Please see those respective pages for documentation on more functions.

SEE ALSO
The IO extension, perlfunc, I/O Operators in perlop.
930 Version 5.005_02 18−Oct−1998

FindBin Perl Programmers Reference Guide FindBin

ib and
 the

e

re;
NAME
FindBin − Locate directory of original perl script

SYNOPSIS
 use FindBin;
 use lib "$FindBin::Bin/../lib";

 or

 use FindBin qw($Bin);
 use lib "$Bin/../lib";

DESCRIPTION
Locates the full path to the script bin directory to allow the use of paths relative to the bin directory.

This allows a user to setup a directory tree for some software with directories <root>/bin and <root>/l
then the above example will allow the use of modules in the lib directory without knowing where
software tree is installed.

If perl is invoked using the −e option or the perl script is read from STDIN then FindBin sets both $Bin and
$RealBin to the current directory.

EXPORTABLE VARIABLES
 $Bin − path to bin directory from where script was invoked
 $Script − basename of script from which perl was invoked
 $RealBin − $Bin with all links resolved
 $RealScript − $Script with all links resolved

KNOWN BUGS
if perl is invoked as

 perl filename

and filename does not have executable rights and a program called filename exists in the users
$ENV{PATH} which satisfies both −x and −T then FindBin assumes that it was invoked via th
$ENV{PATH}.

Workaround is to invoke perl as

 perl ./filename

AUTHORS
Graham Barr <bodg@tiuk.ti.com> Nick Ing−Simmons <nik@tiuk.ti.com>

COPYRIGHT
Copyright (c) 1995 Graham Barr & Nick Ing−Simmons. All rights reserved. This program is free softwa
you can redistribute it and/or modify it under the same terms as Perl itself.

REVISION
$Revision: 1.4 $
18−Oct−1998 Version 5.005_02 931

Getopt::Long Perl Programmers Reference Guide Getopt::Long

ns that
port for
ch, is

nd line

option
ly, the
tion is

—size

for the
ample

ent list

 will

to 1 if

" will
if

on the
NAME
GetOptions − extended processing of command line options

SYNOPSIS
 use Getopt::Long;
 $result = GetOptions (...option−descriptions...);

DESCRIPTION
The Getopt::Long module implements an extended getopt function called GetOptions() . This function
adheres to the POSIX syntax for command line options, with GNU extensions. In general, this mea
options have long names instead of single letters, and are introduced with a double dash "—". Sup
bundling of command line options, as was the case with the more traditional single−letter approa
provided but not enabled by default. For example, the UNIX "ps" command can be given the comma
"option"

 −vax

which means the combination of −v, −a and −x. With the new syntax —vax would be a single option,
probably indicating a computer architecture.

Command line options can be used to set values. These values can be specified in one of two ways:

 −−size 24
 −−size=24

GetOptions is called with a list of option−descriptions, each of which consists of two elements: the
specifier and the option linkage. The option specifier defines the name of the option and, optional
value it can take. The option linkage is usually a reference to a variable that will be set when the op
used. For example, the following call to GetOptions:

 GetOptions("size=i" => \$offset);

will accept a command line option "size" that must have an integer value. With a command line of "
24" this will cause the variable $offset to get the value 24.

Alternatively, the first argument to GetOptions may be a reference to a HASH describing the linkage
options, or an object whose class is based on a HASH. The following call is equivalent to the ex
above:

 %optctl = ("size" => \$offset);
 GetOptions(\%optctl, "size=i");

Linkage may be specified using either of the above methods, or both. Linkage specified in the argum
takes precedence over the linkage specified in the HASH.

The command line options are taken from array @ARGV. Upon completion of GetOptions, @ARGV
contain the rest (i.e. the non−options) of the command line.

Each option specifier designates the name of the option, optionally followed by an argument specifier.

Options that do not take arguments will have no argument specifier. The option variable will be set
the option is used.

For the other options, the values for argument specifiers are:

! Option does not take an argument and may be negated, i.e. prefixed by "no". E.g. "foo!
allow —foo (with value 1) and −nofoo (with value 0). The option variable will be set to 1, or 0
negated.

+ Option does not take an argument and will be incremented by 1 every time it appears
command line. E.g. "more+", when used with —more —more —more, will set the option
variable to 3 (provided it was 0 or undefined at first).
932 Version 5.005_02 18−Oct−1998

Getopt::Long Perl Programmers Reference Guide Getopt::Long

iable.

le. If

riable.

ble. If

option

ption

tions

e.g.:

nt

lobal
are not
set the
ling
The + specifier is ignored if the option destination is not a SCALAR.

=s Option takes a mandatory string argument. This string will be assigned to the option var
Note that even if the string argument starts with − or —, it will not be considered an option on
itself.

:s Option takes an optional string argument. This string will be assigned to the option variab
omitted, it will be assigned "" (an empty string). If the string argument starts with − or —, it will
be considered an option on itself.

=i Option takes a mandatory integer argument. This value will be assigned to the option va
Note that the value may start with − to indicate a negative value.

:i Option takes an optional integer argument. This value will be assigned to the option varia
omitted, the value 0 will be assigned. Note that the value may start with − to indicate a negative
value.

=f Option takes a mandatory real number argument. This value will be assigned to the
variable. Note that the value may start with − to indicate a negative value.

:f Option takes an optional real number argument. This value will be assigned to the o
variable. If omitted, the value 0 will be assigned.

A lone dash − is considered an option, the corresponding option name is the empty string.

A double dash on itself — signals end of the options list.

Linkage specification
The linkage specifier is optional. If no linkage is explicitly specified but a ref HASH is passed, GetOp
will place the value in the HASH. For example:

 %optctl = ();
 GetOptions (\%optctl, "size=i");

will perform the equivalent of the assignment

 $optctl{"size"} = 24;

For array options, a reference to an array is used, e.g.:

 %optctl = ();
 GetOptions (\%optctl, "sizes=i@");

with command line "−sizes 24 −sizes 48" will perform the equivalent of the assignment

 $optctl{"sizes"} = [24, 48];

For hash options (an option whose argument looks like "name=value"), a reference to a hash is used,

 %optctl = ();
 GetOptions (\%optctl, "define=s%");

with command line "—define foo=hello —define bar=world" will perform the equivalent of the assignme

 $optctl{"define"} = {foo=>’hello’, bar=>’world’)

If no linkage is explicitly specified and no ref HASH is passed, GetOptions will put the value in a g
variable named after the option, prefixed by "opt_". To yield a usable Perl variable, characters that
part of the syntax for variables are translated to underscores. For example, "—fpp−struct−return" will
variable $opt_fpp_struct_return. Note that this variable resides in the namespace of the cal
program, not necessarily main. For example:

 GetOptions ("size=i", "sizes=i@");

with command line "−size 10 −sizes 24 −sizes 48" will perform the equivalent of the assignments
18−Oct−1998 Version 5.005_02 933

Getopt::Long Perl Programmers Reference Guide Getopt::Long

ash or a

 more

" is
key" is

and the

 In this
h" all

ments.
 This

arsing.

 not set,
Y.
 $opt_size = 10;
 @opt_sizes = (24, 48);

A lone dash − is considered an option, the corresponding Perl identifier is $opt_ .

The linkage specifier can be a reference to a scalar, a reference to an array, a reference to a h
reference to a subroutine.

Note that, if your code is running under the recommended use strict ‘vars’ pragma, it may be
helpful to declare these package variables via use vars perhaps something like this:

 use vars qw/ $opt_size @opt_sizes $opt_bar /;

If a REF SCALAR is supplied, the new value is stored in the referenced variable. If the option occurs
than once, the previous value is overwritten.

If a REF ARRAY is supplied, the new value is appended (pushed) to the referenced array.

If a REF HASH is supplied, the option value should look like "key" or "key=value" (if the "=value
omitted then a value of 1 is implied). In this case, the element of the referenced hash with the key "
assigned "value".

If a REF CODE is supplied, the referenced subroutine is called with two arguments: the option name
option value. The option name is always the true name, not an abbreviation or alias.

Aliases and abbreviations
The option name may actually be a list of option names, separated by "|"s, e.g. "foo|bar|blech=s".
example, "foo" is the true name of this option. If no linkage is specified, options "foo", "bar" and "blec
will set $opt_foo. For convenience, the single character "?" is allowed as an alias, e.g. "help|?".

Option names may be abbreviated to uniqueness, depending on configuration option auto_abbrev.

Non−option call−back routine
A special option specifier, <>, can be used to designate a subroutine to handle non−option argu
GetOptions will immediately call this subroutine for every non−option it encounters in the options list.
subroutine gets the name of the non−option passed. This feature requires configuration option permute, see
section CONFIGURATION OPTIONS.

See also the examples.

Option starters
On the command line, options can start with − (traditional), — (POSIX) and + (GNU, now being phased
out). The latter is not allowed if the environment variable POSIXLY_CORRECT has been defined.

Options that start with "—" may have an argument appended, separated with an "=", e.g. "—foo=bar".

Return values and Errors
Configuration errors and errors in the option definitions are signalled using die() and will terminate the
calling program unless the call to Getopt::Long::GetOptions() was embedded in eval { ... }
or die() was trapped using $SIG{__DIE__}.

A return value of 1 (true) indicates success.

A return status of 0 (false) indicates that the function detected one or more errors during option p
These errors are signalled using warn() and can be trapped with $SIG{__WARN__}.

Errors that can‘t happen are signalled using Carp::croak() .

COMPATIBILITY
Getopt::Long::GetOptions() is the successor of newgetopt.pl that came with Perl 4. It is fully
upward compatible. In fact, the Perl 5 version of newgetopt.pl is just a wrapper around the module.

If an "@" sign is appended to the argument specifier, the option is treated as an array. Value(s) are
but pushed into array @opt_name. If explicit linkage is supplied, this must be a reference to an ARRA
934 Version 5.005_02 18−Oct−1998

Getopt::Long Perl Programmers Reference Guide Getopt::Long

e form
(if the
 to a

art
der

ken to
 will be

s are
If an "%" sign is appended to the argument specifier, the option is treated as a hash. Value(s) of th
"name=value" are set by setting the element of the hash %opt_name with key "name" to "value"
"=value" portion is omitted it defaults to 1). If explicit linkage is supplied, this must be a reference
HASH.

If configuration option getopt_compat is set (see section CONFIGURATION OPTIONS), options that st
with "+" or "−" may also include their arguments, e.g. "+foo=bar". This is for compatiblity with ol
implementations of the GNU "getopt" routine.

If the first argument to GetOptions is a string consisting of only non−alphanumeric characters, it is ta
specify the option starter characters. Everything starting with one of these characters from the starter
considered an option. Using a starter argument is strongly deprecated.

For convenience, option specifiers may have a leading − or —, so it is possible to write:

 GetOptions qw(−foo=s −−bar=i −−ar=s);

EXAMPLES
If the option specifier is "one:i" (i.e. takes an optional integer argument), then the following situation
handled:

 −one −two −> $opt_one = ’’, −two is next option
 −one −2 −> $opt_one = −2

Also, assume specifiers "foo=s" and "bar:s" :

 −bar −xxx −> $opt_bar = ’’, ’−xxx’ is next option
 −foo −bar −> $opt_foo = ’−bar’
 −foo −− −> $opt_foo = ’−−’

In GNU or POSIX format, option names and values can be combined:

 +foo=blech −> $opt_foo = ’blech’
 −−bar= −> $opt_bar = ’’
 −−bar=−− −> $opt_bar = ’−−’

Example of using variable references:

 $ret = GetOptions (’foo=s’, \$foo, ’bar=i’, ’ar=s’, \@ar);

With command line options "−foo blech −bar 24 −ar xx −ar yy" this will result in:

 $foo = ’blech’
 $opt_bar = 24
 @ar = (’xx’,’yy’)

Example of using the <> option specifier:

 @ARGV = qw(−foo 1 bar −foo 2 blech);
 GetOptions("foo=i", \$myfoo, "<>", \&mysub);

Results:

 mysub("bar") will be called (with $myfoo being 1)
 mysub("blech") will be called (with $myfoo being 2)

Compare this with:

 @ARGV = qw(−foo 1 bar −foo 2 blech);
 GetOptions("foo=i", \$myfoo);

This will leave the non−options in @ARGV:

 $myfoo −> 2
 @ARGV −> qw(bar blech)
18−Oct−1998 Version 5.005_02 935

Getopt::Long Perl Programmers Reference Guide Getopt::Long

lating

ment

less
order

less

on

.

 is

dled.
h
CONFIGURATION OPTIONS
GetOptions can be configured by calling subroutine Getopt::Long::Configure . This subroutine takes a list
of quoted strings, each specifying a configuration option to be set, e.g. ignore_case. Options can be reset by
prefixing with no_, e.g. no_ignore_case. Case does not matter. Multiple calls to config are possible.

Previous versions of Getopt::Long used variables for the purpose of configuring. Although manipu
these variables still work, it is strongly encouraged to use the new config routine. Besides, it is much easier.

The following options are available:

default This option causes all configuration options to be reset to their default values.

auto_abbrev Allow option names to be abbreviated to uniqueness. Default is set unless environ
variable POSIXLY_CORRECT has been set, in which case auto_abbrev is reset.

getopt_compat
Allow ‘+’ to start options. Default is set unless environment variable
POSIXLY_CORRECT has been set, in which case getopt_compat is reset.

require_order Whether non−options are allowed to be mixed with options. Default is set un
environment variable POSIXLY_CORRECT has been set, in which case b<require_
is reset.

See also permute, which is the opposite of require_order.

permute Whether non−options are allowed to be mixed with options. Default is set un
environment variable POSIXLY_CORRECT has been set, in which case permute is reset.
Note that permute is the opposite of require_order.

If permute is set, this means that

 −foo arg1 −bar arg2 arg3

is equivalent to

 −foo −bar arg1 arg2 arg3

If a non−option call−back routine is specified, @ARGV will always be empty up
succesful return of GetOptions since all options have been processed, except when— is
used:

 −foo arg1 −bar arg2 −− arg3

will call the call−back routine for arg1 and arg2, and terminate leaving arg2 in @ARGV

If require_order is set, options processing terminates when the first non−option
encountered.

 −foo arg1 −bar arg2 arg3

is equivalent to

 −foo −− arg1 −bar arg2 arg3

bundling (default: reset)
Setting this variable to a non−zero value will allow single−character options to be bun
To distinguish bundles from long option names, long options must be introduced wit—
and single−character options (and bundles) with −. For example,

 ps −vax −−vax

would be equivalent to

 ps −v −a −x −−vax
936 Version 5.005_02 18−Oct−1998

Getopt::Long Perl Programmers Reference Guide Getopt::Long

est of

ixing

. This
plied

it is

rsing
provided "vax", "v", "a" and "x" have been defined to be valid options.

Bundled options can also include a value in the bundle; for strings this value is the r
the bundle, but integer and floating values may be combined in the bundle, e.g.

 scale −h24w80

is equivalent to

 scale −h 24 −w 80

Note: resetting bundling also resets bundling_override.

bundling_override (default: reset)
If bundling_override is set, bundling is enabled as with bundling but now long option
names override option bundles. In the above example, −vax would be interpreted as the
option "vax", not the bundle "v", "a", "x".

Note: resetting bundling_override also resets bundling.

Note: Using option bundling can easily lead to unexpected results, especially when m
long options and bundles. Caveat emptor.

ignore_case (default: set)
If set, case is ignored when matching options.

Note: resetting ignore_case also resets ignore_case_always.

ignore_case_always (default: reset)
When bundling is in effect, case is ignored on single−character options also.

Note: resetting ignore_case_always also resets ignore_case.

pass_through (default: reset)
Unknown options are passed through in @ARGV instead of being flagged as errors
makes it possible to write wrapper scripts that process only part of the user sup
options, and passes the remaining options to some other program.

This can be very confusing, especially when permute is also set.

prefix The string that starts options. See also prefix_pattern .

prefix_pattern A Perl pattern that identifies the strings that introduce options. Default is (—|−|\+)
unless environment variable POSIXLY_CORRECT has been set, in which case
(—|−) .

debug (default: reset)
Enable copious debugging output.

OTHER USEFUL VARIABLES

$Getopt::Long::VERSION
The version number of this Getopt::Long implementation in the format major .minor .
This can be used to have Exporter check the version, e.g.

 use Getopt::Long 3.00;

You can inspect $Getopt::Long::major_version and
$Getopt::Long::minor_version for the individual components.

$Getopt::Long::error
Internal error flag. May be incremented from a call−back routine to cause options pa
to fail.
18−Oct−1998 Version 5.005_02 937

Getopt::Long Perl Programmers Reference Guide Getopt::Long

tribute
ftware

ut
ee

, Inc.,
AUTHOR
Johan Vromans <jvromans@squirrel.nl>

COPYRIGHT AND DISCLAIMER
This program is Copyright 1990,1998 by Johan Vromans. This program is free software; you can redis
it and/or modify it under the terms of the GNU General Public License as published by the Free So
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; witho
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. S
the GNU General Public License for more details.

If you do not have a copy of the GNU General Public License write to the Free Software Foundation
675 Mass Ave, Cambridge, MA 02139, USA.
938 Version 5.005_02 18−Oct−1998

Getopt::Std Perl Programmers Reference Guide Getopt::Std

ument

ument

h name)
NAME
getopt − Process single−character switches with switch clustering

getopts − Process single−character switches with switch clustering

SYNOPSIS
 use Getopt::Std;

 getopt(’oDI’); # −o, −D & −I take arg. Sets opt_* as a side effect.
 getopt(’oDI’, \%opts); # −o, −D & −I take arg. Values in %opts
 getopts(’oif:’); # −o & −i are boolean flags, −f takes an argument

 # Sets opt_* as a side effect.
 getopts(’oif:’, \%opts); # options as above. Values in %opts

DESCRIPTION
The getopt() functions processes single−character switches with switch clustering. Pass one arg
which is a string containing all switches that take an argument. For each switch found, sets $opt_x (where
x is the switch name) to the value of the argument, or 1 if no argument. Switches which take an arg
don‘t care whether there is a space between the switch and the argument.

Note that, if your code is running under the recommended use strict ‘vars’ pragma, it may be
helpful to declare these package variables via use vars perhaps something like this:

 use vars qw/ $opt_foo $opt_bar /;

For those of you who don‘t like additional variables being created, getopt() and getopts() will also
accept a hash reference as an optional second argument. Hash keys will be x (where x is the switc
with key values the value of the argument or 1 if no argument is specified.
18−Oct−1998 Version 5.005_02 939

I18N::Collate Perl Programmers Reference Guide I18N::Collate

vided

onsult
es are

tern
NAME
I18N::Collate − compare 8−bit scalar data according to the current locale

 WARNING: starting from the Perl version 5.003_06
 the I18N::Collate interface for comparing 8−bit scalar data
 according to the current locale

HAS BEEN DEPRECATED

 That is, please do not use it anymore for any new applications
 and please migrate the old applications away from it because its
 functionality was integrated into the Perl core language in the
 release 5.003_06.

 See the perllocale manual page for further information.

SYNOPSIS
 use I18N::Collate;
 setlocale(LC_COLLATE, ’locale−of−your−choice’);
 $s1 = new I18N::Collate "scalar_data_1";
 $s2 = new I18N::Collate "scalar_data_2";

DESCRIPTION
This module provides you with objects that will collate according to your national character set, pro
that the POSIX setlocale() function is supported on your system.

You can compare $s1 and $s2 above with

 $s1 le $s2

to extract the data itself, you‘ll need a dereference: $$s1

This module uses POSIX::setlocale() . The basic collation conversion is done by strxfrm() which
terminates at NUL characters being a decent C routine. collate_xfrm() handles embedded NUL
characters gracefully.

The available locales depend on your operating system; try whether locale −a shows them or man pages
for "locale" or "nlsinfo" or the direct approach ls /usr/lib/nls/loc or ls /usr/lib/nls or ls
/usr/lib/locale . Not all the locales that your vendor supports are necessarily installed: please c
your operating system‘s documentation and possibly your local system administration. The locale nam
probably something like xx_XX.(ISO)?8859−N or xx_XX.(ISO)?8859N , for example
fr_CH.ISO8859−1 is the Swiss (CH) variant of French (fr), ISO Latin (8859) 1 (−1) which is the Wes
European character set.
940 Version 5.005_02 18−Oct−1998

IO Perl Programmers Reference Guide IO
NAME
IO − load various IO modules

SYNOPSIS
 use IO;

DESCRIPTION
IO provides a simple mechanism to load some of the IO modules at one go. Currently this includes:

 IO::Handle
 IO::Seekable
 IO::File
 IO::Pipe
 IO::Socket

For more information on any of these modules, please see its respective documentation.
18−Oct−1998 Version 5.005_02 941

IO::File Perl Programmers Reference Guide IO::File

at

here
 If the

uilt−in
ce or

y a file
NAME
IO::File − supply object methods for filehandles

SYNOPSIS
 use IO::File;

 $fh = new IO::File;
 if ($fh−>open("< file")) {
 print <$fh>;
 $fh−>close;
 }

 $fh = new IO::File "> file";
 if (defined $fh) {
 print $fh "bar\n";
 $fh−>close;
 }

 $fh = new IO::File "file", "r";
 if (defined $fh) {
 print <$fh>;
 undef $fh; # automatically closes the file
 }

 $fh = new IO::File "file", O_WRONLY|O_APPEND;
 if (defined $fh) {
 print $fh "corge\n";

 $pos = $fh−>getpos;
 $fh−>setpos($pos);

 undef $fh; # automatically closes the file
 }

 autoflush STDOUT 1;

DESCRIPTION
IO::File inherits from IO::Handle and IO::Seekable . It extends these classes with methods th
are specific to file handles.

CONSTRUCTOR

new ([ARGS])
Creates a IO::File . If it receives any parameters, they are passed to the method open ; if the open
fails, the object is destroyed. Otherwise, it is returned to the caller.

new_tmpfile
Creates an IO::File opened for read/write on a newly created temporary file. On systems w
this is possible, the temporary file is anonymous (i.e. it is unlinked after creation, but held open).
temporary file cannot be created or opened, the IO::File object is destroyed. Otherwise, it is
returned to the caller.

METHODS

open(FILENAME [,MODE [,PERMS]])
open accepts one, two or three parameters. With one parameter, it is just a front end for the b
open function. With two parameters, the first parameter is a filename that may include whitespa
other special characters, and the second parameter is the open mode, optionally followed b
permission value.
942 Version 5.005_02 18−Oct−1998

IO::File Perl Programmers Reference Guide IO::File

sions

t the
If IO::File::open receives a Perl mode string (">", "+<", etc.) or a POSIX fopen() mode
string ("w", "r+", etc.), it uses the basic Perl open operator.

If IO::File::open is given a numeric mode, it passes that mode and the optional permis
value to the Perl sysopen operator. For convenience, IO::File::import tries to import the
O_XXX constants from the Fcntl module. If dynamic loading is not available, this may fail, bu
rest of IO::File will still work.

SEE ALSO
perlfunc, I/O Operators in perlop, IO::Handle IO::Seekable

HISTORY
Derived from FileHandle.pm by Graham Barr <bodg@tiuk.ti.com>.
18−Oct−1998 Version 5.005_02 943

IO::Handle Perl Programmers Reference Guide IO::Handle

ts of

thod
NAME
IO::Handle − supply object methods for I/O handles

SYNOPSIS
 use IO::Handle;

 $fh = new IO::Handle;
 if ($fh−>fdopen(fileno(STDIN),"r")) {
 print $fh−>getline;
 $fh−>close;
 }

 $fh = new IO::Handle;
 if ($fh−>fdopen(fileno(STDOUT),"w")) {
 $fh−>print("Some text\n");
 }

 use IO::Handle ’_IOLBF’;
 $fh−>setvbuf($buffer_var, _IOLBF, 1024);

 undef $fh; # automatically closes the file if it’s open

 autoflush STDOUT 1;

DESCRIPTION
IO::Handle is the base class for all other IO handle classes. It is not intended that objec
IO::Handle would be created directly, but instead IO::Handle is inherited from by several other
classes in the IO hierarchy.

If you are reading this documentation, looking for a replacement for the FileHandle package, then I
suggest you read the documentation for IO::File

A IO::Handle object is a reference to a symbol (see the Symbol package)

CONSTRUCTOR

new ()
Creates a new IO::Handle object.

new_from_fd (FD, MODE)
Creates a IO::Handle like new does. It requires two parameters, which are passed to the me
fdopen ; if the fdopen fails, the object is destroyed. Otherwise, it is returned to the caller.

METHODS
See perlfunc for complete descriptions of each of the following supported IO::Handle methods, which are
just front ends for the corresponding built−in functions:

 close
 fileno
 getc
 eof
 read
 truncate
 stat
 print
 printf
 sysread
 syswrite

See perlvar for complete descriptions of each of the following supported IO::Handle methods:
944 Version 5.005_02 18−Oct−1998

IO::Handle Perl Programmers Reference Guide IO::Handle

file

e

cept

erl

 the last

Perl

G: A
is
d to
 autoflush
 output_field_separator
 output_record_separator
 input_record_separator
 input_line_number
 format_page_number
 format_lines_per_page
 format_lines_left
 format_name
 format_top_name
 format_line_break_characters
 format_formfeed
 format_write

Furthermore, for doing normal I/O you might need these:

$fh− fdopen (FD, MODE)
fdopen is like an ordinary open except that its first parameter is not a filename but rather a
handle name, a IO::Handle object, or a file descriptor number.

$fh− opened
Returns true if the object is currently a valid file descriptor.

$fh− getline
This works like <$fh described in I/O Operators in perlop except that it‘s more readable and can b
safely called in an array context but still returns just one line.

$fh− getlines
This works like <$fh when called in an array context to read all the remaining lines in a file, ex
that it‘s more readable. It will also croak() if accidentally called in a scalar context.

$fh− ungetc (ORD)
Pushes a character with the given ordinal value back onto the given handle‘s input stream.

$fh− write (BUF, LEN [, OFFSET }\])
This write is like write found in C, that is it is the opposite of read. The wrapper for the p
write function is called format_write .

$fh− flush
Flush the given handle‘s buffer.

$fh− error
Returns a true value if the given handle has experienced any errors since it was opened or since
call to clearerr .

$fh− clearerr
Clear the given handle‘s error indicator.

If the C functions setbuf() and/or setvbuf() are available, then IO::Handle::setbuf and
IO::Handle::setvbuf set the buffering policy for an IO::Handle. The calling sequences for the
functions are the same as their C counterparts—including the constants _IOFBF , _IOLBF , and _IONBF for
setvbuf() —except that the buffer parameter specifies a scalar variable to use as a buffer. WARNIN
variable used as a buffer by setbuf or setvbuf must not be modified in any way until the IO::Handle
closed or setbuf or setvbuf is called again, or memory corruption may result! Note that you nee
import the constants _IOFBF , _IOLBF , and _IONBF explicitly.

Lastly, there is a special method for working under −T and setuid/gid scripts:
18−Oct−1998 Version 5.005_02 945

IO::Handle Perl Programmers Reference Guide IO::Handle

n. Note
otential

mpling
rated by

 from
$fh− untaint
Marks the object as taint−clean, and as such data read from it will also be considered taint−clea
that this is a very trusting action to take, and appropriate consideration for the data source and p
vulnerability should be kept in mind.

NOTE
A IO::Handle object is a GLOB reference. Some modules that inherit from IO::Handle may want to
keep object related variables in the hash table part of the GLOB. In an attempt to prevent modules tra
on each other I propose the that any such module should prefix its variables with its own name sepa
_‘s. For example the IO::Socket module keeps a timeout variable in ‘io_socket_timeout’.

SEE ALSO
perlfunc, I/O Operators in perlop, IO::File

BUGS
Due to backwards compatibility, all filehandles resemble objects of class IO::Handle , or actually classes
derived from that class. They actually aren‘t. Which means you can‘t derive your own class
IO::Handle and inherit those methods.

HISTORY
Derived from FileHandle.pm by Graham Barr <bodg@tiuk.ti.com>
946 Version 5.005_02 18−Oct−1998

IO::Pipe Perl Programmers Reference Guide IO::Pipe

nd

of
NAME
IO::pipe − supply object methods for pipes

SYNOPSIS
use IO::Pipe;

$pipe = new IO::Pipe;

if($pid = fork()) { # Parent
 $pipe−>reader();

 while(<$pipe> {
....

 }

}
elsif(defined $pid) { # Child
 $pipe−>writer();

 print $pipe
}

or

$pipe = new IO::Pipe;

$pipe−>reader(qw(ls −l));

while(<$pipe>) {

}

DESCRIPTION
IO::Pipe provides an interface to createing pipes between processes.

CONSTRCUTOR

new ([READER, WRITER])
Creates a IO::Pipe , which is a reference to a newly created symbol (see the Symbol package).
IO::Pipe::new optionally takes two arguments, which should be objects blessed into
IO::Handle , or a subclass thereof. These two objects will be used for the system call to pipe . If no
arguments are given then method handles is called on the new IO::Pipe object.

These two handles are held in the array part of the GLOB until either reader or writer is called.

METHODS

reader ([ARGS])
The object is re−blessed into a sub−class of IO::Handle , and becomes a handle at the reading e
of the pipe. If ARGS are given then fork is called and ARGS are passed to exec.

writer ([ARGS])
The object is re−blessed into a sub−class of IO::Handle , and becomes a handle at the writing end
the pipe. If ARGS are given then fork is called and ARGS are passed to exec.

handles ()
This method is called during construction by IO::Pipe::new on the newly created IO::Pipe
object. It returns an array of two objects blessed into IO::Pipe::End , or a subclass thereof.
18−Oct−1998 Version 5.005_02 947

IO::Pipe Perl Programmers Reference Guide IO::Pipe

ute it
SEE ALSO
IO::Handle

AUTHOR
Graham Barr <bodg@tiuk.ti.com

COPYRIGHT
Copyright (c) 1996 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
948 Version 5.005_02 18−Oct−1998

IO::Seekable Perl Programmers Reference Guide IO::Seekable

other
NAME
IO::Seekable − supply seek based methods for I/O objects

SYNOPSIS
 use IO::Seekable;
 package IO::Something;
 @ISA = qw(IO::Seekable);

DESCRIPTION
IO::Seekable does not have a constuctor of its own as is intended to be inherited by
IO::Handle based objects. It provides methods which allow seeking of the file descriptors.

If the C functions fgetpos() and fsetpos() are available, then IO::File::getpos returns an
opaque value that represents the current position of the IO::File, and IO::File::setpos uses that value
to return to a previously visited position.

See perlfunc for complete descriptions of each of the following supported IO::Seekable methods, which
are just front ends for the corresponding built−in functions:

 seek
 tell

SEE ALSO
perlfunc, I/O Operators in perlop, IO::Handle IO::File

HISTORY
Derived from FileHandle.pm by Graham Barr <bodg@tiuk.ti.com>
18−Oct−1998 Version 5.005_02 949

IO::Select Perl Programmers Reference Guide IO::Select

n

an

d.

nt is

the
NAME
IO::Select − OO interface to the select system call

SYNOPSIS
 use IO::Select;

 $s = IO::Select−>new();

 $s−>add(*STDIN);
 $s−>add($some_handle);

 @ready = $s−>can_read($timeout);

 @ready = IO::Select−>new(@handles)−>read(0);

DESCRIPTION
The IO::Select package implements an object approach to the system select function call. It allows
the user to see what IO handles, see IO::Handle, are ready for reading, writing or have an error conditio
pending.

CONSTRUCTOR

new ([HANDLES])
The constructor creates a new object and optionally initialises it with a set of handles.

METHODS

add (HANDLES)
Add the list of handles to the IO::Select object. It is these values that will be returned when
event occurs. IO::Select keeps these values in a cache which is indexed by the fileno of the
handle, so if more than one handle with the same fileno is specified then only the last one is cache

Each handle can be an IO::Handle object, an integer or an array reference where the first eleme
a IO::Handle or an integer.

remove (HANDLES)
Remove all the given handles from the object. This method also works by the fileno of the handles.
So the exact handles that were added need not be passed, just handles that have an equivalent fileno

exists (HANDLE)
Returns a true value (actually the handle itself) if it is present. Returns undef otherwise.

handles
Return an array of all registered handles.

can_read ([TIMEOUT])
Return an array of handles that are ready for reading. TIMEOUT is the maximum amount of time to
wait before returning an empty list. If TIMEOUT is not given and any handles are registered then
call will block.

can_write ([TIMEOUT])
Same as can_read except check for handles that can be written to.

has_error ([TIMEOUT])
Same as can_read except check for handles that have an error condition, for example EOF.

count ()
Returns the number of handles that the object will check for when one of the can_ methods is called
or the object is passed to the select static method.
950 Version 5.005_02 18−Oct−1998

IO::Select Perl Programmers Reference Guide IO::Select

s

es that
ray is

h

ute it
bits()
Return the bit string suitable as argument to the core select() call.

bits()
Return the bit string suitable as argument to the core select() call.

select (READ, WRITE, ERROR [, TIMEOUT])
select is a static method, that is you call it with the package name like new. READ, WRITE and
ERROR are either undef or IO::Select objects. TIMEOUT is optional and has the same effect a
for the core select call.

The result will be an array of 3 elements, each a reference to an array which will hold the handl
are ready for reading, writing and have error conditions respectively. Upon error an empty ar
returned.

EXAMPLE
Here is a short example which shows how IO::Select could be used to write a server whic
communicates with several sockets while also listening for more connections on a listen socket

 use IO::Select;
 use IO::Socket;

 $lsn = new IO::Socket::INET(Listen => 1, LocalPort => 8080);
 $sel = new IO::Select($lsn);

 while(@ready = $sel−>can_read) {
 foreach $fh (@ready) {
 if($fh == $lsn) {
 # Create a new socket
 $new = $lsn−>accept;
 $sel−>add($new);
 }
 else {
 # Process socket

 # Maybe we have finished with the socket
 $sel−>remove($fh);
 $fh−>close;
 }
 }
 }

AUTHOR
Graham Barr <Graham.Barr@tiuk.ti.com>

COPYRIGHT
Copyright (c) 1995 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
18−Oct−1998 Version 5.005_02 951

IO::Socket Perl Programmers Reference Guide IO::Socket

cket.
sses of

 the

r to
, you

ated
te
f upon
e peer

en the
evious
NAME
IO::Socket − Object interface to socket communications

SYNOPSIS
 use IO::Socket;

DESCRIPTION
IO::Socket provides an object interface to creating and using sockets. It is built upon the IO::Handle
interface and inherits all the methods defined by IO::Handle.

IO::Socket only defines methods for those operations which are common to all types of so
Operations which are specified to a socket in a particular domain have methods defined in sub cla
IO::Socket

IO::Socket will export all functions (and constants) defined by Socket.

CONSTRUCTOR

new ([ARGS])
Creates an IO::Socket , which is a reference to a newly created symbol (see the Symbol package).
new optionally takes arguments, these arguments are in key−value pairs. new only looks for one key
Domain which tells new which domain the socket will be in. All other arguments will be passed to
configuration method of the package for that domain, See below.

IO::Socket s will be in autoflush mode after creation. Note that versions of IO::Socket prio
1.1603 (as shipped with Perl 5.004_04) did not do this. So if you need backward compatibility
should set autoflush explicitly.

METHODS
See perlfunc for complete descriptions of each of the following supported IO::Socket methods, which are
just front ends for the corresponding built−in functions:

 socket
 socketpair
 bind
 listen
 accept
 send
 recv
 peername (getpeername)
 sockname (getsockname)

Some methods take slightly different arguments to those defined in perlfunc in attempt to make the interface
more flexible. These are

accept([PKG])
perform the system call accept on the socket and return a new object. The new object will be cre
in the same class as the listen socket, unless PKG is specified. This object can be used to communica
with the client that was trying to connect. In a scalar context the new socket is returned, or unde
failure. In an array context a two−element array is returned containing the new socket and th
address, the list will be empty upon failure.

Additional methods that are provided are

timeout([VAL])
Set or get the timeout value associated with this socket. If called without any arguments th
current setting is returned. If called with an argument the current setting is changed and the pr
value returned.
952 Version 5.005_02 18−Oct−1998

IO::Socket Perl Programmers Reference Guide IO::Socket

ment

et the

et the

col is

lated

m the

s which
e

sockopt(OPT [, VAL])
Unified method to both set and get options in the SOL_SOCKET level. If called with one argu
then getsockopt is called, otherwise setsockopt is called.

sockdomain
Returns the numerical number for the socket domain type. For example, for a AF_INET sock
value of &AF_INET will be returned.

socktype
Returns the numerical number for the socket type. For example, for a SOCK_STREAM sock
value of &SOCK_STREAM will be returned.

protocol
Returns the numerical number for the protocol being used on the socket, if known. If the proto
unknown, as with an AF_UNIX socket, zero is returned.

SUB−CLASSES

IO::Socket::INET
IO::Socket::INET provides a constructor to create an AF_INET domain socket and some re
methods. The constructor can take the following options

 PeerAddr Remote host address <hostname>[:<port>]
 PeerPort Remote port or service <service>[(<no>)] | <no>
 LocalAddr Local host bind address hostname[:port]
 LocalPort Local host bind port <service>[(<no>)] | <no>
 Proto Protocol name (or number) "tcp" | "udp" | ...
 Type Socket type SOCK_STREAM | SOCK_DGRAM | ...
 Listen Queue size for listen
 Reuse Set SO_REUSEADDR before binding
 Timeout Timeout value for various operations

If Listen is defined then a listen socket is created, else if the socket type, which is derived fro
protocol, is SOCK_STREAM then connect() is called.

The PeerAddr can be a hostname or the IP−address on the "xx.xx.xx.xx" form. The PeerPort can be a
number or a symbolic service name. The service name might be followed by a number in parenthesi
is used if the service is not known by the system. The PeerPort specification can also be embedded in th
PeerAddr by preceding it with a ":".

If Proto is not given and you specify a symbolic PeerPort port, then the constructor will try to derive
Proto from the service name. As a last resort Proto "tcp" is assumed. The Type parameter will be
deduced from Proto if not specified.

If the constructor is only passed a single argument, it is assumed to be a PeerAddr specification.

Examples:

 $sock = IO::Socket::INET−>new(PeerAddr => ’www.perl.org’,
 PeerPort => ’http(80)’,
 Proto => ’tcp’);

 $sock = IO::Socket::INET−>new(PeerAddr => ’localhost:smtp(25)’);

 $sock = IO::Socket::INET−>new(Listen => 5,
 LocalAddr => ’localhost’,
 LocalPort => 9000,
 Proto => ’tcp’);

 $sock = IO::Socket::INET−>new(’127.0.0.1:25’);
18−Oct−1998 Version 5.005_02 953

IO::Socket Perl Programmers Reference Guide IO::Socket

t form

lated

ute it
METHODS

sockaddr ()
Return the address part of the sockaddr structure for the socket

sockport ()
Return the port number that the socket is using on the local host

sockhost ()
Return the address part of the sockaddr structure for the socket in a text form xx.xx.xx.xx

peeraddr ()
Return the address part of the sockaddr structure for the socket on the peer host

peerport ()
Return the port number for the socket on the peer host.

peerhost ()
Return the address part of the sockaddr structure for the socket on the peer host in a tex
xx.xx.xx.xx

IO::Socket::UNIX
IO::Socket::UNIX provides a constructor to create an AF_UNIX domain socket and some re
methods. The constructor can take the following options

 Type Type of socket (eg SOCK_STREAM or SOCK_DGRAM)
 Local Path to local fifo
 Peer Path to peer fifo
 Listen Create a listen socket

METHODS

hostpath()
Returns the pathname to the fifo at the local end

peerpath()
Returns the pathanme to the fifo at the peer end

SEE ALSO
Socket, IO::Handle

AUTHOR
Graham Barr <Graham.Barr@tiuk.ti.com>

COPYRIGHT
Copyright (c) 1996 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
954 Version 5.005_02 18−Oct−1998

IPC::Msg Perl Programmers Reference Guide IPC::Msg
NAME
IPC::Msg − SysV Msg IPC object class

SYNOPSIS
 use IPC::SysV qw(IPC_PRIVATE S_IRWXU S_IRWXG S_IRWXO);
 use IPC::Msg;

 $msg = new IPC::Msg(IPC_PRIVATE, S_IRWXU | S_IRWXG | S_IRWXO);

 $msg−>snd(pack("L a*",$msgtype,$msg));

 $msg−>rcv($buf,256);

 $ds = $msg−>stat;

 $msg−>remove;

DESCRIPTION

METHODS

new (KEY , FLAGS)
Creates a new message queue associated with KEY. A new queue is created if

 KEY is equal to IPC_PRIVATE

 KEY does not already have a message queue associated with it, and FLAGS & IPC_CREAT is
true.

On creation of a new message queue FLAGS is used to set the permissions.

id Returns the system message queue identifier.

rcv (BUF, LEN [, TYPE [, FLAGS]])
Read a message from the queue. Returns the type of the message read. See msgrcv

remove
Remove and destroy the message queue from the system.

set (STAT)
set (NAME = VALUE [, NAME = VALUE ...])

set will set the following values of the stat structure associated with the message queue.

 uid
 gid
 mode (oly the permission bits)
 qbytes

set accepts either a stat object, as returned by the stat method, or a list of name−value pairs.

snd (TYPE, MSG [, FLAGS])
Place a message on the queue with the data from MSG and with type TYPE. See msgsnd.

stat Returns an object of type IPC::Msg::stat which is a sub−class of Class::Struct . It provides
the following fields. For a description of these fields see you system documentation.

 uid
 gid
 cuid
 cgid
 mode
 qnum
 qbytes
18−Oct−1998 Version 5.005_02 955

IPC::Msg Perl Programmers Reference Guide IPC::Msg

ute it
 lspid
 lrpid
 stime
 rtime
 ctime

SEE ALSO
IPC::SysV Class::Struct

AUTHOR
Graham Barr <gbarr@pobox.com

COPYRIGHT
Copyright (c) 1997 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
956 Version 5.005_02 18−Oct−1998

IPC::Open2 Perl Programmers Reference Guide IPC::Open2

 "

be a

eption

iables

g like
s like

 child

pper
NAME
IPC::Open2, open2 − open a process for both reading and writing

SYNOPSIS
 use IPC::Open2;
 $pid = open2(*RDR, *WTR, ’some cmd and args’);
 # or
 $pid = open2(*RDR, *WTR, ’some’, ’cmd’, ’and’, ’args’);

DESCRIPTION
The open2() function spawns the given $cmd and connects $rdr for reading and $wtr for writing. It‘s
what you think should work when you try

 open(HANDLE, "|cmd args|");

The write filehandle will have autoflush turned on.

If $rdr is a string (that is, a bareword filehandle rather than a glob or a reference) and it begins with&",
then the child will send output directly to that file handle. If $wtr is a string that begins with "<&", then
WTR will be closed in the parent, and the child will read from it directly. In both cases, there will
dup(2) instead of a pipe(2) made.

open2() returns the process ID of the child process. It doesn‘t return on failure: it just raises an exc
matching /^open2:/ .

WARNING
It will not create these file handles for you. You have to do this yourself. So don‘t pass it empty var
expecting them to get filled in for you.

Additionally, this is very dangerous as you may block forever. It assumes it‘s going to talk to somethin
bc, both writing to it and reading from it. This is presumably safe because you "know" that command
bc will read a line at a time and output a line at a time. Programs like sort that read their entire input stream
first, however, are quite apt to cause deadlock.

The big problem with this approach is that if you don‘t have control over source code being run in the
process, you can‘t control what it does with pipe buffering. Thus you can‘t just open a pipe to cat −v and
continually read and write a line from it.

SEE ALSO
See IPC::Open3 for an alternative that handles STDERR as well. This function is really just a wra
around open3() .
18−Oct−1998 Version 5.005_02 957

IPC::Open3 Perl Programmers Reference Guide IPC::Open3

,
 and

 it
.

ing,

eption

iables

g like
s like

 child
NAME
IPC::Open3, open3 − open a process for reading, writing, and error handling

SYNOPSIS
 $pid = open3(*WTRFH, *RDRFH, *ERRFH,

 ’some cmd and args’, ’optarg’, ...);

DESCRIPTION
Extremely similar to open2() , open3() spawns the given $cmd and connects RDRFH for reading
WTRFH for writing, and ERRFH for errors. If ERRFH is ‘’, or the same as RDRFH, then STDOUT
STDERR of the child are on the same file handle. The WTRFH will have autoflush turned on.

If WTRFH begins with "<&", then WTRFH will be closed in the parent, and the child will read from
directly. If RDRFH or ERRFH begins with ">&", then the child will send output directly to that file handle
In both cases, there will be a dup(2) instead of a pipe(2) made.

If you try to read from the child‘s stdout writer and their stderr writer, you‘ll have problems with block
which means you‘ll want to use select() , which means you‘ll have to use sysread() instead of normal
stuff.

open3() returns the process ID of the child process. It doesn‘t return on failure: it just raises an exc
matching /^open3:/ .

WARNING
It will not create these file handles for you. You have to do this yourself. So don‘t pass it empty var
expecting them to get filled in for you.

Additionally, this is very dangerous as you may block forever. It assumes it‘s going to talk to somethin
bc, both writing to it and reading from it. This is presumably safe because you "know" that command
bc will read a line at a time and output a line at a time. Programs like sort that read their entire input stream
first, however, are quite apt to cause deadlock.

The big problem with this approach is that if you don‘t have control over source code being run in the
process, you can‘t control what it does with pipe buffering. Thus you can‘t just open a pipe to cat −v and
continually read and write a line from it.
958 Version 5.005_02 18−Oct−1998

IPC::Semaphore Perl Programmers Reference Guide IPC::Semaphore

A

t

h
 last is a
NAME
IPC::Semaphore − SysV Semaphore IPC object class

SYNOPSIS
 use IPC::SysV qw(IPC_PRIVATE S_IRWXU IPC_CREAT);
 use IPC::Semaphore;

 $sem = new IPC::Semaphore(IPC_PRIVATE, 10, S_IRWXU | IPC_CREAT);

 $sem−>setall((0) x 10);

 @sem = $sem−>getall;

 $ncnt = $sem−>getncnt;

 $zcnt = $sem−>getzcnt;

 $ds = $sem−>stat;

 $sem−>remove;

DESCRIPTION

METHODS

new (KEY , NSEMS , FLAGS)
Create a new semaphore set associated with KEY. NSEMS is the number of semaphores in the set.
new set is created if

 KEY is equal to IPC_PRIVATE

 KEY does not already have a semaphore identifier associated with it, and FLAGS &
IPC_CREAT is true.

On creation of a new semaphore set FLAGS is used to set the permissions.

getall
Returns the values of the semaphore set as an array.

getncnt (SEM)
Returns the number of processed waiting for the semaphore SEM to become greater than it‘s curren
value

getpid (SEM)
Returns the process id of the last process that performed an operation on the semaphore SEM.

getval (SEM)
Returns the current value of the semaphore SEM.

getzcnt (SEM)
Returns the number of processed waiting for the semaphore SEM to become zero.

id Returns the system identifier for the semaphore set.

op (OPLIST)
OPLIST is a list of operations to pass to semop. OPLIST is a concatenation of smaller lists, eac
which has three values. The first is the semaphore number, the second is the operation and the
flags value. See semop for more details. For example

 $sem−>op(
0, −1, IPC_NOWAIT,
1, 1, IPC_NOWAIT

);
18−Oct−1998 Version 5.005_02 959

IPC::Semaphore Perl Programmers Reference Guide IPC::Semaphore

ute it
remove
Remove and destroy the semaphore set from the system.

set (STAT)
set (NAME = VALUE [, NAME = VALUE ...])

set will set the following values of the stat structure associated with the semaphore set.

 uid
 gid
 mode (oly the permission bits)

set accepts either a stat object, as returned by the stat method, or a list of name−value pairs.

setall (VALUES)
Sets all values in the semaphore set to those given on the VALUES list. VALUES must contain the
correct number of values.

setval (N , VALUE)
Set the Nth value in the semaphore set to VALUE

stat Returns an object of type IPC::Semaphore::stat which is a sub−class of Class::Struct . It
provides the following fields. For a description of these fields see you system documentation.

 uid
 gid
 cuid
 cgid
 mode
 ctime
 otime
 nsems

SEE ALSO
IPC::SysV Class::Struct semget semctl semop

AUTHOR
Graham Barr <gbarr@pobox.com

COPYRIGHT
Copyright (c) 1997 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
960 Version 5.005_02 18−Oct−1998

IPC::SysV Perl Programmers Reference Guide IPC::SysV

hich

ute it
NAME
IPC::SysV − SysV IPC constants

SYNOPSIS
 use IPC::SysV qw(IPC_STAT IPC_PRIVATE);

DESCRIPTION
IPC::SysV defines and conditionally exports all the constants defined in your system include files w
are needed by the SysV IPC calls.

ftok(PATH, ID)
Return a key based on PATH and ID, which can be used as a key for msgget , semget and shmget . See
ftok

SEE ALSO
IPC::Msg, IPC::Semaphore, ftok

AUTHORS
Graham Barr <gbarr@pobox.com Jarkko Hietaniemi <jhi@iki.fi

COPYRIGHT
Copyright (c) 1997 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
18−Oct−1998 Version 5.005_02 961

Math::BigFloat Perl Programmers Reference Guide Math::BigFloat

.002)
NAME
Math::BigFloat − Arbitrary length float math package

SYNOPSIS
 use Math::BigFloat;
 $f = Math::BigFloat−>new($string);

 $f−>fadd(NSTR) return NSTR addition
 $f−>fsub(NSTR) return NSTR subtraction
 $f−>fmul(NSTR) return NSTR multiplication
 $f−>fdiv(NSTR[,SCALE]) returns NSTR division to SCALE places
 $f−>fneg() return NSTR negation
 $f−>fabs() return NSTR absolute value
 $f−>fcmp(NSTR) return CODE compare undef,<0,=0,>0
 $f−>fround(SCALE) return NSTR round to SCALE digits
 $f−>ffround(SCALE) return NSTR round at SCALEth place
 $f−>fnorm() return (NSTR) normalize
 $f−>fsqrt([SCALE]) return NSTR sqrt to SCALE places

DESCRIPTION
All basic math operations are overloaded if you declare your big floats as

 $float = new Math::BigFloat "2.123123123123123123123123123123123";

number format
canonical strings have the form /[+−]\d+E[+−]\d+/ . Input values can have inbedded whitespace.

Error returns ‘NaN’
An input parameter was "Not a Number" or divide by zero or sqrt of negative number.

Division is computed to
max($div_scale,length(dividend)+length(divisor)) digits by default. Also used for
default sqrt scale.

BUGS
The current version of this module is a preliminary version of the real thing that is currently (as of perl5
under development.

AUTHOR
Mark Biggar
962 Version 5.005_02 18−Oct−1998

Math::BigInt Perl Programmers Reference Guide Math::BigInt

]
 ‘NaN’
iding by

are

 be

.002)
NAME
Math::BigInt − Arbitrary size integer math package

SYNOPSIS
 use Math::BigInt;
 $i = Math::BigInt−>new($string);

 $i−>bneg return BINT negation
 $i−>babs return BINT absolute value
 $i−>bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0)
 $i−>badd(BINT) return BINT addition
 $i−>bsub(BINT) return BINT subtraction
 $i−>bmul(BINT) return BINT multiplication
 $i−>bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
 $i−>bmod(BINT) return BINT modulus
 $i−>bgcd(BINT) return BINT greatest common divisor
 $i−>bnorm return BINT normalization

DESCRIPTION
All basic math operations are overloaded if you declare your big integers as

 $i = new Math::BigInt ’123 456 789 123 456 789’;

Canonical notation
Big integer value are strings of the form /^[+−]\d+$/ with leading zeros suppressed.

Input
Input values to these routines may be strings of the form /^\s*[+−]?[\d\s]+$/.

Output
Output values always always in canonical form

Actual math is done in an internal format consisting of an array whose first element is the sign (/^[+−$/)
and whose remaining elements are base 100000 digits with the least significant digit first. The string
is used to represent the result when input arguments are not numbers, as well as the result of div
zero.

EXAMPLES
 ’+0’ canonical zero value
 ’ −123 123 123’ canonical value ’−123123123’
 ’1 23 456 7890’ canonical value ’+1234567890’

Autocreating constants
After use Math::BigInt ‘:constant’ all the integer decimal constants in the given scope
converted to Math::BigInt . This conversion happens at compile time.

In particular

 perl −MMath::BigInt=:constant −e ’print 2**100’

print the integer value of 2**100 . Note that without convertion of constants the expression 2**100 will
calculatted as floating point number.

BUGS
The current version of this module is a preliminary version of the real thing that is currently (as of perl5
under development.
18−Oct−1998 Version 5.005_02 963

Math::BigInt Perl Programmers Reference Guide Math::BigInt
AUTHOR
Mark Biggar, overloaded interface by Ilya Zakharevich.
964 Version 5.005_02 18−Oct−1998

Math::Complex Perl Programmers Reference Guide Math::Complex

ions

n:

e

.. you

d:

s
sed for

 b). It

 unique
NAME
Math::Complex − complex numbers and associated mathematical functions

SYNOPSIS
use Math::Complex;

$z = Math::Complex−>make(5, 6);
$t = 4 − 3*i + $z;
$j = cplxe(1, 2*pi/3);

DESCRIPTION
This package lets you create and manipulate complex numbers. By default, Perl limits itself to real numbers,
but an extra use statement brings full complex support, along with a full set of mathematical funct
typically associated with and/or extended to complex numbers.

If you wonder what complex numbers are, they were invented to be able to solve the following equatio

x*x = −1

and by definition, the solution is noted i (engineers use j instead since i usually denotes an intensity, but th
name does not matter). The number i is a pure imaginary number.

The arithmetics with pure imaginary numbers works just like you would expect it with real numbers.
just have to remember that

i*i = −1

so you have:

5i + 7i = i * (5 + 7) = 12i
4i − 3i = i * (4 − 3) = i
4i * 2i = −8
6i / 2i = 3
1 / i = −i

Complex numbers are numbers that have both a real part and an imaginary part, and are usually note

a + bi

where a is the real part and b is the imaginary part. The arithmetic with complex numbers i
straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules u
real numbers just apply:

(4 + 3i) + (5 − 2i) = (4 + 5) + i(3 − 2) = 9 + i
(2 + i) * (4 − i) = 2*4 + 4i −2i −i*i = 8 + 2i + 1 = 9 + 2i

A graphical representation of complex numbers is possible in a plane (also called the complex plane, but it‘s
really a 2D plane). The number

z = a + bi

is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a,
follows that the addition of two complex numbers is a vectorial addition.

Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is
and reciprocal), a complex number can also be uniquely identified with polar coordinates:

[rho, theta]

where rho is the distance to the origin, and theta the angle between the vector and the x axis. There is a
notation for this using the exponential form, which is:

rho * exp(i * theta)
18−Oct−1998 Version 5.005_02 965

Math::Complex Perl Programmers Reference Guide Math::Complex

rtesian

rming
itions

omplex
eep
t.

 for

ome an

mbers
be

s:
where i is the famous imaginary number introduced above. Conversion between this form and the ca
form a + bi is immediate:

a = rho * cos(theta)
b = rho * sin(theta)

which is also expressed by this formula:

z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)

In other words, it‘s the projection of the vector onto the x and y axes. Mathematicians call rho the norm or
modulus and theta the argument of the complex number. The norm of z will be noted abs(z) .

The polar notation (also known as the trigonometric representation) is much more handy for perfo
multiplications and divisions of complex numbers, whilst the cartesian notation is better suited for add
and subtractions. Real numbers are on the x axis, and therefore theta is zero or pi.

All the common operations that can be performed on a real number have been defined to work on c
numbers as well, and are merely extensions of the operations defined on real numbers. This means they k
their natural meaning when there is no imaginary part, provided the number is within their definition se

For instance, the sqrt routine which computes the square root of its argument is only defined
non−negative real numbers and yields a non−negative real number (it is an application from R+ to R+). If
we allow it to return a complex number, then it can be extended to negative real numbers to bec
application from R to C (the set of complex numbers):

sqrt(x) = x >= 0 ? sqrt(x) : sqrt(−x)*i

It can also be extended to be an application from C to C, whilst its restriction to R behaves as defined above
by using the following definition:

sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)

Indeed, a negative real number can be noted [x,pi] (the modulus x is always non−negative, so [x,pi] is
really −x , a negative number) and the above definition states that

sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i

which is exactly what we had defined for negative real numbers above. The sqrt returns only one of the
solutions: if you want the both, use the root function.

All the common mathematical functions defined on real numbers that are extended to complex nu
share that same property of working as usual when the imaginary part is zero (otherwise, it would not
called an extension, would it?).

A new operation possible on a complex number that is the identity for real numbers is called the conjugate,
and is noted with an horizontal bar above the number, or ~z here.

 z = a + bi
~z = a − bi

Simple... Now look:

z * ~z = (a + bi) * (a − bi) = a*a + b*b

We saw that the norm of z was noted abs(z) and was defined as the distance to the origin, also known a

rho = abs(z) = sqrt(a*a + b*b)

so

z * ~z = abs(z) ** 2

If z is a pure real number (i.e. b == 0), then the above yields:

a * a = abs(a) ** 2
966 Version 5.005_02 18−Oct−1998

Math::Complex Perl Programmers Reference Guide Math::Complex

ample
which is true (abs has the regular meaning for real number, i.e. stands for the absolute value). This ex
explains why the norm of z is noted abs(z) : it extends the abs function to complex numbers, yet is the
regular abs we know when the complex number actually has no imaginary part... This justifies a posteriori
our use of the abs notation for the norm.

OPERATIONS
Given the following notations:

z1 = a + bi = r1 * exp(i * t1)
z2 = c + di = r2 * exp(i * t2)
z = <any complex or real number>

the following (overloaded) operations are supported on complex numbers:

z1 + z2 = (a + c) + i(b + d)
z1 − z2 = (a − c) + i(b − d)
z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
z1 / z2 = (r1 / r2) * exp(i * (t1 − t2))
z1 ** z2 = exp(z2 * log z1)
~z = a − bi
abs(z) = r1 = sqrt(a*a + b*b)
sqrt(z) = sqrt(r1) * exp(i * t/2)
exp(z) = exp(a) * exp(i * b)
log(z) = log(r1) + i*t
sin(z) = 1/2i (exp(i * z1) − exp(−i * z))
cos(z) = 1/2 (exp(i * z1) + exp(−i * z))
atan2(z1, z2) = atan(z1/z2)

The following extra operations are supported on both real and complex numbers:

Re(z) = a
Im(z) = b
arg(z) = t
abs(z) = r

cbrt(z) = z ** (1/3)
log10(z) = log(z) / log(10)
logn(z, n) = log(z) / log(n)

tan(z) = sin(z) / cos(z)

csc(z) = 1 / sin(z)
sec(z) = 1 / cos(z)
cot(z) = 1 / tan(z)

asin(z) = −i * log(i*z + sqrt(1−z*z))
acos(z) = −i * log(z + i*sqrt(1−z*z))
atan(z) = i/2 * log((i+z) / (i−z))

acsc(z) = asin(1 / z)
asec(z) = acos(1 / z)
acot(z) = atan(1 / z) = −i/2 * log((i+z) / (z−i))

sinh(z) = 1/2 (exp(z) − exp(−z))
cosh(z) = 1/2 (exp(z) + exp(−z))
tanh(z) = sinh(z) / cosh(z) = (exp(z) − exp(−z)) / (exp(z) + exp(−z))

csch(z) = 1 / sinh(z)
sech(z) = 1 / cosh(z)
coth(z) = 1 / tanh(z)
18−Oct−1998 Version 5.005_02 967

Math::Complex Perl Programmers Reference Guide Math::Complex

ers is
st, and

 2*pi).

nts
asinh(z) = log(z + sqrt(z*z+1))
acosh(z) = log(z + sqrt(z*z−1))
atanh(z) = 1/2 * log((1+z) / (1−z))

acsch(z) = asinh(1 / z)
asech(z) = acosh(1 / z)
acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z−1))

arg, abs, log, csc, cot, acsc, acot, csch, coth, acosech, acotanh, have aliases rho, theta, ln, cosec, cotan,
acosec, acotan, cosech, cotanh, acosech, acotanh, respectively. Re, Im , arg , abs , rho , and theta can be
used also also mutators. The cbrt returns only one of the solutions: if you want all three, use the root
function.

The root function is available to compute all the n roots of some complex, where n is a strictly positive
integer. There are exactly n such roots, returned as a list. Getting the number mathematicians call j such
that:

1 + j + j*j = 0;

is a simple matter of writing:

$j = ((root(1, 3))[1];

The kth root for z = [r,t] is given by:

(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)

The spaceship comparison operator, <=>, is also defined. In order to ensure its restriction to real numb
conform to what you would expect, the comparison is run on the real part of the complex number fir
imaginary parts are compared only when the real parts match.

CREATION
To create a complex number, use either:

$z = Math::Complex−>make(3, 4);
$z = cplx(3, 4);

if you know the cartesian form of the number, or

$z = 3 + 4*i;

if you like. To create a number using the polar form, use either:

$z = Math::Complex−>emake(5, pi/3);
$x = cplxe(5, pi/3);

instead. The first argument is the modulus, the second is the angle (in radians, the full circle is
(Mnemonic: e is used as a notation for complex numbers in the polar form).

It is possible to write:

$x = cplxe(−3, pi/4);

but that will be silently converted into [3,−3pi/4] , since the modulus must be non−negative (it represe
the distance to the origin in the complex plane).

It is also possible to have a complex number as either argument of either the make or emake: the
appropriate component of the argument will be used.

$z1 = cplx(−2, 1);
$z2 = cplx($z1, 4);
968 Version 5.005_02 18−Oct−1998

Math::Complex Perl Programmers Reference Guide Math::Complex

rwise

rent.

f zero.
STRINGIFICATION
When printed, a complex number is usually shown under its cartesian form a+bi, but there are legitimate
cases where the polar format [r,t] is more appropriate.

By calling the routine Math::Complex::display_format and supplying either "polar" or
"cartesian" , you override the default display format, which is "cartesian" . Not supplying any
argument returns the current setting.

This default can be overridden on a per−number basis by calling the display_format method instead.
As before, not supplying any argument returns the current display format for this number. Othe
whatever you specify will be the new display format for this particular number.

For instance:

use Math::Complex;

Math::Complex::display_format(’polar’);
$j = ((root(1, 3))[1];
print "j = $j\n"; # Prints "j = [1,2pi/3]
$j−>display_format(’cartesian’);
print "j = $j\n"; # Prints "j = −0.5+0.866025403784439i"

The polar format attempts to emphasize arguments like k*pi/n (where n is a positive integer and k an integer
within [−9,+9]).

USAGE
Thanks to overloading, the handling of arithmetics with complex numbers is simple and almost transpa

Here are some examples:

use Math::Complex;

$j = cplxe(1, 2*pi/3); # $j ** 3 == 1
print "j = $j, j**3 = ", $j ** 3, "\n";
print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";

$z = −16 + 0*i; # Force it to be a complex
print "sqrt($z) = ", sqrt($z), "\n";

$k = exp(i * 2*pi/3);
print "$j − $k = ", $j − $k, "\n";

$z−>Re(3); # Re, Im, arg, abs,
$j−>arg(2); # (the last two aka rho, theta)

can be used also as mutators.

ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
The division (/) and the following functions

log ln log10 logn
tan sec csc cot
atan asec acsc acot
tanh sech csch coth
atanh asech acsch acoth

cannot be computed for all arguments because that would mean dividing by zero or taking logarithm o
These situations cause fatal runtime errors looking like this

cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...
18−Oct−1998 Version 5.005_02 969

Math::Complex Perl Programmers Reference Guide Math::Complex

n merely

ments

ven

rl has

S C
or

atanh(−1): Logarithm of zero.
Died at...

For the csc , cot , asec , acsc , acot , csch , coth , asech , acsch , the argument cannot be (zero).
For the the logarithmic functions and the atanh , acoth , the argument cannot be 1 (one). For the atanh ,
acoth , the argument cannot be −1 (minus one). For the atan , acot , the argument cannot be i (the
imaginary unit). For the atan , acoth , the argument cannot be −i (the negative imaginary unit). For the
tan , sec , tanh , the argument cannot be pi/2 + k * pi, where k is any integer.

Note that because we are operating on approximations of real numbers, these errors can happen whe
‘too close’ to the singularities listed above. For example tan(2*atan2(1,1)+1e−15) will die of
division by zero.

ERRORS DUE TO INDIGESTIBLE ARGUMENTS
The make and emake accept both real and complex arguments. When they cannot recognize the argu
they will die with error messages like the following

 Math::Complex::make: Cannot take real part of ...
 Math::Complex::make: Cannot take real part of ...
 Math::Complex::emake: Cannot take rho of ...
 Math::Complex::emake: Cannot take theta of ...

BUGS
Saying use Math::Complex; exports many mathematical routines in the caller environment and e
overrides some (sqrt , log). This is construed as a feature by the Authors, actually... ;−)

All routines expect to be given real or complex numbers. Don‘t attempt to use BigFloat, since Pe
currently no rule to disambiguate a ‘+’ operation (for instance) between two overloaded entities.

In Cray UNICOS there is some strange numerical instability that results in root() , cos() , sin() ,
cosh() , sinh() , losing accuracy fast. Beware. The bug may be in UNICOS math libs, in UNICO
compiler, in Math::Complex. Whatever it is, it does not manifest itself anywhere else where Perl runs.

AUTHORS
Raphael Manfredi <Raphael_Manfredi@grenoble.hp.com and Jarkko Hietaniemi <jhi@iki.fi .

Extensive patches by Daniel S. Lewart <d−lewart@uiuc.edu.
970 Version 5.005_02 18−Oct−1998

Math::Trig Perl Programmers Reference Guide Math::Trig

 the
gle

tanh are
NAME
Math::Trig − trigonometric functions

SYNOPSIS
use Math::Trig;

$x = tan(0.9);
$y = acos(3.7);
$z = asin(2.4);

$halfpi = pi/2;

$rad = deg2rad(120);

DESCRIPTION
Math::Trig defines many trigonometric functions not defined by the core Perl which defines only
sin() and cos() . The constant pi is also defined as are a few convenience functions for an
conversions.

TRIGONOMETRIC FUNCTIONS
The tangent

tan

The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot are aliases)

csc, cosec, sec, sec, cot, cotan

The arcus (also known as the inverse) functions of the sine, cosine, and tangent

asin, acos, atan

The principal value of the arc tangent of y/x

atan2(y, x)

The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc and acotan/acot are aliases)

acsc, acosec, asec, acot, acotan

The hyperbolic sine, cosine, and tangent

sinh, cosh, tanh

The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch and cotanh/coth are aliases)

csch, cosech, sech, coth, cotanh

The arcus (also known as the inverse) functions of the hyperbolic sine, cosine, and tangent

asinh, acosh, atanh

The arcus cofunctions of the hyperbolic sine, cosine, and tangent (acsch/acosech and acoth/aco
aliases)

acsch, acosech, asech, acoth, acotanh

The trigonometric constant pi is also defined.

$pi2 = 2 * pi;

ERRORS DUE TO DIVISION BY ZERO
The following functions

acoth
acsc
acsch
18−Oct−1998 Version 5.005_02 971

Math::Trig Perl Programmers Reference Guide Math::Trig

f zero.

lex

mbers:

ut
asec
asech
atanh
cot
coth
csc
csch
sec
sech
tan
tanh

cannot be computed for all arguments because that would mean dividing by zero or taking logarithm o
These situations cause fatal runtime errors looking like this

cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...

or

atanh(−1): Logarithm of zero.
Died at...

For the csc , cot , asec , acsc , acot , csch , coth , asech , acsch , the argument cannot be (zero).
For the atanh , acoth , the argument cannot be 1 (one). For the atanh , acoth , the argument cannot be
−1 (minus one). For the tan , sec , tanh , sech , the argument cannot be pi/2 + k * pi, where k is any
integer.

SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
Please note that some of the trigonometric functions can break out from the real axis into the complex
plane. For example asin(2) has no definition for plain real numbers but it has definition for comp
numbers.

In Perl terms this means that supplying the usual Perl numbers (also known as scalars, please see perldata) as
input for the trigonometric functions might produce as output results that no more are simple real nu
instead they are complex numbers.

The Math::Trig handles this by using the Math::Complex package which knows how to handle
complex numbers, please see Math::Complex for more information. In practice you need not to worry abo
getting complex numbers as results because the Math::Complex takes care of details like for example
how to display complex numbers. For example:

print asin(2), "\n";

should produce something like this (take or leave few last decimals):

1.5707963267949−1.31695789692482i

That is, a complex number with the real part of approximately 1.571 and the imaginary part of
approximately −1.317 .

PLANE ANGLE CONVERSIONS
(Plane, 2−dimensional) angles may be converted with the following functions.

$radians = deg2rad($degrees);
$radians = grad2rad($gradians);

$degrees = rad2deg($radians);
$degrees = grad2deg($gradians);

$gradians = deg2grad($degrees);
972 Version 5.005_02 18−Oct−1998

Math::Trig Perl Programmers Reference Guide Math::Trig

in

in

at the
$gradians = rad2grad($radians);

The full circle is 2 pi radians or 360 degrees or 400 gradians.

RADIAL COORDINATE CONVERSIONS
Radial coordinate systems are the spherical and the cylindrical systems, explained shortly in more detail.

You can import radial coordinate conversion functions by using the :radial tag:

 use Math::Trig ’:radial’;

 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);

All angles are in radians.

COORDINATE SYSTEMS
Cartesian coordinates are the usual rectangular (x, y, z)−coordinates.

Spherical coordinates, (rho, theta, pi), are three−dimensional coordinates which define a point
three−dimensional space. They are based on a sphere surface. The radius of the sphere is rho, also known
as the radial coordinate. The angle in the xy−plane (around the z−axis) is theta, also known as the azimuthal
coordinate. The angle from the z−axis is phi, also known as the polar coordinate. The ‘North Pole’ is
therefore 0, 0, rho, and the ‘Bay of Guinea’ (think of the missing big chunk of Africa) 0, pi/2, rho.

Beware: some texts define theta and phi the other way round, some texts define the phi to start from the
horizontal plane, some texts use r in place of rho.

Cylindrical coordinates, (rho, theta, z), are three−dimensional coordinates which define a point
three−dimensional space. They are based on a cylinder surface. The radius of the cylinder is rho, also
known as the radial coordinate. The angle in the xy−plane (around the z−axis) is theta, also known as the
azimuthal coordinate. The third coordinate is the z, pointing up from the theta−plane.

3−D ANGLE CONVERSIONS
Conversions to and from spherical and cylindrical coordinates are available. Please notice th
conversions are not necessarily reversible because of the equalities like pi angles being equal to −pi angles.

cartesian_to_cylindrical
 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);

cartesian_to_spherical
 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);

cylindrical_to_cartesian
 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);

cylindrical_to_spherical
 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);

Notice that when $z is not 0 $rho_s is not equal to $rho_c.

spherical_to_cartesian
 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);

spherical_to_cylindrical
 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);

Notice that when $z is not 0 $rho_c is not equal to $rho_s.
18−Oct−1998 Version 5.005_02 973

Math::Trig Perl Programmers Reference Guide Math::Trig

ven

nnot be
e

GREAT CIRCLE DISTANCES
You can compute spherical distances, called great circle distances, by importing the
great_circle_distance function:

use Math::Trig ’great_circle_distance’

 $distance = great_circle_distance($theta0, $phi0, $theta1, $phi, [, $rho]);

The great circle distance is the shortest distance between two points on a sphere. The distance is in $rho
units. The $rho is optional, it defaults to 1 (the unit sphere), therefore the distance defaults to radians.

EXAMPLES
To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N 139.8E) in kilometers:

 use Math::Trig qw(great_circle_distance deg2rad);

 # Notice the 90 − latitude: phi zero is at the North Pole.
@L = (deg2rad(−0.5), deg2rad(90 − 51.3));

 @T = (deg2rad(139.8),deg2rad(90 − 35.7));

 $km = great_circle_distance(@L, @T, 6378);

The answer may be off by up to 0.3% because of the irregular (slightly aspherical) form of the Earth.

BUGS
Saying use Math::Trig; exports many mathematical routines in the caller environment and e
overrides some (sin , cos). This is construed as a feature by the Authors, actually... ;−)

The code is not optimized for speed, especially because we use Math::Complex and thus go quite near
complex numbers while doing the computations even when the arguments are not. This, however, ca
completely avoided if we want things like asin(2) to give an answer instead of giving a fatal runtim
error.

AUTHORS
Jarkko Hietaniemi <jhi@iki.fi and Raphael Manfredi <Raphael_Manfredi@grenoble.hp.com.
974 Version 5.005_02 18−Oct−1998

NDBM_File Perl Programmers Reference Guide NDBM_File
NAME
NDBM_File − Tied access to ndbm files

SYNOPSIS
 use NDBM_File;
 use Fcntl; # for O_ constants

 tie(%h, ’NDBM_File’, ’Op.dbmx’, O_RDWR|O_CREAT, 0640);

 untie %h;

DESCRIPTION
See tie
18−Oct−1998 Version 5.005_02 975

Net::Ping Perl Programmers Reference Guide Net::Ping

is first
en the

essfully
oes not

cho
e data as
y special

ost,
and the
rotocol

en
NAME
Net::Ping − check a remote host for reachability

SYNOPSIS
 use Net::Ping;

 $p = Net::Ping−>new();
 print "$host is alive.\n" if $p−>ping($host);
 $p−>close();

 $p = Net::Ping−>new("icmp");
 foreach $host (@host_array)
 {
 print "$host is ";
 print "NOT " unless $p−>ping($host, 2);
 print "reachable.\n";
 sleep(1);
 }
 $p−>close();

 $p = Net::Ping−>new("tcp", 2);
 while ($stop_time > time())
 {
 print "$host not reachable ", scalar(localtime()), "\n"
 unless $p−>ping($host);
 sleep(300);
 }
 undef($p);

 # For backward compatibility
 print "$host is alive.\n" if pingecho($host);

DESCRIPTION
This module contains methods to test the reachability of remote hosts on a network. A ping object
created with optional parameters, a variable number of hosts may be pinged multiple times and th
connection is closed.

You may choose one of three different protocols to use for the ping. With the "tcp" protocol the ping()
method attempts to establish a connection to the remote host‘s echo port. If the connection is succ
established, the remote host is considered reachable. No data is actually echoed. This protocol d
require any special privileges but has higher overhead than the other two protocols.

Specifying the "udp" protocol causes the ping() method to send a udp packet to the remote host‘s e
port. If the echoed packet is received from the remote host and the received packet contains the sam
the packet that was sent, the remote host is considered reachable. This protocol does not require an
privileges.

If the "icmp" protocol is specified, the ping() method sends an icmp echo message to the remote h
which is what the UNIX ping program does. If the echoed message is received from the remote host
echoed information is correct, the remote host is considered reachable. Specifying the "icmp" p
requires that the program be run as root or that the program be setuid to root.

Functions

Net::Ping−new([$proto [, $def_timeout [, $bytes]]]);
Create a new ping object. All of the parameters are optional. $proto specifies the protocol to use
when doing a ping. The current choices are "tcp", "udp" or "icmp". The default is "udp".

If a default timeout ($def_timeout) in seconds is provided, it is used when a timeout is not giv
976 Version 5.005_02 18−Oct−1998

Net::Ping Perl Programmers Reference Guide Net::Ping

ed, is

ket
imum
umber

 of
ver was
m with
t. For

undef

e

e

dp or
dp or
more)

nd udp
for tcp

ork it
 set too
th).

o echo

kets. It
ICMP
to the ping() method (below). The timeout must be greater than 0 and the default, if not specifi
5 seconds.

If the number of data bytes ($bytes) is given, that many data bytes are included in the ping pac
sent to the remote host. The number of data bytes is ignored if the protocol is "tcp". The min
(and default) number of data bytes is 1 if the protocol is "udp" and 0 otherwise. The maximum n
of data bytes that can be specified is 1024.

$p−ping($host [, $timeout]);
Ping the remote host and wait for a response. $host can be either the hostname or the IP number
the remote host. The optional timeout must be greater than 0 seconds and defaults to whate
specified when the ping object was created. If the hostname cannot be found or there is a proble
the IP number, undef is returned. Otherwise, 1 is returned if the host is reachable and 0 if it is no
all practical purposes, undef and 0 and can be treated as the same case.

$p−close();
Close the network connection for this ping object. The network connection is also closed by "
$p". The network connection is automatically closed if the ping object goes out of scope (e.g.$p is
local to a subroutine and you leave the subroutine).

pingecho($host [, $timeout]);
To provide backward compatibility with the previous version of Net::Ping, a pingecho() subroutine
is available with the same functionality as before. pingecho() uses the tcp protocol. The return
values and parameters are the same as described for the ping() method. This subroutine is obsolet
and may be removed in a future version of Net::Ping.

WARNING
pingecho() or a ping object with the tcp protocol use alarm() to implement the timeout. So, don‘t us
alarm() in your program while you are using pingecho() or a ping object with the tcp protocol. The
udp and icmp protocols do not use alarm() to implement the timeout.

NOTES
There will be less network overhead (and some efficiency in your program) if you specify either the u
the icmp protocol. The tcp protocol will generate 2.5 times or more traffic for each ping than either u
icmp. If many hosts are pinged frequently, you may wish to implement a small wait (e.g. 25ms or
between each ping to avoid flooding your network with packets.

The icmp protocol requires that the program be run as root or that it be setuid to root. The tcp a
protocols do not require special privileges, but not all network devices implement the echo protocol
or udp.

Local hosts should normally respond to pings within milliseconds. However, on a very congested netw
may take up to 3 seconds or longer to receive an echo packet from the remote host. If the timeout is
low under these conditions, it will appear that the remote host is not reachable (which is almost the tru

Reachability doesn‘t necessarily mean that the remote host is actually functioning beyond its ability t
packets.

Because of a lack of anything better, this module uses its own routines to pack and unpack ICMP pac
would be better for a separate module to be written which understands all of the different kinds of
packets.
18−Oct−1998 Version 5.005_02 977

Net::hostent Perl Programmers Reference Guide Net::hostent

rn the

 scalars.

ng the
iables

s
a the
NAME
Net::hostent − by−name interface to Perl‘s built−in gethost*() functions

SYNOPSIS
 use Net::hostnet;

DESCRIPTION
This module‘s default exports override the core gethostbyname() and gethostbyaddr() functions,
replacing them with versions that return "Net::hostent" objects. This object has methods that retu
similarly named structure field name from the C‘s hostent structure from netdb.h; namely name, aliases,
addrtype, length, and addr_list. The aliases and addr_list methods return array reference, the rest
The addr method is equivalent to the zeroth element in the addr_list array reference.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding h_ . Thus, $host_obj−>name() corresponds to $h_name if you import the
fields. Array references are available as regular array variables, so for example @{
$host_obj−>aliases() } would be simply @h_aliases.

The gethost() funtion is a simple front−end that forwards a numeric argument to gethostbyaddr()
by way of Socket::inet_aton, and the rest to gethostbyname() .

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

EXAMPLES
 use Net::hostent;
 use Socket;

 @ARGV = (’netscape.com’) unless @ARGV;

 for $host (@ARGV) {

 unless ($h = gethost($host)) {
warn "$0: no such host: $host\n";
next;

 }

 printf "\n%s is %s%s\n",
 $host,
 lc($h−>name) eq lc($host) ? "" : "*really* ",
 $h−>name;

 print "\taliases are ", join(", ", @{$h−>aliases}), "\n"
if @{$h−>aliases};

 if (@{$h−>addr_list} > 1) {
my $i;
for $addr (@{$h−>addr_list}) {
 printf "\taddr #%d is [%s]\n", $i++, inet_ntoa($addr);
}

 } else {
printf "\taddress is [%s]\n", inet_ntoa($h−>addr);

 }

 if ($h = gethostbyaddr($h−>addr)) {
if (lc($h−>name) ne lc($host)) {
 printf "\tThat addr reverses to host %s!\n", $h−>name;
 $host = $h−>name;
978 Version 5.005_02 18−Oct−1998

Net::hostent Perl Programmers Reference Guide Net::hostent

s, you
 redo;
}

 }
 }

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
18−Oct−1998 Version 5.005_02 979

Net::netent Perl Programmers Reference Guide Net::netent

rn the

ng the
iables

s
a the

r for the
NAME
Net::netent − by−name interface to Perl‘s built−in getnet*() functions

SYNOPSIS
 use Net::netent qw(:FIELDS);
 getnetbyname("loopback") or die "bad net";
 printf "%s is %08X\n", $n_name, $n_net;

 use Net::netent;

 $n = getnetbyname("loopback") or die "bad net";
 { # there’s gotta be a better way, eh?
 @bytes = unpack("C4", pack("N", $n−>net));
 shift @bytes while @bytes && $bytes[0] == 0;
 }
 printf "%s is %08X [%d.%d.%d.%d]\n", $n−>name, $n−>net, @bytes;

DESCRIPTION
This module‘s default exports override the core getnetbyname() and getnetbyaddr() functions,
replacing them with versions that return "Net::netent" objects. This object has methods that retu
similarly named structure field name from the C‘s netent structure from netdb.h; namely name, aliases,
addrtype, and net. The aliases method returns an array reference, the rest scalars.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding n_ . Thus, $net_obj−>name() corresponds to $n_name if you import the
fields. Array references are available as regular array variables, so for example @{
$net_obj−>aliases() } would be simply @n_aliases.

The getnet() funtion is a simple front−end that forwards a numeric argument to getnetbyaddr() ,
and the rest to getnetbyname() .

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

EXAMPLES
The getnet() functions do this in the Perl core:

 sv_setiv(sv, (I32)nent−>n_net);

The gethost() functions do this in the Perl core:

 sv_setpvn(sv, hent−>h_addr, len);

That means that the address comes back in binary for the host functions, and as a regular perl intege
net ones. This seems a bug, but here‘s how to deal with it:

 use strict;
 use Socket;
 use Net::netent;

 @ARGV = (’loopback’) unless @ARGV;

 my($n, $net);

 for $net (@ARGV) {

 unless ($n = getnetbyname($net)) {
 warn "$0: no such net: $net\n";
 next;
 }
980 Version 5.005_02 18−Oct−1998

Net::netent Perl Programmers Reference Guide Net::netent

s, you
 printf "\n%s is %s%s\n",
 $net,
 lc($n−>name) eq lc($net) ? "" : "*really* ",
 $n−>name;

 print "\taliases are ", join(", ", @{$n−>aliases}), "\n"
 if @{$n−>aliases};

 # this is stupid; first, why is this not in binary?
 # second, why am i going through these convolutions
 # to make it looks right
 {
 my @a = unpack("C4", pack("N", $n−>net));
 shift @a while @a && $a[0] == 0;
 printf "\taddr is %s [%d.%d.%d.%d]\n", $n−>net, @a;
 }

 if ($n = getnetbyaddr($n−>net)) {
 if (lc($n−>name) ne lc($net)) {
 printf "\tThat addr reverses to net %s!\n", $n−>name;
 $net = $n−>name;
 redo;
 }
 }
 }

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
18−Oct−1998 Version 5.005_02 981

Net::protoent Perl Programmers Reference Guide Net::protoent

take
re field
hod

ng the
iables

s
a the

s, you
NAME
Net::protoent − by−name interface to Perl‘s built−in getproto*() functions

SYNOPSIS
 use Net::protoent;
 $p = getprotobyname(shift || ’tcp’) || die "no proto";
 printf "proto for %s is %d, aliases are %s\n",
 $p−>name, $p−>proto, "@{$p−>aliases}";

 use Net::protoent qw(:FIELDS);
 getprotobyname(shift || ’tcp’) || die "no proto";
 print "proto for $p_name is $p_proto, aliases are @p_aliases\n";

DESCRIPTION
This module‘s default exports override the core getprotoent() , getprotobyname() , and
getnetbyport() functions, replacing them with versions that return "Net::protoent" objects. They
default second arguments of "tcp". This object has methods that return the similarly named structu
name from the C‘s protoent structure from netdb.h; namely name, aliases, and proto. The aliases met
returns an array reference, the rest scalars.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding p_ . Thus, $proto_obj−>name() corresponds to $p_name if you import the
fields. Array references are available as regular array variables, so for example @{
$proto_obj−>aliases() } would be simply @p_aliases.

The getproto() function is a simple front−end that forwards a numeric argument to
getprotobyport() , and the rest to getprotobyname() .

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
982 Version 5.005_02 18−Oct−1998

Net::servent Perl Programmers Reference Guide Net::servent

take
re field
es

ng the
iables

s
a the

s, you
NAME
Net::servent − by−name interface to Perl‘s built−in getserv*() functions

SYNOPSIS
 use Net::servent;
 $s = getservbyname(shift || ’ftp’) || die "no service";
 printf "port for %s is %s, aliases are %s\n",
 $s−>name, $s−>port, "@{$s−>aliases}";

 use Net::servent qw(:FIELDS);
 getservbyname(shift || ’ftp’) || die "no service";
 print "port for $s_name is $s_port, aliases are @s_aliases\n";

DESCRIPTION
This module‘s default exports override the core getservent() , getservbyname() , and
getnetbyport() functions, replacing them with versions that return "Net::servent" objects. They
default second arguments of "tcp". This object has methods that return the similarly named structu
name from the C‘s servent structure from netdb.h; namely name, aliases, port, and proto. The alias
method returns an array reference, the rest scalars.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding n_ . Thus, $serv_obj−>name() corresponds to $s_name if you import the
fields. Array references are available as regular array variables, so for example @{
$serv_obj−>aliases() } would be simply @s_aliases.

The getserv() function is a simple front−end that forwards a numeric argument to
getservbyport() , and the rest to getservbyname() .

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

EXAMPLES
 use Net::servent qw(:FIELDS);

 while (@ARGV) {
 my ($service, $proto) = ((split m!/!, shift), ’tcp’);
 my $valet = getserv($service, $proto);
 unless ($valet) {
 warn "$0: No service: $service/$proto\n"
 next;
 }
 printf "service $service/$proto is port %d\n", $valet−>port;
 print "alias are @s_aliases\n" if @s_aliases;
 }

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
18−Oct−1998 Version 5.005_02 983

ODBM_File Perl Programmers Reference Guide ODBM_File
NAME
ODBM_File − Tied access to odbm files

SYNOPSIS
 use ODBM_File;

 tie(%h, ’ODBM_File’, ’Op.dbmx’, O_RDWR|O_CREAT, 0640);

 untie %h;

DESCRIPTION
See tie
984 Version 5.005_02 18−Oct−1998

Opcode Perl Programmers Reference Guide Opcode

rmat
n many

 error.

cal uses.

or

similar

 in file

ame. The

lists can

, redo

gin with
ing the

g an
 at that

ore
NAME
Opcode − Disable named opcodes when compiling perl code

SYNOPSIS
 use Opcode;

DESCRIPTION
Perl code is always compiled into an internal format before execution.

Evaluating perl code (e.g. via "eval" or "do ‘file‘") causes the code to be compiled into an internal fo
and then, provided there was no error in the compilation, executed. The internal format is based o
distinct opcodes.

By default no opmask is in effect and any code can be compiled.

The Opcode module allow you to define an operator mask to be in effect when perl next compiles any code.
Attempting to compile code which contains a masked opcode will cause the compilation to fail with an
The code will not be executed.

NOTE
The Opcode module is not usually used directly. See the ops pragma and Safe modules for more typi

WARNING
The authors make no warranty, implied or otherwise, about the suitability of this software for safety
security purposes.

The authors shall not in any case be liable for special, incidental, consequential, indirect or other
damages arising from the use of this software.

Your mileage will vary. If in any doubt do not use it.

Operator Names and Operator Lists
The canonical list of operator names is the contents of the array op_name defined and initialised
opcode.h of the Perl source distribution (and installed into the perl library).

Each operator has both a terse name (its opname) and a more verbose or recognisable descriptive n
opdesc function can be used to return a list of descriptions for a list of operators.

Many of the functions and methods listed below take a list of operators as parameters. Most operator
be made up of several types of element. Each element can be one of

an operator name (opname)
Operator names are typically small lowercase words like enterloop, leaveloop, last, next
etc. Sometimes they are rather cryptic like gv2cv, i_ncmp and ftsvtx.

an operator tag name (optag)
Operator tags can be used to refer to groups (or sets) of operators. Tag names always be
a colon. The Opcode module defines several optags and the user can define others us
define_optag function.

a negated opname or optag
An opname or optag can be prefixed with an exclamation mark, e.g., !mkdir. Negatin
opname or optag means remove the corresponding ops from the accumulated set of ops
point.

an operator set (opset)
An opset as a binary string of approximately 43 bytes which holds a set or zero or m
operators.
18−Oct−1998 Version 5.005_02 985

Opcode Perl Programmers Reference Guide Opcode

n opset

ulating

lable for

40 for

mes =

ise it
valid

 an

eady
ered or

tter on
If using
le to

ns.
The opset and opset_to_ops functions can be used to convert from a list of operators to a
and vice versa.

Wherever a list of operators can be given you can use one or more opsets. See also Manip
Opsets below.

Opcode Functions
The Opcode package contains functions for manipulating operator names tags and sets. All are avai
export by the package.

opcodes In a scalar context opcodes returns the number of opcodes in this version of perl (around 3
perl5.002).

In a list context it returns a list of all the operator names. (Not yet implemented, use @na
opset_to_ops(full_opset).)

opset (OP, ...)
Returns an opset containing the listed operators.

opset_to_ops (OPSET)
Returns a list of operator names corresponding to those operators in the set.

opset_to_hex (OPSET)
Returns a string representation of an opset. Can be handy for debugging.

full_opset Returns an opset which includes all operators.

empty_opset
Returns an opset which contains no operators.

invert_opset (OPSET)
Returns an opset which is the inverse set of the one supplied.

verify_opset (OPSET, ...)
Returns true if the supplied opset looks like a valid opset (is the right length etc) otherw
returns false. If an optional second parameter is true then verify_opset will croak on an in
opset instead of returning false.

Most of the other Opcode functions call verify_opset automatically and will croak if given
invalid opset.

define_optag (OPTAG, OPSET)
Define OPTAG as a symbolic name for OPSET. Optag names always start with a colon : .

The optag name used must not be defined already (define_optag will croak if it is alr
defined). Optag names are global to the perl process and optag definitions cannot be alt
deleted once defined.

It is strongly recommended that applications using Opcode should use a leading capital le
their tag names since lowercase names are reserved for use by the Opcode module.
Opcode within a module you should prefix your tags names with the name of your modu
ensure uniqueness and thus avoid clashes with other modules.

opmask_add (OPSET)
Adds the supplied opset to the current opmask. Note that there is currently no mechanism for
unmasking ops once they have been masked. This is intentional.

opmask Returns an opset corresponding to the current opmask.

opdesc (OP, ...)
This takes a list of operator names and returns the corresponding list of operator descriptio
986 Version 5.005_02 18−Oct−1998

Opcode Perl Programmers Reference Guide Opcode

rn is

words

 eight,
unctions
 same
opdump (PAT)
Dumps to STDOUT a two column list of op names and op descriptions. If an optional patte
given then only lines which match the (case insensitive) pattern will be output.

It‘s designed to be used as a handy command line utility:

perl −MOpcode=opdump −e opdump
perl −MOpcode=opdump −e ’opdump Eval’

Manipulating Opsets
Opsets may be manipulated using the perl bit vector operators & (and), | (or), ^ (xor) and ~ (negate/invert).

However you should never rely on the numerical position of any opcode within the opset. In other
both sides of a bit vector operator should be opsets returned from Opcode functions.

Also, since the number of opcodes in your current version of perl might not be an exact multiple of
there may be unused bits in the last byte of an upset. This should not cause any problems (Opcode f
ignore those extra bits) but it does mean that using the ~ operator will typically not produce the
‘physical’ opset ‘string’ as the invert_opset function.

TO DO (maybe)
 $bool = opset_eq($opset1, $opset2) true if opsets are logically eqiv

 $yes = opset_can($opset, @ops) true if $opset has all @ops set

 @diff = opset_diff($opset1, $opset2) => (’foo’, ’!bar’, ...)

Predefined Opcode Tags

:base_core
 null stub scalar pushmark wantarray const defined undef

 rv2sv sassign

 rv2av aassign aelem aelemfast aslice av2arylen

 rv2hv helem hslice each values keys exists delete

 preinc i_preinc predec i_predec postinc i_postinc postdec i_postdec
 int hex oct abs pow multiply i_multiply divide i_divide
 modulo i_modulo add i_add subtract i_subtract

 left_shift right_shift bit_and bit_xor bit_or negate i_negate
 not complement

 lt i_lt gt i_gt le i_le ge i_ge eq i_eq ne i_ne ncmp i_ncmp
 slt sgt sle sge seq sne scmp

 substr vec stringify study pos length index rindex ord chr

 ucfirst lcfirst uc lc quotemeta trans chop schop chomp schomp

 match split qr

 list lslice splice push pop shift unshift reverse

 cond_expr flip flop andassign orassign and or xor

 warn die lineseq nextstate unstack scope enter leave

 rv2cv anoncode prototype

 entersub leavesub return method −− XXX loops via recursion?

 leaveeval −− needed for Safe to operate, is safe without entereval
18−Oct−1998 Version 5.005_02 987

Opcode Perl Programmers Reference Guide Opcode

used to

 using

. It‘s

ment a

 the
 other
:base_mem
These memory related ops are not included in :base_core because they can easily be
implement a resource attack (e.g., consume all available memory).

 concat repeat join range

 anonlist anonhash

Note that despite the existance of this optag a memory resource attack may still be possible
only :base_core ops.

Disabling these ops is a very heavy handed way to attempt to prevent a memory resource attack
probable that a specific memory limit mechanism will be added to perl in the near future.

:base_loop
These loop ops are not included in :base_core because they can easily be used to imple
resource attack (e.g., consume all available CPU time).

 grepstart grepwhile
 mapstart mapwhile
 enteriter iter
 enterloop leaveloop
 last next redo
 goto

:base_io
These ops enable filehandle (rather than filename) based input and output. These are safe on
assumption that only pre−existing filehandles are available for use. To create new filehandles
ops such as open would need to be enabled.

 readline rcatline getc read

 formline enterwrite leavewrite

 print sysread syswrite send recv

 eof tell seek sysseek

 readdir telldir seekdir rewinddir

:base_orig
These are a hotchpotch of opcodes still waiting to be considered

 gvsv gv gelem

 padsv padav padhv padany

 rv2gv refgen srefgen ref

 bless −− could be used to change ownership of objects (reblessing)

 pushre regcmaybe regcreset regcomp subst substcont

 sprintf prtf −− can core dump

 crypt

 tie untie

 dbmopen dbmclose
 sselect select
 pipe_op sockpair

 getppid getpgrp setpgrp getpriority setpriority localtime gmtime
988 Version 5.005_02 18−Oct−1998

Opcode Perl Programmers Reference Guide Opcode

 floating

e of the

hile

uld not

nd
t will

nd adds
sitive)
 entertry leavetry −− can be used to ’hide’ fatal errors

:base_math
These ops are not included in :base_core because of the risk of them being used to generate
point exceptions (which would have to be caught using a $SIG{FPE} handler).

 atan2 sin cos exp log sqrt

These ops are not included in :base_core because they have an effect beyond the scop
compartment.

 rand srand

:base_thread
These ops are related to multi−threading.

 lock threadsv

:default
A handy tag name for a reasonable default set of ops. (The current ops allowed are unstable w
development continues. It will change.)

 :base_core :base_mem :base_loop :base_io :base_orig :base_thread

If safety matters to you (and why else would you be using the Opcode module?) then you sho
rely on the definition of this, or indeed any other, optag!

:filesys_read
 stat lstat readlink

 ftatime ftblk ftchr ftctime ftdir fteexec fteowned fteread
 ftewrite ftfile ftis ftlink ftmtime ftpipe ftrexec ftrowned
 ftrread ftsgid ftsize ftsock ftsuid fttty ftzero ftrwrite ftsvtx

 fttext ftbinary

 fileno

:sys_db
 ghbyname ghbyaddr ghostent shostent ehostent −− hosts
 gnbyname gnbyaddr gnetent snetent enetent −− networks
 gpbyname gpbynumber gprotoent sprotoent eprotoent −− protocols
 gsbyname gsbyport gservent sservent eservent −− services

 gpwnam gpwuid gpwent spwent epwent getlogin −− users
 ggrnam ggrgid ggrent sgrent egrent −− groups

:browse
A handy tag name for a reasonable default set of ops beyond the :default optag. Like :default (a
indeed all the other optags) its current definition is unstable while development continues. I
change.

The :browse tag represents the next step beyond :default. It it a superset of the :default ops a
:filesys_read the :sys_db. The intent being that scripts can access more (possibly sen
information about your system but not be able to change it.

 :default :filesys_read :sys_db

:filesys_open
 sysopen open close
 umask binmode

 open_dir closedir −− other dir ops are in :base_io
18−Oct−1998 Version 5.005_02 989

Opcode Perl Programmers Reference Guide Opcode

ed for

d to be
:filesys_write
 link unlink rename symlink truncate

 mkdir rmdir

 utime chmod chown

 fcntl −− not strictly filesys related, but possibly as dangerous?

:subprocess
 backtick system

 fork

 wait waitpid

 glob −− access to Cshell via <‘rm *‘>

:ownprocess
 exec exit kill

 time tms −− could be used for timing attacks (paranoid?)

:others
This tag holds groups of assorted specialist opcodes that don‘t warrant having optags defin
them.

SystemV Interprocess Communications:

 msgctl msgget msgrcv msgsnd

 semctl semget semop

 shmctl shmget shmread shmwrite

:still_to_be_decided
 chdir
 flock ioctl

 socket getpeername ssockopt
 bind connect listen accept shutdown gsockopt getsockname

 sleep alarm −− changes global timer state and signal handling
 sort −− assorted problems including core dumps
 tied −− can be used to access object implementing a tie
 pack unpack −− can be used to create/use memory pointers

 entereval −− can be used to hide code from initial compile
 require dofile

 caller −− get info about calling environment and args

 reset

 dbstate −− perl −d version of nextstate(ment) opcode

:dangerous
This tag is simply a bucket for opcodes that are unlikely to be used via a tag name but nee
tagged for completness and documentation.

 syscall dump chroot
990 Version 5.005_02 18−Oct−1998

Opcode Perl Programmers Reference Guide Opcode

version
SEE ALSO
ops(3) — perl pragma interface to Opcode module.

Safe(3) — Opcode and namespace limited execution compartments

AUTHORS
Originally designed and implemented by Malcolm Beattie, mbeattie@sable.ox.ac.uk as part of Safe
1.

Split out from Safe module version 1, named opcode tags and other changes added by Tim Bunce.
18−Oct−1998 Version 5.005_02 991

POSIX Perl Programmers Reference Guide POSIX

any of

 ask

erating

scribes
ions list

on. It
. It‘s a

ill print
ne exist.

ss the
r the
POSIX
rogram
ld be
NAME
POSIX − Perl interface to IEEE Std 1003.1

SYNOPSIS
 use POSIX;
 use POSIX qw(setsid);
 use POSIX qw(:errno_h :fcntl_h);

 printf "EINTR is %d\n", EINTR;

 $sess_id = POSIX::setsid();

 $fd = POSIX::open($path, O_CREAT|O_EXCL|O_WRONLY, 0644);
note: that’s a filedescriptor, *NOT* a filehandle

DESCRIPTION
The POSIX module permits you to access all (or nearly all) the standard POSIX 1003.1 identifiers. M
these identifiers have been given Perl−ish interfaces. Things which are #defines in C, like EINTR or
O_NDELAY, are automatically exported into your namespace. All functions are only exported if you
for them explicitly. Most likely people will prefer to use the fully−qualified function names.

This document gives a condensed list of the features available in the POSIX module. Consult your op
system‘s manpages for general information on most features. Consult perlfunc for functions which are noted
as being identical to Perl‘s builtin functions.

The first section describes POSIX functions from the 1003.1 specification. The second section de
some classes for signal objects, TTY objects, and other miscellaneous objects. The remaining sect
various constants and macros in an organization which roughly follows IEEE Std 1003.1b−1993.

NOTE
The POSIX module is probably the most complex Perl module supplied with the standard distributi
incorporates autoloading, namespace games, and dynamic loading of code that‘s in Perl, C, or both
great source of wisdom.

CAVEATS
A few functions are not implemented because they are C specific. If you attempt to call these, they w
a message telling you that they aren‘t implemented, and suggest using the Perl equivalent should o
For example, trying to access the setjmp() call will elicit the message "setjmp() is C−specific: use
eval {} instead".

Furthermore, some evil vendors will claim 1003.1 compliance, but in fact are not so: they will not pa
PCTS (POSIX Compliance Test Suites). For example, one vendor may not define EDEADLK, o
semantics of the errno values set by open(2) might not be quite right. Perl does not attempt to verify
compliance. That means you can currently successfully say "use POSIX", and then later in your p
you find that your vendor has been lax and there‘s no usable ICANON macro after all. This cou
construed to be a bug.

FUNCTIONS

_exit This is identical to the C function _exit() .

abort This is identical to the C function abort() .

abs This is identical to Perl‘s builtin abs() function.

access Determines the accessibility of a file.

if(POSIX::access("/", &POSIX::R_OK)){
print "have read permission\n";

}
992 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX
Returns undef on failure.

acos This is identical to the C function acos() .

alarm This is identical to Perl‘s builtin alarm() function.

asctime This is identical to the C function asctime() .

asin This is identical to the C function asin() .

assert Unimplemented.

atan This is identical to the C function atan() .

atan2 This is identical to Perl‘s builtin atan2() function.

atexit atexit() is C−specific: use END {} instead.

atof atof() is C−specific.

atoi atoi() is C−specific.

atol atol() is C−specific.

bsearch bsearch() not supplied.

calloc calloc() is C−specific.

ceil This is identical to the C function ceil() .

chdir This is identical to Perl‘s builtin chdir() function.

chmod This is identical to Perl‘s builtin chmod() function.

chown This is identical to Perl‘s builtin chown() function.

clearerr Use method IO::Handle::clearerr() instead.

clock This is identical to the C function clock() .

close Close the file. This uses file descriptors such as those obtained by calling POSIX::open .

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
POSIX::close($fd);

Returns undef on failure.

closedir This is identical to Perl‘s builtin closedir() function.

cos This is identical to Perl‘s builtin cos() function.

cosh This is identical to the C function cosh() .

creat Create a new file. This returns a file descriptor like the ones returned by POSIX::open . Use
POSIX::close to close the file.

$fd = POSIX::creat("foo", 0611);
POSIX::close($fd);

ctermid Generates the path name for the controlling terminal.

$path = POSIX::ctermid();

ctime This is identical to the C function ctime() .

cuserid Get the character login name of the user.

$name = POSIX::cuserid();
18−Oct−1998 Version 5.005_02 993

POSIX Perl Programmers Reference Guide POSIX

such

 the
difftime This is identical to the C function difftime() .

div div() is C−specific.

dup This is similar to the C function dup() .

This uses file descriptors such as those obtained by calling POSIX::open .

Returns undef on failure.

dup2 This is similar to the C function dup2() .

This uses file descriptors such as those obtained by calling POSIX::open .

Returns undef on failure.

errno Returns the value of errno.

$errno = POSIX::errno();

execl execl() is C−specific.

execle execle() is C−specific.

execlp execlp() is C−specific.

execv execv() is C−specific.

execve execve() is C−specific.

execvp execvp() is C−specific.

exit This is identical to Perl‘s builtin exit() function.

exp This is identical to Perl‘s builtin exp() function.

fabs This is identical to Perl‘s builtin abs() function.

fclose Use method IO::Handle::close() instead.

fcntl This is identical to Perl‘s builtin fcntl() function.

fdopen Use method IO::Handle::new_from_fd() instead.

feof Use method IO::Handle::eof() instead.

ferror Use method IO::Handle::error() instead.

fflush Use method IO::Handle::flush() instead.

fgetc Use method IO::Handle::getc() instead.

fgetpos Use method IO::Seekable::getpos() instead.

fgets Use method IO::Handle::gets() instead.

fileno Use method IO::Handle::fileno() instead.

floor This is identical to the C function floor() .

fmod This is identical to the C function fmod() .

fopen Use method IO::File::open() instead.

fork This is identical to Perl‘s builtin fork() function.

fpathconf Retrieves the value of a configurable limit on a file or directory. This uses file descriptors
as those obtained by calling POSIX::open .

The following will determine the maximum length of the longest allowable pathname on
filesystem which holds /tmp/foo .
994 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX
$fd = POSIX::open("/tmp/foo", &POSIX::O_RDONLY);
$path_max = POSIX::fpathconf($fd, &POSIX::_PC_PATH_MAX);

Returns undef on failure.

fprintf fprintf() is C−specific—use printf instead.

fputc fputc() is C−specific—use print instead.

fputs fputs() is C−specific—use print instead.

fread fread() is C−specific—use read instead.

free free() is C−specific.

freopen freopen() is C−specific—use open instead.

frexp Return the mantissa and exponent of a floating−point number.

($mantissa, $exponent) = POSIX::frexp(3.14);

fscanf fscanf() is C−specific—use < and regular expressions instead.

fseek Use method IO::Seekable::seek() instead.

fsetpos Use method IO::Seekable::setpos() instead.

fstat Get file status. This uses file descriptors such as those obtained by calling POSIX::open . The
data returned is identical to the data from Perl‘s builtin stat function.

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
@stats = POSIX::fstat($fd);

ftell Use method IO::Seekable::tell() instead.

fwrite fwrite() is C−specific—use print instead.

getc This is identical to Perl‘s builtin getc() function.

getchar Returns one character from STDIN.

getcwd Returns the name of the current working directory.

getegid Returns the effective group id.

getenv Returns the value of the specified enironment variable.

geteuid Returns the effective user id.

getgid Returns the user‘s real group id.

getgrgid This is identical to Perl‘s builtin getgrgid() function.

getgrnam This is identical to Perl‘s builtin getgrnam() function.

getgroups
Returns the ids of the user‘s supplementary groups.

getlogin This is identical to Perl‘s builtin getlogin() function.

getpgrp This is identical to Perl‘s builtin getpgrp() function.

getpid Returns the process‘s id.

getppid This is identical to Perl‘s builtin getppid() function.

getpwnam
This is identical to Perl‘s builtin getpwnam() function.
18−Oct−1998 Version 5.005_02 995

POSIX Perl Programmers Reference Guide POSIX

hole

hole

hole

hole

hole

hole

hole

hole

hole

hole

hole

locale
getpwuid
This is identical to Perl‘s builtin getpwuid() function.

gets Returns one line from STDIN.

getuid Returns the user‘s id.

gmtime This is identical to Perl‘s builtin gmtime() function.

isalnum This is identical to the C function, except that it can apply to a single character or to a w
string.

isalpha This is identical to the C function, except that it can apply to a single character or to a w
string.

isatty Returns a boolean indicating whether the specified filehandle is connected to a tty.

iscntrl This is identical to the C function, except that it can apply to a single character or to a w
string.

isdigit This is identical to the C function, except that it can apply to a single character or to a w
string.

isgraph This is identical to the C function, except that it can apply to a single character or to a w
string.

islower This is identical to the C function, except that it can apply to a single character or to a w
string.

isprint This is identical to the C function, except that it can apply to a single character or to a w
string.

ispunct This is identical to the C function, except that it can apply to a single character or to a w
string.

isspace This is identical to the C function, except that it can apply to a single character or to a w
string.

isupper This is identical to the C function, except that it can apply to a single character or to a w
string.

isxdigit This is identical to the C function, except that it can apply to a single character or to a w
string.

kill This is identical to Perl‘s builtin kill() function.

labs labs() is C−specific, use abs instead.

ldexp This is identical to the C function ldexp() .

ldiv ldiv() is C−specific, use / and int instead.

link This is identical to Perl‘s builtin link() function.

localeconv
Get numeric formatting information. Returns a reference to a hash containing the current
formatting values.

The database for the de (Deutsch or German) locale.

$loc = POSIX::setlocale(&POSIX::LC_ALL, "de");
print "Locale = $loc\n";
$lconv = POSIX::localeconv();
print "decimal_point = ", $lconv−>{decimal_point}, "\n";
print "thousands_sep = ", $lconv−>{thousands_sep}, "\n";
996 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX

alling
print "grouping = ", $lconv−>{grouping},"\n";
print "int_curr_symbol = ", $lconv−>{int_curr_symbol}, "\n";
print "currency_symbol = ", $lconv−>{currency_symbol}, "\n";
print "mon_decimal_point = ", $lconv−>{mon_decimal_point}, "\n";
print "mon_thousands_sep = ", $lconv−>{mon_thousands_sep}, "\n";
print "mon_grouping = ", $lconv−>{mon_grouping}, "\n";
print "positive_sign = ", $lconv−>{positive_sign}, "\n";
print "negative_sign = ", $lconv−>{negative_sign}, "\n";
print "int_frac_digits = ", $lconv−>{int_frac_digits}, "\n";
print "frac_digits = ", $lconv−>{frac_digits}, "\n";
print "p_cs_precedes = ", $lconv−>{p_cs_precedes}, "\n";
print "p_sep_by_space = ", $lconv−>{p_sep_by_space}, "\n";
print "n_cs_precedes = ", $lconv−>{n_cs_precedes}, "\n";
print "n_sep_by_space = ", $lconv−>{n_sep_by_space}, "\n";
print "p_sign_posn = ", $lconv−>{p_sign_posn}, "\n";
print "n_sign_posn = ", $lconv−>{n_sign_posn}, "\n";

localtime This is identical to Perl‘s builtin localtime() function.

log This is identical to Perl‘s builtin log() function.

log10 This is identical to the C function log10() .

longjmp longjmp() is C−specific: use die instead.

lseek Move the file‘s read/write position. This uses file descriptors such as those obtained by c
POSIX::open .

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
$off_t = POSIX::lseek($fd, 0, &POSIX::SEEK_SET);

Returns undef on failure.

malloc malloc() is C−specific.

mblen This is identical to the C function mblen() .

mbstowcs
This is identical to the C function mbstowcs() .

mbtowc This is identical to the C function mbtowc() .

memchr memchr() is C−specific, use index() instead.

memcmp memcmp() is C−specific, use eq instead.

memcpy memcpy() is C−specific, use = instead.

memmove
memmove() is C−specific, use = instead.

memset memset() is C−specific, use x instead.

mkdir This is identical to Perl‘s builtin mkdir() function.

mkfifo This is similar to the C function mkfifo() .

Returns undef on failure.

mktime Convert date/time info to a calendar time.

Synopsis:

mktime(sec, min, hour, mday, mon, year, wday = 0, yday = 0, isdst = 0
18−Oct−1998 Version 5.005_02 997

POSIX Perl Programmers Reference Guide POSIX

;
.

Use

 the
The month (mon), weekday (wday), and yearday (yday) begin at zero. I.e. January is 0, not 1
Sunday is 0, not 1; January 1st is 0, not 1. The year (year) is given in years since 1900. I.e
The year 1995 is 95; the year 2001 is 101. Consult your system‘s mktime() manpage for
details about these and the other arguments.

Calendar time for December 12, 1995, at 10:30 am.

$time_t = POSIX::mktime(0, 30, 10, 12, 11, 95);
print "Date = ", POSIX::ctime($time_t);

Returns undef on failure.

modf Return the integral and fractional parts of a floating−point number.

($fractional, $integral) = POSIX::modf(3.14);

nice This is similar to the C function nice() .

Returns undef on failure.

offsetof offsetof() is C−specific.

open Open a file for reading for writing. This returns file descriptors, not Perl filehandles.
POSIX::close to close the file.

Open a file read−only with mode 0666.

$fd = POSIX::open("foo");

Open a file for read and write.

$fd = POSIX::open("foo", &POSIX::O_RDWR);

Open a file for write, with truncation.

$fd = POSIX::open("foo", &POSIX::O_WRONLY | &POSIX::O_TRUNC);

Create a new file with mode 0640. Set up the file for writing.

$fd = POSIX::open("foo", &POSIX::O_CREAT | &POSIX::O_WRONLY, 0640);

Returns undef on failure.

opendir Open a directory for reading.

$dir = POSIX::opendir("/tmp");
@files = POSIX::readdir($dir);
POSIX::closedir($dir);

Returns undef on failure.

pathconf Retrieves the value of a configurable limit on a file or directory.

The following will determine the maximum length of the longest allowable pathname on
filesystem which holds /tmp .

$path_max = POSIX::pathconf("/tmp", &POSIX::_PC_PATH_MAX);

Returns undef on failure.

pause This is similar to the C function pause() .

Returns undef on failure.

perror This is identical to the C function perror() .

pipe Create an interprocess channel. This returns file descriptors like those returned by
POSIX::open .
998 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX

 the

bles
($fd0, $fd1) = POSIX::pipe();
POSIX::write($fd0, "hello", 5);
POSIX::read($fd1, $buf, 5);

pow Computes $x raised to the power $exponent.

$ret = POSIX::pow($x, $exponent);

printf Prints the specified arguments to STDOUT.

putc putc() is C−specific—use print instead.

putchar putchar() is C−specific—use print instead.

puts puts() is C−specific—use print instead.

qsort qsort() is C−specific, use sort instead.

raise Sends the specified signal to the current process.

rand rand() is non−portable, use Perl‘s rand instead.

read Read from a file. This uses file descriptors such as those obtained by calling POSIX::open . If
the buffer $buf is not large enough for the read then Perl will extend it to make room for
request.

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
$bytes = POSIX::read($fd, $buf, 3);

Returns undef on failure.

readdir This is identical to Perl‘s builtin readdir() function.

realloc realloc() is C−specific.

remove This is identical to Perl‘s builtin unlink() function.

rename This is identical to Perl‘s builtin rename() function.

rewind Seeks to the beginning of the file.

rewinddir This is identical to Perl‘s builtin rewinddir() function.

rmdir This is identical to Perl‘s builtin rmdir() function.

scanf scanf() is C−specific—use < and regular expressions instead.

setgid Sets the real group id for this process.

setjmp setjmp() is C−specific: use eval {} instead.

setlocale Modifies and queries program‘s locale.

The following will set the traditional UNIX system locale behavior (the second argument "C").

$loc = POSIX::setlocale(&POSIX::LC_ALL, "C");

The following will query (the missing second argument) the current LC_CTYPE category.

$loc = POSIX::setlocale(&POSIX::LC_CTYPE);

The following will set the LC_CTYPE behaviour according to the locale environment varia
(the second argument ""). Please see your systems setlocale(3) documentation for the locale
environment variables’ meaning or consult perllocale.

$loc = POSIX::setlocale(&POSIX::LC_CTYPE, "");

The following will set the LC_COLLATE behaviour to Argentinian Spanish. NOTE: The
naming and availability of locales depends on your operating system. Please consult perllocale
18−Oct−1998 Version 5.005_02 999

POSIX Perl Programmers Reference Guide POSIX
for how to find out which locales are available in your system.

$loc = POSIX::setlocale(&POSIX::LC_ALL, "es_AR.ISO8859−1");

setpgid This is similar to the C function setpgid() .

Returns undef on failure.

setsid This is identical to the C function setsid() .

setuid Sets the real user id for this process.

sigaction Detailed signal management. This uses POSIX::SigAction objects for the action and
oldaction arguments. Consult your system‘s sigaction manpage for details.

Synopsis:

sigaction(sig, action, oldaction = 0)

Returns undef on failure.

siglongjmp
siglongjmp() is C−specific: use die instead.

sigpending
Examine signals that are blocked and pending. This uses POSIX::SigSet objects for the
sigset argument. Consult your system‘s sigpending manpage for details.

Synopsis:

sigpending(sigset)

Returns undef on failure.

sigprocmask
Change and/or examine calling process‘s signal mask. This uses POSIX::SigSet objects for
the sigset and oldsigset arguments. Consult your system‘s sigprocmask manpage for
details.

Synopsis:

sigprocmask(how, sigset, oldsigset = 0)

Returns undef on failure.

sigsetjmp sigsetjmp() is C−specific: use eval {} instead.

sigsuspend
Install a signal mask and suspend process until signal arrives. This uses POSIX::SigSet
objects for the signal_mask argument. Consult your system‘s sigsuspend manpage for
details.

Synopsis:

sigsuspend(signal_mask)

Returns undef on failure.

sin This is identical to Perl‘s builtin sin() function.

sinh This is identical to the C function sinh() .

sleep This is identical to Perl‘s builtin sleep() function.

sprintf This is identical to Perl‘s builtin sprintf() function.
1000 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX

;
.

 in the

ot
sqrt This is identical to Perl‘s builtin sqrt() function.

srand srand() .

sscanf sscanf() is C−specific—use regular expressions instead.

stat This is identical to Perl‘s builtin stat() function.

strcat strcat() is C−specific, use .= instead.

strchr strchr() is C−specific, use index() instead.

strcmp strcmp() is C−specific, use eq instead.

strcoll This is identical to the C function strcoll() .

strcpy strcpy() is C−specific, use = instead.

strcspn strcspn() is C−specific, use regular expressions instead.

strerror Returns the error string for the specified errno.

strftime Convert date and time information to string. Returns the string.

Synopsis:

strftime(fmt, sec, min, hour, mday, mon, year, wday = 0, yday = 0, is

The month (mon), weekday (wday), and yearday (yday) begin at zero. I.e. January is 0, not 1
Sunday is 0, not 1; January 1st is 0, not 1. The year (year) is given in years since 1900. I.e
The year 1995 is 95; the year 2001 is 101. Consult your system‘s strftime() manpage for
details about these and the other arguments.

The string for Tuesday, December 12, 1995.

$str = POSIX::strftime("%A, %B %d, %Y", 0, 0, 0, 12, 11, 95, 2);
print "$str\n";

strlen strlen() is C−specific, use length instead.

strncat strncat() is C−specific, use .= instead.

strncmp strncmp() is C−specific, use eq instead.

strncpy strncpy() is C−specific, use = instead.

stroul stroul() is C−specific.

strpbrk strpbrk() is C−specific.

strrchr strrchr() is C−specific, use rindex() instead.

strspn strspn() is C−specific.

strstr This is identical to Perl‘s builtin index() function.

strtod String to double translation. Returns the parsed number and the number of characters
unparsed portion of the string. Truly POSIX−compliant systems set $! ($ERRNO) to indicate a
translation error, so clear $! before calling strtod. However, non−POSIX systems may n
check for overflow, and therefore will never set $!.

strtod should respect any POSIX setlocale() settings.

To parse a string $str as a floating point number use

 $! = 0;
 ($num, $n_unparsed) = POSIX::strtod($str);
18−Oct−1998 Version 5.005_02 1001

POSIX Perl Programmers Reference Guide POSIX

ters in

ay

d strtol
al; a
ed as a

 only

strtoul
The second returned item and $! can be used to check for valid input:

 if (($str eq ’’) || ($n_unparsed != 0) || !$!) {
 die "Non−numeric input $str" . $! ? ": $!\n" : "\n";
 }

When called in a scalar context strtod returns the parsed number.

strtok strtok() is C−specific.

strtol String to (long) integer translation. Returns the parsed number and the number of charac
the unparsed portion of the string. Truly POSIX−compliant systems set $! ($ERRNO) to
indicate a translation error, so clear $! before calling strtol. However, non−POSIX systems m
not check for overflow, and therefore will never set $!.

strtol should respect any POSIX setlocale() settings.

To parse a string $str as a number in some base $base use

 $! = 0;
 ($num, $n_unparsed) = POSIX::strtol($str, $base);

The base should be zero or between 2 and 36, inclusive. When the base is zero or omitte
will use the string itself to determine the base: a leading "0x" or "0X" means hexadecim
leading "0" means octal; any other leading characters mean decimal. Thus, "1234" is pars
decimal number, "01234" as an octal number, and "0x1234" as a hexadecimal number.

The second returned item and $! can be used to check for valid input:

 if (($str eq ’’) || ($n_unparsed != 0) || !$!) {
 die "Non−numeric input $str" . $! ? ": $!\n" : "\n";
 }

When called in a scalar context strtol returns the parsed number.

strtoul String to unsigned (long) integer translation. strtoul is identical to strtol except that strtoul
parses unsigned integers. See strtol for details.

Note: Some vendors supply strtod and strtol but not strtoul. Other vendors that do suply
parse "−1" as a valid value.

strxfrm String transformation. Returns the transformed string.

$dst = POSIX::strxfrm($src);

sysconf Retrieves values of system configurable variables.

The following will get the machine‘s clock speed.

$clock_ticks = POSIX::sysconf(&POSIX::_SC_CLK_TCK);

Returns undef on failure.

system This is identical to Perl‘s builtin system() function.

tan This is identical to the C function tan() .

tanh This is identical to the C function tanh() .

tcdrain This is similar to the C function tcdrain() .

Returns undef on failure.

tcflow This is similar to the C function tcflow() .

Returns undef on failure.
1002 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX

ystem
y child
tcflush This is similar to the C function tcflush() .

Returns undef on failure.

tcgetpgrp This is identical to the C function tcgetpgrp() .

tcsendbreak
This is similar to the C function tcsendbreak() .

Returns undef on failure.

tcsetpgrp This is similar to the C function tcsetpgrp() .

Returns undef on failure.

time This is identical to Perl‘s builtin time() function.

times The times() function returns elapsed realtime since some point in the past (such as s
startup), user and system times for this process, and user and system times used b
processes. All times are returned in clock ticks.

 ($realtime, $user, $system, $cuser, $csystem) = POSIX::times();

Note: Perl‘s builtin times() function returns four values, measured in seconds.

tmpfile Use method IO::File::new_tmpfile() instead.

tmpnam Returns a name for a temporary file.

$tmpfile = POSIX::tmpnam();

tolower This is identical to Perl‘s builtin lc() function.

toupper This is identical to Perl‘s builtin uc() function.

ttyname This is identical to the C function ttyname() .

tzname Retrieves the time conversion information from the tzname variable.

POSIX::tzset();
($std, $dst) = POSIX::tzname();

tzset This is identical to the C function tzset() .

umask This is identical to Perl‘s builtin umask() function.

uname Get name of current operating system.

($sysname, $nodename, $release, $version, $machine) = POSIX::uname()

ungetc Use method IO::Handle::ungetc() instead.

unlink This is identical to Perl‘s builtin unlink() function.

utime This is identical to Perl‘s builtin utime() function.

vfprintf vfprintf() is C−specific.

vprintf vprintf() is C−specific.

vsprintf vsprintf() is C−specific.

wait This is identical to Perl‘s builtin wait() function.

waitpid Wait for a child process to change state. This is identical to Perl‘s builtin waitpid() function.

$pid = POSIX::waitpid(−1, &POSIX::WNOHANG);
print "status = ", ($? / 256), "\n";
18−Oct−1998 Version 5.005_02 1003

POSIX Perl Programmers Reference Guide POSIX

 first
meter

 the

nger
wcstombs
This is identical to the C function wcstombs() .

wctomb This is identical to the C function wctomb() .

write Write to a file. This uses file descriptors such as those obtained by calling POSIX::open .

$fd = POSIX::open("foo", &POSIX::O_WRONLY);
$buf = "hello";
$bytes = POSIX::write($b, $buf, 5);

Returns undef on failure.

CLASSES

POSIX::SigAction

new Creates a new POSIX::SigAction object which corresponds to the C struct
sigaction . This object will be destroyed automatically when it is no longer needed. The
parameter is the fully−qualified name of a sub which is a signal−handler. The second para
is a POSIX::SigSet object, it defaults to the empty set. The third parameter contains
sa_flags , it defaults to 0.

$sigset = POSIX::SigSet−>new(SIGINT, SIGQUIT);
$sigaction = POSIX::SigAction−>new(’main::handler’, $sigset, &POSIX:

This POSIX::SigAction object should be used with the POSIX::sigaction() function.

POSIX::SigSet

new Create a new SigSet object. This object will be destroyed automatically when it is no lo
needed. Arguments may be supplied to initialize the set.

Create an empty set.

$sigset = POSIX::SigSet−>new;

Create a set with SIGUSR1.

$sigset = POSIX::SigSet−>new(&POSIX::SIGUSR1);

addset Add a signal to a SigSet object.

$sigset−>addset(&POSIX::SIGUSR2);

Returns undef on failure.

delset Remove a signal from the SigSet object.

$sigset−>delset(&POSIX::SIGUSR2);

Returns undef on failure.

emptyset Initialize the SigSet object to be empty.

$sigset−>emptyset();

Returns undef on failure.

fillset Initialize the SigSet object to include all signals.

$sigset−>fillset();

Returns undef on failure.
1004 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX

nger

o

index
ismember
Tests the SigSet object to see if it contains a specific signal.

if($sigset−>ismember(&POSIX::SIGUSR1)){
print "contains SIGUSR1\n";

}

POSIX::Termios

new Create a new Termios object. This object will be destroyed automatically when it is no lo
needed. A Termios object corresponds to the termios C struct. new() mallocs a new one,
getattr() fills it from a file descriptor, and setattr() sets a file descriptor‘s parameters t
match Termios’ contents.

$termios = POSIX::Termios−>new;

getattr Get terminal control attributes.

Obtain the attributes for stdin.

$termios−>getattr()

Obtain the attributes for stdout.

$termios−>getattr(1)

Returns undef on failure.

getcc Retrieve a value from the c_cc field of a termios object. The c_cc field is an array so an
must be specified.

$c_cc[1] = $termios−>getcc(1);

getcflag Retrieve the c_cflag field of a termios object.

$c_cflag = $termios−>getcflag;

getiflag Retrieve the c_iflag field of a termios object.

$c_iflag = $termios−>getiflag;

getispeed
Retrieve the input baud rate.

$ispeed = $termios−>getispeed;

getlflag Retrieve the c_lflag field of a termios object.

$c_lflag = $termios−>getlflag;

getoflag Retrieve the c_oflag field of a termios object.

$c_oflag = $termios−>getoflag;

getospeed
Retrieve the output baud rate.

$ospeed = $termios−>getospeed;

setattr Set terminal control attributes.

Set attributes immediately for stdout.

$termios−>setattr(1, &POSIX::TCSANOW);

Returns undef on failure.
18−Oct−1998 Version 5.005_02 1005

POSIX Perl Programmers Reference Guide POSIX

ust be

400
setcc Set a value in the c_cc field of a termios object. The c_cc field is an array so an index m
specified.

$termios−>setcc(&POSIX::VEOF, 1);

setcflag Set the c_cflag field of a termios object.

$termios−>setcflag($c_cflag | &POSIX::CLOCAL);

setiflag Set the c_iflag field of a termios object.

$termios−>setiflag($c_iflag | &POSIX::BRKINT);

setispeed Set the input baud rate.

$termios−>setispeed(&POSIX::B9600);

Returns undef on failure.

setlflag Set the c_lflag field of a termios object.

$termios−>setlflag($c_lflag | &POSIX::ECHO);

setoflag Set the c_oflag field of a termios object.

$termios−>setoflag($c_oflag | &POSIX::OPOST);

setospeed
Set the output baud rate.

$termios−>setospeed(&POSIX::B9600);

Returns undef on failure.

Baud rate values
B38400 B75 B200 B134 B300 B1800 B150 B0 B19200 B1200 B9600 B600 B4800 B50 B2
B110

Terminal interface values
TCSADRAIN TCSANOW TCOON TCIOFLUSH TCOFLUSH TCION TCIFLUSH
TCSAFLUSH TCIOFF TCOOFF

c_cc field values
VEOF VEOL VERASE VINTR VKILL VQUIT VSUSP VSTART VSTOP VMIN VTIME
NCCS

c_cflag field values
CLOCAL CREAD CSIZE CS5 CS6 CS7 CS8 CSTOPB HUPCL PARENB PARODD

c_iflag field values
BRKINT ICRNL IGNBRK IGNCR IGNPAR INLCR INPCK ISTRIP IXOFF IXON PARMRK

c_lflag field values
ECHO ECHOE ECHOK ECHONL ICANON IEXTEN ISIG NOFLSH TOSTOP

c_oflag field values
OPOST

PATHNAME CONSTANTS

Constants
_PC_CHOWN_RESTRICTED _PC_LINK_MAX _PC_MAX_CANON _PC_MAX_INPUT
_PC_NAME_MAX _PC_NO_TRUNC _PC_PATH_MAX _PC_PIPE_BUF _PC_VDISABLE
1006 Version 5.005_02 18−Oct−1998

POSIX Perl Programmers Reference Guide POSIX

Y

T

D

POSIX CONSTANTS

Constants
_POSIX_ARG_MAX _POSIX_CHILD_MAX _POSIX_CHOWN_RESTRICTED
_POSIX_JOB_CONTROL _POSIX_LINK_MAX _POSIX_MAX_CANON
_POSIX_MAX_INPUT _POSIX_NAME_MAX _POSIX_NGROUPS_MAX
_POSIX_NO_TRUNC _POSIX_OPEN_MAX _POSIX_PATH_MAX _POSIX_PIPE_BUF
_POSIX_SAVED_IDS _POSIX_SSIZE_MAX _POSIX_STREAM_MAX
_POSIX_TZNAME_MAX _POSIX_VDISABLE _POSIX_VERSION

SYSTEM CONFIGURATION

Constants
_SC_ARG_MAX _SC_CHILD_MAX _SC_CLK_TCK _SC_JOB_CONTROL
_SC_NGROUPS_MAX _SC_OPEN_MAX _SC_SAVED_IDS _SC_STREAM_MAX
_SC_TZNAME_MAX _SC_VERSION

ERRNO

Constants
E2BIG EACCES EADDRINUSE EADDRNOTAVAIL EAFNOSUPPORT EAGAIN
EALREADY EBADF EBUSY ECHILD ECONNABORTED ECONNREFUSED
ECONNRESET EDEADLK EDESTADDRREQ EDOM EDQUOT EEXIST EFAULT EFBIG
EHOSTDOWN EHOSTUNREACH EINPROGRESS EINTR EINVAL EIO EISCONN EISDIR
ELOOP EMFILE EMLINK EMSGSIZE ENAMETOOLONG ENETDOWN ENETRESET
ENETUNREACH ENFILE ENOBUFS ENODEV ENOENT ENOEXEC ENOLCK ENOMEM
ENOPROTOOPT ENOSPC ENOSYS ENOTBLK ENOTCONN ENOTDIR ENOTEMPT
ENOTSOCK ENOTTY ENXIO EOPNOTSUPP EPERM EPFNOSUPPORT EPIPE
EPROCLIM EPROTONOSUPPORT EPROTOTYPE ERANGE EREMOTE ERESTART
EROFS ESHUTDOWN ESOCKTNOSUPPORT ESPIPE ESRCH ESTALE ETIMEDOU
ETOOMANYREFS ETXTBSY EUSERS EWOULDBLOCK EXDEV

FCNTL

Constants
FD_CLOEXEC F_DUPFD F_GETFD F_GETFL F_GETLK F_OK F_RDLCK F_SETF
F_SETFL F_SETLK F_SETLKW F_UNLCK F_WRLCK O_ACCMODE O_APPEND
O_CREAT O_EXCL O_NOCTTY O_NONBLOCK O_RDONLY O_RDWR O_TRUNC
O_WRONLY

FLOAT

Constants
DBL_DIG DBL_EPSILON DBL_MANT_DIG DBL_MAX DBL_MAX_10_EXP
DBL_MAX_EXP DBL_MIN DBL_MIN_10_EXP DBL_MIN_EXP FLT_DIG FLT_EPSILON
FLT_MANT_DIG FLT_MAX FLT_MAX_10_EXP FLT_MAX_EXP FLT_MIN
FLT_MIN_10_EXP FLT_MIN_EXP FLT_RADIX FLT_ROUNDS LDBL_DIG
LDBL_EPSILON LDBL_MANT_DIG LDBL_MAX LDBL_MAX_10_EXP
LDBL_MAX_EXP LDBL_MIN LDBL_MIN_10_EXP LDBL_MIN_EXP

LIMITS

Constants
ARG_MAX CHAR_BIT CHAR_MAX CHAR_MIN CHILD_MAX INT_MAX INT_MIN
LINK_MAX LONG_MAX LONG_MIN MAX_CANON MAX_INPUT MB_LEN_MAX
NAME_MAX NGROUPS_MAX OPEN_MAX PATH_MAX PIPE_BUF SCHAR_MAX
SCHAR_MIN SHRT_MAX SHRT_MIN SSIZE_MAX STREAM_MAX TZNAME_MAX
UCHAR_MAX UINT_MAX ULONG_MAX USHRT_MAX
18−Oct−1998 Version 5.005_02 1007

POSIX Perl Programmers Reference Guide POSIX

P
P

LOCALE

Constants
LC_ALL LC_COLLATE LC_CTYPE LC_MONETARY LC_NUMERIC LC_TIME

MATH

Constants
HUGE_VAL

SIGNAL

Constants
SA_NOCLDSTOP SA_NOCLDWAIT SA_NODEFER SA_ONSTACK SA_RESETHAND
SA_RESTART SA_SIGINFO SIGABRT SIGALRM SIGCHLD SIGCONT SIGFPE SIGHU
SIGILL SIGINT SIGKILL SIGPIPE SIGQUIT SIGSEGV SIGSTOP SIGTERM SIGTST
SIGTTIN SIGTTOU SIGUSR1 SIGUSR2 SIG_BLOCK SIG_DFL SIG_ERR SIG_IGN
SIG_SETMASK SIG_UNBLOCK

STAT

Constants
S_IRGRP S_IROTH S_IRUSR S_IRWXG S_IRWXO S_IRWXU S_ISGID S_ISUID
S_IWGRP S_IWOTH S_IWUSR S_IXGRP S_IXOTH S_IXUSR

Macros S_ISBLK S_ISCHR S_ISDIR S_ISFIFO S_ISREG

STDLIB

Constants
EXIT_FAILURE EXIT_SUCCESS MB_CUR_MAX RAND_MAX

STDIO

Constants
BUFSIZ EOF FILENAME_MAX L_ctermid L_cuserid L_tmpname TMP_MAX

TIME

Constants
CLK_TCK CLOCKS_PER_SEC

UNISTD

Constants
R_OK SEEK_CUR SEEK_END SEEK_SET STDIN_FILENO STDOUT_FILENO
STRERR_FILENO W_OK X_OK

WAIT

Constants
WNOHANG WUNTRACED

Macros WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WIFSTOPPED WSTOPSIG

CREATION
This document generated by ./mkposixman.PL version 19960129.
1008 Version 5.005_02 18−Oct−1998

SDBM_File Perl Programmers Reference Guide SDBM_File
NAME
SDBM_File − Tied access to sdbm files

SYNOPSIS
 use SDBM_File;

 tie(%h, ’SDBM_File’, ’Op.dbmx’, O_RDWR|O_CREAT, 0640);

 untie %h;

DESCRIPTION
See tie
18−Oct−1998 Version 5.005_02 1009

Safe Perl Programmers Reference Guide Safe

d. Each

luated
e glob

luated

cause
f

into an
 the
n the
ment‘s
perator

tion,

ess to
outine

or

similar
NAME
Safe − Compile and execute code in restricted compartments

SYNOPSIS
 use Safe;

 $compartment = new Safe;

 $compartment−>permit(qw(time sort :browse));

 $result = $compartment−>reval($unsafe_code);

DESCRIPTION
The Safe extension module allows the creation of compartments in which perl code can be evaluate
compartment has

a new namespace
The "root" of the namespace (i.e. "main::") is changed to a different package and code eva
in the compartment cannot refer to variables outside this namespace, even with run−tim
lookups and other tricks.

Code which is compiled outside the compartment can choose to place variables into (orshare
variables with) the compartment‘s namespace and only that data will be visible to code eva
in the compartment.

By default, the only variables shared with compartments are the "underscore" variables $_ and
@_ (and, technically, the less frequently used %_, the _ filehandle and so on). This is be
otherwise perl operators which default to $_ will not work and neither will the assignment o
arguments to @_ on subroutine entry.

an operator mask
Each compartment has an associated "operator mask". Recall that perl code is compiled
internal format before execution. Evaluating perl code (e.g. via "eval" or "do ‘file‘") causes
code to be compiled into an internal format and then, provided there was no error i
compilation, executed. Code evaulated in a compartment compiles subject to the compart
operator mask. Attempting to evaulate code in a compartment which contains a masked o
will cause the compilation to fail with an error. The code will not be executed.

The default operator mask for a newly created compartment is the ‘:default’ optag.

It is important that you read the Opcode(3) module documentation for more informa
especially for detailed definitions of opnames, optags and opsets.

Since it is only at the compilation stage that the operator mask applies, controlled acc
potentially unsafe operations can be achieved by having a handle to a wrapper subr
(written outside the compartment) placed into the compartment. For example,

 $cpt = new Safe;
 sub wrapper {
 # vet arguments and perform potentially unsafe operations
 }
 $cpt−>share(’&wrapper’);

WARNING
The authors make no warranty, implied or otherwise, about the suitability of this software for safety
security purposes.

The authors shall not in any case be liable for special, incidental, consequential, indirect or other
damages arising from the use of this software.
1010 Version 5.005_02 18−Oct−1998

Safe Perl Programmers Reference Guide Safe

l5.002).
 makes

r the

ionality
.

tor. The

(other

t (

ical to

.

,
ted

ethod

ls
n array
Your mileage will vary. If in any doubt do not use it.

RECENT CHANGES
The interface to the Safe module has changed quite dramatically since version 1 (as supplied with Per
Study these pages carefully if you have code written to use Safe version 1 because you will need to
changes.

Methods in class Safe
To create a new compartment, use

 $cpt = new Safe;

Optional argument is (NAMESPACE), where NAMESPACE is the root namespace to use fo
compartment (defaults to "Safe::Root0", incremented for each new compartment).

Note that version 1.00 of the Safe module supported a second optional parameter, MASK. That funct
has been withdrawn pending deeper consideration. Use the permit and deny methods described below

The following methods can then be used on the compartment object returned by the above construc
object argument is implicit in each case.

permit (OP, ...)
Permit the listed operators to be used when compiling code in the compartment (in addition to
any operators already permitted).

permit_only (OP, ...)
Permit only the listed operators to be used when compiling code in the compartment (no other
operators are permitted).

deny (OP, ...)
Deny the listed operators from being used when compiling code in the compartment
operators may still be permitted).

deny_only (OP, ...)
Deny only the listed operators from being used when compiling code in the compartmenall
other operators will be permitted).

trap (OP, ...)
untrap (OP, ...)

The trap and untrap methods are synonyms for deny and permit respectfully.

share (NAME, ...)
This shares the variable(s) in the argument list with the compartment. This is almost ident
exporting variables using the Exporter(3) module.

Each NAME must be the name of a variable, typically with the leading type identifier included
A bareword is treated as a function name.

Examples of legal names are ‘$foo’ for a scalar, ‘@foo’ for an array, ‘%foo’ for a hash
‘&foo’ or ‘foo’ for a subroutine and ‘*foo’ for a glob (i.e. all symbol table entries associa
with "foo", including scalar, array, hash, sub and filehandle).

Each NAME is assumed to be in the calling package. See share_from for an alternative m
(which share uses).

share_from (PACKAGE, ARRAYREF)
This method is similar to share() but allows you to explicitly name the package that symbo
should be shared from. The symbol names (including type characters) are supplied as a
reference.

 $safe−>share_from(’main’, [’$foo’, ’%bar’, ’func’]);
18−Oct−1998 Version 5.005_02 1011

Safe Perl Programmers Reference Guide Safe

f the
r

e

 the
r the

ch a

 return

ns of

t use
ill fail

ssibly

 from
his is

h it.
t

es eval
 and
in the
t, then

f the
 of the

not
varglob (VARNAME)
This returns a glob reference for the symbol table entry of VARNAME in the package o
compartment. VARNAME must be the name of a variable without any leading type marker. Fo
example,

 $cpt = new Safe ’Root’;
 $Root::foo = "Hello world";
 # Equivalent version which doesn’t need to know $cpt’s package name:
 ${$cpt−>varglob(’foo’)} = "Hello world";

reval (STRING)
This evaluates STRING as perl code inside the compartment.

The code can only see the compartment‘s namespace (as returned by the root method). The
compartment‘s root package appears to be the main:: package to the code inside th
compartment.

Any attempt by the code in STRING to use an operator which is not permitted by
compartment will cause an error (at run−time of the main program but at compile−time fo
code in STRING). The error is of the form "%s trapped by operation mask operation...".

If an operation is trapped in this way, then the code in STRING will not be executed. If su
trapped operation occurs or any other compile−time or return error, then $@ is set to the error
message, just as with an eval() .

If there is no error, then the method returns the value of the last expression evaluated, or a
statement may be used, just as with subroutines and eval() . The context (list or scalar) is
determined by the caller as usual.

This behaviour differs from the beta distribution of the Safe extension where earlier versio
perl made it hard to mimic the return behaviour of the eval() command and the context was
always scalar.

Some points to note:

If the entereval op is permitted then the code can use eval "..." to ‘hide’ code which migh
denied ops. This is not a major problem since when the code tries to execute the eval it w
because the opmask is still in effect. However this technique would allow clever, and po
harmful, code to ‘probe’ the boundaries of what is possible.

Any string eval which is executed by code executing in a compartment, or by code called
code executing in a compartment, will be eval‘d in the namespace of the compartment. T
potentially a serious problem.

Consider a function foo() in package pkg compiled outside a compartment but shared wit
Assume the compartment has a root package called ‘Root’. If foo() contains an eval statemen
like eval ‘$foo = 1’ then, normally, $pkg::foo will be set to 1. If foo() is called from the
compartment (by whatever means) then instead of setting $pkg::foo, the eval will actually
set $Root::pkg::foo.

This can easily be demonstrated by using a module, such as the Socket module, which us
"..." as part of an AUTOLOAD function. You can ‘use’ the module outside the compartment
share an (autoloaded) function with the compartment. If an autoload is triggered by code
compartment, or by any code anywhere that is called by any means from the compartmen
the eval in the Socket module‘s AUTOLOAD function happens in the namespace o
compartment. Any variables created or used by the eval‘d code are now under the control
code in the compartment.

A similar effect applies to all runtime symbol lookups in code called from a compartment but
compiled within it.
1012 Version 5.005_02 18−Oct−1998

Safe Perl Programmers Reference Guide Safe

ace.

odule
 deeper

ent to

onally

me is
bles

k is in
et an
stated

or the

in the
rdo (FILENAME)
This evaluates the contents of file FILENAME inside the compartment. See above
documentation on the reval method for further details.

root (NAMESPACE)
This method returns the name of the package that is the root of the compartment‘s namesp

Note that this behaviour differs from version 1.00 of the Safe module where the root m
could be used to change the namespace. That functionality has been withdrawn pending
consideration.

mask (MASK)
This is a get−or−set method for the compartment‘s operator mask.

With no MASK argument present, it returns the current operator mask of the compartment.

With the MASK argument present, it sets the operator mask for the compartment (equival
calling the deny_only method).

Some Safety Issues
This section is currently just an outline of some of the things code in a compartment might do (intenti
or unintentionally) which can have an effect outside the compartment.

Memory Consuming all (or nearly all) available memory.

CPU Causing infinite loops etc.

Snooping Copying private information out of your system. Even something as simple as your user na
of value to others. Much useful information could be gleaned from your environment varia
for example.

Signals Causing signals (especially SIGFPE and SIGALARM) to affect your process.

Setting up a signal handler will need to be carefully considered and controlled. What mas
effect when a signal handler gets called? If a user can get an imported function to g
exception and call the user‘s signal handler, does that user‘s restricted mask get re−in
before the handler is called? Does an imported handler get called with its original mask
user‘s one?

State Changes
Ops such as chdir obviously effect the process as a whole and not just the code
compartment. Ops such as rand and srand have a similar but more subtle effect.

AUTHOR
Originally designed and implemented by Malcolm Beattie, mbeattie@sable.ox.ac.uk.

Reworked to use the Opcode module and other changes added by Tim Bunce <Tim.Bunce@ig.co.uk>.
18−Oct−1998 Version 5.005_02 1013

Search::Dict Perl Programmers Reference Guide Search::Dict
NAME
Search::Dict, look − search for key in dictionary file

SYNOPSIS
 use Search::Dict;
 look *FILEHANDLE, $key, $dict, $fold;

DESCRIPTION
Sets file position in FILEHANDLE to be first line greater than or equal (stringwise) to $key . Returns the
new file position, or −1 if an error occurs.

The flags specify dictionary order and case folding:

If $dict is true, search by dictionary order (ignore anything but word characters and whitespace).

If $fold is true, ignore case.
1014 Version 5.005_02 18−Oct−1998

SelectSaver Perl Programmers Reference Guide SelectSaver

. If its
 handle

.
NAME
SelectSaver − save and restore selected file handle

SYNOPSIS
 use SelectSaver;

 {
 my $saver = new SelectSaver(FILEHANDLE);
 # FILEHANDLE is selected
 }
 # previous handle is selected

 {
 my $saver = new SelectSaver;
 # new handle may be selected, or not
 }
 # previous handle is selected

DESCRIPTION
A SelectSaver object contains a reference to the file handle that was selected when it was created
new method gets an extra parameter, then that parameter is selected; otherwise, the selected file
remains unchanged.

When a SelectSaver is destroyed, it re−selects the file handle that was selected when it was created
18−Oct−1998 Version 5.005_02 1015

SelfLoader Perl Programmers Reference Guide SelfLoader

ter the

after
the

s

last
by the

y an

file

d
ause

ed up

s if you

l be
NAME
SelfLoader − load functions only on demand

SYNOPSIS
 package FOOBAR;
 use SelfLoader;

 ... (initializing code)

 __DATA__
 sub {....

DESCRIPTION
This module tells its users that functions in the FOOBAR package are to be autoloaded from af
__DATA__ token. See also Autoloading in perlsub.

The __DATA__ token
The __DATA__ token tells the perl compiler that the perl code for compilation is finished. Everything
the __DATA__ token is available for reading via the filehandle FOOBAR::DATA, where FOOBAR is
name of the current package when the __DATA__ token is reached. This works just the same as __END__
does in package ‘main‘, but for other modules data after __END__ is not automatically retreivable , wherea
data after __DATA__ is. The __DATA__ token is not recognized in versions of perl prior to 5.001m.

Note that it is possible to have __DATA__ tokens in the same package in multiple files, and that the
__DATA__ token in a given package that is encountered by the compiler is the one accessible
filehandle. This also applies to __END__ and main, i.e. if the ‘main’ program has an __END__, but a
module ‘require‘d (_not_ ‘use‘d) by that program has a ‘package main;’ declaration followed b
‘__DATA__‘, then the DATA filehandle is set to access the data after the __DATA__ in the module, _not_
the data after the __END__ token in the ‘main’ program, since the compiler encounters the ‘require‘d
later.

SelfLoader autoloading
The SelfLoader works by the user placing the __DATA__ token after perl code which needs to be compile
and run at ‘require’ time, but before subroutine declarations that can be loaded in later − usually bec
they may never be called.

The SelfLoader will read from the FOOBAR::DATA filehandle to load in the data after __DATA__, and
load in any subroutine when it is called. The costs are the one−time parsing of the data after __DATA__, and
a load delay for the _first_ call of any autoloaded function. The benefits (hopefully) are a speed
compilation phase, with no need to load functions which are never used.

The SelfLoader will stop reading from __DATA__ if it encounters the __END__ token − just as you would
expect. If the __END__ token is present, and is followed by the token DATA, then the SelfLoader leaves
the FOOBAR::DATA filehandle open on the line after that token.

The SelfLoader exports the AUTOLOAD subroutine to the package using the SelfLoader, and this loads the
called subroutine when it is first called.

There is no advantage to putting subroutines which will _always_ be called after the __DATA__ token.

Autoloading and package lexicals
A ‘my $pack_lexical’ statement makes the variable $pack_lexical local _only_ to the file up to
the __DATA__ token. Subroutines declared elsewhere _cannot_ see these types of variables, just a
declared subroutines in the package but in another file, they cannot see these variables.

So specifically, autoloaded functions cannot see package lexicals (this applies to both the SelfLoader and
the Autoloader). The vars pragma provides an alternative to defining package−level globals that wil
visible to autoloaded routines. See the documentation on vars in the pragma section of perlmod.
1016 Version 5.005_02 18−Oct−1998

SelfLoader Perl Programmers Reference Guide SelfLoader

ough
d

p to

ule at
re is a

d

you

r
lso

irst

u have

s, there

e that the
e, by

r
p of
FORE
SelfLoader and AutoLoader
The SelfLoader can replace the AutoLoader − just change ‘use AutoLoader’ to ‘use SelfLoader’ (th
note that the SelfLoader exports the AUTOLOAD function − but if you have your own AUTOLOAD an
are using the AutoLoader too, you probably know what you‘re doing), and the __END__ token to
__DATA__. You will need perl version 5.001m or later to use this (version 5.001 with all patches u
patch m).

There is no need to inherit from the SelfLoader.

The SelfLoader works similarly to the AutoLoader, but picks up the subs from after the __DATA__ instead
of in the ‘lib/auto’ directory. There is a maintainance gain in not needing to run AutoSplit on the mod
installation, and a runtime gain in not needing to keep opening and closing files to load subs. The
runtime loss in needing to parse the code after the __DATA__. Details of the AutoLoader and another view
of these distinctions can be found in that module‘s documentation.

__DATA__, __END__, and the FOOBAR::DATA filehandle.
This section is only relevant if you want to use the FOOBAR::DATA together with the SelfLoader.

Data after the __DATA__ token in a module is read using the FOOBAR::DATA filehandle. __END__ can
still be used to denote the end of the __DATA__ section if followed by the token DATA − this is supporte
by the SelfLoader. The FOOBAR::DATA filehandle is left open if an __END__ followed by a DATA is
found, with the filehandle positioned at the start of the line after the __END__ token. If no __END__ token
is present, or an __END__ token with no DATA token on the same line, then the filehandle is closed.

The SelfLoader reads from wherever the current position of the FOOBAR::DATA filehandle is, until the
EOF or __END__. This means that if you want to use that filehandle (and ONLY if you want to),
should either

1. Put all your subroutine declarations immediately after the __DATA__ token and put your own data afte
those declarations, using the __END__ token to mark the end of subroutine declarations. You must a
ensure that the SelfLoader reads first by calling ‘SelfLoader−>load_stubs() ;‘, or by using a
function which is selfloaded;

or

2. You should read the FOOBAR::DATA filehandle first, leaving the handle open and positioned at the f
line of subroutine declarations.

You could conceivably do both.

Classes and inherited methods.
For modules which are not classes, this section is not relevant. This section is only relevant if yo
methods which could be inherited.

A subroutine stub (or forward declaration) looks like

 sub stub;

i.e. it is a subroutine declaration without the body of the subroutine. For modules which are not classe
is no real need for stubs as far as autoloading is concerned.

For modules which ARE classes, and need to handle inherited methods, stubs are needed to ensur
method inheritance mechanism works properly. You can load the stubs into the module at ‘require’ tim
adding the statement ‘SelfLoader−>load_stubs() ;’ to the module to do this.

The alternative is to put the stubs in before the __DATA__ token BEFORE releasing the module, and fo
this purpose the Devel::SelfStubber module is available. However this does require the extra ste
ensuring that the stubs are in the module. If this is done I strongly recommend that this is done BE
releasing the module − it should NOT be done at install time in general.
18−Oct−1998 Version 5.005_02 1017

SelfLoader Perl Programmers Reference Guide SelfLoader

equires
lly

 the
Multiple packages and fully qualified subroutine names
Subroutines in multiple packages within the same file are supported − but you should note that this r
exporting the SelfLoader::AUTOLOAD to every package which requires it. This is done automatica
by the SelfLoader when it first loads the subs into the cache, but you should really specify it in
initialization before the __DATA__ by putting a ‘use SelfLoader’ statement in each package.

Fully qualified subroutine names are also supported. For example,

 __DATA__
 sub foo::bar {23}
 package baz;
 sub dob {32}

will all be loaded correctly by the SelfLoader, and the SelfLoader will ensure that the packages ‘foo’ and
‘baz’ correctly have the SelfLoader AUTOLOAD method when the data after __DATA__ is first parsed.
1018 Version 5.005_02 18−Oct−1998

Shell Perl Programmers Reference Guide Shell

 bug in
NAME
Shell − run shell commands transparently within perl

SYNOPSIS
See below.

DESCRIPTION
 Date: Thu, 22 Sep 94 16:18:16 −0700
 Message−Id: <9409222318.AA17072@scalpel.netlabs.com>
 To: perl5−porters@isu.edu
 From: Larry Wall <lwall@scalpel.netlabs.com>
 Subject: a new module I just wrote

Here‘s one that‘ll whack your mind a little out.

 #!/usr/bin/perl

 use Shell;

 $foo = echo("howdy", "<funny>", "world");
 print $foo;

 $passwd = cat("</etc/passwd");
 print $passwd;

 sub ps;
 print ps −ww;

 cp("/etc/passwd", "/tmp/passwd");

That‘s maybe too gonzo. It actually exports an AUTOLOAD to the current package (and uncovered a
Beta 3, by the way). Maybe the usual usage should be

 use Shell qw(echo cat ps cp);

Larry

AUTHOR
Larry Wall
18−Oct−1998 Version 5.005_02 1019

Socket Perl Programmers Reference Guide Socket

tructure

d
This
monly

l
, but can

 Takes
lved,

ound is

otation
NAME
Socket, sockaddr_in, sockaddr_un, inet_aton, inet_ntoa − load the C socket.h defines and s
manipulators

SYNOPSIS
 use Socket;

 $proto = getprotobyname(’udp’);
 socket(Socket_Handle, PF_INET, SOCK_DGRAM, $proto);
 $iaddr = gethostbyname(’hishost.com’);
 $port = getservbyname(’time’, ’udp’);
 $sin = sockaddr_in($port, $iaddr);
 send(Socket_Handle, 0, 0, $sin);

 $proto = getprotobyname(’tcp’);
 socket(Socket_Handle, PF_INET, SOCK_STREAM, $proto);
 $port = getservbyname(’smtp’, ’tcp’);
 $sin = sockaddr_in($port,inet_aton("127.1"));
 $sin = sockaddr_in(7,inet_aton("localhost"));
 $sin = sockaddr_in(7,INADDR_LOOPBACK);
 connect(Socket_Handle,$sin);

 ($port, $iaddr) = sockaddr_in(getpeername(Socket_Handle));
 $peer_host = gethostbyaddr($iaddr, AF_INET);
 $peer_addr = inet_ntoa($iaddr);

 $proto = getprotobyname(’tcp’);
 socket(Socket_Handle, PF_UNIX, SOCK_STREAM, $proto);
 unlink(’/tmp/usock’);
 $sun = sockaddr_un(’/tmp/usock’);
 connect(Socket_Handle,$sun);

DESCRIPTION
This module is just a translation of the C socket.h file. Unlike the old mechanism of requiring a translate
socket.ph file, this uses the h2xs program (see the Perl source distribution) and your native C compiler.
means that it has a far more likely chance of getting the numbers right. This includes all of the com
used pound−defines like AF_INET, SOCK_STREAM, etc.

Also, some common socket "newline" constants are provided: the constants CR, LF, and CRLF, as well as
$CR, $LF, and $CRLF, which map to \015 , \012 , and \015\012 . If you do not want to use the litera
characters in your programs, then use the constants provided here. They are not exported by default
be imported individually, and with the :crlf export tag:

 use Socket qw(:DEFAULT :crlf);

In addition, some structure manipulation functions are available:

inet_aton HOSTNAME
Takes a string giving the name of a host, and translates that to the 4−byte string (structure).
arguments of both the ‘rtfm.mit.edu’ type and ‘18.181.0.24’. If the host name cannot be reso
returns undef. For multi−homed hosts (hosts with more than one address), the first address f
returned.

inet_ntoa IP_ADDRESS
Takes a four byte ip address (as returned by inet_aton()) and translates it into a string of the form
‘d.d.d.d’ where the ‘d‘s are numbers less than 256 (the normal readable four dotted number n
for internet addresses).
1020 Version 5.005_02 18−Oct−1998

Socket Perl Programmers Reference Guide Socket

rticular
network
ally

solicit

ORT,
 and

 For

 in the

ng of
and

 in with
the
INADDR_ANY
Note: does not return a number, but a packed string.

Returns the 4−byte wildcard ip address which specifies any of the hosts ip addresses. (A pa
machine can have more than one ip address, each address corresponding to a particular
interface. This wildcard address allows you to bind to all of them simultaneously.) Norm
equivalent to inet_aton(‘0.0.0.0’).

INADDR_BROADCAST
Note: does not return a number, but a packed string.

Returns the 4−byte ‘this−lan’ ip broadcast address. This can be useful for some protocols to
information from all servers on the same LAN cable. Normally equivalent to
inet_aton(‘255.255.255.255’).

INADDR_LOOPBACK
Note − does not return a number.

Returns the 4−byte loopback address. Normally equivalent to inet_aton(‘localhost’).

INADDR_NONE
Note − does not return a number.

Returns the 4−byte ‘invalid’ ip address. Normally equivalent to inet_aton(‘255.255.255.255’).

sockaddr_in PORT, ADDRESS
sockaddr_in SOCKADDR_IN

In an array context, unpacks its SOCKADDR_IN argument and returns an array consisting of (P
ADDRESS). In a scalar context, packs its (PORT, ADDRESS) arguments as a SOCKADDR_IN
returns it. If this is confusing, use pack_sockaddr_in() and unpack_sockaddr_in()
explicitly.

pack_sockaddr_in PORT, IP_ADDRESS
Takes two arguments, a port number and a 4 byte IP_ADDRESS (as returned by inet_aton()).
Returns the sockaddr_in structure with those arguments packed in with AF_INET filled in.
internet domain sockets, this structure is normally what you need for the arguments in bind() ,
connect() , and send() , and is also returned by getpeername() , getsockname() and
recv() .

unpack_sockaddr_in SOCKADDR_IN
Takes a sockaddr_in structure (as returned by pack_sockaddr_in()) and returns an array of two
elements: the port and the 4−byte ip−address. Will croak if the structure does not have AF_INET
right place.

sockaddr_un PATHNAME
sockaddr_un SOCKADDR_UN

In an array context, unpacks its SOCKADDR_UN argument and returns an array consisti
(PATHNAME). In a scalar context, packs its PATHNAME arguments as a SOCKADDR_UN
returns it. If this is confusing, use pack_sockaddr_un() and unpack_sockaddr_un()
explicitly. These are only supported if your system has <sys/un.h>.

pack_sockaddr_un PATH
Takes one argument, a pathname. Returns the sockaddr_un structure with that path packed
AF_UNIX filled in. For unix domain sockets, this structure is normally what you need for
arguments in bind() , connect() , and send() , and is also returned by getpeername() ,
getsockname() and recv() .
18−Oct−1998 Version 5.005_02 1021

Socket Perl Programmers Reference Guide Socket

.

unpack_sockaddr_un SOCKADDR_UN
Takes a sockaddr_un structure (as returned by pack_sockaddr_un()) and returns the pathname
Will croak if the structure does not have AF_UNIX in the right place.
1022 Version 5.005_02 18−Oct−1998

Symbol Perl Programmers Reference Guide Symbol

 can be

 −>
;
ENV",

mption

r

d by
NAME
Symbol − manipulate Perl symbols and their names

SYNOPSIS
 use Symbol;

 $sym = gensym;
 open($sym, "filename");
 $_ = <$sym>;
 # etc.

 ungensym $sym; # no effect

 print qualify("x"), "\n"; # "Test::x"
 print qualify("x", "FOO"), "\n" # "FOO::x"
 print qualify("BAR::x"), "\n"; # "BAR::x"
 print qualify("BAR::x", "FOO"), "\n"; # "BAR::x"
 print qualify("STDOUT", "FOO"), "\n"; # "main::STDOUT" (global)
 print qualify(*x), "\n"; # returns *x
 print qualify(*x, "FOO"), "\n"; # returns *x

 use strict refs;
 print { qualify_to_ref $fh } "foo!\n";
 $ref = qualify_to_ref $name, $pkg;

 use Symbol qw(delete_package);
 delete_package(’Foo::Bar’);
 print "deleted\n" unless exists $Foo::{’Bar::’};

DESCRIPTION
Symbol::gensym creates an anonymous glob and returns a reference to it. Such a glob reference
used as a file or directory handle.

For backward compatibility with older implementations that didn‘t support anonymous globs,
Symbol::ungensym is also provided. But it doesn‘t do anything.

Symbol::qualify turns unqualified symbol names into qualified variable names (e.g. "myvar"
"MyPackage::myvar"). If it is given a second parameter, qualify uses it as the default package
otherwise, it uses the package of its caller. Regardless, global variable names (e.g. "STDOUT", "
"SIG") are always qualfied with "main::".

Qualification applies only to symbol names (strings). References are left unchanged under the assu
that they are glob references, which are qualified by their nature.

Symbol::qualify_to_ref is just like Symbol::qualify except that it returns a glob ref rathe
than a symbol name, so you can use the result even if use strict ‘refs’ is in effect.

Symbol::delete_package wipes out a whole package namespace. Note this routine is not exporte
default—you may want to import it explicitly.
18−Oct−1998 Version 5.005_02 1023

Sys::Hostname Perl Programmers Reference Guide Sys::Hostname

It tries
NAME
Sys::Hostname − Try every conceivable way to get hostname

SYNOPSIS
 use Sys::Hostname;
 $host = hostname;

DESCRIPTION
Attempts several methods of getting the system hostname and then caches the result.
syscall(SYS_gethostname) , ‘hostname‘ , ‘uname −n‘ , and the file /com/host. If all that fails it
croak s.

All nulls, returns, and newlines are removed from the result.

AUTHOR
David Sundstrom <sunds@asictest.sc.ti.com>

Texas Instruments
1024 Version 5.005_02 18−Oct−1998

Sys::Syslog Perl Programmers Reference Guide Sys::Syslog
NAME
Sys::Syslog, openlog, closelog, setlogmask, syslog − Perl interface to the UNIX syslog(3) calls

SYNOPSIS
 use Sys::Syslog; # all except setlogsock, or:
 use Sys::Syslog qw(:DEFAULT setlogsock); # default set, plus setlogsock

 setlogsock $sock_type;
 openlog $ident, $logopt, $facility;
 syslog $priority, $format, @args;
 $oldmask = setlogmask $mask_priority;
 closelog;

DESCRIPTION
Sys::Syslog is an interface to the UNIX syslog(3) program. Call syslog() with a string priority and a
list of printf() args just like syslog(3) .

Syslog provides the functions:

openlog $ident, $logopt, $facility
$ident is prepended to every message. $logopt contains zero or more of the words pid, ndelay,
cons, nowait. $facility specifies the part of the system

syslog $priority, $format, @args
If $priority permits, logs ($format, @args) printed as by printf(3V) , with the addition that
%m is replaced with "$!" (the latest error message).

setlogmask $mask_priority
Sets log mask $mask_priority and returns the old mask.

setlogsock $sock_type (added in 5.004_02)
Sets the socket type to be used for the next call to openlog() or syslog() and returns TRUE on
success, undef on failure.

A value of ‘unix’ will connect to the UNIX domain socket returned by _PATH_LOG in syslog.ph. A
value of ‘inet’ will connect to an INET socket returned by getservbyname() . Any other value
croaks.

The default is for the INET socket to be used.

closelog
Closes the log file.

Note that openlog now takes three arguments, just like openlog(3) .

EXAMPLES
 openlog($program, ’cons,pid’, ’user’);
 syslog(’info’, ’this is another test’);
 syslog(’mail|warning’, ’this is a better test: %d’, time);
 closelog();

 syslog(’debug’, ’this is the last test’);

 setlogsock(’unix’);
 openlog("$program $$", ’ndelay’, ’user’);
 syslog(’notice’, ’fooprogram: this is really done’);

 setlogsock(’inet’);
 $! = 55;
 syslog(’info’, ’problem was %m’); # %m == $! in syslog(3)
18−Oct−1998 Version 5.005_02 1025

Sys::Syslog Perl Programmers Reference Guide Sys::Syslog

d

DEPENDENCIES
Sys::Syslog needs syslog.ph, which can be created with h2ph .

SEE ALSO
syslog(3)

AUTHOR
Tom Christiansen <tchrist@perl.com> and Larry Wall <larry@wall.org>. UNIX domain sockets added by
Sean Robinson <robinson_s@sc.maricopa.edu> with support from Tim Bunce <Tim.Bunce@ig.co.uk an
the perl5−porters mailing list.
1026 Version 5.005_02 18−Oct−1998

Term::Cap Perl Programmers Reference Guide Term::Cap

base.

sh,

 of the

 by
 the
ere is a

.

 (where

s to the
NAME
Term::Cap − Perl termcap interface

SYNOPSIS
 require Term::Cap;
 $terminal = Tgetent Term::Cap { TERM => undef, OSPEED => $ospeed };
 $terminal−>Trequire(qw/ce ku kd/);
 $terminal−>Tgoto(’cm’, $col, $row, $FH);
 $terminal−>Tputs(’dl’, $count, $FH);
 $terminal−>Tpad($string, $count, $FH);

DESCRIPTION
These are low−level functions to extract and use capabilities from a terminal capability (termcap) data

The Tgetent function extracts the entry of the specified terminal type TERM (defaults to the environment
variable TERM) from the database.

It will look in the environment for a TERMCAP variable. If found, and the value does not begin with a sla
and the terminal type name is the same as the environment string TERM, the TERMCAP string is used
instead of reading a termcap file. If it does begin with a slash, the string is used as a path name
termcap file to search. If TERMCAP does not begin with a slash and name is different from TERM, Tgetent
searches the files $HOME/.termcap , /etc/termcap, and /usr/share/misc/termcap, in that order, unless the
environment variable TERMPATH exists, in which case it specifies a list of file pathnames (separated
spaces or colons) to be searched instead. Whenever multiple files are searched and a tc field occurs in
requested entry, the entry it names must be found in the same file or one of the succeeding files. If th
:tc=...: in the TERMCAP environment variable string it will continue the search in the files as above

OSPEED is the terminal output bit rate (often mistakenly called the baud rate). OSPEED can be specified as
either a POSIX termios/SYSV termio speeds (where 9600 equals 9600) or an old BSD−style speeds
13 equals 9600).

Tgetent returns a blessed object reference which the user can then use to send the control string
terminal using Tputs and Tgoto. It calls croak on failure.

Tgoto decodes a cursor addressing string with the given parameters.

The output strings for Tputs are cached for counts of 1 for performance. Tgoto and Tpad do not cache.
$self−>{_xx} is the raw termcap data and $self−>{xx} is the cached version.

 print $terminal−>Tpad($self−>{_xx}, 1);

Tgoto, Tputs, and Tpad return the string and will also output the string to $FH if specified.

The extracted termcap entry is available in the object as $self−>{TERMCAP}.

EXAMPLES
 # Get terminal output speed
 require POSIX;
 my $termios = new POSIX::Termios;
 $termios−>getattr;
 my $ospeed = $termios−>getospeed;

 # Old−style ioctl code to get ospeed:
 # require ’ioctl.pl’;
 # ioctl(TTY,$TIOCGETP,$sgtty);
 # ($ispeed,$ospeed) = unpack(’cc’,$sgtty);

 # allocate and initialize a terminal structure
 $terminal = Tgetent Term::Cap { TERM => undef, OSPEED => $ospeed };
18−Oct−1998 Version 5.005_02 1027

Term::Cap Perl Programmers Reference Guide Term::Cap
 # require certain capabilities to be available
 $terminal−>Trequire(qw/ce ku kd/);

 # Output Routines, if $FH is undefined these just return the string

 # Tgoto does the % expansion stuff with the given args
 $terminal−>Tgoto(’cm’, $col, $row, $FH);

 # Tputs doesn’t do any % expansion.
 $terminal−>Tputs(’dl’, $count = 1, $FH);
1028 Version 5.005_02 18−Oct−1998

Term::Complete Perl Programmers Reference Guide Term::Complete
NAME
Term::Complete − Perl word completion module

SYNOPSIS
 $input = complete(’prompt_string’, \@completion_list);
 $input = complete(’prompt_string’, @completion_list);

DESCRIPTION
This routine provides word completion on the list of words in the array (or array ref).

The tty driver is put into raw mode using the system command stty raw −echo and restored using
stty −raw echo .

The following command characters are defined:

<tab>
Attempts word completion. Cannot be changed.

^D Prints completion list. Defined by $Term::Complete::complete .

^U Erases the current input. Defined by $Term::Complete::kill .

, <bs>
Erases one character. Defined by $Term::Complete::erase1 and
$Term::Complete::erase2 .

DIAGNOSTICS
Bell sounds when word completion fails.

BUGS
The completion charater <tab> cannot be changed.

AUTHOR
Wayne Thompson
18−Oct−1998 Version 5.005_02 1029

Term::ReadLine Perl Programmers Reference Guide Term::ReadLine

tes

he only
is to set

es are

f the

ory.

t and

ames

tation.
NAME
Term::ReadLine − Perl interface to various readline packages. If no real package is found, substitu
stubs instead of basic functions.

SYNOPSIS
 use Term::ReadLine;
 $term = new Term::ReadLine ’Simple Perl calc’;
 $prompt = "Enter your arithmetic expression: ";
 $OUT = $term−>OUT || STDOUT;
 while (defined ($_ = $term−>readline($prompt))) {
 $res = eval($_), "\n";
 warn $@ if $@;
 print $OUT $res, "\n" unless $@;
 $term−>addhistory($_) if /\S/;
 }

DESCRIPTION
This package is just a front end to some other packages. At the moment this description is written, t
such package is Term−ReadLine, available on CPAN near you. The real target of this stub package
up a common interface to whatever Readline emerges with time.

Minimal set of supported functions
All the supported functions should be called as methods, i.e., either as

 $term = new Term::ReadLine ’name’;

or as

 $term−>addhistory(’row’);

where $term is a return value of Term::ReadLine−>Init.

ReadLine returns the actual package that executes the commands. Among possible valu
Term::ReadLine::Gnu , Term::ReadLine::Perl , Term::ReadLine::Stub
Exporter .

new returns the handle for subsequent calls to following functions. Argument is the name o
application. Optionally can be followed by two arguments for IN and OUT filehandles.
These arguments should be globs.

readline gets an input line, possibly with actual readline support. Trailing newline is removed.
Returns undef on EOF.

addhistory adds the line to the history of input, from where it can be used if the actual readline is
present.

IN , $OUT return the filehandles for input and output or undef if readline input and output
cannot be used for Perl.

MinLine If argument is specified, it is an advice on minimal size of line to be included into hist
undef means do not include anything into history. Returns the old value.

findConsole returns an array with two strings that give most appropriate names for files for inpu
output using conventions "<$in", ">out" .

Attribs returns a reference to a hash which describes internal configuration of the package. N
of keys in this hash conform to standard conventions with the leading rl_ stripped.

Features Returns a reference to a hash with keys being features present in current implemen
Several optional features are used in the minimal interface: appname should be present if
the first argument to new is recognized, and minline should be present if MinLine
1030 Version 5.005_02 18−Oct−1998

Term::ReadLine Perl Programmers Reference Guide Term::ReadLine

y

andard

t

 use

king for

, a
such as

ble the

loaded.

ed
method is not dummy. autohistory should be present if lines are put into histor
automatically (maybe subject to MinLine), and addhistory if addhistory method
is not dummy.

If Features method reports a feature attribs as present, the method Attribs is not
dummy.

Additional supported functions
Actually Term::ReadLine can use some other package, that will support reacher set of commands.

All these commands are callable via method interface and have names which conform to st
conventions with the leading rl_ stripped.

The stub package included with the perl distribution allows some additional methods:

tkRunning makes Tk event loop run when waiting for user input (i.e., during readline method).

ornaments makes the command line stand out by using termcap data. The argument to ornaments
should be 0, 1, or a string of a form "aa,bb,cc,dd" . Four components of this string
should be names of terminal capacities, first two will be issued to make the promp
standout, last two to make the input line standout.

newTTY takes two arguments which are input filehandle and output filehandle. Switches to
these filehandles.

One can check whether the currently loaded ReadLine package supports these methods by chec
corresponding Features .

EXPORTS
None

ENVIRONMENT
The envrironment variable PERL_RL governs which ReadLine clone is loaded. If the value is false
dummy interface is used. If the value is true, it should be tail of the name of the package to use,
Perl or Gnu.

As a special case, if the value of this variable is space−separated, the tail might be used to disa
ornaments by setting the tail to be o=0 or ornaments=0 . The head should be as described above, say

If the variable is not set, or if the head of space−separated list is empty, the best available package is

 export "PERL_RL=Perl o=0" # Use Perl ReadLine without ornaments
 export "PERL_RL= o=0" # Use best available ReadLine without ornaments

(Note that processing of PERL_RL for ornaments is in the discretion of the particular us
Term::ReadLine::* package).
18−Oct−1998 Version 5.005_02 1031

Test Perl Programmers Reference Guide Test

 writing

ument
 tests

NOT to

t starts
nted in

ckage,
ce to a
lso be

report
 failure.
NAME
 Test − provides a simple framework for writing test scripts

SYNOPSIS
 use strict;
 use Test;
 BEGIN { plan tests => 13, todo => [3,4] }

 ok(0); # failure
 ok(1); # success

 ok(0); # ok, expected failure (see todo list, above)
 ok(1); # surprise success!

 ok(0,1); # failure: ’0’ ne ’1’
 ok(’broke’,’fixed’); # failure: ’broke’ ne ’fixed’
 ok(’fixed’,’fixed’); # success: ’fixed’ eq ’fixed’

 ok(sub { 1+1 }, 2); # success: ’2’ eq ’2’
 ok(sub { 1+1 }, 3); # failure: ’2’ ne ’3’
 ok(0, int(rand(2)); # (just kidding! :−)

 my @list = (0,0);
 ok @list, 3, "\@list=".join(’,’,@list); #extra diagnostics
 ok ’segmentation fault’, ’/(?i)success/’; #regex match

 skip($feature_is_missing, ...); #do platform specific test

DESCRIPTION
Test::Harness expects to see particular output when it executes tests. This module aims to make
proper test scripts just a little bit easier (and less error prone :−).

TEST TYPES

 NORMAL TESTS
These tests are expected to succeed. If they don‘t, something‘s screwed up!

 SKIPPED TESTS
Skip tests need a platform specific feature that might or might not be available. The first arg
should evaluate to true if the required feature is NOT available. After the first argument, skip
work exactly the same way as do normal tests.

 TODO TESTS
TODO tests are designed for maintaining an executable TODO list. These tests are expected
succeed (otherwise the feature they test would be on the new feature list, not the TODO list).

Packages should NOT be released with successful TODO tests. As soon as a TODO tes
working, it should be promoted to a normal test and the newly minted feature should be docume
the release notes.

ONFAIL
 BEGIN { plan test => 4, onfail => sub { warn "CALL 911!" } }

The test failures can trigger extra diagnostics at the end of the test run. onfail is passed an array ref of
hash refs that describe each test failure. Each hash will contain at least the following fields: pa
repetition, and result. (The file, line, and test number are not included because their correspondan
particular test is fairly weak.) If the test had an expected value or a diagnostic string, these will a
included.

This optional feature might be used simply to print out the version of your package and/or how to
problems. It might also be used to generate extremely sophisticated diagnostics for a particular test
1032 Version 5.005_02 18−Oct−1998

Test Perl Programmers Reference Guide Test

.

 used,
It‘s not a panacea, however. Core dumps or other unrecoverable errors will prevent the onfail hook from
running. (It is run inside an END block.) Besides, onfail is probably over−kill in the majority of cases
(Your test code should be simpler than the code it is testing, yes?)

SEE ALSO
Test::Harness and various test coverage analysis tools.

AUTHOR
Copyright (C) 1998 Joshua Nathaniel Pritikin. All rights reserved.

This package is free software and is provided "as is" without express or implied warranty. It may be
redistributed and/or modified under the terms of the Perl Artistic License (see
http://www.perl.com/perl/misc/Artistic.html)
18−Oct−1998 Version 5.005_02 1033

Test::Harness Perl Programmers Reference Guide Test::Harness

ects.

f
t
med as

 by

r. Lines

 its

nd

tests is
NAME
Test::Harness − run perl standard test scripts with statistics

SYNOPSIS
use Test::Harness;

runtests(@tests);

DESCRIPTION
(By using the Test module, you can write test scripts without knowing the exact output this module exp
However, if you need to know the specifics, read on!)

Perl test scripts print to standard output "ok N" for each single test, where N is an increasing sequence o
integers. The first line output by a standard test script is "1..M" with M being the number of tests tha
should be run within the test script. Test::Harness::runtests(@tests) runs all the testscripts na
arguments and checks standard output for the expected "ok N" strings.

After all tests have been performed, runtests() prints some performance statistics that are computed
the Benchmark module.

The test script output
Any output from the testscript to standard error is ignored and bypassed, thus will be seen by the use
written to standard output containing /^(not\s+)?ok\b/ are interpreted as feedback for runtests() .
All other lines are discarded.

It is tolerated if the test numbers after ok are omitted. In this case Test::Harness maintains temporarily
own counter until the script supplies test numbers again. So the following test script

 print <<END;
 1..6
 not ok
 ok
 not ok
 ok
 ok
 END

will generate

 FAILED tests 1, 3, 6
 Failed 3/6 tests, 50.00% okay

The global variable $Test::Harness::verbose is exportable and can be used to let runtests()
display the standard output of the script without altering the behavior otherwise.

The global variable $Test::Harness::switches is exportable and can be used to set perl comma
line options used for running the test script(s). The default value is −w.

If the standard output line contains substring # Skip (with variations in spacing and case) after ok or ok
NUMBER, it is counted as a skipped test. If the whole testscript succeeds, the count of skipped
included in the generated output.

EXPORT
&runtests is exported by Test::Harness per default.

DIAGNOSTICS

All tests successful.\nFiles=%d, Tests=%d, %s
If all tests are successful some statistics about the performance are printed.
1034 Version 5.005_02 18−Oct−1998

Test::Harness Perl Programmers Reference Guide Test::Harness

o

test

d by
utors

 the
s.
FAILED tests %s\n\tFailed %d/%d tests, %.2f%% okay.
For any single script that has failing subtests statistics like the above are printed.

Test returned status %d (wstat %d)
Scripts that return a non−zero exit status, both $? >> 8 and $? are printed in a message similar t
the above.

Failed 1 test, %.2f%% okay. %s
Failed %d/%d tests, %.2f%% okay. %s

If not all tests were successful, the script dies with one of the above messages.

ENVIRONMENT
Setting HARNESS_IGNORE_EXITCODE makes harness ignore the exit status of child processes.

If HARNESS_FILELEAK_IN_DIR is set to the name of a directory, harness will check after each
whether new files appeared in that directory, and report them as

 LEAKED FILES: scr.tmp 0 my.db

If relative, directory name is with respect to the current directory at the moment runtests() was called.
Putting absolute path into HARNESS_FILELEAK_IN_DIR may give more predicatable results.

SEE ALSO
Test for writing test scripts and also Benchmark for the underlying timing routines.

AUTHORS
Either Tim Bunce or Andreas Koenig, we don‘t know. What we know for sure is, that it was inspire
Larry Wall‘s TEST script that came with perl distributions for ages. Numerous anonymous contrib
exist. Current maintainer is Andreas Koenig.

BUGS
Test::Harness uses $^X to determine the perl binary to run the tests with. Test scripts running via
shebang (#!) line may not be portable because $^X is not consistent for shebang scripts across platform
This is no problem when Test::Harness is run with an absolute path to the perl binary or when $^X can be
found in the path.
18−Oct−1998 Version 5.005_02 1035

Text::Abbrev Perl Programmers Reference Guide Text::Abbrev

erenced
NAME
abbrev − create an abbreviation table from a list

SYNOPSIS
 use Text::Abbrev;
 abbrev $hashref, LIST

DESCRIPTION
Stores all unambiguous truncations of each element of LIST as keys key in the associative array ref
to by $hashref. The values are the original list elements.

EXAMPLE
 $hashref = abbrev qw(list edit send abort gripe);

 %hash = abbrev qw(list edit send abort gripe);

 abbrev $hashref, qw(list edit send abort gripe);

 abbrev(*hash, qw(list edit send abort gripe));
1036 Version 5.005_02 18−Oct−1998

Text::ParseWords Perl Programmers Reference Guide Text::ParseWords

a
imiters
e
es.

ut all

scaped
ne
 with
s
serving
NAME
Text::ParseWords − parse text into an array of tokens or array of arrays

SYNOPSIS
 use Text::ParseWords;
 @lists = &nested_quotewords($delim, $keep, @lines);
 @words = "ewords($delim, $keep, @lines);
 @words = &shellwords(@lines);
 @words = &parse_line($delim, $keep, $line);
 @words = &old_shellwords(@lines); # DEPRECATED!

DESCRIPTION
The &nested_quotewords() and "ewords() functions accept a delimiter (which can be
regular expression) and a list of lines and then breaks those lines up into a list of words ignoring del
that appear inside quotes. "ewords() returns all of the tokens in a single long list, whil
&nested_quotewords() returns a list of token lists corresponding to the elements of @lin
&parse_line() does tokenizing on a single string. The &*quotewords() functions simply call
&parse_lines() , so if you‘re only splitting one line you can call &parse_lines() directly and save
a function call.

The $keep argument is a boolean flag. If true, then the tokens are split on the specified delimiter, b
other characters (quotes, backslashes, etc.) are kept in the tokens. If $keep is false then the
&*quotewords() functions remove all quotes and backslashes that are not themselves backslash−e
or inside of single quotes (i.e., "ewords() tries to interpret these characters just like the Bour
shell). NB: these semantics are significantly different from the original version of this module shipped
Perl 5.000 through 5.004. As an additional feature, $keep may be the keyword "delimiters" which cause
the functions to preserve the delimiters in each string as tokens in the token lists, in addition to pre
quote and backslash characters.

&shellwords() is written as a special case of "ewords() , and it does token parsing with
whitespace as a delimiter— similar to most Unix shells.

EXAMPLES
The sample program:

 use Text::ParseWords;
 @words = "ewords(’\s+’, 0, q{this is "a test" of\ quotewords \"for you});
 $i = 0;
 foreach (@words) {
 print "$i: <$_>\n";
 $i++;
 }

produces:

 0: <this>
 1: <is>
 2: <a test>
 3: <of quotewords>
 4: <"for>
 5: <you>

demonstrating:

0 a simple word

1 multiple spaces are skipped because of our $delim
18−Oct−1998 Version 5.005_02 1037

Text::ParseWords Perl Programmers Reference Guide Text::ParseWords

 of the

ichael

 you
2 use of quotes to include a space in a word

3 use of a backslash to include a space in a word

4 use of a backslash to remove the special meaning of a double−quote

5 another simple word (note the lack of effect of the backslashed double−quote)

Replacing "ewords(‘\s+‘, 0, q{this is...}) with &shellwords(q{this
is...}) is a simpler way to accomplish the same thing.

AUTHORS
Maintainer is Hal Pomeranz <pomeranz@netcom.com, 1994−1997 (Original author unknown). Much
code for &parse_line() (including the primary regexp) from Joerk Behrends
<jbehrends@multimediaproduzenten.de.

Examples section another documentation provided by John Heidemann <johnh@ISI.EDU

Bug reports, patches, and nagging provided by lots of folks— thanks everybody! Special thanks to M
Schwern <schwern@envirolink.org for assuring me that a &nested_quotewords() would be useful,
and to Jeff Friedl <jfriedl@yahoo−inc.com for telling me not to worry about error−checking (sort of—
had to be there).
1038 Version 5.005_02 18−Oct−1998

Text::Soundex Perl Programmers Reference Guide Text::Soundex

mall
peaker.

and the

st is

h

its) no
e. For
NAME
Text::Soundex − Implementation of the Soundex Algorithm as Described by Knuth

SYNOPSIS
 use Text::Soundex;

 $code = soundex $string; # get soundex code for a string
 @codes = soundex @list; # get list of codes for list of strings

 # set value to be returned for strings without soundex code

 $soundex_nocode = ’Z000’;

DESCRIPTION
This module implements the soundex algorithm as described by Donald Knuth in Volume 3 of The Art of
Computer Programming. The algorithm is intended to hash words (in particular surnames) into a s
space using a simple model which approximates the sound of the word when spoken by an English s
Each word is reduced to a four character string, the first character being an upper case letter
remaining three being digits.

If there is no soundex code representation for a string then the value of $soundex_nocode is returned.
This is initially set to undef , but many people seem to prefer an unlikely value like Z000 (how unlikely this
is depends on the data set being dealt with.) Any value can be assigned to $soundex_nocode.

In scalar context soundex returns the soundex code of its first argument, and in array context a li
returned in which each element is the soundex code for the corresponding argument passed to soundex
e.g.

 @codes = soundex qw(Mike Stok);

leaves @codes containing (‘M200‘, ‘S320’) .

EXAMPLES
Knuth‘s examples of various names and the soundex codes they map to are listed below:

 Euler, Ellery −> E460
 Gauss, Ghosh −> G200
 Hilbert, Heilbronn −> H416
 Knuth, Kant −> K530
 Lloyd, Ladd −> L300
 Lukasiewicz, Lissajous −> L222

so:

 $code = soundex ’Knuth’; # $code contains ’K530’
 @list = soundex qw(Lloyd Gauss); # @list contains ’L300’, ’G200’

LIMITATIONS
As the soundex algorithm was originally used a long time ago in the US it considers only the Englis
alphabet and pronunciation.

As it is mapping a large space (arbitrary length strings) onto a small space (single letter plus 3 dig
inference can be made about the similarity of two strings which end up with the same soundex cod
example, both Hilbert and Heilbronn end up with a soundex code of H416.

AUTHOR
This code was implemented by Mike Stok (stok@cybercom.net) from the description given by Knuth.
Ian Phillips (ian@pipex.net) and Rich Pinder (rpinder@hsc.usc.edu) supplied ideas and spotted
mistakes.
18−Oct−1998 Version 5.005_02 1039

Text::Tabs Perl Programmers Reference Guide Text::Tabs

s in it,
s in it,

d feed
NAME
Text::Tabs — expand and unexpand tabs per the unix expand(1) and unexpand(1)

SYNOPSIS
use Text::Tabs;

$tabstop = 4; @lines_without_tabs = expand(@lines_with_tabs); @lines_with_tabs =
unexpand(@lines_without_tabs);

DESCRIPTION
Text::Tabs does about what the unix utilities expand(1) and unexpand(1) do. Given a line with tab
expand will replace the tabs with the appropriate number of spaces. Given a line with or without tab
unexpand will add tabs when it can save bytes by doing so. Invisible compression with plain ascii!

BUGS
expand doesn‘t handle newlines very quickly — do not feed it an entire document in one string. Instea
it an array of lines.

AUTHOR
David Muir Sharnoff <muir@idiom.com
1040 Version 5.005_02 18−Oct−1998

Text::Wrap Perl Programmers Reference Guide Text::Wrap

e by

y and
s text

n

n.
NAME
Text::Wrap − line wrapping to form simple paragraphs

SYNOPSIS
use Text::Wrap

print wrap($initial_tab, $subsequent_tab, @text);

use Text::Wrap qw(wrap $columns $tabstop fill);

$columns = 132;
$tabstop = 4;

print fill($initial_tab, $subsequent_tab, @text);
print fill("", "", ‘cat book‘);

DESCRIPTION
Text::Wrap::wrap() is a very simple paragraph formatter. It formats a single paragraph at a tim
breaking lines at word boundries. Indentation is controlled for the first line ($initial_tab) and all
subsquent lines ($subsequent_tab) independently. $Text::Wrap::columns should be set to the
full width of your output device.

Text::Wrap::fill() is a simple multi−paragraph formatter. It formats each paragraph separatel
then joins them together when it‘s done. It will destory any whitespace in the original text. It break
into paragraphs by looking for whitespace after a newline. In other respects it acts like wrap() .

EXAMPLE
print wrap("\t","","This is a bit of text that forms

a normal book−style paragraph");

BUGS
It‘s not clear what the correct behavior should be when Wrap() is presented with a word that is longer tha
a line. The previous behavior was to die. Now the word is now split at line−length.

AUTHOR
David Muir Sharnoff <muir@idiom.com with help from Tim Pierce and others. Updated by Jacqui Care
18−Oct−1998 Version 5.005_02 1041

Tie::Array Perl Programmers Reference Guide Tie::Array

r

ed as
o

. See

of
rn an
NAME
Tie::Array − base class for tied arrays

SYNOPSIS
 package NewArray;
 use Tie::Array;
 @ISA = (’Tie::Array’);

 # mandatory methods
 sub TIEARRAY { ... }
 sub FETCH { ... }
 sub FETCHSIZE { ... }

 sub STORE { ... } # mandatory if elements writeable
 sub STORESIZE { ... } # mandatory if elements can be added/deleted

 # optional methods − for efficiency
 sub CLEAR { ... }
 sub PUSH { ... }
 sub POP { ... }
 sub SHIFT { ... }
 sub UNSHIFT { ... }
 sub SPLICE { ... }
 sub EXTEND { ... }
 sub DESTROY { ... }

 package NewStdArray;
 use Tie::Array;

 @ISA = (’Tie::StdArray’);

 # all methods provided by default

 package main;

 $object = tie @somearray,Tie::NewArray;
 $object = tie @somearray,Tie::StdArray;
 $object = tie @somearray,Tie::NewStdArray;

DESCRIPTION
This module provides methods for array−tying classes. See perltie for a list of the functions required in orde
to tie an array to a package. The basic Tie::Array package provides stub DELETE and EXTEND methods,
and implementations of PUSH, POP, SHIFT , UNSHIFT, SPLICE and CLEAR in terms of basic FETCH,
STORE, FETCHSIZE, STORESIZE.

The Tie::StdArray package provides efficient methods required for tied arrays which are implement
blessed references to an "inner" perl array. It inherits from Tie::Array , and should cause tied arrays t
behave exactly like standard arrays, allowing for selective overloading of methods.

For developers wishing to write their own tied arrays, the required methods are briefly defined below
the perltie section for more detailed descriptive, as well as example code:

TIEARRAY classname, LIST
The class method is invoked by the command tie @array, classname . Associates an array
instance with the specified class. LIST would represent additional arguments (along the lines
AnyDBM_File and compatriots) needed to complete the association. The method should retu
object of a class which provides the methods below.
1042 Version 5.005_02 18−Oct−1998

Tie::Array Perl Programmers Reference Guide Tie::Array

es

n.

eded to
STORE this, index, value
Store datum value into index for the tied array assoicated with object this. If this makes the array larger
then class‘s mapping of undef should be returned for new positions.

FETCH this, index
Retrieve the datum in index for the tied array assoicated with object this.

FETCHSIZE this
Returns the total number of items in the tied array assoicated with object this. (Equivalent to
scalar(@array)).

STORESIZE this, count
Sets the total number of items in the tied array assoicated with object this to be count. If this makes the
array larger then class‘s mapping of undef should be returned for new positions. If the array becom
smaller then entries beyond count should be deleted.

EXTEND this, count
Informative call that array is likely to grow to have count entries. Can be used to optimize allocatio
This method need do nothing.

CLEAR this
Clear (remove, delete, ...) all values from the tied array assoicated with object this.

DESTROY this
Normal object destructor method.

PUSH this, LIST
Append elements of LIST to the array.

POP this
Remove last element of the array and return it.

SHIFT this
Remove the first element of the array (shifting other elements down) and return it.

UNSHIFT this, LIST
Insert LIST elements at the begining of the array, moving existing elements up to make room.

SPLICE this, offset, length, LIST
Perform the equivalent of splice on the array.

offset is optional and defaults to zero, negative values count back from the end of the array.

length is optional and defaults to rest of the array.

LIST may be empty.

Returns a list of the original length elements at offset.

CAVEATS
There is no support at present for tied @ISA. There is a potential conflict between magic entries ne
notice setting of @ISA, and those needed to implement ‘tie’.

Very little consideration has been given to the behaviour of tied arrays when $[is not default value of zero.

AUTHOR
Nick Ing−Simmons <nik@tiuk.ti.com>
18−Oct−1998 Version 5.005_02 1043

Tie::Handle Perl Programmers Reference Guide Tie::Handle

for

w. The

e

l
ctions
NAME
Tie::Handle − base class definitions for tied handles

SYNOPSIS
 package NewHandle;
 require Tie::Handle;

 @ISA = (Tie::Handle);

 sub READ { ... } # Provide a needed method
 sub TIEHANDLE { ... } # Overrides inherited method

 package main;

 tie *FH, ’NewHandle’;

DESCRIPTION
This module provides some skeletal methods for handle−tying classes. See perltie for a list of the functions
required in tying a handle to a package. The basic Tie::Handle package provides a new method, as well as
methods TIESCALAR, FETCH and STORE. The new method is provided as a means of grandfathering,
classes that forget to provide their own TIESCALAR method.

For developers wishing to write their own tied−handle classes, the methods are summarized belo
perltie section not only documents these, but has sample code as well:

TIEHANDLE classname, LIST
The method invoked by the command tie *glob, classname . Associates a new glob instanc
with the specified class. LIST would represent additional arguments (along the lines of AnyDBM_File
and compatriots) needed to complete the association.

WRITE this, scalar, length, offset
Write length bytes of data from scalar starting at offset.

PRINT this, LIST
Print the values in LIST

PRINTF this, format, LIST
Print the values in LIST using format

READ this, scalar, length, offset
Read length bytes of data into scalar starting at offset.

READLINE this
Read a single line

GETC this
Get a single character

DESTROY this
Free the storage associated with the tied handle referenced by this. This is rarely needed, as Per
manages its memory quite well. But the option exists, should a class wish to perform specific a
upon the destruction of an instance.

MORE INFORMATION
The perltie section contains an example of tying handles.
1044 Version 5.005_02 18−Oct−1998

Tie::Hash Perl Programmers Reference Guide Tie::Hash

or
shes,
 a

w. See

e

NAME
Tie::Hash, Tie::StdHash − base class definitions for tied hashes

SYNOPSIS
 package NewHash;
 require Tie::Hash;

 @ISA = (Tie::Hash);

 sub DELETE { ... } # Provides needed method
 sub CLEAR { ... } # Overrides inherited method

 package NewStdHash;
 require Tie::Hash;

 @ISA = (Tie::StdHash);

 # All methods provided by default, define only those needing overrides
 sub DELETE { ... }

 package main;

 tie %new_hash, ’NewHash’;
 tie %new_std_hash, ’NewStdHash’;

DESCRIPTION
This module provides some skeletal methods for hash−tying classes. See perltie for a list of the functions
required in order to tie a hash to a package. The basic Tie::Hash package provides a new method, as well as
methods TIEHASH, EXISTS and CLEAR. The Tie::StdHash package provides most methods required f
hashes in perltie. It inherits from Tie::Hash, and causes tied hashes to behave exactly like standard ha
allowing for selective overloading of methods. The new method is provided as grandfathering in the case
class forgets to include a TIEHASH method.

For developers wishing to write their own tied hashes, the required methods are briefly defined belo
the perltie section for more detailed descriptive, as well as example code:

TIEHASH classname, LIST
The method invoked by the command tie %hash, classname . Associates a new hash instanc
with the specified class. LIST would represent additional arguments (along the lines of AnyDBM_File
and compatriots) needed to complete the association.

STORE this, key, value
Store datum value into key for the tied hash this.

FETCH this, key
Retrieve the datum in key for the tied hash this.

FIRSTKEY this
Return the (key, value) pair for the first key in the hash.

NEXTKEY this, lastkey
Return the next key for the hash.

EXISTS this, key
Verify that key exists with the tied hash this.

DELETE this, key
Delete the key key from the tied hash this.
18−Oct−1998 Version 5.005_02 1045

Tie::Hash Perl Programmers Reference Guide Tie::Hash

s.
ges,
CLEAR this
Clear all values from the tied hash this.

CAVEATS
The perltie documentation includes a method called DESTROY as a necessary method for tied hashe
Neither Tie::Hash nor Tie::StdHash define a default for this method. This is a standard for class packa
but may be omitted in favor of a simple default.

MORE INFORMATION
The packages relating to various DBM−related implemetations (DB_File, NDBM_File, etc.) show examples
of general tied hashes, as does the Config module. While these do not utilize Tie::Hash, they serve as good
working examples.
1046 Version 5.005_02 18−Oct−1998

Tie::RefHash Perl Programmers Reference Guide Tie::RefHash
NAME
Tie::RefHash − use references as hash keys

SYNOPSIS
 require 5.004;
 use Tie::RefHash;
 tie HASHVARIABLE, ’Tie::RefHash’, LIST;

 untie HASHVARIABLE;

DESCRIPTION
This module provides the ability to use references as hash keys if you first tie the hash variable to this
module.

It is implemented using the standard perl TIEHASH interface. Please see the tie entry in perlfunc(1) and
perltie(1) for more information.

EXAMPLE
 use Tie::RefHash;
 tie %h, ’Tie::RefHash’;
 $a = [];
 $b = {};
 $c = *main;
 $d = \"gunk";
 $e = sub { ’foo’ };
 %h = ($a => 1, $b => 2, $c => 3, $d => 4, $e => 5);
 $a−>[0] = ’foo’;
 $b−>{foo} = ’bar’;
 for (keys %h) {
 print ref($_), "\n";
 }

AUTHOR
Gurusamy Sarathy gsar@umich.edu

VERSION
Version 1.2 15 Dec 1996

SEE ALSO
perl(1), perlfunc(1), perltie(1)
18−Oct−1998 Version 5.005_02 1047

Tie::Scalar Perl Programmers Reference Guide Tie::Scalar

d
lars,
g,

w. The

of

l
ctions
NAME
Tie::Scalar, Tie::StdScalar − base class definitions for tied scalars

SYNOPSIS
 package NewScalar;
 require Tie::Scalar;

 @ISA = (Tie::Scalar);

 sub FETCH { ... } # Provide a needed method
 sub TIESCALAR { ... } # Overrides inherited method

 package NewStdScalar;
 require Tie::Scalar;

 @ISA = (Tie::StdScalar);

 # All methods provided by default, so define only what needs be overridden
 sub FETCH { ... }

 package main;

 tie $new_scalar, ’NewScalar’;
 tie $new_std_scalar, ’NewStdScalar’;

DESCRIPTION
This module provides some skeletal methods for scalar−tying classes. See perltie for a list of the functions
required in tying a scalar to a package. The basic Tie::Scalar package provides a new method, as well as
methods TIESCALAR, FETCH and STORE. The Tie::StdScalar package provides all the methods specifie
in perltie. It inherits from Tie::Scalar and causes scalars tied to it to behave exactly like the built−in sca
allowing for selective overloading of methods. The new method is provided as a means of grandfatherin
for classes that forget to provide their own TIESCALAR method.

For developers wishing to write their own tied−scalar classes, the methods are summarized belo
perltie section not only documents these, but has sample code as well:

TIESCALAR classname, LIST
The method invoked by the command tie $scalar, classname . Associates a new scalar
instance with the specified class. LIST would represent additional arguments (along the lines
AnyDBM_File and compatriots) needed to complete the association.

FETCH this
Retrieve the value of the tied scalar referenced by this.

STORE this, value
Store data value in the tied scalar referenced by this.

DESTROY this
Free the storage associated with the tied scalar referenced by this. This is rarely needed, as Per
manages its memory quite well. But the option exists, should a class wish to perform specific a
upon the destruction of an instance.

MORE INFORMATION
The perltie section uses a good example of tying scalars by associating process IDs with priority.
1048 Version 5.005_02 18−Oct−1998

Tie::SubstrHash Perl Programmers Reference Guide Tie::SubstrHash

, with

sed, the
 pairs,

 than
ctly

ory than

o means
NAME
Tie::SubstrHash − Fixed−table−size, fixed−key−length hashing

SYNOPSIS
 require Tie::SubstrHash;

 tie %myhash, ’Tie::SubstrHash’, $key_len, $value_len, $table_size;

DESCRIPTION
The Tie::SubstrHash package provides a hash−table−like interface to an array of determinate size
constant key size and record size.

Upon tying a new hash to this package, the developer must specify the size of the keys that will be u
size of the value fields that the keys will index, and the size of the overall table (in terms of key−value
not size in hard memory). These values will not change for the duration of the tied hash. The
newly−allocated hash table may now have data stored and retrieved. Efforts to store more
$table_size elements will result in a fatal error, as will efforts to store a value not exa
$value_len characters in length, or reference through a key not exactly $key_len characters in length.
While these constraints may seem excessive, the result is a hash table using much less internal mem
an equivalent freely−allocated hash table.

CAVEATS
Because the current implementation uses the table and key sizes for the hashing algorithm, there is n
by which to dynamically change the value of any of the initialization parameters.
18−Oct−1998 Version 5.005_02 1049

Time::Local Perl Programmers Reference Guide Time::Local

w the
ves are
are close
e time
ou hit

nd then
ined by
rently

 most
NAME
Time::Local − efficiently compute time from local and GMT time

SYNOPSIS
 $time = timelocal($sec,$min,$hours,$mday,$mon,$year);
 $time = timegm($sec,$min,$hours,$mday,$mon,$year);

DESCRIPTION
These routines are quite efficient and yet are always guaranteed to agree with localtime() and
gmtime() . We manage this by caching the start times of any months we‘ve seen before. If we kno
start time of the month, we can always calculate any time within the month. The start times themsel
guessed by successive approximation starting at the current time, since most dates seen in practice
to the current date. Unlike algorithms that do a binary search (calling gmtime once for each bit of th
value, resulting in 32 calls), this algorithm calls it at most 6 times, and usually only once or twice. If y
the month cache, of course, it doesn‘t call it at all.

timelocal is implemented using the same cache. We just assume that we‘re translating a GMT time, a
fudge it when we‘re done for the timezone and daylight savings arguments. The timezone is determ
examining the result of localtime(0) when the package is initialized. The daylight savings offset is cur
assumed to be one hour.

Both routines return −1 if the integer limit is hit. I.e. for dates after the 1st of January, 2038 on
machines.
1050 Version 5.005_02 18−Oct−1998

Time::gmtime Perl Programmers Reference Guide Time::gmtime

s
m the

ng the
iables

s
a the

s, you
NAME
Time::gmtime − by−name interface to Perl‘s built−in gmtime() function

SYNOPSIS
 use Time::gmtime;
 $gm = gmtime();
 printf "The day in Greenwich is %s\n",
 (qw(Sun Mon Tue Wed Thu Fri Sat Sun))[gm−>wday()];

 use Time::gmtime w(:FIELDS;
 printf "The day in Greenwich is %s\n",
 (qw(Sun Mon Tue Wed Thu Fri Sat Sun))[gm_wday()];

 $now = gmctime();

 use Time::gmtime;
 use File::stat;
 $date_string = gmctime(stat($file)−>mtime);

DESCRIPTION
This module‘s default exports override the core gmtime() function, replacing it with a version that return
"Time::tm" objects. This object has methods that return the similarly named structure field name fro
C‘s tm structure from time.h; namely sec, min, hour, mday, mon, year, wday, yday, and isdst.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding tm_ in front their method names. Thus, $tm_obj−>mday() corresponds to
$tm_mday if you import the fields.

The gmctime() funtion provides a way of getting at the scalar sense of the original CORE::gmtime()
function.

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
18−Oct−1998 Version 5.005_02 1051

Time::localtime Perl Programmers Reference Guide Time::localtime

 name

ng the
iables

s
a the

s, you
NAME
Time::localtime − by−name interface to Perl‘s built−in localtime() function

SYNOPSIS
 use Time::localtime;
 printf "Year is %d\n", localtime−>year() + 1900;

 $now = ctime();

 use Time::localtime;
 use File::stat;
 $date_string = ctime(stat($file)−>mtime);

DESCRIPTION
This module‘s default exports override the core localtime() function, replacing it with a version that
returns "Time::tm" objects. This object has methods that return the similarly named structure field
from the C‘s tm structure from time.h; namely sec, min, hour, mday, mon, year, wday, yday, and isdst.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding tm_ in front their method names. Thus, $tm_obj−>mday() corresponds to
$tm_mday if you import the fields.

The ctime() funtion provides a way of getting at the scalar sense of the original CORE::localtime()
function.

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
1052 Version 5.005_02 18−Oct−1998

Time::tm Perl Programmers Reference Guide Time::tm

ates a
NAME
Time::tm − internal object used by Time::gmtime and Time::localtime

SYNOPSIS
Don‘t use this module directly.

DESCRIPTION
This module is used internally as a base class by Time::localtime And Time::gmtime functions. It cre
Time::tm struct object which is addressable just like‘s C‘s tm structure from time.h; namely with sec, min,
hour, mday, mon, year, wday, yday, and isdst.

This class is an internal interface only.

AUTHOR
Tom Christiansen
18−Oct−1998 Version 5.005_02 1053

UNIVERSAL Perl Programmers Reference Guide UNIVERSAL

d.

If
an or
NAME
UNIVERSAL − base class for ALL classes (blessed references)

SYNOPSIS
 $io = $fd−>isa("IO::Handle");
 $sub = $obj−>can(’print’);

 $yes = UNIVERSAL::isa($ref, "HASH");

DESCRIPTION
UNIVERSAL is the base class which all bless references will inherit from, see perlobj

UNIVERSAL provides the following methods

isa (TYPE)
isa returns true if REF is blessed into package TYPE or inherits from package TYPE.

isa can be called as either a static or object method call.

can (METHOD)
can checks if the object has a method called METHOD. If it does then a reference to the sub is returne
If it does not then undef is returned.

can can be called as either a static or object method call.

VERSION ([REQUIRE])
VERSION will return the value of the variable $VERSION in the package the object is blessed into.
REQUIRE is given then it will do a comparison and die if the package version is not greater th
equal to REQUIRE.

VERSION can be called as either a static or object method call.

The isa and can methods can also be called as subroutines

UNIVERSAL::isa (VAL, TYPE)
isa returns true if the first argument is a reference and either of the following statements is true.

 VAL is a blessed reference and is blessed into package TYPE or inherits from package
TYPE

 VAL is a reference to a TYPE of perl variable (er ‘HASH’)

UNIVERSAL::can (VAL, METHOD)
If VAL is a blessed reference which has a method called METHOD, can returns a reference to the
subroutine. If VAL is not a blessed reference, or if it does not have a method METHOD, undef is
returned.

These subroutines should not be imported via use UNIVERSAL qw(...) . If you want simple local
access to them you can do

 *isa = \&UNIVERSAL::isa;

to import isa into your package.
1054 Version 5.005_02 18−Oct−1998

User::grent Perl Programmers Reference Guide User::grent

t return

ng the
iables

s
a the

s, you
NAME
User::grent − by−name interface to Perl‘s built−in getgr*() functions

SYNOPSIS
 use User::grent;
 $gr = getgrgid(0) or die "No group zero";
 if ($gr−>name eq ’wheel’ && @{$gr−>members} > 1) {
 print "gid zero name wheel, with other members";
 }

 use User::grent qw(:FIELDS;
 getgrgid(0) or die "No group zero";
 if ($gr_name eq ’wheel’ && @gr_members > 1) {
 print "gid zero name wheel, with other members";
 }

 $gr = getgr($whoever);

DESCRIPTION
This module‘s default exports override the core getgrent() , getgruid() , and getgrnam()
functions, replacing them with versions that return "User::grent" objects. This object has methods tha
the similarly named structure field name from the C‘s passwd structure from grp.h; namely name, passwd,
gid, and members (not mem). The first three return scalars, the last an array reference.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding gr_ . Thus, $group_obj−>gid() corresponds to $gr_gid if you import the
fields. Array references are available as regular array variables, so @{ $group_obj−>members() }
would be simply @gr_members.

The getpw() funtion is a simple front−end that forwards a numeric argument to getpwuid() and the
rest to getpwnam() .

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
18−Oct−1998 Version 5.005_02 1055

User::pwent Perl Programmers Reference Guide User::pwent

s that

ng the
iables

s
a the

s, you
NAME
User::pwent − by−name interface to Perl‘s built−in getpw*() functions

SYNOPSIS
 use User::pwent;
 $pw = getpwnam(’daemon’) or die "No daemon user";
 if ($pw−>uid == 1 && $pw−>dir =~ m#^/(bin|tmp)?$#) {
 print "gid 1 on root dir";
 }

 use User::pwent qw(:FIELDS);
 getpwnam(’daemon’) or die "No daemon user";
 if ($pw_uid == 1 && $pw_dir =~ m#^/(bin|tmp)?$#) {
 print "gid 1 on root dir";
 }

 $pw = getpw($whoever);

DESCRIPTION
This module‘s default exports override the core getpwent() , getpwuid() , and getpwnam()
functions, replacing them with versions that return "User::pwent" objects. This object has method
return the similarly named structure field name from the C‘s passwd structure from pwd.h; namely name,
passwd, uid, gid, quota, comment, gecos, dir, and shell.

You may also import all the structure fields directly into your namespace as regular variables usi
:FIELDS import tag. (Note that this still overrides your core functions.) Access these fields as var
named with a preceding pw_ in front their method names. Thus, $passwd_obj−>shell() corresponds
to $pw_shell if you import the fields.

The getpw() funtion is a simple front−end that forwards a numeric argument to getpwuid() and the
rest to getpwnam() .

To access this functionality without the core overrides, pass the use an empty import list, and then acces
function functions with their full qualified names. On the other hand, the built−ins are still available vi
CORE:: pseudo−package.

NOTE
While this class is currently implemented using the Class::Struct module to build a struct−like clas
shouldn‘t rely upon this.

AUTHOR
Tom Christiansen
1056 Version 5.005_02 18−Oct−1998

autouse Perl Programmers Reference Guide autouse

his

mpile

ions

p your
NAME
autouse − postpone load of modules until a function is used

SYNOPSIS
 use autouse ’Carp’ => qw(carp croak);
 carp "this carp was predeclared and autoused ";

DESCRIPTION
If the module Module is already loaded, then the declaration

 use autouse ’Module’ => qw(func1 func2($;$) Module::func3);

is equivalent to

 use Module qw(func1 func2);

if Module defines func2() with prototype ($;$), and func1() and func3() have no prototypes.
(At least if Module uses Exporter ‘s import , otherwise it is a fatal error.)

If the module Module is not loaded yet, then the above declaration declares functions func1() and
func2() in the current package, and declares a function Module::func3() . When these functions are
called, they load the package Module if needed, and substitute themselves with the correct definitions.

WARNING
Using autouse will move important steps of your program‘s execution from compile time to runtime. T
can

 Break the execution of your program if the module you autouse d has some initialization which it
expects to be done early.

 hide bugs in your code since important checks (like correctness of prototypes) is moved from co
time to runtime. In particular, if the prototype you specified on autouse line is wrong, you will not
find it out until the corresponding function is executed. This will be very unfortunate for funct
which are not always called (note that for such functions autouse ing gives biggest win, for a
workaround see below).

To alleviate the second problem (partially) it is advised to write your scripts like this:

 use Module;
 use autouse Module => qw(carp($) croak(&$));
 carp "this carp was predeclared and autoused ";

The first line ensures that the errors in your argument specification are found early. When you shi
application you should comment out the first line, since it makes the second one useless.

AUTHOR
Ilya Zakharevich (ilya@math.ohio−state.edu)

SEE ALSO
perl(1).
18−Oct−1998 Version 5.005_02 1057

blib Perl Programmers Reference Guide blib

lled
NAME
blib − Use MakeMaker‘s uninstalled version of a package

SYNOPSIS
 perl −Mblib script [args...]

 perl −Mblib=dir script [args...]

DESCRIPTION
Looks for MakeMaker−like ‘blib’ directory structure starting in dir (or current directory) and working back
up to five levels of ’..’.

Intended for use on command line with −M option as a way of testing arbitary scripts against an uninsta
version of a package.

However it is possible to :

 use blib;
 or
 use blib ’..’;

etc. if you really must.

BUGS
Pollutes global name space for development only task.

AUTHOR
Nick Ing−Simmons nik@tiuk.ti.com
1058 Version 5.005_02 18−Oct−1998

constant Perl Programmers Reference Guide constant

pon
ly to be
because

irectly.

to make
names.

ct to

 symbol

nts in

for way
NAME
constant − Perl pragma to declare constants

SYNOPSIS
 use constant BUFFER_SIZE => 4096;
 use constant ONE_YEAR => 365.2425 * 24 * 60 * 60;
 use constant PI => 4 * atan2 1, 1;
 use constant DEBUGGING => 0;
 use constant ORACLE => ’oracle@cs.indiana.edu’;
 use constant USERNAME => scalar getpwuid($<);
 use constant USERINFO => getpwuid($<);

 sub deg2rad { PI * $_[0] / 180 }

 print "This line does nothing" unless DEBUGGING;

DESCRIPTION
This will declare a symbol to be a constant with the given scalar or list value.

When you declare a constant such as PI using the method shown above, each machine your script runs u
can have as many digits of accuracy as it can use. Also, your program will be easier to read, more like
maintained (and maintained correctly), and far less likely to send a space probe to the wrong planet
nobody noticed the one equation in which you wrote 3.14195 .

NOTES
The value or values are evaluated in a list context. You may override this with scalar as shown above.

These constants do not directly interpolate into double−quotish strings, although you may do so ind
(See perlref for details about how this works.)

 print "The value of PI is @{[PI]}.\n";

List constants are returned as lists, not as arrays.

 $homedir = USERINFO[7]; # WRONG
 $homedir = (USERINFO)[7]; # Right

The use of all caps for constant names is merely a convention, although it is recommended in order
constants stand out and to help avoid collisions with other barewords, keywords, and subroutine
Constant names must begin with a letter.

Constant symbols are package scoped (rather than block scoped, as use strict is). That is, you can refer
to a constant from package Other as Other::CONST .

As with all use directives, defining a constant happens at compile time. Thus, it‘s probably not corre
put a constant declaration inside of a conditional statement (like if ($foo) { use constant ...
}).

Omitting the value for a symbol gives it the value of undef in a scalar context or the empty list, () , in a list
context. This isn‘t so nice as it may sound, though, because in this case you must either quote the
name, or use a big arrow, (=>), with nothing to point to. It is probably best to declare these explicitly.

 use constant UNICORNS => ();
 use constant LOGFILE => undef;

The result from evaluating a list constant in a scalar context is not documented, and is not guaranteed to be
any particular value in the future. In particular, you should not rely upon it being the number of eleme
the list, especially since it is not necessarily that value in the current implementation.

Magical values, tied values, and references can be made into constants at compile time, allowing
cool stuff like this. (These error numbers aren‘t totally portable, alas.)
18−Oct−1998 Version 5.005_02 1059

constant Perl Programmers Reference Guide constant

of Perl,
ing the

ithout

 a Good

onment

 is true

ts
 use constant E2BIG => ($! = 7);
 print E2BIG, "\n";# something like "Arg list too long"
 print 0+E2BIG, "\n";# "7"

TECHNICAL NOTE
In the current implementation, scalar constants are actually inlinable subroutines. As of version 5.004
the appropriate scalar constant is inserted directly in place of some subroutine calls, thereby sav
overhead of a subroutine call. See Constant Functions in perlsub for details about how and when this
happens.

BUGS
In the current version of Perl, list constants are not inlined and some symbols may be redefined w
generating a warning.

It is not possible to have a subroutine or keyword with the same name as a constant. This is probably
Thing.

Unlike constants in some languages, these cannot be overridden on the command line or via envir
variables.

You can get into trouble if you use constants in a context which automatically quotes barewords (as
for any subroutine call). For example, you can‘t say $hash{CONSTANT} because CONSTANT will be
interpreted as a string. Use $hash{CONSTANT()} or $hash{+CONSTANT} to prevent the bareword
quoting mechanism from kicking in. Similarly, since the => operator quotes a bareword immediately to i
left you have to say CONSTANT() => ‘value’ instead of CONSTANT => ‘value’ .

AUTHOR
Tom Phoenix, <rootbeer@teleport.com>, with help from many other folks.

COPYRIGHT
Copyright (C) 1997, Tom Phoenix

This module is free software; you can redistribute it or modify it under the same terms as Perl itself.
1060 Version 5.005_02 18−Oct−1998

diagnostics Perl Programmers Reference Guide diagnostics

rpeter,

ry good
y

e

e)
NAME
diagnostics − Perl compiler pragma to force verbose warning diagnostics

splain − standalone program to do the same thing

SYNOPSIS
As a pragma:

 use diagnostics;
 use diagnostics −verbose;

 enable diagnostics;
 disable diagnostics;

Aa a program:

 perl program 2>diag.out
 splain [−v] [−p] diag.out

DESCRIPTION

The diagnostics Pragma
This module extends the terse diagnostics normally emitted by both the perl compiler and the perl inte
augmenting them with the more explicative and endearing descriptions found in perldiag. Like the other
pragmata, it affects the compilation phase of your program rather than merely the execution phase.

To use in your program as a pragma, merely invoke

 use diagnostics;

at the start (or near the start) of your program. (Note that this does enable perl‘s −w flag.) Your whole
compilation will then be subject(ed :−) to the enhanced diagnostics. These still go out STDERR.

Due to the interaction between runtime and compiletime issues, and because it‘s probably not a ve
idea anyway, you may not use no diagnostics to turn them off at compiletime. However, you ma
control there behaviour at runtime using the disable() and enable() methods to turn them off and on
respectively.

The −verbose flag first prints out the perldiag introduction before any other diagnostics. Th
$diagnostics::PRETTY variable can generate nicer escape sequences for pagers.

The splain Program
While apparently a whole nuther program, splain is actually nothing more than a link to the (executabl
diagnostics.pm module, as well as a link to the diagnostics.pod documentation. The −v flag is like the use
diagnostics −verbose directive. The −p flag is like the $diagnostics::PRETTY variable.
Since you‘re post−processing with splain, there‘s no sense in being able to enable() or disable()
processing.

Output from splain is directed to STDOUT, unlike the pragma.

EXAMPLES
The following file is certain to trigger a few errors at both runtime and compiletime:

 use diagnostics;
 print NOWHERE "nothing\n";
 print STDERR "\n\tThis message should be unadorned.\n";
 warn "\tThis is a user warning";
 print "\nDIAGNOSTIC TESTER: Please enter a <CR> here: ";
 my $a, $b = scalar <STDIN>;
 print "\n";
 print $x/$y;
18−Oct−1998 Version 5.005_02 1061

diagnostics Perl Programmers Reference Guide diagnostics

e

the

 of

level"
If you prefer to run your program first and look at its problem afterwards, do this:

 perl −w test.pl 2>test.out
 ./splain < test.out

Note that this is not in general possible in shells of more dubious heritage, as the theoretical

 (perl −w test.pl >/dev/tty) >& test.out
 ./splain < test.out

Because you just moved the existing stdout to somewhere else.

If you don‘t want to modify your source code, but still have on−the−fly warnings, do this:

 exec 3>&1; perl −w test.pl 2>&1 1>&3 3>&− | splain 1>&2 3>&−

Nifty, eh?

If you want to control warnings on the fly, do something like this. Make sure you do the use first, or you
won‘t be able to get at the enable() or disable() methods.

 use diagnostics; # checks entire compilation phase
print "\ntime for 1st bogus diags: SQUAWKINGS\n";
print BOGUS1 ’nada’;
print "done with 1st bogus\n";

 disable diagnostics; # only turns off runtime warnings
print "\ntime for 2nd bogus: (squelched)\n";
print BOGUS2 ’nada’;
print "done with 2nd bogus\n";

 enable diagnostics; # turns back on runtime warnings
print "\ntime for 3rd bogus: SQUAWKINGS\n";
print BOGUS3 ’nada’;
print "done with 3rd bogus\n";

 disable diagnostics;
print "\ntime for 4th bogus: (squelched)\n";
print BOGUS4 ’nada’;
print "done with 4th bogus\n";

INTERNALS
Diagnostic messages derive from the perldiag.pod file when available at runtime. Otherwise, they may b
embedded in the file itself when the splain package is built. See the Makefile for details.

If an extant $SIG{__WARN__} handler is discovered, it will continue to be honored, but only after
diagnostics::splainthis() function (the module‘s $SIG{__WARN__} interceptor) has had its
way with your warnings.

There is a $diagnostics::DEBUG variable you may set if you‘re desperately curious what sorts
things are being intercepted.

 BEGIN { $diagnostics::DEBUG = 1 }

BUGS
Not being able to say "no diagnostics" is annoying, but may not be insurmountable.

The −pretty directive is called too late to affect matters. You have to do this instead, and before you load
the module.

 BEGIN { $diagnostics::PRETTY = 1 }

I could start up faster by delaying compilation until it should be needed, but this gets a "panic: top_
when using the pragma form in Perl 5.001e.
1062 Version 5.005_02 18−Oct−1998

diagnostics Perl Programmers Reference Guide diagnostics
While it‘s true that this documentation is somewhat subserious, if you use a program named splain, you
should expect a bit of whimsy.

AUTHOR
Tom Christiansen <tchrist@mox.perl.com, 25 June 1995.
18−Oct−1998 Version 5.005_02 1063

fields Perl Programmers Reference Guide fields

 hash

sh of the
sh map
sh, then

 made
 from
acter are
enerate

t arrays
 untyped
 the 0‘th
like this
NAME
fields − compile−time class fields

SYNOPSIS
 {
 package Foo;
 use fields qw(foo bar _private);
 }
 ...
 my Foo $var = new Foo;
 $var−>{foo} = 42;

 # This will generate a compile−time error.
 $var−>{zap} = 42;

 {
 package Bar;
 use base ’Foo’;
 use fields ’bar’; # hides Foo−>{bar}
 use fields qw(baz _private); # not shared with Foo
 }

DESCRIPTION
The fields pragma enables compile−time verified class fields. It does so by updating the %FIELDS
in the calling package.

If a typed lexical variable holding a reference is used to access a hash element and the %FIELDS ha
given type exists, then the operation is turned into an array access at compile time. The %FIELDS ha
from hash element names to the array indices. If the hash element is not present in the %FIELDS ha
a compile−time error is signaled.

Since the %FIELDS hash is used at compile−time, it must be set up at compile−time too. This is
easier with the help of the ‘fields’ and the ‘base’ pragma modules. The ‘base’ pragma will copy fields
base classes and the ‘fields’ pragma adds new fields. Field names that start with an underscore char
made private to a class and are not visible to subclasses. Inherited fields can be overridden but will g
a warning if used together with the −w switch.

The effect of all this is that you can have objects with named fields which are as compact and as fas
to access. This only works as long as the objects are accessed through properly typed variables. For
access to work you have to make sure that a reference to the proper %FIELDS hash is assigned to
element of the array object (so that the objects can be treated like an pseudo−hash). A constructor
does the job:

 sub new
 {
 my $class = shift;
 no strict ’refs’;
 my $self = bless [\%{"$class\::FIELDS"], $class;
 $self;
 }

SEE ALSO
base, Pseudo−hashes: Using an array as a hash
1064 Version 5.005_02 18−Oct−1998

integer Perl Programmers Reference Guide integer

 many
 point
NAME
integer − Perl pragma to compute arithmetic in integer instead of double

SYNOPSIS
 use integer;
 $x = 10/3;
 # $x is now 3, not 3.33333333333333333

DESCRIPTION
This tells the compiler to use integer operations from here to the end of the enclosing BLOCK. On
machines, this doesn‘t matter a great deal for most computations, but on those without floating
hardware, it can make a big difference.

Note that this affects the operations, not the numbers. If you run this code

 use integer;
 $x = 1.5;
 $y = $x + 1;
 $z = −1.5;

you‘ll be left with $x == 1.5 , $y == 2 and $z == −1 . The $z case happens because unary − counts
as an operation.

See Pragmatic Modules.
18−Oct−1998 Version 5.005_02 1065

less Perl Programmers Reference Guide less

uch as
NAME
less − perl pragma to request less of something from the compiler

SYNOPSIS
 use less; # unimplemented

DESCRIPTION
Currently unimplemented, this may someday be a compiler directive to make certain trade−offs, s
perhaps

 use less ’memory’;
 use less ’CPU’;
 use less ’fat’;
1066 Version 5.005_02 18−Oct−1998

lib Perl Programmers Reference Guide lib

led
g

 care
ules in

te

ter

led
g

NAME
lib − manipulate @INC at compile time

SYNOPSIS
 use lib LIST;

 no lib LIST;

DESCRIPTION
This is a small simple module which simplifies the manipulation of @INC at compile time.

It is typically used to add extra directories to perl‘s search path so that later use or require statements
will find modules which are not located on perl‘s default search path.

ADDING DIRECTORIES TO @INC
The parameters to use lib are added to the start of the perl search path. Saying

 use lib LIST;

is almost the same as saying

 BEGIN { unshift(@INC, LIST) }

For each directory in LIST (called $dir here) the lib module also checks to see if a directory cal
$dir/$archname/auto exists. If so the $dir/$archname directory is assumed to be a correspondin
architecture specific directory and is added to @INC in front of $dir.

If LIST includes both $dir and $dir/$archname then $dir/$archname will be added to @INC
twice (if $dir/$archname/auto exists).

DELETING DIRECTORIES FROM @INC
You should normally only add directories to @INC. If you need to delete directories from @INC take
to only delete those which you added yourself or which you are certain are not needed by other mod
your script. Other modules may have added directories which they need for correct operation.

By default the no lib statement deletes the first instance of each named directory from @INC. To dele
multiple instances of the same name from @INC you can specify the name multiple times.

To delete all instances of all the specified names from @INC you can specify ‘:ALL’ as the first parame
of no lib . For example:

 no lib qw(:ALL .);

For each directory in LIST (called $dir here) the lib module also checks to see if a directory cal
$dir/$archname/auto exists. If so the $dir/$archname directory is assumed to be a correspondin
architecture specific directory and is also deleted from @INC.

If LIST includes both $dir and $dir/$archname then $dir/$archname will be deleted from @INC
twice (if $dir/$archname/auto exists).

RESTORING ORIGINAL @INC
When the lib module is first loaded it records the current value of @INC in an array @lib::ORIG_INC .
To restore @INC to that value you can say

 @INC = @lib::ORIG_INC;

SEE ALSO
FindBin − optional module which deals with paths relative to the source file.

AUTHOR
Tim Bunce, 2nd June 1995.
18−Oct−1998 Version 5.005_02 1067

locale Perl Programmers Reference Guide locale

ations
r "no
NAME
locale − Perl pragma to use and avoid POSIX locales for built−in operations

SYNOPSIS
 @x = sort @y; # ASCII sorting order
 {
 use locale;
 @x = sort @y; # Locale−defined sorting order
 }
 @x = sort @y; # ASCII sorting order again

DESCRIPTION
This pragma tells the compiler to enable (or disable) the use of POSIX locales for built−in oper
(LC_CTYPE for regular expressions, and LC_COLLATE for string comparison). Each "use locale" o
locale" affects statements to the end of the enclosing BLOCK.
1068 Version 5.005_02 18−Oct−1998

overload Perl Programmers Reference Guide overload

x, nor
uture.

ll work.
d below.

e

ded

trigger

se
ents
e first

er the
tion by
NAME
overload − Package for overloading perl operations

SYNOPSIS
 package SomeThing;

 use overload
’+’ => \&myadd,
’−’ => \&mysub;
etc

 ...

 package main;
 $a = new SomeThing 57;
 $b=5+$a;
 ...
 if (overload::Overloaded $b) {...}
 ...
 $strval = overload::StrVal $b;

CAVEAT SCRIPTOR
Overloading of operators is a subject not to be taken lightly. Neither its precise implementation, synta
semantics are 100% endorsed by Larry Wall. So any of these may be changed at some point in the f

DESCRIPTION

Declaration of overloaded functions
The compilation directive

 package Number;
 use overload

"+" => \&add,
"*=" => "muas";

declares function Number::add() for addition, and method muas() in the "class" Number (or one of its
base classes) for the assignment form *= of multiplication.

Arguments of this directive come in (key, value) pairs. Legal values are values legal inside a &{ ... }
call, so the name of a subroutine, a reference to a subroutine, or an anonymous subroutine will a
Note that values specified as strings are interpreted as methods, not subroutines. Legal keys are liste

The subroutine add will be called to execute $a+$b if $a is a reference to an object blessed into th
package Number, or if $a is not an object from a package with defined mathemagic addition, but $b is a
reference to a Number. It can also be called in other situations, like $a+=7, or $a++. See
MAGIC AUTOGENERATION. (Mathemagical methods refer to methods triggered by an overloa
mathematical operator.)

Since overloading respects inheritance via the @ISA hierarchy, the above declaration would also
overloading of + and *= in all the packages which inherit from Number.

Calling Conventions for Binary Operations
The functions specified in the use overload ... directive are called with three (in one particular ca
with four, see Last Resort) arguments. If the corresponding operation is binary, then the first two argum
are the two arguments of the operation. However, due to general object calling conventions, th
argument should always be an object in the package, so in the situation of 7+$a, the order of the arguments
is interchanged. It probably does not matter when implementing the addition method, but wheth
arguments are reversed is vital to the subtraction method. The method can query this informa
examining the third argument, which can take three different values:
18−Oct−1998 Version 5.005_02 1069

overload Perl Programmers Reference Guide overload

mpare

g will

nd may
m this

lled in
rential
res

t
d

 by the
FALSE the order of arguments is as in the current operation.

TRUE the arguments are reversed.

undef the current operation is an assignment variant (as in $a+=7), but the usual function is called
instead. This additional information can be used to generate some optimizations. Co
Calling Conventions for Mutators.

Calling Conventions for Unary Operations
Unary operation are considered binary operations with the second argument being undef . Thus the
functions that overloads {"++"} is called with arguments ($a,undef,‘’) when $a++ is executed.

Calling Conventions for Mutators
Two types of mutators have different calling conventions:

++ and —
The routines which implement these operators are expected to actually mutate their arguments. So,
assuming that $obj is a reference to a number,

 sub incr { my $n = $ {$_[0]}; ++$n; $_[0] = bless \$n}

is an appropriate implementation of overloaded ++. Note that

 sub incr { ++$ {$_[0]} ; shift }

is OK if used with preincrement and with postincrement. (In the case of postincrement a copyin
be performed, see Copy Constructor.)

x= and other assignment versions
There is nothing special about these methods. They may change the value of their arguments, a
leave it as is. The result is going to be assigned to the value in the left−hand−side if different fro
value.

This allows for the same method to be used as averloaded += and +. Note that this is allowed, but not
recommended, since by the semantic of "Fallback" Perl will call the method for + anyway, if += is not
overloaded.

Warning. Due to the presense of assignment versions of operations, routines which may be ca
assignment context may create self−referencial structures. Currently Perl will not free self−refe
structures until cycles are explicitly broken. You may get problems when traversing your structu
too.

Say,

 use overload ’+’ => sub { bless [\$_[0], \$_[1]] };

is asking for trouble, since for code $obj += $foo the subroutine is called as $obj = add($obj,
$foo, undef) , or $obj = [\$obj, \$foo]. If using such a subroutine is an importan
optimization, one can overload += explicitly by a non−"optimized" version, or switch to non−optimize
version if not defined $_[2] (see Calling Conventions for Binary Operations).

Even if no explicit assignment−variants of operators are present in the script, they may be generated
optimizer. Say, ",$obj," or ‘,’ . $obj . ‘,’ may be both optimized to

 my $tmp = ’,’ . $obj; $tmp .= ’,’;

Overloadable Operations
The following symbols can be specified in use overload directive:

 Arithmetic operations
 "+", "+=", "−", "−=", "*", "*=", "/", "/=", "%", "%=",
 "**", "**=", "<<", "<<=", ">>", ">>=", "x", "x=", ".", ".=",
1070 Version 5.005_02 18−Oct−1998

overload Perl Programmers Reference Guide overload

ariant is

g

issing

ng
he

led both

ither

d too,

 being
For these operations a substituted non−assignment variant can be called if the assignment v
not available. Methods for operations "+", "−", "+=", and "−=" can be called to automatically
generate increment and decrement methods. The operation "−" can be used to autogenerate missin
methods for unary minus or abs .

See "MAGIC AUTOGENERATION", "Calling Conventions for Mutators" and
"Calling Conventions for Binary Operations") for details of these substitutions.

 Comparison operations
 "<", "<=", ">", ">=", "==", "!=", "<=>",
 "lt", "le", "gt", "ge", "eq", "ne", "cmp",

If the corresponding "spaceship" variant is available, it can be used to substitute for the m
operation. During sort ing arrays, cmp is used to compare values subject to use overload .

 Bit operations
 "&", "^", "|", "neg", "!", "~",

"neg " stands for unary minus. If the method for neg is not specified, it can be autogenerated usi
the method for subtraction. If the method for "! " is not specified, it can be autogenerated using t
methods for "bool ", or "\"\" ", or "0+".

 Increment and decrement
 "++", "−−",

If undefined, addition and subtraction methods can be used instead. These operations are cal
in prefix and postfix form.

 Transcendental functions
 "atan2", "cos", "sin", "exp", "abs", "log", "sqrt",

If abs is unavailable, it can be autogenerated using methods for "<" or "<=>" combined with e
unary minus or subtraction.

 Boolean, string and numeric conversion
 "bool", "\"\"", "0+",

If one or two of these operations are unavailable, the remaining ones can be used instead. bool is
used in the flow control operators (like while) and for the ternary "?: " operation. These functions
can return any arbitrary Perl value. If the corresponding operation for this value is overloade
that operation will be called again with this value.

 Special
 "nomethod", "fallback", "=",

see SPECIAL SYMBOLS FOR use overload .

See "Fallback" for an explanation of when a missing method can be autogenerated.

A computer−readable form of the above table is available in the hash %overload::ops, with values
space−separated lists of names:

 with_assign => ’+ − * / % ** << >> x .’,
 assign => ’+= −= *= /= %= **= <<= >>= x= .=’,
 str_comparison => ’< <= > >= == !=’,
 ’3way_comparison’=> ’<=> cmp’,
 num_comparison => ’lt le gt ge eq ne’,
 binary => ’& | ^’,
 unary => ’neg ! ~’,
 mutators => ’++ −−’,
 func => ’atan2 cos sin exp abs log sqrt’,
18−Oct−1998 Version 5.005_02 1071

overload Perl Programmers Reference Guide overload

s is the
cestor,

the
,

alled
s of this
ent is
d. Say,

ree

tly

l hair.
 conversion => ’bool "" 0+’,
 special => ’nomethod fallback =’

Inheritance and overloading
Inheritance interacts with overloading in two ways.

Strings as values of use overload directive
If value in

 use overload key => value;

is a string, it is interpreted as a method name.

Overloading of an operation is inherited by derived classes
Any class derived from an overloaded class is also overloaded. The set of overloaded method
union of overloaded methods of all the ancestors. If some method is overloaded in several an
then which description will be used is decided by the usual inheritance rules:

If A inherits from B and C (in this order), B overloads + with \&D::plus_sub, and C overloads +
by "plus_meth" , then the subroutine D::plus_sub will be called to implement operation + for
an object in package A.

Note that since the value of the fallback key is not a subroutine, its inheritance is not governed by
above rules. In the current implementation, the value of fallback in the first overloaded ancestor is used
but this is accidental and subject to change.

SPECIAL SYMBOLS FOR use overload
Three keys are recognized by Perl that are not covered by the above description.

Last Resort
"nomethod" should be followed by a reference to a function of four parameters. If defined, it is c
when the overloading mechanism cannot find a method for some operation. The first three argument
function coincide with the arguments for the corresponding method if it were found, the fourth argum
the symbol corresponding to the missing method. If several methods are tried, the last one is use
1−$a can be equivalent to

&nomethodMethod($a,1,1,"−")

if the pair "nomethod" => "nomethodMethod" was specified in the use overload directive.

If some operation cannot be resolved, and there is no function assigned to "nomethod" , then an exception
will be raised via die() — unless "fallback" was specified as a key in use overload directive.

Fallback
The key "fallback" governs what to do if a method for a particular operation is not found. Th
different cases are possible depending on the value of "fallback" :

 undef Perl tries to use a substituted method (see MAGIC AUTOGENERATION). If this
fails, it then tries to calls "nomethod" value; if missing, an exception will be
raised.

 TRUE The same as for the undef value, but no exception is raised. Instead, it silen
reverts to what it would have done were there no use overload present.

 defined, but FALSE No autogeneration is tried. Perl tries to call "nomethod" value, and if this is
missing, raises an exception.

Note. "fallback" inheritance via @ISA is not carved in stone yet, see "Inheritance and overloading".

Copy Constructor
The value for "=" is a reference to a function with three arguments, i.e., it looks like the other values inuse
overload . However, it does not overload the Perl assignment operator. This would go against Came
1072 Version 5.005_02 18−Oct−1998

overload Perl Programmers Reference Guide overload

ct with

s
re

e is

rations.

 if not

rical
This operation is called in the situations when a mutator is applied to a reference that shares its obje
some other reference, such as

$a=$b;
++$a;

To make this change $a and not change $b, a copy of $$a is made, and $a is assigned a reference to thi
new object. This operation is done during execution of the ++$a, and not during the assignment, (so befo
the increment $$a coincides with $$b). This is only done if ++ is expressed via a method for ‘++’ or
‘+=’ (or nomethod). Note that if this operation is expressed via ‘+’ a nonmutator, i.e., as in

$a=$b;
$a=$a+1;

then $a does not reference a new copy of $$a, since $$a does not appear as lvalue when the above cod
executed.

If the copy constructor is required during the execution of some mutator, but a method for ‘=’ was not
specified, it can be autogenerated as a string copy if the object is a plain scalar.

Example
The actually executed code for

$a=$b;
 Something else which does not modify $a or $b....

++$a;

may be

$a=$b;
 Something else which does not modify $a or $b....

$a = $a−>clone(undef,"");
 $a−>incr(undef,"");

if $b was mathemagical, and ‘++’ was overloaded with \&incr, ‘=’ was overloaded with
\&clone.

Same behaviour is triggered by $b = $a++, which is consider a synonim for $b = $a; ++$a.

MAGIC AUTOGENERATION
If a method for an operation is not found, and the value for "fallback" is TRUE or undefined, Perl tries
to autogenerate a substitute method for the missing operation based on the defined ope
Autogenerated method substitutions are possible for the following operations:

Assignment forms of arithmetic operations
$a+=$b can use the method for "+" if the method for "+=" is not defined.

Conversion operations
String, numeric, and boolean conversion are calculated in terms of one another
all of them are defined.

Increment and decrement
The ++$a operation can be expressed in terms of $a+=1 or $a+1, and $a— in
terms of $a−=1 and $a−1.

abs($a) can be expressed in terms of $a<0 and −$a (or 0−$a).

Unary minus can be expressed in terms of subtraction.

Negation ! and not can be expressed in terms of boolean conversion, or string or nume
conversion.
18−Oct−1998 Version 5.005_02 1073

overload Perl Programmers Reference Guide overload

alue is

ical
ibly

on is

e lost.

−time

ess via
Concatenation can be expressed in terms of string conversion.

Comparison operations
can be expressed in terms of its "spaceship" counterpart: either <=> or cmp:

 <, >, <=, >=, ==, != in terms of <=>
 lt, gt, le, ge, eq, ne in terms of cmp

Copy operator can be expressed in terms of an assignment to the dereferenced value, if this v
a scalar and not a reference.

Losing overloading
The restriction for the comparison operation is that even if, for example, ‘cmp’ should return a blessed
reference, the autogenerated ‘lt ’ function will produce only a standard logical value based on the numer
value of the result of ‘cmp’. In particular, a working numeric conversion is needed in this case (poss
expressed in terms of other conversions).

Similarly, .= and x= operators lose their mathemagical properties if the string conversion substituti
applied.

When you chop() a mathemagical object it is promoted to a string and its mathemagical properties ar
 The same can happen with other operations as well.

Run−time Overloading
Since all use directives are executed at compile−time, the only way to change overloading during run
is to

 eval ’use overload "+" => \&addmethod’;

You can also use

 eval ’no overload "+", "−−", "<="’;

though the use of these constructs during run−time is questionable.

Public functions
Package overload.pm provides the following public functions:

overload::StrVal(arg)
Gives string value of arg as in absence of stringify overloading.

overload::Overloaded(arg)
Returns true if arg is subject to overloading of some operations.

overload::Method(obj,op)
Returns undef or a reference to the method that implements op .

Overloading constants
For some application Perl parser mangles constants too much. It is possible to hook into this proc
overload::constant() and overload::remove_constant() functions.

These functions take a hash as an argument. The recognized keys of this hash are

integer to overload integer constants,

float to overload floating point constants,

binary to overload octal and hexadecimal constants,

q to overload q−quoted strings, constant pieces of qq− and qx −quoted strings and
here−documents,
1074 Version 5.005_02 18−Oct−1998

overload Perl Programmers Reference Guide overload

e
ow the
shes in
of this
 third

e absurd

e. The

(fake)

ariable
ularly
ents

y during

 most
inimize
long to

 some

rloaded.

 that
qr to overload constant pieces of regular expressions.

The corresponding values are references to functions which take three arguments: the first one is thinitial
string form of the constant, the second one is how Perl interprets this constant, the third one is h
constant is used. Note that the initial string form does not contain string delimiters, and has backsla
backslash−delimiter combinations stripped (thus the value of delimiter is not relevant for processing
string). The return value of this function is how this constant is going to be interpreted by Perl. The
argument is undefined unless for overloaded q− and qr − constants, it is q in single−quote context (comes
from strings, regular expressions, and single−quote HERE documents), it is tr for arguments of tr /y
operators, it is s for right−hand side of s−operator, and it is qq otherwise.

Since an expression "ab$cd,," is just a shortcut for ‘ab’ . $cd . ‘,,’ , it is expected that
overloaded constant strings are equipped with reasonable overloaded catenation operator, otherwis
results will result. Similarly, negative numbers are considered as negations of positive constants.

Note that it is probably meaningless to call the functions overload::constant() and
overload::remove_constant() from anywhere but import() and unimport() methods. From
these methods they may be called as

sub import {
 shift;
 return unless @_;
 die "unknown import: @_" unless @_ == 1 and $_[0] eq ’:constant’;
 overload::constant integer => sub {Math::BigInt−>new(shift)};
}

BUGS Currently overloaded−ness of constants does not propagate into eval ’...’ .

IMPLEMENTATION
What follows is subject to change RSN.

The table of methods for all operations is cached in magic for the symbol table hash for the packag
cache is invalidated during processing of use overload , no overload , new function definitions, and
changes in @ISA. However, this invalidation remains unprocessed until the next bless ing into the
package. Hence if you want to change overloading structure dynamically, you‘ll need an additional
bless ing to update the table.

(Every SVish thing has a magic queue, and magic is an entry in that queue. This is how a single v
may participate in multiple forms of magic simultaneously. For instance, environment variables reg
have two forms at once: their %ENV magic and their taint magic. However, the magic which implem
overloading is applied to the stashes, which are rarely used directly, thus should not slow down Perl.)

If an object belongs to a package using overload, it carries a special flag. Thus the only speed penalt
arithmetic operations without overloading is the checking of this flag.

In fact, if use overload is not present, there is almost no overhead for overloadable operations, so
programs should not suffer measurable performance penalties. A considerable effort was made to m
the overhead when overload is used in some package, but the arguments in question do not be
packages using overload. When in doubt, test your speed with use overload and without it. So far there
have been no reports of substantial speed degradation if Perl is compiled with optimization turned on.

There is no size penalty for data if overload is not used. The only size penalty if overload is used in
package is that all the packages acquire a magic during the next bless ing into the package. This magic is
three−words−long for packages without overloading, and carries the cache tabel if the package is ove

Copying ($a=$b) is shallow; however, a one−level−deep copying is carried out before any operation
can imply an assignment to the object $a (or $b) refers to, like $a++. You can override this behavior by
defining your own copy constructor (see "Copy Constructor").
18−Oct−1998 Version 5.005_02 1075

overload Perl Programmers Reference Guide overload

 (but this

ent

e

 which

ithmetic
 far as
s the

t. It

metic
It is expected that arguments to methods that are not explicitly supposed to be changed are constant
is not enforced).

Metaphor clash
One may wonder why the semantic of overloaded = is so counterintuive. If it looks counterintuive to you,
you are subject to a metaphor clash.

Here is a Perl object metaphor:

 object is a reference to blessed data

and an arithmetic metaphor:

 object is a thing by itself.

The main problem of overloading = is the fact that these metaphors imply different actions on the assignm
$a = $b if $a and $b are objects. Perl−think implies that $a becomes a reference to whatever $b was
referencing. Arithmetic−think implies that the value of "object" $a is changed to become the value of th
object $b, preserving the fact that $a and $b are separate entities.

The difference is not relevant in the absence of mutators. After a Perl−way assignment an operation
mutates the data referenced by $a would change the data referenced by $b too. Effectively, after $a =
$b values of $a and $b become indistinguishable.

On the other hand, anyone who has used algebraic notation knows the expressive power of the ar
metaphor. Overloading works hard to enable this metaphor while preserving the Perlian way as
possible. Since it is not not possible to freely mix two contradicting metaphors, overloading allow
arithmetic way to write things as far as all the mutators are called via overloaded access only. The way it is
done is described in Copy Constructor.

If some mutator methods are directly applied to the overloaded values, one may need to explicitly unlink
other values which references the same value:

 $a = new Data 23;
 ...
 $b = $a; # $b is "linked" to $a
 ...
 $a = $a−>clone; # Unlink $b from $a
 $a−>increment_by(4);

Note that overloaded access makes this transparent:

 $a = new Data 23;
 $b = $a; # $b is "linked" to $a
 $a += 4; # would unlink $b automagically

However, it would not make

 $a = new Data 23;
 $a = 4; # Now $a is a plain 4, not ’Data’

preserve "objectness" of $a. But Perl has a way to make assignments to an object do whatever you wan
is just not the overload, but tie() ing interface (see tie). Adding a FETCH() method which returns the
object itself, and STORE() method which changes the value of the object, one can reproduce the arith
metaphor in its completeness, at least for variables which were tie() d from the start.

(Note that a workaround for a bug may be needed, see "BUGS".)

Cookbook
Please add examples to what follows!
1076 Version 5.005_02 18−Oct−1998

overload Perl Programmers Reference Guide overload

erators,
e

above
Two−face scalars
Put this in two_face.pm in your Perl library directory:

 package two_face; # Scalars with separate string and
 # numeric values.
 sub new { my $p = shift; bless [@_], $p }
 use overload ’""’ => \&str, ’0+’ => \&num, fallback => 1;
 sub num {shift−>[1]}
 sub str {shift−>[0]}

Use it as follows:

 require two_face;
 my $seven = new two_face ("vii", 7);
 printf "seven=$seven, seven=%d, eight=%d\n", $seven, $seven+1;
 print "seven contains ‘i’\n" if $seven =~ /i/;

(The second line creates a scalar which has both a string value, and a numeric value.) This prints:

 seven=vii, seven=7, eight=8
 seven contains ‘i’

Symbolic calculator
Put this in symbolic.pm in your Perl library directory:

 package symbolic; # Primitive symbolic calculator
 use overload nomethod => \&wrap;

 sub new { shift; bless [’n’, @_] }
 sub wrap {
 my ($obj, $other, $inv, $meth) = @_;
 ($obj, $other) = ($other, $obj) if $inv;
 bless [$meth, $obj, $other];
 }

This module is very unusual as overloaded modules go: it does not provide any usual overloaded op
instead it provides the Last Resort operator nomethod . In this example the corresponding subroutin
returns an object which encupsulates operations done over the objects: new symbolic 3 contains [‘n‘,
3] , 2 + new symbolic 3 contains [‘+‘, 2, [‘n‘, 3]] .

Here is an example of the script which "calculates" the side of circumscribed octagon using the
package:

 require symbolic;
 my $iter = 1; # 2**($iter+2) = 8
 my $side = new symbolic 1;
 my $cnt = $iter;

 while ($cnt−−) {
 $side = (sqrt(1 + $side**2) − 1)/$side;
 }
 print "OK\n";

The value of $side is

 [’/’, [’−’, [’sqrt’, [’+’, 1, [’**’, [’n’, 1], 2]],
 undef], 1], [’n’, 1]]

Note that while we obtained this value using a nice little script, there is no simple way to use this value. In
fact this value may be inspected in debugger (see perldebug), but ony if bareStringify Option is set,
and not via p command.
18−Oct−1998 Version 5.005_02 1077

overload Perl Programmers Reference Guide overload

type

erator

t.

e
 write
If one attempts to print this value, then the overloaded operator "" will be called, which will call
nomethod operator. The result of this operator will be stringified again, but this result is again of
symbolic , which will lead to an infinite loop.

Add a pretty−printer method to the module symbolic.pm:

 sub pretty {
 my ($meth, $a, $b) = @{+shift};
 $a = ’u’ unless defined $a;
 $b = ’u’ unless defined $b;
 $a = $a−>pretty if ref $a;
 $b = $b−>pretty if ref $b;
 "[$meth $a $b]";
 }

Now one can finish the script by

 print "side = ", $side−>pretty, "\n";

The method pretty is doing object−to−string conversion, so it is natural to overload the operator "" using
this method. However, inside such a method it is not necessary to pretty−print the components $a and $b of
an object. In the above subroutine "[$meth $a $b]" is a catenation of some strings and components $a
and $b. If these components use overloading, the catenation operator will look for an overloaded op
. , if not present, it will look for an overloaded operator "" . Thus it is enough to use

 use overload nomethod => \&wrap, ’""’ => \&str;
 sub str {
 my ($meth, $a, $b) = @{+shift};
 $a = ’u’ unless defined $a;
 $b = ’u’ unless defined $b;
 "[$meth $a $b]";
 }

Now one can change the last line of the script to

 print "side = $side\n";

which outputs

 side = [/ [− [sqrt [+ 1 [** [n 1 u] 2]] u] 1] [n 1 u]]

and one can inspect the value in debugger using all the possible methods.

Something is is still amiss: consider the loop variable $cnt of the script. It was a number, not an objec
We cannot make this value of type symbolic , since then the loop will not terminate.

Indeed, to terminate the cycle, the $cnt should become false. However, the operator bool for checking
falsity is overloaded (this time via overloaded ""), and returns a long string, thus any object of typ
symbolic is true. To overcome this, we need a way to compare an object to 0. In fact, it is easier to
a numeric conversion routine.

Here is the text of symbolic.pm with such a routine added (and slightly modifed str()):

 package symbolic; # Primitive symbolic calculator
 use overload
 nomethod => \&wrap, ’""’ => \&str, ’0+’ => \#

 sub new { shift; bless [’n’, @_] }
 sub wrap {
 my ($obj, $other, $inv, $meth) = @_;
 ($obj, $other) = ($other, $obj) if $inv;
 bless [$meth, $obj, $other];
1078 Version 5.005_02 18−Oct−1998

overload Perl Programmers Reference Guide overload

t
eed an

which

 change
 }
 sub str {
 my ($meth, $a, $b) = @{+shift};
 $a = ’u’ unless defined $a;
 if (defined $b) {
 "[$meth $a $b]";
 } else {
 "[$meth $a]";
 }
 }
 my %subr = (n => sub {$_[0]},

 sqrt => sub {sqrt $_[0]},
 ’−’ => sub {shift() − shift()},
 ’+’ => sub {shift() + shift()},
 ’/’ => sub {shift() / shift()},
 ’*’ => sub {shift() * shift()},
 ’**’ => sub {shift() ** shift()},
);

 sub num {
 my ($meth, $a, $b) = @{+shift};
 my $subr = $subr{$meth}
 or die "Do not know how to ($meth) in symbolic";
 $a = $a−>num if ref $a eq __PACKAGE__;
 $b = $b−>num if ref $b eq __PACKAGE__;
 $subr−>($a,$b);
 }

All the work of numeric conversion is done in %subr and num() . Of course, %subr is not complete, i
contains only operators used in teh example below. Here is the extra−credit question: why do we n
explicit recursion in num() ? (Answer is at the end of this section.)

Use this module like this:

 require symbolic;
 my $iter = new symbolic 2; # 16−gon
 my $side = new symbolic 1;
 my $cnt = $iter;

 while ($cnt) {
 $cnt = $cnt − 1; # Mutator ‘−−’ not implemented
 $side = (sqrt(1 + $side**2) − 1)/$side;
 }
 printf "%s=%f\n", $side, $side;
 printf "pi=%f\n", $side*(2**($iter+2));

It prints (without so many line breaks)

 [/ [− [sqrt [+ 1 [** [/ [− [sqrt [+ 1 [** [n 1] 2]]] 1]
 [n 1]] 2]]] 1]

 [/ [− [sqrt [+ 1 [** [n 1] 2]]] 1] [n 1]]]=0.198912
 pi=3.182598

The above module is very primitive. It does not implement mutator methods (++, −= and so on), does not
do deep copying (not required without mutators!), and implements only those arithmetic operations
are used in the example.

To implement most arithmetic operattions is easy, one should just use the tables of operations, and
the code which fills %subr to
18−Oct−1998 Version 5.005_02 1079

overload Perl Programmers Reference Guide overload

w that

s

meric

ed
 my %subr = (’n’ => sub {$_[0]});
 foreach my $op (split " ", $overload::ops{with_assign}) {
 $subr{$op} = $subr{"$op="} = eval "sub {shift() $op shift()}";
 }
 my @bins = qw(binary 3way_comparison num_comparison str_comparison);
 foreach my $op (split " ", "@overload::ops{ @bins }") {
 $subr{$op} = eval "sub {shift() $op shift()}";
 }
 foreach my $op (split " ", "@overload::ops{qw(unary func)}") {
 print "defining ‘$op’\n";
 $subr{$op} = eval "sub {$op shift()}";
 }

Due to Calling Conventions for Mutators, we do not need anything special to make += and friends work,
except filling += entry of %subr, and defining a copy constructor (needed since Perl has no way to kno
the implementation of ‘+=’ does not mutate the argument, compare Copy Constructor).

To implement a copy constructor, add ‘=’ = \&cpy to use overload line, and code (this code assume
that mutators change things one level deep only, so recursive copying is not needed):

 sub cpy {
 my $self = shift;
 bless [@$self], ref $self;
 }

To make ++ and — work, we need to implement actual mutators, either directly, or in nomethod . We
continue to do things inside nomethod , thus add

 if ($meth eq ’++’ or $meth eq ’−−’) {
 @$obj = ($meth, (bless [@$obj]), 1); # Avoid circular reference
 return $obj;
 }

after the first line of wrap() . This is not a most effective implementation, one may consider

 sub inc { $_[0] = bless [’++’, shift, 1]; }

instead.

As a final remark, note that one can fill %subr by

 my %subr = (’n’ => sub {$_[0]});
 foreach my $op (split " ", $overload::ops{with_assign}) {
 $subr{$op} = $subr{"$op="} = eval "sub {shift() $op shift()}";
 }
 my @bins = qw(binary 3way_comparison num_comparison str_comparison);
 foreach my $op (split " ", "@overload::ops{ @bins }") {
 $subr{$op} = eval "sub {shift() $op shift()}";
 }
 foreach my $op (split " ", "@overload::ops{qw(unary func)}") {
 $subr{$op} = eval "sub {$op shift()}";
 }
 $subr{’++’} = $subr{’+’};
 $subr{’−−’} = $subr{’−’};

This finishes implementation of a primitive symbolic calculator in 50 lines of Perl code. Since the nu
values of subexpressions are not cached, the calculator is very slow.

Here is the answer for the exercise: In the case of str() , we need no explicit recursion since the overload
. −operator will fall back to an existing overloaded operator "" . Overloaded arithmetic operators do not fall
1080 Version 5.005_02 18−Oct−1998

overload Perl Programmers Reference Guide overload

n

 note:
f

 of the
back to numeric conversion if fallback is not explicitly requested. Thus without an explicit recursio
num() would convert [‘+‘, $a, $b] to $a + $b, which would just rebuild the argument of num() .

If you wonder why defaults for conversion are different for str() and num() , note how easy it was to
write the symbolic calculator. This simplicity is due to an appropriate choice of defaults. One extra
due to teh explicit recursion num() is more fragile than sym() : we need to explicitly check for the type o
$a and $b. If componets $a and $b happen to be of some related type, this may lead to problems.

Really symbolic calculator
One may wonder why we call the above calculator symbolic. The reason is that the actual calculation
value of expression is postponed until the value is used.

To see it in action, add a method

 sub STORE {
 my $obj = shift;
 $#$obj = 1;
 @$obj−>[0,1] = (’=’, shift);
 }

to the package symbolic . After this change one can do

 my $a = new symbolic 3;
 my $b = new symbolic 4;
 my $c = sqrt($a**2 + $b**2);

and the numeric value of $c becomes 5. However, after calling

 $a−>STORE(12); $b−>STORE(5);

the numeric value of $c becomes 13. There is no doubt now that the module symbolic provides a symbolic
calculator indeed.

To hide the rough edges under the hood, provide a tie() d interface to the package symbolic (compare
with Metaphor clash). Add methods

 sub TIESCALAR { my $pack = shift; $pack−>new(@_) }
 sub FETCH { shift }
 sub nop { } # Around a bug

(the bug is described in "BUGS"). One can use this new interface as

 tie $a, ’symbolic’, 3;
 tie $b, ’symbolic’, 4;
 $a−>nop; $b−>nop; # Around a bug

 my $c = sqrt($a**2 + $b**2);

Now numeric value of $c is 5. After $a = 12; $b = 5 the numeric value of $c becomes 13. To
insulate the user of the module add a method

 sub vars { my $p = shift; tie($_, $p), $_−>nop foreach @_; }

Now

 my ($a, $b);
 symbolic−>vars($a, $b);
 my $c = sqrt($a**2 + $b**2);

 $a = 3; $b = 4;
 printf "c5 %s=%f\n", $c, $c;

 $a = 12; $b = 5;
 printf "c13 %s=%f\n", $c, $c;
18−Oct−1998 Version 5.005_02 1081

overload Perl Programmers Reference Guide overload

ed

at

 in Perl.

m two

he

ess
t

 seem a
shows that the numeric value of $c follows changes to the values of $a and $b.

AUTHOR
Ilya Zakharevich <ilya@math.mps.ohio−state.edu>.

DIAGNOSTICS
When Perl is run with the −Do switch or its equivalent, overloading induces diagnostic messages.

Using the m command of Perl debugger (see perldebug) one can deduce which operations are overload
(and which ancestor triggers this overloading). Say, if eq is overloaded, then the method (eq is shown by
debugger. The method () corresponds to the fallback key (in fact a presence of this method shows th
this package has overloading enabled, and it is what is used by the Overloaded function of module
overload).

BUGS
Because it is used for overloading, the per−package hash %OVERLOAD now has a special meaning
The symbol table is filled with names looking like line−noise.

For the purpose of inheritance every overloaded package behaves as if fallback is present (possibly
undefined). This may create interesting effects if some package is not overloaded, but inherits fro
overloaded packages.

Relation between overloading and tie() ing is broken. Overloading is triggered or not basing on t
previous class of tie() d value.

This happens because the presence of overloading is checked too early, before any tie() d access is
attempted. If the FETCH() ed class of the tie() d value does not change, a simple workaround is to acc
the value immediately after tie() ing, so that after this call the previous class coincides with the curren
one.

Needed: a way to fix this without a speed penalty.

Barewords are not covered by overloaded string constants.

This document is confusing. There are grammos and misleading language used in places. It would
total rewrite is needed.
1082 Version 5.005_02 18−Oct−1998

re Perl Programmers Reference Guide re

s (or
rations

tential
ata, i.e.

gular

sing
 on

t

th
NAME
re − Perl pragma to alter regular expression behaviour

SYNOPSIS
 use re ’taint’;
 ($x) = ($^X =~ /^(.*)$/s); # $x is tainted here

 $pat = ’(?{ $foo = 1 })’;
 use re ’eval’;
 /foo${pat}bar/; # won’t fail (when not under −T switch)

 {
no re ’taint’; # the default
($x) = ($^X =~ /^(.*)$/s); # $x is not tainted here

no re ’eval’; # the default
/foo${pat}bar/; # disallowed (with or without −T switch)

 }

 use re ’debug’; # NOT lexically scoped (as others are)
 /^(.*)$/s; # output debugging info during
 # compile and run time

 use re ’debugcolor’; # same as ’debug’, but with colored output
 ...

(We use $^X in these examples because it‘s tainted by default.)

DESCRIPTION
When use re ‘taint’ is in effect, and a tainted string is the target of a regex, the regex memorie
values returned by the m// operator in list context) are tainted. This feature is useful when regex ope
on tainted data aren‘t meant to extract safe substrings, but to perform other transformations.

When use re ‘eval’ is in effect, a regex is allowed to contain (?{ ... }) zero−width assertions
even if regular expression contains variable interpolation. That is normally disallowed, since it is a po
security risk. Note that this pragma is ignored when the regular expression is obtained from tainted d
evaluation is always disallowed with tainted regular expresssions. See (?{ code }).

For the purpose of this pragma, interpolation of precompiled regular expressions (i.e., the result of qr//) is
not considered variable interpolation. Thus:

 /foo${pat}bar/

is allowed if $pat is a precompiled regular expression, even if $pat contains (?{ ... }) assertions.

When use re ‘debug’ is in effect, perl emits debugging messages when compiling and using re
expressions. The output is the same as that obtained by running a −DDEBUGGING−enabled perl interpreter
with the −Dr switch. It may be quite voluminous depending on the complexity of the match. U
debugcolor instead of debug enables a form of output that can be used to get a colorful display
terminals that understand termcap color sequences. Set $ENV{PERL_RE_TC} to a comma−separated lis
of termcap properties to use for highlighting strings on/off, pre−point part on/off. See
Debugging regular expressions in perldebug for additional info.

The directive use re ‘debug’ is not lexically scoped, as the other directives are. It has bo
compile−time and run−time effects.

See Pragmatic Modules.
18−Oct−1998 Version 5.005_02 1083

sigtrap Perl Programmers Reference Guide sigtrap

f two

r for
 supply

al
 an

nd then

t cause

ey are

ssed
NAME
sigtrap − Perl pragma to enable simple signal handling

SYNOPSIS
 use sigtrap;
 use sigtrap qw(stack−trace old−interface−signals); # equivalent
 use sigtrap qw(BUS SEGV PIPE ABRT);
 use sigtrap qw(die INT QUIT);
 use sigtrap qw(die normal−signals);
 use sigtrap qw(die untrapped normal−signals);
 use sigtrap qw(die untrapped normal−signals

 stack−trace any error−signals);
 use sigtrap ’handler’ => \&my_handler, ’normal−signals’;
 use sigtrap qw(handler my_handler normal−signals
 stack−trace error−signals);

DESCRIPTION
The sigtrap pragma is a simple interface to installing signal handlers. You can have it install one o
handlers supplied by sigtrap itself (one which provides a Perl stack trace and one which simply die() s), or
alternately you can supply your own handler for it to install. It can be told only to install a handle
signals which are either untrapped or ignored. It has a couple of lists of signals to trap, plus you can
your own list of signals.

The arguments passed to the use statement which invokes sigtrap are processed in order. When a sign
name or the name of one of sigtrap‘s signal lists is encountered a handler is immediately installed, when
option is encountered it affects subsequently installed handlers.

OPTIONS

SIGNAL HANDLERS
These options affect which handler will be used for subsequently installed signals.

stack−trace
The handler used for subsequently installed signals outputs a Perl stack trace to STDERR a
tries to dump core. This is the default signal handler.

die The handler used for subsequently installed signals calls die (actually croak) with a message
indicating which signal was caught.

handler your−handler
your−handler will be used as the handler for subsequently installed signals. your−handler can be any
value which is valid as an assignment to an element of %SIG.

SIGNAL LISTS
sigtrap has a few built−in lists of signals to trap. They are:

normal−signals
These are the signals which a program might normally expect to encounter and which by defaul
it to terminate. They are HUP, INT, PIPE and TERM.

error−signals
These signals usually indicate a serious problem with the Perl interpreter or with your script. Th
ABRT, BUS, EMT, FPE, ILL, QUIT, SEGV, SYS and TRAP.

old−interface−signals
These are the signals which were trapped by default by the old sigtrap interface, they are ABRT, BUS,
EMT, FPE, ILL, PIPE, QUIT, SEGV, SYS, TERM, and TRAP. If no signals or signals lists are pa
to sigtrap, this list is used.
1084 Version 5.005_02 18−Oct−1998

sigtrap Perl Programmers Reference Guide sigtrap

 if your

ady

ault

ped or

ne of
For each of these three lists, the collection of signals set to be trapped is checked before trapping;
architecture does not implement a particular signal, it will not be trapped but rather silently ignored.

OTHER

untrapped
This token tells sigtrap to install handlers only for subsequently listed signals which aren‘t alre
trapped or ignored.

any This token tells sigtrap to install handlers for all subsequently listed signals. This is the def
behavior.

signal
Any argument which looks like a signal name (that is, /^[A−Z][A−Z0−9]*$/) indicates that
sigtrap should install a handler for that name.

number
Require that at least version number of sigtrap is being used.

EXAMPLES
Provide a stack trace for the old−interface−signals:

 use sigtrap;

Ditto:

 use sigtrap qw(stack−trace old−interface−signals);

Provide a stack trace on the 4 listed signals only:

 use sigtrap qw(BUS SEGV PIPE ABRT);

Die on INT or QUIT:

 use sigtrap qw(die INT QUIT);

Die on HUP, INT, PIPE or TERM:

 use sigtrap qw(die normal−signals);

Die on HUP, INT, PIPE or TERM, except don‘t change the behavior for signals which are already trap
ignored:

 use sigtrap qw(die untrapped normal−signals);

Die on receipt one of an of the normal−signals which is currently untrapped, provide a stack trace on
receipt of any of the error−signals:

 use sigtrap qw(die untrapped normal−signals
 stack−trace any error−signals);

Install my_handler() as the handler for the normal−signals:

 use sigtrap ’handler’, \&my_handler, ’normal−signals’;

Install my_handler() as the handler for the normal−signals, provide a Perl stack trace on receipt of o
the error−signals:

 use sigtrap qw(handler my_handler normal−signals
 stack−trace error−signals);
18−Oct−1998 Version 5.005_02 1085

strict Perl Programmers Reference Guide strict

, but is
 about:

and

ithout

word
of the
NAME
strict − Perl pragma to restrict unsafe constructs

SYNOPSIS
 use strict;

 use strict "vars";
 use strict "refs";
 use strict "subs";

 use strict;
 no strict "vars";

DESCRIPTION
If no import list is supplied, all possible restrictions are assumed. (This is the safest mode to operate in
sometimes too strict for casual programming.) Currently, there are three possible things to be strict
"subs", "vars", and "refs".

strict refs
This generates a runtime error if you use symbolic references (see perlref).

 use strict ’refs’;
 $ref = \$foo;
 print $$ref; # ok
 $ref = "foo";
 print $$ref; # runtime error; normally ok

strict vars
This generates a compile−time error if you access a variable that wasn‘t declared via use vars ,
localized via my() or wasn‘t fully qualified. Because this is to avoid variable suicide problems
subtle dynamic scoping issues, a merely local() variable isn‘t good enough. See my and local.

 use strict ’vars’;
 $X::foo = 1; # ok, fully qualified
 my $foo = 10; # ok, my() var
 local $foo = 9; # blows up

 package Cinna;
 use vars qw/ $bar /; # Declares $bar in current package
 $bar = ’HgS’; # ok, global declared via pragma

The local() generated a compile−time error because you just touched a global name w
fully qualifying it.

strict subs
This disables the poetry optimization, generating a compile−time error if you try to use a bare
identifier that‘s not a subroutine, unless it appears in curly braces or on the left hand side
"=>" symbol.

 use strict ’subs’;
 $SIG{PIPE} = Plumber; # blows up
 $SIG{PIPE} = "Plumber"; # just fine: bareword in curlies always ok
 $SIG{PIPE} = \&Plumber; # preferred form

See Pragmatic Modules.
1086 Version 5.005_02 18−Oct−1998

subs Perl Programmers Reference Guide subs

ithout

 such
NAME
subs − Perl pragma to predeclare sub names

SYNOPSIS
 use subs qw(frob);
 frob 3..10;

DESCRIPTION
This will predeclare all the subroutine whose names are in the list, allowing you to use them w
parentheses even before they‘re declared.

Unlike pragmas that affect the $^H hints variable, the use vars and use subs declarations are not
BLOCK−scoped. They are thus effective for the entire file in which they appear. You may not rescind
declarations with no vars or no subs .

See Pragmatic Modules and strict subs.
18−Oct−1998 Version 5.005_02 1087

vars Perl Programmers Reference Guide vars

r "use

 such

an

stitute by
NAME
vars − Perl pragma to predeclare global variable names

SYNOPSIS
 use vars qw($frob @mung %seen);

DESCRIPTION
This will predeclare all the variables whose names are in the list, allowing you to use them unde
strict", and disabling any typo warnings.

Unlike pragmas that affect the $^H hints variable, the use vars and use subs declarations are not
BLOCK−scoped. They are thus effective for the entire file in which they appear. You may not rescind
declarations with no vars or no subs .

Packages such as the AutoLoader and SelfLoader that delay loading of subroutines within packages c
create problems with package lexicals defined using my() . While the vars pragma cannot duplicate the
effect of package lexicals (total transparency outside of the package), it can act as an acceptable sub
pre−declaring global symbols, ensuring their availability to the later−loaded routines.

See Pragmatic Modules.
1088 Version 5.005_02 18−Oct−1998

pod2man Perl Programmers Reference Guide pod2man

s like
ches
 dash,

ny bit

Perl
rl

t file

user
es, 7
 put

per man

luded

ented

emed

ctions
NAME
pod2man − translate embedded Perl pod directives into man pages

SYNOPSIS
pod2man [—section=manext] [—release=relpatch] [—center=string] [—date=string] [—fixed=font
] [—official] [—lax] inputfile

DESCRIPTION
pod2man converts its input file containing embedded pod directives (see perlpod) into nroff source suitable
for viewing with nroff(1) or troff(1) using the man(7) macro set.

Besides the obvious pod conversions, pod2man also takes care of func() , func(n), and simple variable
references like $foo or @bar so you don‘t have to use code escapes for them; complex expression
$fred{‘stuff‘} will still need to be escaped, though. Other nagging little roffish things that it cat
include translating the minus in something like foo−bar, making a long dash—like this—into a real em
fixing up "paired quotes", putting a little space after the parens in something like func() , making C++ and
PI look right, making double underbars have a little tiny space between them, making ALLCAPS a tee
smaller in troff(1), and escaping backslashes so you don‘t have to.

OPTIONS

center Set the centered header to a specific string. The default is "User Contributed
Documentation", unless the —official flag is given, in which case the default is "Pe
Programmers Reference Guide".

date Set the left−hand footer string to this value. By default, the modification date of the inpu
will be used.

fixed The fixed font to use for code refs. Defaults to CW.

official Set the default header to indicate that this page is of the standard release in case —center is not
given.

release Set the centered footer. By default, this is the current perl release.

section Set the section for the .TH macro. The standard conventions on sections are to use 1 for
commands, 2 for system calls, 3 for functions, 4 for devices, 5 for file formats, 6 for gam
for miscellaneous information, and 8 for administrator commands. This works best if you
your Perl man pages in a separate tree, like /usr/local/perl/man/. By default, section 1 will be
used unless the file ends in .pm in which case section 3 will be selected.

lax Don‘t complain when required sections aren‘t present.

Anatomy of a Proper Man Page
For those not sure of the proper layout of a man page, here‘s an example of the skeleton of a pro
page. Head of the major headers should be setout as a =head1 directive, and are historically written in the
rather startling ALL UPPER CASE format, although this is not mandatory. Minor headers may be inc
using =head2 , and are typically in mixed case.

NAME Mandatory section; should be a comma−separated list of programs or functions docum
by this podpage, such as:

 foo, bar − programs to do something

SYNOPSIS A short usage summary for programs and functions, which may someday be de
mandatory.

DESCRIPTION
Long drawn out discussion of the program. It‘s a good idea to break this up into subse
using the =head2 directives, like
18−Oct−1998 Version 5.005_02 1089

pod2man Perl Programmers Reference Guide pod2man

cation

)"

 a 3,
 =head2 A Sample Subection

 =head2 Yet Another Sample Subection

OPTIONS Some people make this separate from the description.

RETURN VALUE
What the program or function returns if successful.

ERRORS Exceptions, return codes, exit stati, and errno settings.

EXAMPLES Give some example uses of the program.

ENVIRONMENT
Envariables this program might care about.

FILES All files used by the program. You should probably use the F<> for these.

SEE ALSO Other man pages to check out, like man(1), man(7), makewhatis(8), or catman(8).

NOTES Miscellaneous commentary.

CAVEATS Things to take special care with; sometimes called WARNINGS.

DIAGNOSTICS
All possible messages the program can print out—and what they mean.

BUGS Things that are broken or just don‘t work quite right.

RESTRICTIONS
Bugs you don‘t plan to fix :−)

AUTHOR Who wrote it (or AUTHORS if multiple).

HISTORY Programs derived from other sources sometimes have this, or you might keep a modifi
log here.

EXAMPLES
 pod2man program > program.1
 pod2man some_module.pm > /usr/perl/man/man3/some_module.3
 pod2man −−section=7 note.pod > note.7

DIAGNOSTICS
The following diagnostics are generated by pod2man. Items marked "(W)" are non−fatal, whereas the "(F
errors will cause pod2man to immediately exit with a non−zero status.

bad option in paragraph %d of %s: ‘‘%s‘’ should be [%s]<%s
(W) If you start include an option, you should set it off as bold, italic, or code.

can‘t open %s: %s
(F) The input file wasn‘t available for the given reason.

Improper man page − no dash in NAME header in paragraph %d of %s
(W) The NAME header did not have an isolated dash in it. This is considered important.

Invalid man page − no NAME line in %s
(F) You did not include a NAME header, which is essential.

roff font should be 1 or 2 chars, not ‘%s’ (F)
(F) The font specified with the —fixed option was not a one− or two−digit roff font.

%s is missing required section: %s
(W) Required sections include NAME, DESCRIPTION, and if you‘re using a section starting with
also a SYNOPSIS. Actually, not having a NAME is a fatal.
1090 Version 5.005_02 18−Oct−1998

pod2man Perl Programmers Reference Guide pod2man

grave,
rave,
ilde,
szlig,
ml.

isters
ng the F

ffsets,

Larry
Unknown escape: %s in %s
(W) An unknown HTML entity (probably for an 8−bit character) was given via a E<> directive.
Besides amp, lt, gt, and quot, recognized entities are Aacute, aacute, Acirc, acirc, AElig, aelig, A
agrave, Aring, aring, Atilde, atilde, Auml, auml, Ccedil, ccedil, Eacute, eacute, Ecirc, ecirc, Eg
egrave, ETH, eth, Euml, euml, Iacute, iacute, Icirc, icirc, Igrave, igrave, Iuml, iuml, Ntilde, nt
Oacute, oacute, Ocirc, ocirc, Ograve, ograve, Oslash, oslash, Otilde, otilde, Ouml, ouml,
THORN, thorn, Uacute, uacute, Ucirc, ucirc, Ugrave, ugrave, Uuml, uuml, Yacute, yacute, and yu

Unmatched =back
(W) You have a =back without a corresponding =over .

Unrecognized pod directive: %s
(W) You specified a pod directive that isn‘t in the known list of =head1 , =head2 , =item , =over ,
=back , or =cut .

NOTES
If you would like to print out a lot of man page continuously, you probably want to set the C and D reg
to set contiguous page numbering and even/odd paging, at least on some versions of man(7). Settti
register will get you some additional experimental indexing:

 troff −man −rC1 −rD1 −rF1 perl.1 perldata.1 perlsyn.1 ...

The indexing merely outputs messages via .tm for each major page, section, subsection, item, and any X<>
directives.

RESTRICTIONS
None at this time.

BUGS
The =over and =back directives don‘t really work right. They take absolute positions instead of o
don‘t nest well, and making people count is suboptimal in any event.

AUTHORS
Original prototype by Larry Wall, but so massively hacked over by Tom Christiansen such that
probably doesn‘t recognize it anymore.
18−Oct−1998 Version 5.005_02 1091

pod2html Perl Programmers Reference Guide pod2html

ended

n be
NAME
pod2html − convert .pod files to .html files

SYNOPSIS
 pod2html −−help −−htmlroot=<name> −−infile=<name> −−outfile=<name>
 −−podpath=<name>:...:<name> −−podroot=<name>
 −−libpods=<name>:...:<name> −−recurse −−norecurse −−verbose
 −−index −−noindex −−title=<name>

DESCRIPTION
Converts files from pod format (see perlpod) to HTML format.

ARGUMENTS
pod2html takes the following arguments:

help
 −−help

Displays the usage message.

htmlroot
 −−htmlroot=name

Sets the base URL for the HTML files. When cross−references are made, the HTML root is prep
to the URL.

infile
 −−infile=name

Specify the pod file to convert. Input is taken from STDIN if no infile is specified.

outfile
 −−outfile=name

Specify the HTML file to create. Output goes to STDOUT if no outfile is specified.

podroot
 −−podroot=name

Specify the base directory for finding library pods.

podpath
 −−podpath=name:...:name

Specify which subdirectories of the podroot contain pod files whose HTML converted forms ca
linked−to in cross−references.

libpods
 −−libpods=name:...:name

List of page names (eg, "perlfunc") which contain linkable =item s.

netscape
 −−netscape

Use Netscape HTML directives when applicable.

nonetscape
 −−nonetscape

Do not use Netscape HTML directives (default).
1092 Version 5.005_02 18−Oct−1998

pod2html Perl Programmers Reference Guide pod2html
index
 −−index

Generate an index at the top of the HTML file (default behaviour).

noindex
 −−noindex

Do not generate an index at the top of the HTML file.

recurse
 −−recurse

Recurse into subdirectories specified in podpath (default behaviour).

norecurse
 −−norecurse

Do not recurse into subdirectories specified in podpath.

title
 −−title=title

Specify the title of the resulting HTML file.

verbose
 −−verbose

Display progress messages.

AUTHOR
Tom Christiansen, <tchrist@perl.com>.

BUGS
See Pod::Html for a list of known bugs in the translator.

SEE ALSO
perlpod, Pod::HTML

COPYRIGHT
This program is distributed under the Artistic License.
18−Oct−1998 Version 5.005_02 1093

patching Perl Programmers Reference Guide patching

referred

tioning

urrent
nes for

 names,
ystem).
hes not

veryone

r
pears

es are

diff as

mples
Name
patching.pod − Appropriate format for patches to the perl source tree

Where to get this document
The latest version of this document is available from
 http://perrin.dimensional.com/perl/perlpatch.html

How to contribute to this document
You may mail corrections, additions, and suggestions to me at dgris@tdrenterprises.com but the p
method would be to follow the instructions set forth in this document and submit a patch 8−).

Description

Why this document exists
As an open source project Perl relies on patches and contributions from its users to continue func
properly and to root out the inevitable bugs. But, some users are unsure as to the right way to prepare a
patch and end up submitting seriously malformed patches. This makes it very difficult for the c
maintainer to integrate said patches into their distribution. This document sets out usage guideli
patches in an attempt to make everybody‘s life easier.

Common problems
The most common problems appear to be patches being mangled by certain mailers (I won‘t name
but most of these seem to be originating on boxes running a certain popular commercial operating s
Other problems include patches not rooted in the appropriate place in the directory structure, and patc
produced using standard utilities (such as diff).

Proper Patch Guidelines

How to prepare your patch

Creating your patch
First, back up the original files. This can‘t be stressed enough, back everything up _first_.

Also, please create patches against a clean distribution of the perl source. This insures that e
else can apply your patch without clobbering their source tree.

diff While individual tastes vary (and are not the point here) patches should be created using eithe−u or
−c arguments to diff. These produce, respectively, unified diffs (where the changed line ap
immediately next to the original) and context diffs (where several lines surrounding the chang
included). See the manpage for diff for more details.

Also, the preferred method for patching is −

diff [−c | −u] <old−file> <new−file>

Note the order of files.

Also, if your patch is to the core (rather than to a module) it is better to create it as a context
some machines have broken patch utilities that choke on unified diffs.

GNU diff has many desirable features not provided by most vendor−supplied diffs. Some exa
using GNU diff:

 # generate a patch for a newly added file
 % diff −u /dev/null new/file

 # generate a patch to remove a file (patch > v2.4 will remove it cleanly)
 % diff −u old/goner /dev/null

 # get additions, deletions along with everything else, recursively
 % diff −ruN olddir newdir
1094 Version 5.005_02 18−Oct−1998

patching Perl Programmers Reference Guide patching

hed file
llisions

a copy
vious

y tree

 code
ates the

 files
ch, and

ssary,
 be felt
ented.
few.

u are

erl‘s
follow
 # ignore whitespace
 % diff −bu a/file b/file

 # show function name in every hunk (safer, more informative)
 % diff −u −F ’^[_a−zA−Z0−9]+ *(’ old/file new/file

Directories
Patches should be generated from the source root directory, not from the directory that the patc
resides in. This insures that the maintainer patches the proper file and avoids name co
(especially common when trying to apply patches to files that appear in both $src_root/ext/*
and $src_root/lib/*). It is better to diff the file in $src_root/ext than the file in
$src_root/lib.

Filenames
The most usual convention when submitting patches for a single file is to make your changes to
of the file with the same name as the original. Rename the original file in such a way that it is ob
what is being patched ($file~ or $file.old seem to be popular).

If you are submitting patches that affect multiple files then you should backup the entire director
(to $source_root.old/ for example). This will allow diff −c <old−dir> <new−dir> to
create all the patches at once.

What to include in your patch

Description of problem
The first thing you should include is a description of the problem that the patch corrects. If it is a
patch (rather than a documentation patch) you should also include a small test case that illustr
bug.

Direction for application
You should include instructions on how to properly apply your patch. These should include the
affected, any shell scripts or commands that need to be run before or after application of the pat
the command line necessary for application.

If you have a code patch
If you are submitting a code patch there are several other things that you need to do.

Comments, Comments, Comments
Be sure to adequately comment your code. While commenting every line is unnece
anything that takes advantage of side effects of operators, that creates changes that will
outside of the function being patched, or that others may find confusing should be docum
If you are going to err, it is better to err on the side of adding too many comments than too

Style
Please follow the indentation style and nesting style in use in the block of code that yo
patching.

Testsuite
When submitting a patch you should make every effort to also include an addition to p
regression tests to properly exercise your patch. Your testsuite additions should generally
these guidelines (courtesy of Gurusamy Sarathy (gsar@engin.umich.edu))−

Know what you’re testing. Read the docs, and the source.
Tend to fail, not succeed.
Interpret results strictly.
Use unrelated features (this will flush out bizarre interactions).
Use non−standard idioms (otherwise you are not testing TIMTOWTDI).
Avoid using hardcoded test umbers whenever possible (the EXPECTED/GOT
 found in t/op/tie.t is much more maintainable, and gives better fai
18−Oct−1998 Version 5.005_02 1095

patching Perl Programmers Reference Guide patching

ember

t MIME

, a perl

g what
et this
 reports).
Give meaningful error messages when a test fails.
Avoid using qx// and system() unless you are testing for them. If yo
 do use them, make sure that you cover _all_ perl platforms.
Unlink any temporary files you create.
Promote unforeseen warnings to errors with $SIG{__WARN__}.
Be sure to use the libraries and modules shipped with version being t
 not those that were already installed.
Add comments to the code explaining what you are testing for.
Make updating the ’1..42’ string unnecessary. Or make sure that you
Test _all_ behaviors of a given operator, library, or function−
 All optional arguments
 Return values in various contexts (boolean, scalar, list, lvalue)
 Use both global and lexical variables
 Don’t forget the exceptional, pathological cases.

Test your patch
Apply your patch to a clean distribution, compile, and run the regression test suite (you did rem
to add one for your patch, didn‘t you).

An example patch creation
This should work for most patches−

 cp MANIFEST MANIFEST.old
 emacs MANIFEST
 (make changes)
 cd ..
 diff −c perl5.008_42/MANIFEST.old perl5.008_42/MANIFEST > mypatch
 (testing the patch:)
 mv perl5.008_42/MANIFEST perl5.008_42/MANIFEST.new
 cp perl5.008_42/MANIFEST.old perl5.008_42/MANIFEST
 patch −p < mypatch
 (should succeed)
 diff perl5.008_42/MANIFEST perl5.008_42/MANIFEST.new
 (should produce no output)

Submitting your patch

Mailers
Please, please, please (get the point? 8−) don‘t use a mailer that word wraps your patch or tha
encodes it. Both of these leave the patch essentially worthless to the maintainer.

If you have no choice in mailers and no way to get your hands on a better one there is, of course
solution. Just do this−

 perl −ne ’print pack("u*",$_)’ patch > patch.uue

and post patch.uue with a note saying to unpack it using

 perl −ne ’print unpack("u*",$_)’ patch.uue > patch

Subject lines for patches
The subject line on your patch should read

[PATCH]5.xxx_xx (Area) Description

where the x‘s are replaced by the appropriate version number, area is a short keyword identifyin
area of perl you are patching, and description is a very brief summary of the problem (don‘t forg
is an email header).
1096 Version 5.005_02 18−Oct−1998

patching Perl Programmers Reference Guide patching

at you

e
ch it is

nfuses

nfuses

n of
for the

s code
el of joy
h the
re that
both the

pply as
Examples−

[PATCH]5.004_04 (DOC) fix minor typos

[PATCH]5.004_99 (CORE) New warning for foo() when frobbing

[PATCH]5.005_42 (CONFIG) Added support for fribnatz 1.5

Where to send your patch
If your patch is for the perl core it should be sent perlbug@perl.org. If it is a patch to a module th
downloaded from CPAN you should submit your patch to that module‘s author.

Applying a patch

General notes on applying patches
The following are some general notes on applying a patch to your perl distribution.

patch −p
It is generally easier to apply patches with the −p argument to patch. This helps reconcil
differing paths between the machine the patch was created on and the machine on whi
being applied.

Cut and paste
Never cut and paste a patch into your editor. This usually clobbers the tabs and co
patch.

Hand editing patches
Avoid hand editing patches as this frequently screws up the whitespace in the patch and co
the patch program.

Final notes
If you follow these guidelines it will make everybody‘s life a little easier. You‘ll have the satisfactio
having contributed to perl, others will have an easy time using your work, and it should be easier
maintainers to coordinate the occasionally large numbers of patches received.

Also, just because you‘re not a brilliant coder doesn‘t mean that you can‘t contribute. As valuable a
patches are there is always a need for better documentation (especially considering the general lev
that most programmers feel when forced to sit down and write docs). If all you do is patc
documentation you have still contributed more than the person who sent in an amazing new featu
noone can use because noone understands the code (what I‘m getting at is that documentation is
hardest part to do (because everyone hates doing it) and the most valuable).

Mostly, when contributing patches, imagine that it is you receiving hundreds of patches and that it is your
responsibility to integrate them into the source. Obviously you‘d want the patches to be as easy to a
possible. Keep that in mind. 8−)

Last Modified
Last modified 21 May 1998 by Daniel Grisinger <dgris@perrin.dimensional.com

Author and Copyright Information
Copyright (c) 1998 Daniel Grisinger

Adapted from a posting to perl5−porters by Tim Bunce (Tim.Bunce@ig.co.uk).

I‘d like to thank the perl5−porters for their suggestions.
18−Oct−1998 Version 5.005_02 1097

pumpkin Perl Programmers Reference Guide pumpkin

g and

it will

ith the
d all the

ut the
 you

u‘re
e, but

ision of
ne :−)
004’ is

ge file

l6.

y may
sions are
uilt on
ns are
NAME
Pumpkin − Notes on handling the Perl Patch Pumpkin

SYNOPSIS
There is no simple synopsis, yet.

DESCRIPTION
This document attempts to begin to describe some of the considerations involved in patchin
maintaining perl.

This document is still under construction, and still subject to significant changes. Still, I hope parts of
be useful, so I‘m releasing it even though it‘s not done.

For the most part, it‘s a collection of anecdotal information that already assumes some familiarity w
Perl sources. I really need an introductory section that describes the organization of the sources an
various auxiliary files that are part of the distribution.

Where Do I Get Perl Sources and Related Material?
The Comprehensive Perl Archive Network (or CPAN) is the place to go. There are many mirrors, b
easiest thing to use is probably http://www.perl.com/CPAN/README.html , which automatically points
to a mirror site "close" to you.

Perl5−porters mailing list
The mailing list perl5−porters@perl.org is the main group working with the development of perl. If yo
interested in all the latest developments, you should definitely subscribe. The list is high volum
generally has a fairly low noise level.

Subscribe by sending the message (in the body of your letter)

subscribe perl5−porters

to perl5−porters−request@perl.org .

Archives of the list are held at:

 http://www.rosat.mpe−garching.mpg.de/mailing−lists/perl−porters/

How are Perl Releases Numbered?
Perl version numbers are floating point numbers, such as 5.004. (Observations about the imprec
floating point numbers for representing reality probably have more relevance than you might imagi
The major version number is 5 and the ‘004’ is the patchlevel. (Questions such as whether or not ‘
really a minor version number can safely be ignored.:)

The version number is available as the magic variable $], and can be used in comparisons, e.g.

print "You’ve got an old perl\n" if $] < 5.002;

You can also require particular version (or later) with

use 5.002;

At some point in the future, we may need to decide what to call the next big revision. In the .packa
used by metaconfig to generate Configure, there are two variables that might be relevant: $baserev=5.0
and $package=perl5. At various times, I have suggested we might change them to $baserev=5.1
and $package=perl5.1 if want to signify a fairly major update. Or, we might want to jump to per
Let‘s worry about that problem when we get there.

Subversions
In addition, there may be "developer" sub−versions available. These are not official releases. The
contain unstable experimental features, and are subject to rapid change. Such developer sub−ver
numbered with sub−version numbers. For example, version 5.003_04 is the 4‘th developer version b
top of 5.003. It might include the _01, _02, and _03 changes, but it also might not. Sub−versio
1098 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

n the

ug−fix
rsions.

g fixes
.

 the new
ntry in

features

, perl
ckly. We
ifferent
ltiple
me kind

various

ultiple
w−tech
ackups

tches to
allowed to be subversive. (But see the next section for recent changes.)

These sub−versions can also be used as floating point numbers, so you can do things such as

print "You’ve got an unstable perl\n" if $] == 5.00303;

You can also require particular version (or later) with

use 5.003_03; # the "_" is optional

Sub−versions produced by the members of perl5−porters are usually available on CPAN i
src/5.0/unsupported directory.

Maintenance and Development Subversions
As an experiment, starting with version 5.004, subversions _01 through _49 will be reserved for b
maintenance releases, and subversions _50 through _99 will be available for unstable development ve

The separate bug−fix track is being established to allow us an easy way to distribute important bu
without waiting for the developers to untangle all the other problems in the current developer‘s release

Trial releases of bug−fix maintenance releases are announced on perl5−porters. Trial releases use
subversion number (to avoid testers installing it over the previous release) and include a ‘local patch’ e
patchlevel.h.

Watch for announcements of maintenance subversions in comp.lang.perl.announce.

The first rule of maintenance work is "First, do no harm."

Why such a complicated scheme?
Two reasons, really. At least.

First, we need some way to identify and release collections of patches that are known to have new
that need testing and exploration. The subversion scheme does that nicely while fitting into theuse
5.004; mold.

Second, since most of the folks who help maintain perl do so on a free−time voluntary basis
development does not proceed at a precise pace, though it always seems to be moving ahead qui
needed some way to pass around the "patch pumpkin" to allow different people chances to work on d
aspects of the distribution without getting in each other‘s way. It wouldn‘t be constructive to have mu
people working on incompatible implementations of the same idea. Instead what was needed was so
of "baton" or "token" to pass around so everyone knew whose turn was next.

Why is it called the patch pumpkin?
Chip Salzenberg gets credit for that, with a nod to his cow orker, David Croy. We had passed around
names (baton, token, hot potato) but none caught on. Then, Chip asked:

[begin quote]

 Who has the patch pumpkin?

To explain: David Croy once told me once that at a previous job, there was one tape drive and m
systems that used it for backups. But instead of some high−tech exclusion software, they used a lo
method to prevent multiple simultaneous backups: a stuffed pumpkin. No one was allowed to make b
unless they had the "backup pumpkin".

[end quote]

The name has stuck.

Philosophical Issues in Patching Perl
There are no absolute rules, but there are some general guidelines I have tried to follow as I apply pa
the perl sources. (This section is still under construction.)
18−Oct−1998 Version 5.005_02 1099

pumpkin Perl Programmers Reference Guide pumpkin

a more

perl.so
rary.
 libperl

if they

nc with

ond to

specific
 of the
ave the

les and
ibnet,
 plain

In

licated
.

umber

es now
Solve problems as generally as possible
Never implement a specific restricted solution to a problem when you can solve the same problem in
general, flexible way.

For example, for dynamic loading to work on some SVR4 systems, we had to build a shared lib
library. In order to build "FAT" binaries on NeXT 4.0 systems, we had to build a special libperl lib
Rather than continuing to build a contorted nest of special cases, I generalized the process of building
so that NeXT and SVR4 users could still get their work done, but others could build a shared libperl
wanted to as well.

Seek consensus on major changes
If you are making big changes, don‘t do it in secret. Discuss the ideas in advance on perl5−porters.

Keep the documentation up−to−date
If your changes may affect how users use perl, then check to be sure that the documentation is in sy
your changes. Be sure to check all the files pod/*.pod and also the INSTALL document.

Consider writing the appropriate documentation first and then implementing your change to corresp
the documentation.

Avoid machine−specific #ifdef‘s
To the extent reasonable, try to avoid machine−specific #ifdef‘s in the sources. Instead, use feature−
#ifdef‘s. The reason is that the machine−specific #ifdef‘s may not be valid across major releases
operating system. Further, the feature−specific tests may help out folks on another platform who h
same problem.

Allow for lots of testing
We should never release a main version without testing it as a subversion first.

Test popular applications and modules.
We should never release a main version without testing whether or not it breaks various popular modu
applications. A partial list of such things would include majordomo, metaconfig, apache, Tk, CGI, l
and libwww, to name just a few. Of course it‘s quite possible that some of those things will be just
broken and need to be fixed, but, in general, we ought to try to avoid breaking widely−installed things.

Automate generation of derivative files
The embed.h, keywords.h, opcode.h, and perltoc.pod files are all automatically generated by perl scripts.
general, don‘t patch these directly; patch the data files instead.

Configure and config_h.SH are also automatically generated by metaconfig. In general, you should patch
the metaconfig units instead of patching these files directly. However, very minor changes to Configure
may be made in between major sync−ups with the metaconfig units, which tends to be comp
operations. But be careful, this can quickly spiral out of control. Running metaconfig is not really hard

Finally, the sample files in the Porting/ subdirectory are generated automatically by the script U/mksample
included with the metaconfig units. See "run metaconfig" below for information on obtaining the
metaconfig units.

How to Make a Distribution
There really ought to be a ‘make dist’ target, but there isn‘t. The ‘dist’ suite of tools also contains a n
of tools that I haven‘t learned how to use yet. Some of them may make this all a bit easier.

Here are the steps I go through to prepare a patch & distribution.

Lots of it could doubtless be automated but isn‘t. The Porting/makerel (make release) perl script do
help automate some parts of it.
1100 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

 have

ject or
s bug

ight also

less we

e

r even
 If you
kly (e.g.

opriate

nfig is
lable

ain
ce then.

ly uses
 the
n‘t

t‘, but
 The
Announce your intentions
First, you should volunteer out loud to take the patch pumpkin. It‘s generally counter−productive to
multiple people working in secret on the same thing.

At the same time, announce what you plan to do with the patch pumpkin, to allow folks a chance to ob
suggest alternatives, or do it for you. Naturally, the patch pumpkin holder ought to incorporate variou
fixes and documentation improvements that are posted while he or she has the pumpkin, but there m
be larger issues at stake.

One of the precepts of the subversion idea is that we shouldn‘t give the patch pumpkin to anyone un
have some idea what he or she is going to do with it.

refresh pod/perltoc.pod
Presumably, you have done a full make in your working source directory. Before you make spotless
(if you do), and if you have changed any documentation in any module or pod file, change to thpod
directory and run make toc .

run installhtml to check the validity of the pod files

update patchlevel.h
Don‘t be shy about using the subversion number, even for a relatively modest patch. We‘ve neve
come close to using all 99 subversions, and it‘s better to have a distinctive number for your patch.
need feedback on your patch, go ahead and issue it and promise to incorporate that feedback quic
within 1 week) and send out a second patch.

run metaconfig
If you need to make changes to Configure or config_h.SH, it may be best to change the appr
metaconfig units instead, and regenerate Configure.

metaconfig −m

will regenerate Configure and config_h.SH. Much more information on obtaining and running metaco
in the U/README file that comes with Perl‘s metaconfig units. Perl‘s metaconfig units should be avai
on CPAN. A set of units that will work with perl5.005 is in the file mc_units−5.005_00−01.tar.gz under
http://www.perl.com/CPAN/authors/id/ANDYD/ . The mc_units tar file should be unpacked in your m
perl source directory. Note: those units were for use with 5.005. There may have been changes sin
Check for later versions or contact perl5−porters@perl.org to obtain a pointer to the current version.

Alternatively, do consider if the *ish.h files might be a better place for your changes.

MANIFEST
Make sure the MANIFEST is up−to−date. You can use dist‘s manicheck program for this. You can also
use

 perl −w −MExtUtils::Manifest=fullcheck −e fullcheck

Both commands will also list extra files in the directory that are not listed in MANIFEST.

The MANIFEST is normally sorted.

If you are using metaconfig to regenerate Configure, then you should note that metaconfig actual
MANIFEST.new, so you want to be sure MANIFEST.new is up−to−date too. I haven‘t found
MANIFEST/MANIFEST.new distinction particularly useful, but that‘s probably because I still have
learned how to use the full suite of tools in the dist distribution.

Check permissions
All the tests in the t/ directory ought to be executable. The main makefile used to do a ‘chmod t/*/*.
that resulted in a self−modifying distribution—something some users would strongly prefer to avoid.
t/TEST script will check for this and do the chmod if needed, but the tests still ought to be executable.
18−Oct−1998 Version 5.005_02 1101

pumpkin Perl Programmers Reference Guide pumpkin

nt to

 files;

h.SH

in32,
 in the
eneric
rambled
r hand,
oagate
fig.sh

igure.
eflected
n on
 lines

h you
e your
In all, the following files should probably be executable:

 Configure
 configpm
 configure.gnu
 embed.pl
 installperl
 installman
 keywords.pl
 myconfig
 opcode.pl
 perly.fixer
 t/TEST
 t/*/*.t
 *.SH
 vms/ext/Stdio/test.pl
 vms/ext/filespec.t
 x2p/*.SH

Other things ought to be readable, at least :−).

Probably, the permissions for the files could be encoded in MANIFEST somehow, but I‘m relucta
change MANIFEST itself because that could break old scripts that use MANIFEST.

I seem to recall that some SVR3 systems kept some sort of file that listed permissions for system
something like that might be appropriate.

Run Configure
This will build a config.sh and config.h. You can skip this if you haven‘t changed Configure or config_
at all. I use the following command

 sh Configure −Dprefix=/opt/perl −Doptimize=−O −Dusethreads \
−Dcf_by=’yourname’ \
−Dcf_email=’yourname@yourhost.yourplace.com’ \
−Dperladmin=’yourname@yourhost.yourplace.com’ \
−Dmydomain=’.yourplace.com’ \
−Dmyhostname=’yourhost’ \
−des

Update Porting/config.sh and Porting/config_H
[XXX This section needs revision. We‘re currently working on easing the task of keeping the vms, w
and plan9 config.sh info up−to−date. The plan is to use keep up−to−date ‘canned’ config.sh files
appropriate subdirectories and then generate ‘canned’ config.h files for vms, win32, etc. from the g
config.sh file. This is to ease maintenance. When Configure gets updated, the parts sometimes get sc
around, and the changes in config_H can sometimes be very hard to follow. config.sh, on the othe
can safely be sorted, so it‘s easy to track (typically very small) changes to config.sh and then prop
them to a canned ‘config.h’ by any number of means, including a perl script in win32/ or carrying con
and config_h.SH to a Unix system and running sh config_h.SH.) XXX]

The Porting/config.sh and Porting/config_H files are provided to help those folks who can‘t run Conf
It is important to keep them up−to−date. If you have changed config_h.SH, those changes must be r
in config_H as well. (The name config_H was chosen to distinguish the file from config.h eve
case−insensitive file systems.) Simply edit the existing config_H file; keep the first few explanatory
and then copy your new config.h below.

It may also be necessary to update win32/config.?c, vms/config.vms and plan9/config.plan9, thoug
should be quite careful in doing so if you are not familiar with those systems. You might want to issu
patch with a promise to quickly issue a follow−up that handles those directories.
1102 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

lying
atch is

e new
ments

 doesn‘t

ser
ve to, if

ided

 what to

nt
 way,
make run_byacc
If you have byacc−1.8.2 (available from CPAN), and if there have been changes to perly.y, you can
regenerate the perly.c file. The run_byacc makefile target does this by running byacc and then app
some patches so that byacc dynamically allocates space, rather than having fixed limits. This p
handled by the perly.fixer script. Depending on the nature of the changes to perly.y, you may or may not
have to hand−edit the patch to apply correctly. If you do, you should include the edited patch in th
distribution. If you have byacc−1.9, the patch won‘t apply cleanly. Changes to the printf output state
mean the patch won‘t apply cleanly. Long ago I started to fix perly.fixer to detect this, but I never completed
the task.

Some additional notes from Larry on this:

Don‘t forget to regenerate perly_c.diff.

 byacc −d perly.y
 mv y.tab.c perly.c
 patch perly.c <perly_c.diff
 # manually apply any failed hunks
 diff −c2 perly.c.orig perly.c >perly_c.diff

One chunk of lines that often fails begins with

 #line 29 "perly.y"

and ends one line before

 #define YYERRCODE 256

This only happens when you add or remove a token type. I suppose this could be automated, but it
happen very often nowadays.

Larry

make regen_headers
The embed.h, keywords.h, and opcode.h files are all automatically generated by perl scripts. Since the u
isn‘t guaranteed to have a working perl, we can‘t require the user to generate them. Hence you ha
you‘re making a distribution.

I used to include rules like the following in the makefile:

 # The following three header files are generated automatically
 # The correct versions should be already supplied with the perl kit,
 # in case you don’t have perl or ’sh’ available.
 # The − is to ignore error return codes in case you have the source
 # installed read−only or you don’t have perl yet.
 keywords.h: keywords.pl

 @echo "Don’t worry if this fails."
 − perl keywords.pl

However, I got lots of mail consisting of people worrying because the command failed. I eventually dec
that I would save myself time and effort by manually running make regen_headers myself rather than
answering all the questions and complaints about the failing command.

global.sym, interp.sym and perlio.sym
Make sure these files are up−to−date. Read the comments in these files and in perl_exp.SH to see
do.

Binary compatibility
If you do change global.sym or interp.sym, think carefully about what you are doing. To the exte
reasonable, we‘d like to maintain souce and binary compatibility with older releases of perl. That
extensions built under one version of perl will continue to work with new versions of perl.
18−Oct−1998 Version 5.005_02 1103

pumpkin Perl Programmers Reference Guide pumpkin

ake any

anging

ons
nges (if

hether
etailed

ement,
erm as
, while
ect the

ular

er.

re.

or

ike the

ive
en my
Of course, some incompatible changes may well be necessary. I‘m just suggesting that we not m
such changes without thinking carefully about them first. If possible, we should provide
backwards−compatibility stubs. There‘s a lot of XS code out there. Let‘s not force people to keep ch
it.

Changes
Be sure to update the Changes file. Try to include both an overall summary as well as detailed descripti
of the changes. Your audience will include other developers and users, so describe user−visible cha
any) in terms they will understand, not in code like "initialize foo variable in bar function".

There are differing opinions on whether the detailed descriptions ought to go in the Changes file or w
they ought to be available separately in the patch file (or both). There is no disagreement that d
descriptions ought to be easily available somewhere.

Todo
The Todo file contains a roughly−catgorized unordered list of aspects of Perl that could use enhanc
features that could be added, areas that could be cleaned up, and so on. During your t
pumpkin−holder, you will probably address some of these issues, and perhaps identify others which
you decide not to address them this time around, may be tackled in the future. Update the file refl
situation as it stands when you hand over the pumpkin.

You might like, early in your pumpkin−holding career, to see if you can find champions for partitic
issues on the to−do list: an issue owned is an issue more likely to be resolved.

There are also some more porting−specific Todo items later in this file.

OS/2−specific updates
In the os2 directory is diff.configure, a set of OS/2−specific diffs against Configure. If you make changes
to Configure, you may want to consider regenerating this diff file to save trouble for the OS/2 maintain

You can also consider the OS/2 diffs as reminders of portability things that need to be fixed in Configu

VMS−specific updates
If you have changed perly.y, then you may want to update vms/perly_{h,c}.vms by running perl
vms/vms_yfix.pl .

The Perl version number appears in several places under vms. It is courteous to update these versions. F
example, if you are making 5.004_42, replace "5.00441" with "5.00442".

Making the new distribution
Suppose, for example, that you want to make version 5.004_08. Then you can do something l
following

mkdir ../perl5.004_08
awk ’{print $1}’ MANIFEST | cpio −pdm ../perl5.004_08
cd ../
tar cf perl5.004_08.tar perl5.004_08
gzip −−best perl5.004_08.tar

These steps, with extra checks, are automated by the Porting/makerel script.

Making a new patch
I find the makepatch utility quite handy for making patches. You can obtain it from any CPAN arch
under http://www.perl.com/CPAN/authors/Johan_Vromans/ . There are a couple of differences betwe
version and the standard one. I have mine do a

Print a reassuring "End of Patch" note so people won’t
wonder if their mailer truncated patches.
print "\n\nEnd of Patch.\n";
1104 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

4 or

le.

 it
ample,
rted

mand,

−ing of
h parts

ers are

hing as

‘ll hear
mon

n. For
at the end. That‘s because I used to get questions from people asking if their mail was truncated.

It also writes Index: lines which include the new directory prefix (change Index: print, approx line 29
310 depending on the version, to read: print PATCH ("Index: $newdir$new\n");). That helps
patches work with more POSIX conformant patch programs.

Here‘s how I generate a new patch. I‘ll use the hypothetical 5.004_07 to 5.004_08 patch as an examp

unpack perl5.004_07/
gzip −d −c perl5.004_07.tar.gz | tar −xof −
unpack perl5.004_08/
gzip −d −c perl5.004_08.tar.gz | tar −xof −
makepatch perl5.004_07 perl5.004_08 > perl5.004_08.pat

Makepatch will automatically generate appropriate rm commands to remove deleted files. Unfortunately,
will not correctly set permissions for newly created files, so you may have to do so manually. For ex
patch 5.003_04 created a new test t/op/gv.t which needs to be executable, so at the top of the patch, I inse
the following lines:

Make a new test
touch t/op/gv.t
chmod +x t/opt/gv.t

Now, of course, my patch is now wrong because makepatch didn‘t know I was going to do that com
and it patched against /dev/null.

So, what I do is sort out all such shell commands that need to be in the patch (including possible mv
files, if needed) and put that in the shell commands at the top of the patch. Next, I delete all the patc
of perl5.004_08.pat, leaving just the shell commands. Then, I do the following:

cd perl5.004_07
sh ../perl5.004_08.pat
cd ..
makepatch perl5.004_07 perl5.004_08 >> perl5.004_08.pat

(Note the append to preserve my shell commands.) Now, my patch will line up with what the end us
going to do.

Testing your patch
It seems obvious, but be sure to test your patch. That is, verify that it produces exactly the same t
your full distribution.

rm −rf perl5.004_07
gzip −d −c perl5.004_07.tar.gz | tar −xf −
cd perl5.004_07
sh ../perl5.004_08.pat
patch −p1 −N < ../perl5.004_08.pat
cd ..
gdiff −r perl5.004_07 perl5.004_08

where gdiff is GNU diff. Other diff‘s may also do recursive checking.

More testing
Again, it‘s obvious, but you should test your new version as widely as you can. You can be sure you
about it quickly if your version doesn‘t work on both ANSI and pre−ANSI compilers, and on com
systems such as SunOS 4.1.[34], Solaris, and Linux.

If your changes include conditional code, try to test the different branches as thoroughly as you ca
example, if your system supports dynamic loading, you can also test static loading with

sh Configure −Uusedl
18−Oct−1998 Version 5.005_02 1105

pumpkin Perl Programmers Reference Guide pumpkin

mids

ed, but
y once
d, so it

r the
imilar
ate

t give it

try to
ed in
sions,
You can also hand−tweak your config.h to try out different #ifdef branches.

Common Gotcha‘s

#elif The ‘#elif’ preprocessor directive is not understood on all systems. Specifically, I know that Pyra
don‘t understand it. Thus instead of the simple

#if defined(I_FOO)
include <foo.h>
#elif defined(I_BAR)
include <bar.h>
#else
include <fubar.h>
#endif

You have to do the more Byzantine

#if defined(I_FOO)
include <foo.h>
#else
if defined(I_BAR)
include <bar.h>
else
include <fubar.h>
endif
#endif

Incidentally, whitespace between the leading ‘#’ and the preprocessor command is not guarante
is very portable and you may use it freely. I think it makes things a bit more readable, especiall
things get rather deeply nested. I also think that things should almost never get too deeply neste
ought to be a moot point :−)

Probably Prefer POSIX
It‘s often the case that you‘ll need to choose whether to do something the BSD−ish way o
POSIX−ish way. It‘s usually not a big problem when the two systems use different names for s
functions, such as memcmp() and bcmp() . The perl.h header file handles these by appropri
#defines, selecting the POSIX mem*() functions if available, but falling back on the b*() functions,
if need be.

More serious is the case where some brilliant person decided to use the same function name bu
a different meaning or calling sequence :−). getpgrp() and setpgrp() come to mind. These are
a real problem on systems that aim for conformance to one standard (e.g. POSIX), but still
support the other way of doing things (e.g. BSD). My general advice (still not really implement
the source) is to do something like the following. Suppose there are two alternative ver
fooPOSIX() and fooBSD() .

 #ifdef HAS_FOOPOSIX
/* use fooPOSIX(); */

 #else
 # ifdef HAS_FOOBSD

/* try to emulate fooPOSIX() with fooBSD();
 perhaps with the following: */

 # define fooPOSIX fooBSD
 # else
 # /* Uh, oh. We have to supply our own. */
 # define fooPOSIX Perl_fooPOSIX
 # endif
 #endif
1106 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

ing a

helpful
 about
Think positively
If you need to add an #ifdef test, it is usually easier to follow if you think positively, e.g.

#ifdef HAS_NEATO_FEATURE
 /* use neato feature */
#else
 /* use some fallback mechanism */
#endif

rather than the more impenetrable

#ifndef MISSING_NEATO_FEATURE
 /* Not missing it, so we must have it, so use it */
#else
 /* Are missing it, so fall back on something else. */
#endif

Of course for this toy example, there‘s not much difference. But when the #ifdef‘s start spann
couple of screen fulls, and the #else‘s are marked something like

#else /* !MISSING_NEATO_FEATURE */

I find it easy to get lost.

Providing Missing Functions — Problem
Not all systems have all the neat functions you might want or need, so you might decide to be
and provide an emulation. This is sound in theory and very kind of you, but please be careful
what you name the function. Let me use the pause() function as an illustration.

Perl5.003 has the following in perl.h

 #ifndef HAS_PAUSE
 #define pause() sleep((32767<<16)+32767)
 #endif

Configure sets HAS_PAUSE if the system has the pause() function, so this #define only kicks in if
the pause() function is missing. Nice idea, right?

Unfortunately, some systems apparently have a prototype for pause() in unistd.h, but don‘t actually
have the function in the library. (Or maybe they do have it in a library we‘re not using.)

Thus, the compiler sees something like

 extern int pause(void);
 /* . . . */
 #define pause() sleep((32767<<16)+32767)

and dies with an error message. (Some compilers don‘t mind this; others apparently do.)

To work around this, 5.003_03 and later have the following in perl.h:

 /* Some unistd.h’s give a prototype for pause() even though
 HAS_PAUSE ends up undefined. This causes the #define
 below to be rejected by the compiler. Sigh.
 */
 #ifdef HAS_PAUSE
 # define Pause pause
 #else
 # define Pause() sleep((32767<<16)+32767)
 #endif

This works.
18−Oct−1998 Version 5.005_02 1107

pumpkin Perl Programmers Reference Guide pumpkin

ht, it

amic

rted.

d link it
hat is,

ugh

e

t a

ed a

l, but
The curious reader may wonder why I didn‘t do the following in util.c instead:

 #ifndef HAS_PAUSE
 void pause()
 {
 sleep((32767<<16)+32767);
 }
 #endif

That is, since the function is missing, just provide it. Then things would probably be been alrig
would seem.

Well, almost. It could be made to work. The problem arises from the conflicting needs of dyn
loading and namespace protection.

For dynamic loading to work on AIX (and VMS) we need to provide a list of symbols to be expo
This is done by the script perl_exp.SH, which reads global.sym and interp.sym. Thus, the pause
symbol would have to be added to global.sym So far, so good.

On the other hand, one of the goals of Perl5 is to make it easy to either extend or embed perl an
with other libraries. This means we have to be careful to keep the visible namespace "clean". T
we don‘t want perl‘s global variables to conflict with those in the other application library. Altho
this work is still in progress, the way it is currently done is via the embed.h file. This file is built from
the global.sym and interp.sym files, since those files already list the globally visible symbols. If w
had added pause to global.sym, then embed.h would contain the line

 #define pause Perl_pause

and calls to pause in the perl sources would now point to Perl_pause . Now, when ld is run to
build the perl executable, it will go looking for perl_pause , which probably won‘t exist in any of
the standard libraries. Thus the build of perl will fail.

Those systems where HAS_PAUSE is not defined would be ok, however, since they would ge
Perl_pause function in util.c. The rest of the world would be in trouble.

And yes, this scenario has happened. On SCO, the function chsize is available. (I think it‘s in −lx,
the Xenix compatibility library.) Since the perl4 days (and possibly before), Perl has includ
chsize function that gets called something akin to

 #ifndef HAS_CHSIZE
 I32 chsize(fd, length)
 /* . . . */
 #endif

When 5.003 added

 #define chsize Perl_chsize

to embed.h, the compile started failing on SCO systems.

The "fix" is to give the function a different name. The one implemented in 5.003_05 isn‘t optima
here‘s what was done:

 #ifdef HAS_CHSIZE
 # ifdef my_chsize /* Probably #defined to Perl_my_chsize in embed.h */
 # undef my_chsize
 # endif
 # define my_chsize chsize
 #endif

My explanatory comment in patch 5.003_05 said:
1108 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

ew,

oken

, I‘m

 names
already

such
 Undef and then re−define my_chsize from Perl_my_chsize to
 just plain chsize if this system HAS_CHSIZE. This probably only
 applies to SCO. This shows the perils of having internal
 functions with the same name as external library functions :−).

Now, we can safely put my_chsize in global.sym, export it, and hide it with embed.h.

To be consistent with what I did for pause , I probably should have called the new function Chsize ,
rather than my_chsize . However, the perl sources are quite inconsistent on this (Consider N
Mymalloc, and Myremalloc, to name just a few.)

There is a problem with this fix, however, in that Perl_chsize was available as a libperl.a library
function in 5.003, but it isn‘t available any more (as of 5.003_07). This means that we‘ve br
binary compatibility. This is not good.

Providing missing functions — some ideas
We currently don‘t have a standard way of handling such missing function names. Right now
effectively thinking aloud about a solution. Some day, I‘ll try to formally propose a solution.

Part of the problem is that we want to have some functions listed as exported but not have their
mangled by embed.h or possibly conflict with names in standard system headers. We actually
have such a list at the end of perl_exp.SH (though that list is out−of−date):

 # extra globals not included above.
 cat <<END >> perl.exp
 perl_init_ext
 perl_init_fold
 perl_init_i18nl14n
 perl_alloc
 perl_construct
 perl_destruct
 perl_free
 perl_parse
 perl_run
 perl_get_sv
 perl_get_av
 perl_get_hv
 perl_get_cv
 perl_call_argv
 perl_call_pv
 perl_call_method
 perl_call_sv
 perl_requirepv
 safecalloc
 safemalloc
 saferealloc
 safefree

This still needs much thought, but I‘m inclined to think that one possible solution is to prefix all
functions with perl_ in the source and list them along with the other perl_* functions in
perl_exp.SH.

Thus, for chsize , we‘d do something like the following:

 /* in perl.h */
 #ifdef HAS_CHSIZE
 # define perl_chsize chsize
 #endif
18−Oct−1998 Version 5.005_02 1109

pumpkin Perl Programmers Reference Guide pumpkin

es in
te how

that
O?) If
d in

nfigure

of the
y of
s reader

ay. In
toconf

ourse
lems.

OSIX
 other
cases.)
le one

main
uld be
 to cc
 There
lting

ssing
 were
seful
then in some file (e.g. util.c or doio.c) do

 #ifndef HAS_CHSIZE
 I32 perl_chsize(fd, length)
 /* implement the function here . . . */
 #endif

Alternatively, we could just always use chsize everywhere and move chsize from global.sym to
the end of perl_exp.SH. That would probably be fine as long as our chsize function agreed with all
the chsize function prototypes in the various systems we‘ll be using. As long as the prototyp
actual use don‘t vary that much, this is probably a good alternative. (As a counter−example, no
Configure and perl have to go through hoops to find and use get Malloc_t and Free_t for malloc and
free .)

At the moment, this latter option is what I tend to prefer.

All the world‘s a VAX
Sorry, showing my age:−). Still, all the world is not BSD 4.[34], SVR4, or POSIX. Be aware
SVR3−derived systems are still quite common (do you have any idea how many systems run SC
you don‘t have a bunch of v7 manuals handy, the metaconfig units (by default installe
/usr/local/lib/dist/U) are a good resource to look at for portability.

Miscellaneous Topics

Autoconf
Why does perl use a metaconfig−generated Configure script instead of an autoconf−generated co
script?

Metaconfig and autoconf are two tools with very similar purposes. Metaconfig is actually the older
two, and was originally written by Larry Wall, while autoconf is probably now used in a wider variet
packages. The autoconf info file discusses the history of autoconf and how it came to be. The curiou
is referred there for further information.

Overall, both tools are quite good, I think, and the choice of which one to use could be argued either w
March, 1994, when I was just starting to work on Configure support for Perl5, I considered both au
and metaconfig, and eventually decided to use metaconfig for the following reasons:

Compatibility with Perl4
Perl4 used metaconfig, so many of the #ifdef‘s were already set up for metaconfig. Of c
metaconfig had evolved some since Perl4‘s days, but not so much that it posed any serious prob

Metaconfig worked for me
My system at the time was Interactive 2.2, a SVR3.2/386 derivative that also had some P
support. Metaconfig−generated Configure scripts worked fine for me on that system. On the
hand, autoconf−generated scripts usually didn‘t. (They did come quite close, though, in some
At the time, I actually fetched a large number of GNU packages and checked. Not a sing
configured and compiled correctly out−of−the−box with the system‘s cc compiler.

Configure can be interactive
With both autoconf and metaconfig, if the script works, everything is fine. However, one of my
problems with autoconf−generated scripts was that if it guessed wrong about something, it co
very hard to go back and fix it. For example, autoconf always insisted on passing the −Xp flag
(to turn on POSIX behavior), even when that wasn‘t what I wanted or needed for that package.
was no way short of editing the configure script to turn this off. You couldn‘t just edit the resu
Makefile at the end because the −Xp flag influenced a number of other configure tests.

Metaconfig‘s Configure scripts, on the other hand, can be interactive. Thus if Configure is gue
things incorrectly, you can go back and fix them. This isn‘t as important now as it was when we
actively developing Configure support for new features such as dynamic loading, but it‘s still u
occasionally.
1110 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

hence
ing

rride
d files
units

 relevant

 perl.c,

g the

 and
ail
GPL
At the time, autoconf−generated scripts were covered under the GNU Public License, and
weren‘t suitable for inclusion with Perl, which has a different licensing policy. (Autoconf‘s licens
has since changed.)

Modularity
Metaconfig builds up Configure from a collection of discrete pieces called "units". You can ove
the standard behavior by supplying your own unit. With autoconf, you have to patch the standar
instead. I find the metaconfig "unit" method easier to work with. Others may find metaconfig‘s
clumsy to work with.

@INC search order
By default, the list of perl library directories in @INC is the following:

 $archlib
 $privlib
 $sitearch
 $sitelib

Specifically, on my Solaris/x86 system, I run sh Configure −Dprefix=/opt/perl and I have the following
directories:

 /opt/perl/lib/i86pc−solaris/5.00307
 /opt/perl/lib
 /opt/perl/lib/site_perl/i86pc−solaris
 /opt/perl/lib/site_perl

That is, perl‘s directories come first, followed by the site−specific directories.

The site libraries come second to support the usage of extensions across perl versions. Read the
section in INSTALL for more information. If we ever make $sitearch version−specific, this topic could
be revisited.

Why isn‘t there a directory to override Perl‘s library?
Mainly because no one‘s gotten around to making one. Note that "making one" involves changing
Configure, config_h.SH (and associated files, see above), and documenting it all in the INSTALL file.

Apparently, most folks who want to override one of the standard library files simply do it by overwritin
standard library files.

APPLLIB
In the perl.c sources, you‘ll find an undocumented APPLLIB_EXP variable, sort of like PRIVLIB_EXP
ARCHLIB_EXP (which are documented in config_h.SH). Here‘s what APPLLIB_EXP is for, from a m
message from Larry:

 The main intent of APPLLIB_EXP is for folks who want to send out a
 version of Perl embedded in their product. They would set the symbol
 to be the name of the library containing the files needed to run or to
 support their particular application. This works at the "override"
 level to make sure they get their own versions of any library code that
 they absolutely must have configuration control over.

 As such, I don’t see any conflict with a sysadmin using it for a
 override−ish sort of thing, when installing a generic Perl. It should
 probably have been named something to do with overriding though. Since
 it’s undocumented we could still change it... :−)

Given that it‘s already there, you can use it to override distribution modules. If you do

sh Configure −Dccflags=’−DAPPLLIB_EXP=/my/override’
18−Oct−1998 Version 5.005_02 1111

pumpkin Perl Programmers Reference Guide pumpkin

, it is

e

ill name
hem

 with
en it
uild.

file

rsion
ously.

nstall
.4.5,
eason
rantee

 Even

load

uncing
s not a

his list
then perl.c will put /my/override ahead of ARCHLIB and PRIVLIB.

Shared libperl.so location
Why isn‘t the shared libperl.so installed in /usr/lib/ along with "all the other" shared libraries? Instead
installed in $archlib, which is typically something like

/usr/local/lib/perl5/archname/5.00404

and is architecture− and version−specific.

The basic reason why a shared libperl.so gets put in $archlib is so that you can have more than on
version of perl on the system at the same time, and have each refer to its own libperl.so.

Three examples might help. All of these work now; none would work if you put libperl.so in /usr/lib.

1. Suppose you want to have both threaded and non−threaded perl versions around. Configure w
both perl libraries "libperl.so" (so that you can link to them with −lperl). The perl binaries tell t
apart by having looking in the appropriate $archlib directories.

2. Suppose you have perl5.004_04 installed and you want to try to compile it again, perhaps
different options or after applying a patch. If you already have libperl.so installed in /usr/lib/, th
may be either difficult or impossible to get ld.so to find the new libperl.so that you‘re trying to b
If, instead, libperl.so is tucked away in $archlib, then you can always just change $archlib in
the current perl you‘re trying to build so that ld.so won‘t find your old libperl.so. (The INSTALL
suggests you do this when building a debugging perl.)

3. The shared perl library is not a "well−behaved" shared library with proper major and minor ve
numbers, so you can‘t necessarily have perl5.004_04 and perl5.004_05 installed simultane
Suppose perl5.004_04 were to install /usr/lib/libperl.so.4.4, and perl5.004_05 were to i
/usr/lib/libperl.so.4.5. Now, when you try to run perl5.004_04, ld.so might try to load libperl.so
since it has the right "major version" number. If this works at all, it almost certainly defeats the r
for keeping perl5.004_04 around. Worse, with development subversions, you certaily can‘t gua
that libperl.so.4.4 and libperl.so.4.55 will be compatible.

Anyway, all this leads to quite obscure failures that are sure to drive casual users crazy.
experienced users will get confused :−). Upon reflection, I‘d say leave libperl.so in $archlib.

Upload Your Work to CPAN
You can upload your work to CPAN if you have a CPAN id. Check out
http://www.perl.com/CPAN/modules/04pause.html for information on _PAUSE_, the Perl Author‘s Up
Server.

I typically upload both the patch file, e.g. perl5.004_08.pat.gz and the full tar file, e.g. perl5.004_08.tar.gz.

If you want your patch to appear in the src/5.0/unsupported directory on CPAN, send e−mail to the CPAN
master librarian. (Check out http://www.perl.com/CPAN/CPAN.html).

Help Save the World
You should definitely announce your patch on the perl5−porters list. You should also consider anno
your patch on comp.lang.perl.announce, though you should make it quite clear that a subversion i
production release, and be prepared to deal with people who will not read your disclaimer.

Todo
Here, in no particular order, are some Configure and build−related items that merit consideration. T
isn‘t exhaustive, it‘s just what I came up with off the top of my head.

Good ideas waiting for round tuits

installprefix
I think we ought to support

 Configure −Dinstallprefix=/blah/blah
1112 Version 5.005_02 18−Oct−1998

pumpkin Perl Programmers Reference Guide pumpkin

 by
e

s
d back
ume

them

 the

ays

. You
tence
 libc

 then

s not
Currently, we support −Dprefix=/blah/blah, but the changing the install location has to be handled
something like the config.over trick described in INSTALL . AFS users also are treated specially. W
should probably duplicate the metaconfig prefix stuff for an install prefix.

Configure −Dsrc=/blah/blah
We should be able to emulate configure —srcdir. Tom Tromey tromey@creche.cygnus.com ha
submitted some patches to the dist−users mailing list along these lines. They have been folde
into the main distribution, but various parts of the perl Configure/build/install process still ass
src=’.’.

Hint file fixes
Various hint files work around Configure problems. We ought to fix Configure so that most of
aren‘t needed.

Hint file information
Some of the hint file information (particularly dynamic loading stuff) ought to be fed back into
main metaconfig distribution.

Catch GNU Libc "Stub" functions
Some functions (such as lchown()) are present in libc, but are unimplmented. That is, they alw
fail and set errno=ENOSYS.

Thomas Bushnell provided the following sample code and the explanation that follows:

 /* System header to define __stub macros and hopefully few prototypes,
which can conflict with char FOO(); below. */

 #include <assert.h>
 /* Override any gcc2 internal prototype to avoid an error. */
 /* We use char because int might match the return type of a gcc2

builtin and then its argument prototype would still apply. */
 char FOO();

 int main() {

 /* The GNU C library defines this for functions which it implements
to always fail with ENOSYS. Some functions are actually named
something starting with __ and the normal name is an alias. */

 #if defined (__stub_FOO) || defined (__stub___FOO)
 choke me
 #else
 FOO();
 #endif

 ; return 0; }

The choice of <assert.h is essentially arbitrary. The GNU libc macros are found in <gnu/stubs.h
can include that file instead of <assert.h (which itself includes <gnu/stubs.h) if you test for its exis
first. <assert.h is assumed to exist on every system, which is why it‘s used here. Any GNU
header file will include the stubs macros. If either __stub_NAME or __stub___NAME is defined,
the function doesn‘t actually exist. Tests using <assert.h work on every system around.

The declaration of FOO is there to override builtin prototypes for ANSI C functions.

Probably good ideas waiting for round tuits

GNU configure —options
I‘ve received sensible suggestions for —exec_prefix and other GNU configure —options. It‘
always obvious exactly what is intended, but this merits investigation.
18−Oct−1998 Version 5.005_02 1113

pumpkin Perl Programmers Reference Guide pumpkin

 util.c
er for
that is

n string

las, it

x

es
tion of

 to do

berg
make clean
Currently, make clean isn‘t all that useful, though make realclean and make distclean are. This
needs a bit of thought and documentation before it gets cleaned up.

Try gcc if cc fails
Currently, we just give up.

bypassing safe*alloc wrappers
On some systems, it may be safe to call the system malloc directly without going through the
safe* layers. (Such systems would accept free(0), for example.) This might be a time−sav
systems that already have a good malloc. (Recent Linux libc‘s apparently have a nice malloc
well−tuned for the system.)

Vague possibilities

MacPerl
Get some of the Macintosh stuff folded back into the main distribution.

gconvert replacement
Maybe include a replacement function that doesn‘t lose data in rare cases of coercion betwee
and numerical values.

Improve makedepend
The current makedepend process is clunky and annoyingly slow, but it works for most folks. A
assumes that there is a filename $firstmakefile that the make command will try to use before it
uses Makefile. Such may not be the case for all make commands, particularly those on non−Uni
systems.

Probably some variant of the BSD .depend file will be useful. We ought to check how other packag
do this, if they do it at all. We could probably pre−generate the dependencies (with the excep
malloc.o, which could probably be determined at Makefile.SH extraction time.

GNU Makefile standard targets
GNU software generally has standardized Makefile targets. Unless we have good reason
otherwise, I see no reason not to support them.

File locking
Somehow, straighten out, document, and implement lockf() , flock() , and/or fcntl() file
locking. It‘s a mess.

AUTHORS
Original author: Andy Dougherty doughera@lafcol.lafayette.edu . Additions by Chip Salzen
chip@perl.com and Tim Bunce Tim.Bunce@ig.co.uk .

All opinions expressed herein are those of the author(s).

LAST MODIFIED
$Id: pumpkin.pod,v 1.22 1998/07/22 16:33:55 doughera Released $
1114 Version 5.005_02 18−Oct−1998

c2ph Perl Programmers Reference Guide c2ph

ul 91

uctures
ps or

t the C

r stabs
obust.

em into
NAME
c2ph, pstruct − Dump C structures as generated from cc −g −S stabs

SYNOPSIS
 c2ph [−dpnP] [var=val] [files ...]

OPTIONS
 Options:

 −w wide; short for: type_width=45 member_width=35 offset_width=8
 −x hex; short for: offset_fmt=x offset_width=08 size_fmt=x size_width=04

 −n do not generate perl code (default when invoked as pstruct)
 −p generate perl code (default when invoked as c2ph)
 −v generate perl code, with C decls as comments

 −i do NOT recompute sizes for intrinsic datatypes
 −a dump information on intrinsics also

 −t trace execution
 −d spew reams of debugging output

 −slist give comma−separated list a structures to dump

DESCRIPTION
The following is the old c2ph.doc documentation by Tom Christiansen <tchrist@perl.com Date: 25 J
08:10:21 GMT

Once upon a time, I wrote a program called pstruct. It was a perl program that tried to parse out C str
and display their member offsets for you. This was especially useful for people looking at binary dum
poking around the kernel.

Pstruct was not a pretty program. Neither was it particularly robust. The problem, you see, was tha
compiler was much better at parsing C than I could ever hope to be.

So I got smart: I decided to be lazy and let the C compiler parse the C, which would spit out debugge
for me to read. These were much easier to parse. It‘s still not a pretty program, but at least it‘s more r

Pstruct takes any .c or .h files, or preferably .s ones, since that‘s the format it is going to massage th
anyway, and spits out listings like this:

 struct tty {
 int tty.t_locker 000 4
 int tty.t_mutex_index 004 4
 struct tty * tty.t_tp_virt 008 4
 struct clist tty.t_rawq 00c 20
 int tty.t_rawq.c_cc 00c 4
 int tty.t_rawq.c_cmax 010 4
 int tty.t_rawq.c_cfx 014 4
 int tty.t_rawq.c_clx 018 4
 struct tty * tty.t_rawq.c_tp_cpu 01c 4
 struct tty * tty.t_rawq.c_tp_iop 020 4
 unsigned char * tty.t_rawq.c_buf_cpu 024 4
 unsigned char * tty.t_rawq.c_buf_iop 028 4
 struct clist tty.t_canq 02c 20
 int tty.t_canq.c_cc 02c 4
 int tty.t_canq.c_cmax 030 4
 int tty.t_canq.c_cfx 034 4
 int tty.t_canq.c_clx 038 4
 struct tty * tty.t_canq.c_tp_cpu 03c 4
18−Oct−1998 Version 5.005_02 1115

c2ph Perl Programmers Reference Guide c2ph

lumn,

re a

and if

ucture

 C code

l, was
hen you
, you

h was
uched
 struct tty * tty.t_canq.c_tp_iop 040 4
 unsigned char * tty.t_canq.c_buf_cpu 044 4
 unsigned char * tty.t_canq.c_buf_iop 048 4
 struct clist tty.t_outq 04c 20
 int tty.t_outq.c_cc 04c 4
 int tty.t_outq.c_cmax 050 4
 int tty.t_outq.c_cfx 054 4
 int tty.t_outq.c_clx 058 4
 struct tty * tty.t_outq.c_tp_cpu 05c 4
 struct tty * tty.t_outq.c_tp_iop 060 4
 unsigned char * tty.t_outq.c_buf_cpu 064 4
 unsigned char * tty.t_outq.c_buf_iop 068 4
 (*int)() tty.t_oproc_cpu 06c 4
 (*int)() tty.t_oproc_iop 070 4
 (*int)() tty.t_stopproc_cpu 074 4
 (*int)() tty.t_stopproc_iop 078 4
 struct thread * tty.t_rsel 07c 4

etc.

Actually, this was generated by a particular set of options. You can control the formatting of each co
whether you prefer wide or fat, hex or decimal, leading zeroes or whatever.

All you need to be able to use this is a C compiler than generates BSD/GCC−style stabs. The −g option on
native BSD compilers and GCC should get this for you.

To learn more, just type a bogus option, like −\?, and a long usage message will be provided. There a
fair number of possibilities.

If you‘re only a C programmer, than this is the end of the message for you. You can quit right now,
you care to, save off the source and run it when you feel like it. Or not.

But if you‘re a perl programmer, then for you I have something much more wondrous than just a str
offset printer.

You see, if you call pstruct by its other incybernation, c2ph, you have a code generator that translates
into perl code! Well, structure and union declarations at least, but that‘s quite a bit.

Prior to this point, anyone programming in perl who wanted to interact with C programs, like the kerne
forced to guess the layouts of the C strutures, and then hardwire these into his program. Of course, w
took your wonderfully crafted program to a system where the sgtty structure was laid out differently
program broke. Which is a shame.

We‘ve had Larry‘s h2ph translator, which helped, but that only works on cpp symbols, not real C, whic
also very much needed. What I offer you is a symbolic way of getting at all the C structures. I‘ve co
them in terms of packages and functions. Consider the following program:

 #!/usr/local/bin/perl

 require ’syscall.ph’;
 require ’sys/time.ph’;
 require ’sys/resource.ph’;

 $ru = "\0" x &rusage’sizeof();

 syscall(&SYS_getrusage, &RUSAGE_SELF, $ru) && die "getrusage: $!";

 @ru = unpack($t = &rusage’typedef(), $ru);

 $utime = $ru[&rusage’ru_utime + &timeval’tv_sec]
 + ($ru[&rusage’ru_utime + &timeval’tv_usec]) / 1e6;
1116 Version 5.005_02 18−Oct−1998

c2ph Perl Programmers Reference Guide c2ph

 names.

, but

d, or I
gram
of the
 $stime = $ru[&rusage’ru_stime + &timeval’tv_sec]
 + ($ru[&rusage’ru_stime + &timeval’tv_usec]) / 1e6;

 printf "you have used %8.3fs+%8.3fu seconds.\n", $utime, $stime;

As you see, the name of the package is the name of the structure. Regular fields are just their own
Plus the following accessor functions are provided for your convenience:

 struct This takes no arguments, and is merely the number of first−level
elements in the structure. You would use this for indexing
into arrays of structures, perhaps like this

 $usec = $u[&user’u_utimer
+ (&ITIMER_VIRTUAL * &itimerval’struct)
+ &itimerval’it_value
+ &timeval’tv_usec

];

 sizeof Returns the bytes in the structure, or the member if
 you pass it an argument, such as

&rusage’sizeof(&rusage’ru_utime)

 typedef This is the perl format definition for passing to pack and
 unpack. If you ask for the typedef of a nothing, you get
 the whole structure, otherwise you get that of the member
 you ask for. Padding is taken care of, as is the magic to
 guarantee that a union is unpacked into all its aliases.
 Bitfields are not quite yet supported however.

 offsetof This function is the byte offset into the array of that
member. You may wish to use this for indexing directly
into the packed structure with vec() if you’re too lazy
to unpack it.

 typeof Not to be confused with the typedef accessor function, this
one returns the C type of that field. This would allow
you to print out a nice structured pretty print of some
structure without knoning anything about it beforehand.
No args to this one is a noop. Someday I’ll post such
a thing to dump out your u structure for you.

The way I see this being used is like basically this:

% h2ph <some_include_file.h > /usr/lib/perl/tmp.ph
% c2ph some_include_file.h >> /usr/lib/perl/tmp.ph
% install

It‘s a little tricker with c2ph because you have to get the includes right. I can‘t know this for your system
it‘s not usually too terribly difficult.

The code isn‘t pretty as I mentioned — I never thought it would be a 1000− line program when I starte
might not have begun. :−) But I would have been less cavalier in how the parts of the pro
communicated with each other, etc. It might also have helped if I didn‘t have to divine the makeup
stabs on the fly, and then account for micro differences between my compiler and gcc.

Anyway, here it is. Should run on perl v4 or greater. Maybe less.

 −−tom
18−Oct−1998 Version 5.005_02 1117

h2ph Perl Programmers Reference Guide h2ph

ily run

ou can

n

NAME
h2ph − convert .h C header files to .ph Perl header files

SYNOPSIS
h2ph [−d destination directory] [−r | −a] [−l] [headerfiles]

DESCRIPTION
h2ph converts any C header files specified to the corresponding Perl header file format. It is most eas
while in /usr/include:

cd /usr/include; h2ph * sys/*

or

cd /usr/include; h2ph −r −l .

The output files are placed in the hierarchy rooted at Perl‘s architecture dependent library directory. Y
specify a different hierarchy with a −d switch.

If run with no arguments, filters standard input to standard output.

OPTIONS

−d destination_dir
Put the resulting .ph files beneath destination_dir, instead of beneath the default Perl library locatio
($Config{‘installsitsearch‘}).

−r Run recursively; if any of headerfiles are directories, then run h2ph on all files in those directories
(and their subdirectories, etc.). −r and −a are mutually exclusive.

−a Run automagically; convert headerfiles, as well as any .h files which they include. This option will
search for .h files in all directories which your C compiler ordinarily uses. −a and −r are mutually
exclusive.

−l Symbolic links will be replicated in the destination directory. If −l is not specified, then links are
skipped over.

−h Put ‘‘hints‘’ in the .ph files which will help in locating problems with h2ph. In those cases when you
require a .ph file containing syntax errors, instead of the cryptic

[some error condition] at (eval mmm) line nnn

you will see the slightly more helpful

[some error condition] at filename.ph line nnn

However, the .ph files almost double in size when built using −h.

−D Include the code from the .h file as a comment in the .ph file. This is primarily used for debugging
h2ph.

ENVIRONMENT
No environment variables are used.

FILES
 /usr/include/*.h
 /usr/include/sys/*.h

etc.

AUTHOR
Larry Wall
1118 Version 5.005_02 18−Oct−1998

h2ph Perl Programmers Reference Guide h2ph

n get at
SEE ALSO
perl(1)

DIAGNOSTICS
The usual warnings if it can‘t read or write the files involved.

BUGS
Doesn‘t construct the %sizeof array for you.

It doesn‘t handle all C constructs, but it does attempt to isolate definitions inside evals so that you ca
the definitions that it can translate.

It‘s only intended as a rough tool. You may need to dicker with the files produced.
18−Oct−1998 Version 5.005_02 1119

h2xs Perl Programmers Reference Guide h2xs

sed to

name

L will
ibraries
t, the
ted by

hould

is sets
 the

. The
NAME
h2xs − convert .h C header files to Perl extensions

SYNOPSIS
h2xs [−AOPXcdf] [−v version] [−n module_name] [−p prefix] [−s sub] [headerfile ... [extra_libraries]]

h2xs −h

DESCRIPTION
h2xs builds a Perl extension from C header files. The extension will include functions which can be u
retrieve the value of any #define statement which was in the C header files.

The module_name will be used for the name of the extension. If module_name is not supplied then the
of the first header file will be used, with the first character capitalized.

If the extension might need extra libraries, they should be included here. The extension Makefile.P
take care of checking whether the libraries actually exist and how they should be loaded. The extra l
should be specified in the form −lm −lposix, etc, just as on the cc command line. By defaul
Makefile.PL will search through the library path determined by Configure. That path can be augmen
including arguments of the form −L/another/library/path in the extra−libraries argument.

OPTIONS

−A Omit all autoload facilities. This is the same as −c but also removes the require AutoLoader
statement from the .pm file.

−F Additional flags to specify to C preprocessor when scanning header for function declarations. S
not be used without −x.

−O Allows a pre−existing extension directory to be overwritten.

−P Omit the autogenerated stub POD section.

−X Omit the XS portion. Used to generate templates for a module which is not XS−based.

−c Omit constant() from the .xs file and corresponding specialised AUTOLOAD from the .pm file.

−d Turn on debugging messages.

−f Allows an extension to be created for a header even if that header is not found in /usr/include.

−h Print the usage, help and version for this h2xs and exit.

−n module_name
Specifies a name to be used for the extension, e.g., −n RPC::DCE

−p prefix
Specify a prefix which should be removed from the Perl function names, e.g., −p sec_rgy_ Th
up the XS PREFIX keyword and removes the prefix from functions that are autoloaded via
constant() mechansim.

−s sub1,sub2
Create a perl subroutine for the specified macros rather than autoload with the constant()
subroutine. These macros are assumed to have a return type of char *, e.g.,
−s sec_rgy_wildcard_name,sec_rgy_wildcard_sid.

−v version
Specify a version number for this extension. This version number is added to the templates
default is 0.01.
1120 Version 5.005_02 18−Oct−1998

h2xs Perl Programmers Reference Guide h2xs

ckage
 like
itted

annot
−x Automatically generate XSUBs basing on function declarations in the header file. The pa
C::Scan should be installed. If this option is specified, the name of the header file may look
NAME1,NAME2. In this case NAME1 is used instead of the specified string, but XSUBs are em
only for the declarations included from file NAME2.

Note that some types of arguments/return−values for functions may result in
XSUB−declarations/typemap−entries which need hand−editing. Such may be objects which c
be converted from/to a pointer (like long long), pointers to functions, or arrays.

EXAMPLES
Default behavior, extension is Rusers
h2xs rpcsvc/rusers

Same, but extension is RUSERS
h2xs −n RUSERS rpcsvc/rusers

Extension is rpcsvc::rusers. Still finds <rpcsvc/rusers.h>
h2xs rpcsvc::rusers

Extension is ONC::RPC. Still finds <rpcsvc/rusers.h>
h2xs −n ONC::RPC rpcsvc/rusers

Without constant() or AUTOLOAD
h2xs −c rpcsvc/rusers

Creates templates for an extension named RPC
h2xs −cfn RPC

Extension is ONC::RPC.
h2xs −cfn ONC::RPC

Makefile.PL will look for library −lrpc in
additional directory /opt/net/lib
h2xs rpcsvc/rusers −L/opt/net/lib −lrpc

 # Extension is DCE::rgynbase
 # prefix "sec_rgy_" is dropped from perl function names
 h2xs −n DCE::rgynbase −p sec_rgy_ dce/rgynbase

 # Extension is DCE::rgynbase
 # prefix "sec_rgy_" is dropped from perl function names
 # subroutines are created for sec_rgy_wildcard_name and sec_rgy_wildcard_sid
 h2xs −n DCE::rgynbase −p sec_rgy_ \
 −s sec_rgy_wildcard_name,sec_rgy_wildcard_sid dce/rgynbase

Make XS without defines in perl.h, but with function declarations
visible from perl.h. Name of the extension is perl1.
When scanning perl.h, define −DEXT=extern −DdEXT= −DINIT(x)=
Extra backslashes below because the string is passed to shell.
Note that a directory with perl header files would
be added automatically to include path.
h2xs −xAn perl1 −F "−DEXT=extern −DdEXT= −DINIT\(x\)=" perl.h

Same with function declaration in proto.h as visible from perl.h.
h2xs −xAn perl2 perl.h,proto.h

ENVIRONMENT
No environment variables are used.
18−Oct−1998 Version 5.005_02 1121

h2xs Perl Programmers Reference Guide h2xs
AUTHOR
Larry Wall and others

SEE ALSO
perl, perlxstut, ExtUtils::MakeMaker, and AutoLoader.

DIAGNOSTICS
The usual warnings if it cannot read or write the files involved.
1122 Version 5.005_02 18−Oct−1998

perlbug Perl Programmers Reference Guide perlbug

tion that

t, and

that

d see
 those

to use

e sure
 the
 it all,

licate
mber of
tforms

e time,

 can
e the
NAME
perlbug − how to submit bug reports on Perl

SYNOPSIS
perlbug [−v] [−a address] [−s subject] [−b body | −f inputfile] [−F outputfile] [−r returnaddress]
[−e editor] [−c adminaddress | −C] [−S] [−t] [−d] [−h]

perlbug [−v] [−r returnaddress] [−ok | −okay | −nok | −nokay]

DESCRIPTION
A program to help generate bug reports about perl or the modules that come with it, and mail them.

If you have found a bug with a non−standard port (one that was not part of the standard distribution), a
binary distribution, or a non−standard module (such as Tk, CGI, etc), then please see the documenta
came with that distribution to determine the correct place to report bugs.

perlbug is designed to be used interactively. Normally no arguments will be needed. Simply run i
follow the prompts.

If you are unable to run perlbug (most likely because you don‘t have a working setup to send mail
perlbug recognizes), you may have to compose your own report, and email it to perlbug@perl.com. You
might find the −d option useful to get summary information in that case.

In any case, when reporting a bug, please make sure you have run through this checklist:

What version of perl you are running?
Type perl −v at the command line to find out.

Are you running the latest released version of perl?
Look at http://www.perl.com/ to find out. If it is not the latest released version, get that one an
whether your bug has been fixed. Note that bug reports about old versions of perl, especially
prior to the 5.0 release, are likely to fall upon deaf ears. You are on your own if you continue
perl1 .. perl4.

Are you sure what you have is a bug?
A significant number of the bug reports we get turn out to be documented features in perl. Mak
the behavior you are witnessing doesn‘t fall under that category, by glancing through
documentation that comes with perl (we‘ll admit this is no mean task, given the sheer volume of
but at least have a look at the sections that seem relevant).

Be aware of the familiar traps that perl programmers of various hues fall into. See perltrap.

Try to study the problem under the perl debugger, if necessary. See perldebug.

Do you have a proper test case?
The easier it is to reproduce your bug, the more likely it will be fixed, because if no one can dup
the problem, no one can fix it. A good test case has most of these attributes: fewest possible nu
lines; few dependencies on external commands, modules, or libraries; runs on most pla
unimpeded; and is self−documenting.

A good test case is almost always a good candidate to be on the perl test suite. If you have th
consider making your test case so that it will readily fit into the standard test suite.

Can you describe the bug in plain English?
The easier it is to understand a reproducible bug, the more likely it will be fixed. Anything you
provide by way of insight into the problem helps a great deal. In other words, try to analys
problem to the extent you feel qualified and report your discoveries.
18−Oct−1998 Version 5.005_02 1123

perlbug Perl Programmers Reference Guide perlbug

h, the
ay be

ent to
your
e

rsion
pose

ire

reply at
nd or
 fixed,
 and
eport if

trator

data,

nning

.

Can you fix the bug yourself?
A bug report which includes a patch to fix it will almost definitely be fixed. Use the diff program to
generate your patches (diff is being maintained by the GNU folks as part of the diffutils package, so
you should be able to get it from any of the GNU software repositories). If you do submit a patc
cool−dude counter at perlbug@perl.com will register you as a savior of the world. Your patch m
returned with requests for changes, or requests for more detailed explanations about your fix.

Here are some clues for creating quality patches: Use the −c or −u switches to the diff program (to
create a so−called context or unified diff). Make sure the patch is not reversed (the first argum
diff is typically the original file, the second argument your changed file). Make sure you test
patch by applying it with the patch program before you send it on its way. Try to follow the sam
style as the code you are trying to patch. Make sure your patch really does work (make test , if the
thing you‘re patching supports it).

Can you use perlbug to submit the report?
perlbug will, amongst other things, ensure your report includes crucial information about your ve
of perl. If perlbug is unable to mail your report after you have typed it in, you may have to com
the message yourself, add the output produced by perlbug −d and email it to perlbug@perl.com.
If, for some reason, you cannot run perlbug at all on your system, be sure to include the ent
output produced by running perl −V (note the uppercase V).

Having done your bit, please be prepared to wait, to be told the bug is in your code, or even to get no
all. The perl maintainers are busy folks, so if your problem is a small one or if it is difficult to understa
already known, they may not respond with a personal reply. If it is important to you that your bug be
do monitor the Changes file in any development releases since the time you submitted the bug,
encourage the maintainers with kind words (but never any flames!). Feel free to resend your bug r
the next released version of perl comes out and your bug is still present.

OPTIONS

−a Address to send the report to. Defaults to ‘perlbug@perl.com’.

−b Body of the report. If not included on the command line, or in a file with −f, you will get a
chance to edit the message.

−C Don‘t send copy to administrator.

−c Address to send copy of report to. Defaults to the address of the local perl adminis
(recorded when perl was built).

−d Data mode (the default if you redirect or pipe output). This prints out your configuration
without mailing anything. You can use this with −v to get more complete data.

−e Editor to use.

−f File containing the body of the report. Use this to quickly send a prepared message.

−F File to output the results to instead of sending as an email. Useful particularly when ru
perlbug on a machine with no direct internet connection.

−h Prints a brief summary of the options.

−ok Report successful build on this system to perl porters. Forces −S and −C. Forces and supplies
values for −s and −b. Only prompts for a return address if it cannot guess it (for use with make).
Honors return address specified with −r . You can use this with −v to get more complete data
Only makes a report if this system is less than 60 days old.

−okay As −ok except it will report on older systems.
1124 Version 5.005_02 18−Oct−1998

perlbug Perl Programmers Reference Guide perlbug

ay be

.

tion.

 the

m>),
−nok Report unsuccessful build on this system. Forces −C. Forces and supplies a value for −s, then
requires you to edit the report and say what went wrong. Alternatively, a prepared report m
supplied using −f. Only prompts for a return address if it cannot guess it (for use with make).
Honors return address specified with −r . You can use this with −v to get more complete data
Only makes a report if this system is less than 60 days old.

−nokay As −nok except it will report on older systems.

−r Your return address. The program will ask you to confirm its default if you don‘t use this op

−S Send without asking for confirmation.

−s Subject to include with the message. You will be prompted if you don‘t supply one on
command line.

−t Test mode. The target address defaults to ‘perlbug−test@perl.com’.

−v Include verbose configuration data in the report.

AUTHORS
Kenneth Albanowski (<kjahds@kjahds.com>), subsequently doctored by Gurusamy Sarathy
(<gsar@umich.edu>), Tom Christiansen (<tchrist@perl.com>), Nathan Torkington (<gnat@frii.co
Charles F. Randall (<cfr@pobox.com>), Mike Guy (<mjtg@cam.a.uk>), Dominic Dunlop
(<domo@computer.org>) and Hugo van der Sanden (<hv@crypt0.demon.co.uk>).

SEE ALSO
perl(1), perldebug(1), perltrap(1), diff(1), patch(1)

BUGS
None known (guess what must have been used to report them?)
18−Oct−1998 Version 5.005_02 1125

perlcc Perl Programmers Reference Guide perlcc

to a
 into a

testing

 be

be
NAME
perlcc − frontend for perl compiler

SYNOPSIS
 %prompt perlcc a.p # compiles into executable ’a’

 %prompt perlcc A.pm # compile into ’A.so’

 %prompt perlcc a.p −o execute # compiles ’a.p’ into ’execute’.

 %prompt perlcc a.p −o execute −run # compiles ’a.p’ into execute, runs on
 # the fly

 %prompt perlcc a.p −o execute −run −argv ’arg1 arg2 arg3’
 # compiles into execute, runs with
 # arg1 arg2 arg3 as @ARGV

 %prompt perlcc a.p b.p c.p −regex ’s/\.p/\.exe’
 # compiles into ’a.exe’,’b.exe’,’c.exe’.

 %prompt perlcc a.p −log compilelog # compiles into ’a’, saves compilation
 # info into compilelog, as well
 # as mirroring to screen

 %prompt perlcc a.p −log compilelog −verbose cdf
 # compiles into ’a’, saves compilation
 # info into compilelog, being silent
 # on screen.

 %prompt perlcc a.p −C a.c −gen # generates C code (into a.c) and
 # stops without compile.

 %prompt perlcc a.p −L ../lib a.c
 # Compiles with the perl libraries
 # inside ../lib included.

DESCRIPTION
‘perlcc’ is the frontend into the perl compiler. Typing ‘perlcc a.p’ compiles the code inside a.p in
standalone executable, and perlcc A.pm will compile into a shared object, A.so, suitable for inclusion
perl program via "use A".

There are quite a few flags to perlcc which help with such issues as compiling programs in bulk,
compiled programs for compatibility with the interpreter, and controlling.

OPTIONS

−L < library_directories
Adds directories in library_directories to the compilation command.

−I < include_directories
Adds directories inside include_directories to the compilation command.

−C < c_code_name
Explicitly gives the name c_code_name to the generated c code which is to be compiled. Can only
used if compiling one file on the command line.

−o < executable_name
Explicitly gives the name executable_name to the executable which is to be compiled. Can only
used if compiling one file on the command line.
1126 Version 5.005_02 18−Oct−1998

perlcc Perl Programmers Reference Guide perlcc

to

cutable

 file

 level
ving
to see.

 the
l of

 and
 does

ewrite

ing

us ’.c‘;
ed to

t

.
−e < perl_line_to_execute
Compiles ‘one liners‘, in the same way that perl −e runs text strings at the command line. Default is
have the ‘one liner’ be compiled, and run all in one go (see −run); giving the −o flag saves the
resultant executable, rather than throwing it away. Use ‘−argv’ to pass arguments to the exe
created.

−regex <rename_regex
Gives a rule rename_regex − which is a legal perl regular expression − to create executable
names.

−verbose <verbose_level
Show exactly what steps perlcc is taking to compile your code. You can change the verbosity
verbose_level much in the same way that the ‘−D’ switch changes perl‘s debugging level, by gi
either a number which is the sum of bits you want or a list of letters representing what you wish
Here are the verbosity levels so far :

 Bit 1(g): Code Generation Errors to STDERR
 Bit 2(a): Compilation Errors to STDERR
 Bit 4(t): Descriptive text to STDERR
 Bit 8(f): Code Generation Errors to file (B<−log> flag needed)
 Bit 16(c): Compilation Errors to file (B<−log> flag needed)
 Bit 32(d): Descriptive text to file (B<−log> flag needed)

If the −log tag is given, the default verbose level is 63 (ie: mirroring all of perlcc‘s output to both
screen and to a log file). If no −log tag is given, then the default verbose level is 7 (ie: outputting al
perlcc‘s output to STDERR).

NOTE: Because of buffering concerns, you CANNOT shadow the output of ‘−run’ to both a file,
to the screen! Suggestions are welcome on how to overcome this difficulty, but for now it simply
not work properly, and hence will only go to the screen.

−log <logname
Opens, for append, a logfile to save some or all of the text for a given compile command. No r
version is available, so this needs to be done manually.

−argv <arguments
In combination with ‘−run’ or ‘−e‘, tells perlcc to run the resulting executable with the str
arguments as @ARGV.

−sav
Tells perl to save the intermediate C code. Usually, this C code is the name of the perl code, pl
‘perlcode.p’ gets generated in ‘perlcode.p.c‘, for example. If used with the ‘−e’ operator, you ne
tell perlcc where to save resulting executables.

−gen
Tells perlcc to only create the intermediate C code, and not compile the results. Does an implici−sav,
saving the C code rather than deleting it.

−run
Immediately run the perl code that has been generated. NOTE: IF YOU GIVE THE −run FLAG TO
perlcc, THEN THE REST OF @ARGV WILL BE INTERPRETED AS ARGUMENTS TO THE
PROGRAM THAT YOU ARE COMPILING.

−prog
Indicate that the programs at the command line are programs, and should be compiled as suchperlcc
will automatically determine files to be programs if they have .p, .pl, .bat extensions.
18−Oct−1998 Version 5.005_02 1127

perlcc Perl Programmers Reference Guide perlcc

.

hich
:

ns will

s:

used by

l ’.‘,

an

ry
−mod
Indicate that the programs at the command line are modules, and should be compiled as suchperlcc
will automatically determine files to be modules if they have the extension .pm.

ENVIRONMENT
Most of the work of perlcc is done at the command line. However, you can change the heuristic w
determines what is a module and what is a program. As indicated above, perlcc assumes that the extensions

.p$, .pl$, and .bat$

indicate a perl program, and:

.pm$

indicate a library, for the purposes of creating executables. And furthermore, by default, these extensio
be replaced (and dropped) in the process of creating an executable.

To change the extensions which are programs, and which are modules, set the environmental variable

PERL_SCRIPT_EXT PERL_MODULE_EXT

These two environmental variables take colon−separated, legal perl regular expressions, and are
perlcc to decide which objects are which. For example:

setenv PERL_SCRIPT_EXT ’.prl$:.perl$’ prompt% perlcc sample.perl

will compile the script ‘sample.perl’ into the executable ‘sample‘, and

setenv PERL_MODULE_EXT ’.perlmod$:.perlmodule$’

prompt% perlcc sample.perlmod

will compile the module ‘sample.perlmod’ into the shared object ‘sample.so’

NOTE: the ’.’ in the regular expressions for PERL_SCRIPT_EXT and PERL_MODULE_EXT is a litera
and not a wild−card. To get a true wild−card, you need to backslash the ’.‘; as in:

setenv PERL_SCRIPT_EXT ‘\.\.\.\.\.’

which would have the effect of compiling ANYTHING (except what is in PERL_MODULE_EXT) into
executable with 5 less characters in its name.

FILES
‘perlcc’ uses a temporary file when you use the −e option to evaluate text and compile it. This tempora
file is ‘perlc$$.p’. The temporary C code is perlc$$.p.c, and the temporary executable is perlc$$.

When you use ‘−run’ and don‘t save your executable, the temporary executable is perlc$$

BUGS
perlcc currently cannot compile shared objects on Win32. This should be fixed by perl5.005.
1128 Version 5.005_02 18−Oct−1998

perldoc Perl Programmers Reference Guide perldoc

or in a

.

 just use

 nice.

l if the
ectly;

this

ings in

e in the
,

ch
NAME
perldoc − Look up Perl documentation in pod format.

SYNOPSIS
perldoc [−h] [−v] [−t] [−u] [−m] [−l] [−F] [−X] PageName|ModuleName|ProgramName

perldoc −f BuiltinFunction

perldoc −q FAQ Keyword

DESCRIPTION
perldoc looks up a piece of documentation in .pod format that is embedded in the perl installation tree
perl script, and displays it via pod2man | nroff −man | $PAGER. (In addition, if running under
HP−UX, col −x will be used.) This is primarily used for the documentation for the perl library modules

Your system may also have man pages installed for those modules, in which case you can probably
the man(1) command.

OPTIONS

−h help
Prints out a brief help message.

−v verbose
Describes search for the item in detail.

−t text output
Display docs using plain text converter, instead of nroff. This may be faster, but it won‘t look as

−u unformatted
Find docs only; skip reformatting by pod2*

−m module
Display the entire module: both code and unformatted pod documentation. This may be usefu
docs don‘t explain a function in the detail you need, and you‘d like to inspect the code dir
perldoc will find the file for you and simply hand it off for display.

−l file name only
Display the file name of the module found.

−F file names
Consider arguments as file names, no search in directories will be performed.

−f perlfunc
The −f option followed by the name of a perl built in function will extract the documentation of
function from perlfunc.

−q perlfaq
The −q option takes a regular expression as an argument. It will search the question head
perlfaq[1−9] and print the entries matching the regular expression.

−X use an index if present
The −X option looks for a entry whose basename matches the name given on the command lin
file $Config{archlib}/pod.idx. The pod.idx file should contain fully qualified filenames
one per line.

PageName|ModuleName|ProgramName
The item you want to look up. Nested modules (such as File::Basename) are specified either as
File::Basename or File/Basename . You may also give a descriptive name of a page, su
18−Oct−1998 Version 5.005_02 1129

perldoc Perl Programmers Reference Guide perldoc

" for
name,

nts.
as perlfunc . You make also give a partial or wrong−case name, such as "basename
"File::Basename", but this will be slower, if there is more then one page with the same partial
you will only get the first one.

ENVIRONMENT
Any switches in the PERLDOC environment variable will be used before the command line argume
perldoc also searches directories specified by the PERL5LIB (or PERLLIB if PERL5LIB is not defined)
and PATH environment variables. (The latter is so that embedded pods for executables, such as perldoc
itself, are available.) perldoc will use, in order of preference, the pager defined in PERLDOC_PAGER,
MANPAGER, or PAGER before trying to find a pager on its own. (MANPAGER is not used if perldoc was
told to display plain text or unformatted pod.)

AUTHOR
Kenneth Albanowski <kjahds@kjahds.com

Minor updates by Andy Dougherty <doughera@lafcol.lafayette.edu
1130 Version 5.005_02 18−Oct−1998

pl2pm Perl Programmers Reference Guide pl2pm

les.
our
NAME
pl2pm − Rough tool to translate Perl4 .pl files to Perl5 .pm modules.

SYNOPSIS
pl2pm files

DESCRIPTION
pl2pm is a tool to aid in the conversion of Perl4−style .pl library files to Perl5−style library modu
Usually, your old .pl file will still work fine and you should only use this tool if you plan to update y
library to use some of the newer Perl 5 features, such as AutoLoading.

LIMITATIONS
It‘s just a first step, but it‘s usually a good first step.

AUTHOR
Larry Wall <larry@wall.org
18−Oct−1998 Version 5.005_02 1131

pstruct Perl Programmers Reference Guide pstruct

ul 91

uctures
ps or

t the C

r stabs
obust.

em into
NAME
c2ph, pstruct − Dump C structures as generated from cc −g −S stabs

SYNOPSIS
 c2ph [−dpnP] [var=val] [files ...]

OPTIONS
 Options:

 −w wide; short for: type_width=45 member_width=35 offset_width=8
 −x hex; short for: offset_fmt=x offset_width=08 size_fmt=x size_width=04

 −n do not generate perl code (default when invoked as pstruct)
 −p generate perl code (default when invoked as c2ph)
 −v generate perl code, with C decls as comments

 −i do NOT recompute sizes for intrinsic datatypes
 −a dump information on intrinsics also

 −t trace execution
 −d spew reams of debugging output

 −slist give comma−separated list a structures to dump

DESCRIPTION
The following is the old c2ph.doc documentation by Tom Christiansen <tchrist@perl.com Date: 25 J
08:10:21 GMT

Once upon a time, I wrote a program called pstruct. It was a perl program that tried to parse out C str
and display their member offsets for you. This was especially useful for people looking at binary dum
poking around the kernel.

Pstruct was not a pretty program. Neither was it particularly robust. The problem, you see, was tha
compiler was much better at parsing C than I could ever hope to be.

So I got smart: I decided to be lazy and let the C compiler parse the C, which would spit out debugge
for me to read. These were much easier to parse. It‘s still not a pretty program, but at least it‘s more r

Pstruct takes any .c or .h files, or preferably .s ones, since that‘s the format it is going to massage th
anyway, and spits out listings like this:

 struct tty {
 int tty.t_locker 000 4
 int tty.t_mutex_index 004 4
 struct tty * tty.t_tp_virt 008 4
 struct clist tty.t_rawq 00c 20
 int tty.t_rawq.c_cc 00c 4
 int tty.t_rawq.c_cmax 010 4
 int tty.t_rawq.c_cfx 014 4
 int tty.t_rawq.c_clx 018 4
 struct tty * tty.t_rawq.c_tp_cpu 01c 4
 struct tty * tty.t_rawq.c_tp_iop 020 4
 unsigned char * tty.t_rawq.c_buf_cpu 024 4
 unsigned char * tty.t_rawq.c_buf_iop 028 4
 struct clist tty.t_canq 02c 20
 int tty.t_canq.c_cc 02c 4
 int tty.t_canq.c_cmax 030 4
 int tty.t_canq.c_cfx 034 4
 int tty.t_canq.c_clx 038 4
 struct tty * tty.t_canq.c_tp_cpu 03c 4
1132 Version 5.005_02 18−Oct−1998

pstruct Perl Programmers Reference Guide pstruct

lumn,

re a

and if

ucture

 C code

l, was
hen you
, you

h was
uched
 struct tty * tty.t_canq.c_tp_iop 040 4
 unsigned char * tty.t_canq.c_buf_cpu 044 4
 unsigned char * tty.t_canq.c_buf_iop 048 4
 struct clist tty.t_outq 04c 20
 int tty.t_outq.c_cc 04c 4
 int tty.t_outq.c_cmax 050 4
 int tty.t_outq.c_cfx 054 4
 int tty.t_outq.c_clx 058 4
 struct tty * tty.t_outq.c_tp_cpu 05c 4
 struct tty * tty.t_outq.c_tp_iop 060 4
 unsigned char * tty.t_outq.c_buf_cpu 064 4
 unsigned char * tty.t_outq.c_buf_iop 068 4
 (*int)() tty.t_oproc_cpu 06c 4
 (*int)() tty.t_oproc_iop 070 4
 (*int)() tty.t_stopproc_cpu 074 4
 (*int)() tty.t_stopproc_iop 078 4
 struct thread * tty.t_rsel 07c 4

etc.

Actually, this was generated by a particular set of options. You can control the formatting of each co
whether you prefer wide or fat, hex or decimal, leading zeroes or whatever.

All you need to be able to use this is a C compiler than generates BSD/GCC−style stabs. The −g option on
native BSD compilers and GCC should get this for you.

To learn more, just type a bogus option, like −\?, and a long usage message will be provided. There a
fair number of possibilities.

If you‘re only a C programmer, than this is the end of the message for you. You can quit right now,
you care to, save off the source and run it when you feel like it. Or not.

But if you‘re a perl programmer, then for you I have something much more wondrous than just a str
offset printer.

You see, if you call pstruct by its other incybernation, c2ph, you have a code generator that translates
into perl code! Well, structure and union declarations at least, but that‘s quite a bit.

Prior to this point, anyone programming in perl who wanted to interact with C programs, like the kerne
forced to guess the layouts of the C strutures, and then hardwire these into his program. Of course, w
took your wonderfully crafted program to a system where the sgtty structure was laid out differently
program broke. Which is a shame.

We‘ve had Larry‘s h2ph translator, which helped, but that only works on cpp symbols, not real C, whic
also very much needed. What I offer you is a symbolic way of getting at all the C structures. I‘ve co
them in terms of packages and functions. Consider the following program:

 #!/usr/local/bin/perl

 require ’syscall.ph’;
 require ’sys/time.ph’;
 require ’sys/resource.ph’;

 $ru = "\0" x &rusage’sizeof();

 syscall(&SYS_getrusage, &RUSAGE_SELF, $ru) && die "getrusage: $!";

 @ru = unpack($t = &rusage’typedef(), $ru);

 $utime = $ru[&rusage’ru_utime + &timeval’tv_sec]
 + ($ru[&rusage’ru_utime + &timeval’tv_usec]) / 1e6;
18−Oct−1998 Version 5.005_02 1133

pstruct Perl Programmers Reference Guide pstruct

 names.

, but

d, or I
gram
of the
 $stime = $ru[&rusage’ru_stime + &timeval’tv_sec]
 + ($ru[&rusage’ru_stime + &timeval’tv_usec]) / 1e6;

 printf "you have used %8.3fs+%8.3fu seconds.\n", $utime, $stime;

As you see, the name of the package is the name of the structure. Regular fields are just their own
Plus the following accessor functions are provided for your convenience:

 struct This takes no arguments, and is merely the number of first−level
elements in the structure. You would use this for indexing
into arrays of structures, perhaps like this

 $usec = $u[&user’u_utimer
+ (&ITIMER_VIRTUAL * &itimerval’struct)
+ &itimerval’it_value
+ &timeval’tv_usec

];

 sizeof Returns the bytes in the structure, or the member if
 you pass it an argument, such as

&rusage’sizeof(&rusage’ru_utime)

 typedef This is the perl format definition for passing to pack and
 unpack. If you ask for the typedef of a nothing, you get
 the whole structure, otherwise you get that of the member
 you ask for. Padding is taken care of, as is the magic to
 guarantee that a union is unpacked into all its aliases.
 Bitfields are not quite yet supported however.

 offsetof This function is the byte offset into the array of that
member. You may wish to use this for indexing directly
into the packed structure with vec() if you’re too lazy
to unpack it.

 typeof Not to be confused with the typedef accessor function, this
one returns the C type of that field. This would allow
you to print out a nice structured pretty print of some
structure without knoning anything about it beforehand.
No args to this one is a noop. Someday I’ll post such
a thing to dump out your u structure for you.

The way I see this being used is like basically this:

% h2ph <some_include_file.h > /usr/lib/perl/tmp.ph
% c2ph some_include_file.h >> /usr/lib/perl/tmp.ph
% install

It‘s a little tricker with c2ph because you have to get the includes right. I can‘t know this for your system
it‘s not usually too terribly difficult.

The code isn‘t pretty as I mentioned — I never thought it would be a 1000− line program when I starte
might not have begun. :−) But I would have been less cavalier in how the parts of the pro
communicated with each other, etc. It might also have helped if I didn‘t have to divine the makeup
stabs on the fly, and then account for micro differences between my compiler and gcc.

Anyway, here it is. Should run on perl v4 or greater. Maybe less.

 −−tom
1134 Version 5.005_02 18−Oct−1998

splain Perl Programmers Reference Guide splain

rpeter,

ry good
y

e

e)
NAME
diagnostics − Perl compiler pragma to force verbose warning diagnostics

splain − standalone program to do the same thing

SYNOPSIS
As a pragma:

 use diagnostics;
 use diagnostics −verbose;

 enable diagnostics;
 disable diagnostics;

Aa a program:

 perl program 2>diag.out
 splain [−v] [−p] diag.out

DESCRIPTION

The diagnostics Pragma
This module extends the terse diagnostics normally emitted by both the perl compiler and the perl inte
augmenting them with the more explicative and endearing descriptions found in perldiag. Like the other
pragmata, it affects the compilation phase of your program rather than merely the execution phase.

To use in your program as a pragma, merely invoke

 use diagnostics;

at the start (or near the start) of your program. (Note that this does enable perl‘s −w flag.) Your whole
compilation will then be subject(ed :−) to the enhanced diagnostics. These still go out STDERR.

Due to the interaction between runtime and compiletime issues, and because it‘s probably not a ve
idea anyway, you may not use no diagnostics to turn them off at compiletime. However, you ma
control there behaviour at runtime using the disable() and enable() methods to turn them off and on
respectively.

The −verbose flag first prints out the perldiag introduction before any other diagnostics. Th
$diagnostics::PRETTY variable can generate nicer escape sequences for pagers.

The splain Program
While apparently a whole nuther program, splain is actually nothing more than a link to the (executabl
diagnostics.pm module, as well as a link to the diagnostics.pod documentation. The −v flag is like the use
diagnostics −verbose directive. The −p flag is like the $diagnostics::PRETTY variable.
Since you‘re post−processing with splain, there‘s no sense in being able to enable() or disable()
processing.

Output from splain is directed to STDOUT, unlike the pragma.

EXAMPLES
The following file is certain to trigger a few errors at both runtime and compiletime:

 use diagnostics;
 print NOWHERE "nothing\n";
 print STDERR "\n\tThis message should be unadorned.\n";
 warn "\tThis is a user warning";
 print "\nDIAGNOSTIC TESTER: Please enter a <CR> here: ";
 my $a, $b = scalar <STDIN>;
 print "\n";
 print $x/$y;
18−Oct−1998 Version 5.005_02 1135

splain Perl Programmers Reference Guide splain

e

the

 of

level"
If you prefer to run your program first and look at its problem afterwards, do this:

 perl −w test.pl 2>test.out
 ./splain < test.out

Note that this is not in general possible in shells of more dubious heritage, as the theoretical

 (perl −w test.pl >/dev/tty) >& test.out
 ./splain < test.out

Because you just moved the existing stdout to somewhere else.

If you don‘t want to modify your source code, but still have on−the−fly warnings, do this:

 exec 3>&1; perl −w test.pl 2>&1 1>&3 3>&− | splain 1>&2 3>&−

Nifty, eh?

If you want to control warnings on the fly, do something like this. Make sure you do the use first, or you
won‘t be able to get at the enable() or disable() methods.

 use diagnostics; # checks entire compilation phase
print "\ntime for 1st bogus diags: SQUAWKINGS\n";
print BOGUS1 ’nada’;
print "done with 1st bogus\n";

 disable diagnostics; # only turns off runtime warnings
print "\ntime for 2nd bogus: (squelched)\n";
print BOGUS2 ’nada’;
print "done with 2nd bogus\n";

 enable diagnostics; # turns back on runtime warnings
print "\ntime for 3rd bogus: SQUAWKINGS\n";
print BOGUS3 ’nada’;
print "done with 3rd bogus\n";

 disable diagnostics;
print "\ntime for 4th bogus: (squelched)\n";
print BOGUS4 ’nada’;
print "done with 4th bogus\n";

INTERNALS
Diagnostic messages derive from the perldiag.pod file when available at runtime. Otherwise, they may b
embedded in the file itself when the splain package is built. See the Makefile for details.

If an extant $SIG{__WARN__} handler is discovered, it will continue to be honored, but only after
diagnostics::splainthis() function (the module‘s $SIG{__WARN__} interceptor) has had its
way with your warnings.

There is a $diagnostics::DEBUG variable you may set if you‘re desperately curious what sorts
things are being intercepted.

 BEGIN { $diagnostics::DEBUG = 1 }

BUGS
Not being able to say "no diagnostics" is annoying, but may not be insurmountable.

The −pretty directive is called too late to affect matters. You have to do this instead, and before you load
the module.

 BEGIN { $diagnostics::PRETTY = 1 }

I could start up faster by delaying compilation until it should be needed, but this gets a "panic: top_
when using the pragma form in Perl 5.001e.
1136 Version 5.005_02 18−Oct−1998

splain Perl Programmers Reference Guide splain
While it‘s true that this documentation is somewhat subserious, if you use a program named splain, you
should expect a bit of whimsy.

AUTHOR
Tom Christiansen <tchrist@mox.perl.com, 25 June 1995.
18−Oct−1998 Version 5.005_02 1137

a2p Perl Programmers Reference Guide a2p

parable

 were

 loop,

e some
 them, in

ven
ll if the

ecides
 point.
ses are
ast

g into
entries

ant to
 If it

ts that
ied by
NAME
a2p − Awk to Perl translator

SYNOPSIS
a2p [options] filename

DESCRIPTION
A2p takes an awk script specified on the command line (or from standard input) and produces a com
perl script on the standard output.

Options
Options include:

−D<number>
sets debugging flags.

−F<character>
tells a2p that this awk script is always invoked with this −F switch.

−n<fieldlist>
specifies the names of the input fields if input does not have to be split into an array. If you
translating an awk script that processes the password file, you might say:

a2p −7 −nlogin.password.uid.gid.gcos.shell.home

Any delimiter can be used to separate the field names.

−<number>
causes a2p to assume that input will always have that many fields.

−o tells a2p to use old awk behavior. For now, the only difference is that old awk always has a line
even if there are no line actions, whereas new awk does not.

"Considerations"
A2p cannot do as good a job translating as a human would, but it usually does pretty well. There ar
areas where you may want to examine the perl script produced and tweak it some. Here are some of
no particular order.

There is an awk idiom of putting int() around a string expression to force numeric interpretation, e
though the argument is always integer anyway. This is generally unneeded in perl, but a2p can‘t te
argument is always going to be integer, so it leaves it in. You may wish to remove it.

Perl differentiates numeric comparison from string comparison. Awk has one operator for both that d
at run time which comparison to do. A2p does not try to do a complete job of awk emulation at this
Instead it guesses which one you want. It‘s almost always right, but it can be spoofed. All such gues
marked with the comment "#??? ". You should go through and check them. You might want to run at le
once with the −w switch to perl, which will warn you if you use == where you should have used eq.

Perl does not attempt to emulate the behavior of awk in which nonexistent array elements sprin
existence simply by being referenced. If somehow you are relying on this mechanism to create null
for a subsequent for...in, they won‘t be there in perl.

If a2p makes a split line that assigns to a list of variables that looks like (Fld1, Fld2, Fld3...) you may w
rerun a2p using the −n option mentioned above. This will let you name the fields throughout the script.
splits to an array instead, the script is probably referring to the number of fields somewhere.

The exit statement in awk doesn‘t necessarily exit; it goes to the END block if there is one. Awk scrip
do contortions within the END block to bypass the block under such circumstances can be simplif
removing the conditional in the END block and just exiting directly from the perl script.
1138 Version 5.005_02 18−Oct−1998

a2p Perl Programmers Reference Guide a2p

ashes".
g to be

times
ot done

ed.

l script
 can do

to the

ine and
h code

tement
locks for

ime by
 right.
Perl has two kinds of array, numerically−indexed and associative. Perl associative arrays are called "h
 Awk arrays are usually translated to hashes, but if you happen to know that the index is always goin
numeric you could change the {...} to [...]. Iteration over a hash is done using the keys() function, but
iteration over an array is NOT. You might need to modify any loop that iterates over such an array.

Awk starts by assuming OFMT has the value %.6g. Perl starts by assuming its equivalent, $#, to have the
value %.20g. You‘ll want to set $# explicitly if you use the default value of OFMT.

Near the top of the line loop will be the split operation that is implicit in the awk script. There are
when you can move this down past some conditionals that test the entire record so that the split is n
as often.

For aesthetic reasons you may wish to change the array base $[from 1 back to perl‘s default of 0, but
remember to change all array subscripts AND all substr() and index() operations to match.

Cute comments that say "# Here is a workaround because awk is dumb" are passed through unmodifi

Awk scripts are often embedded in a shell script that pipes stuff into and out of awk. Often the shel
wrapper can be incorporated into the perl script, since perl can start up pipes into and out of itself, and
other things that awk can‘t do by itself.

Scripts that refer to the special variables RSTART and RLENGTH can often be simplified by referring
variables $‘, $& and $‘, as long as they are within the scope of the pattern match that sets them.

The produced perl script may have subroutines defined to deal with awk‘s semantics regarding getl
print. Since a2p usually picks correctness over efficiency. it is almost always possible to rewrite suc
to be more efficient by discarding the semantic sugar.

For efficiency, you may wish to remove the keyword from any return statement that is the last sta
executed in a subroutine. A2p catches the most common case, but doesn‘t analyze embedded b
subtler cases.

ARGV[0] translates to $ARGV0, but ARGV[n] translates to $ARGV[$n]. A loop that tries to iterate over
ARGV[0] won‘t find it.

ENVIRONMENT
A2p uses no environment variables.

AUTHOR
Larry Wall <larry@wall.org>

FILES

SEE ALSO
 perl The perl compiler/interpreter

 s2p sed to perl translator

DIAGNOSTICS

BUGS
It would be possible to emulate awk‘s behavior in selecting string versus numeric operations at run t
inspection of the operands, but it would be gross and inefficient. Besides, a2p almost always guesses

Storage for the awk syntax tree is currently static, and can run out.
18−Oct−1998 Version 5.005_02 1139

README Perl Programmers Reference Guide README

port is
will not

re the
ftware is

rl on

 the
at will
atible
oftware

. The
ystem).

 perl).

ll have
 with
ll that
rted".
 under

ry nice
will not
NAME
perlwin32 − Perl under Win32

SYNOPSIS
These are instructions for building Perl under Windows NT (versions 3.51 or 4.0). Currently, this
reported to build under Windows95 using the 4DOS shell—the default shell that infests Windows95
work (see below). Note this caveat is only about building perl. Once built, you should be able to use it on
either Win32 platform (modulo the problems arising from the inferior command shell).

DESCRIPTION
Before you start, you should glance through the README file found in the top−level directory whe
Perl distribution was extracted. Make sure you read and understand the terms under which this so
being distributed.

Also make sure you read BUGS AND CAVEATS below for the known limitations of this port.

The INSTALL file in the perl top−level has much information that is only relevant to people building Pe
Unix−like systems. In particular, you can safely ignore any information that talks about "Configure".

You may also want to look at two other options for building a perl that will work on Windows NT:
README.cygwin32 and README.os2 files, which each give a different set of rules to build a Perl th
work on Win32 platforms. Those two methods will probably enable you to build a more Unix−comp
perl, but you will also need to download and use various other build−time and run−time support s
described in those files.

This set of instructions is meant to describe a so−called "native" port of Perl to Win32 platforms
resulting Perl requires no additional software to run (other than what came with your operating s
Currently, this port is capable of using one of the following compilers:

 Borland C++ version 5.02 or later
 Microsoft Visual C++ version 4.2 or later
 Mingw32 with EGCS version 1.0.2
 Mingw32 with GCC version 2.8.1

The last two of these are high quality freeware compilers. Support for them is still experimental.

This port currently supports MakeMaker (the set of modules that is used to build extensions to
Therefore, you should be able to build and install most extensions found in the CPAN sites. See Usage Hints
below for general hints about this.

Setting Up

Command Shell
Use the default "cmd" shell that comes with NT. Some versions of the popular 4DOS/NT she
incompatibilities that may cause you trouble. If the build fails under that shell, try building again
the cmd shell. The Makefile also has known incompatibilites with the "command.com" she
comes with Windows95, so building under Windows95 should be considered "unsuppo
However, there have been reports of successful build attempts using 4DOS/NT version 6.01
Windows95, using dmake, but your mileage may vary.

The surest way to build it is on WindowsNT, using the cmd shell.

Borland C++
If you are using the Borland compiler, you will need dmake, a freely available make that has ve
macro features and parallelability. (The make that Borland supplies is seriously crippled, and
work for MakeMaker builds.)

A port of dmake for win32 platforms is available from:

 http://www−personal.umich.edu/~gsar/dmake−4.1−win32.zip
1140 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

file).

he
ild

ft" (or
your

er step
using

aders.
iners,

 a few

ins a
ke
e are

 and

pports
nd the
d does
der
aries

lls

hat is
ith the

ey

 one of

n
nt

libdes"
(for
he file
s

Fetch and install dmake somewhere on your path (follow the instructions in the README.NOW

Microsoft Visual C++
The NMAKE that comes with Visual C++ will suffice for building. You will need to run t
VCVARS32.BAT file usually found somewhere like C:\MSDEV4.2\BIN. This will set your bu
environment.

You can also use dmake to build using Visual C++, provided: you set OSRELEASE to "micros
whatever the directory name under which the Visual C dmake configuration lives) in
environment, and edit win32/config.vc to change "make=nmake" into "make=dmake". The latt
is only essential if you want to use dmake as your default make for building extensions
MakeMaker.

Mingw32 with EGCS or GCC
ECGS−1.0.2 binaries can be downloaded from:

 ftp://ftp.xraylith.wisc.edu/pub/khan/gnu−win32/mingw32/

GCC−2.8.1 binaries are available from:

 http://agnes.dida.physik.uni−essen.de/~janjaap/mingw32/

You only need either one of those, not both. Both bundles come with Mingw32 libraries and he
While both of them work to build perl, the EGCS binaries are currently favored by the mainta
since they come with more up−to−date Mingw32 libraries.

Make sure you install the binaries as indicated in the web sites above. You will need to set up
environment variables (usually run from a batch file).

Building

 Make sure you are in the "win32" subdirectory under the perl toplevel. This directory conta
"Makefile" that will work with versions of NMAKE that come with Visual C++, and a dma
"makefile.mk" that will work for all supported compilers. The defaults in the dmake makefil
setup to build using the Borland compiler.

 Edit the makefile.mk (or Makefile, if using nmake) and change the values of INST_DRV
INST_TOP. You can also enable various build flags.

Beginning with version 5.005, there is experimental support for building a perl interpreter that su
the Perl Object abstraction (courtesy ActiveState Tool Corp.) PERL_OBJECT uses C++, a
binaries are therefore incompatible with the regular C build. However, the PERL_OBJECT buil
provide something called the C−API, for linking it with extensions that won‘t compile un
PERL_OBJECT. PERL_OBJECT is not yet supported under GCC or EGCS. WARNING: Bin
built with PERL_OBJECT enabled are not compatible with binaries built without. Perl insta
PERL_OBJECT binaries under a distinct architecture name, so they can coexist, though.

Beginning with version 5.005, there is experimental support for building a perl interpreter t
capable of native threading. Binaries built with thread support enabled are also incompatible w
vanilla C build. WARNING: Binaries built with threads enabled are not compatible with binaries
built without. Perl installs threads enabled binaries under a distinct architecture name, so thcan
coexist, though.

At the present time, you cannot enable both threading and PERL_OBJECT. You can get only
them in a Perl interpreter.

If you have either the source or a library that contains des_fcrypt() , enable the appropriate optio
in the makefile. des_fcrypt() is not bundled with the distribution due to US Governme
restrictions on the export of cryptographic software. Nevertheless, this routine is part of the "
library (written by Ed Young) which is widely available worldwide, usually along with SSLeay
example: "ftp://fractal.mta.ca/pub/crypto/SSLeay/DES/"). Set CRYPT_SRC to the name of t
that implements des_fcrypt() . Alternatively, if you have built a library that contain
18−Oct−1998 Version 5.005_02 1141

README Perl Programmers Reference Guide README

tains

and
 If the

ing on
h. :)

ed on
 work
not be
he C
aware,
selves

 perl

will be

.exe".

d the
y the
ere like

ens only

tever

wo

 to do
des_fcrypt() , you can set CRYPT_LIB to point to the library name. The location above con
many versions of the "libdes" library, all with slightly different implementations of des_fcrypt() .
Older versions have a single, self−contained file (fcrypt.c) that implements crypt() , so they may be
easier to use. A patch against the fcrypt.c found in libdes−3.06 is in des_fcrypt.patch.

Perl will also build without des_fcrypt() , but the crypt() builtin will fail at run time.

You will also have to make sure CCHOME points to wherever you installed your compiler.

Other options are explained in the makefiles. Be sure to read the instructions carefully.

 Type "dmake" (or "nmake" if you are using that make).

This should build everything. Specifically, it will create perl.exe, perl.dll (or perlcore.dll),
perlglob.exe at the perl toplevel, and various other extension dll‘s under the lib\auto directory.
build fails for any reason, make sure you have done the previous steps correctly.

The build process may produce "harmless" compiler warnings (more or less copiously, depend
how picky your compiler gets). The maintainers are aware of these warnings, thankyouverymuc

When building using Visual C++, a perl95.exe will also get built. This executable is only need
Windows95, and should be used instead of perl.exe, and then only if you want sockets to
properly on Windows95. This is necessitated by a bug in the Microsoft C Runtime that can
worked around in the "normal" perl.exe. perl95.exe gets built with its own private copy of t
Runtime that is not accessible to extensions (which see the DLL version of the CRT). Be
therefore, that this perl95.exe will have esoteric problems with extensions like perl/Tk that them
use the C Runtime heavily, or want to free() pointers malloc() −ed by perl.

You can avoid the perl95.exe problems completely if you use Borland C++ for building
(perl95.exe is not needed and will not be built in that case).

Testing
Type "dmake test" (or "nmake test"). This will run most of the tests from the testsuite (many tests
skipped, and but no test should fail).

If some tests do fail, it may be because you are using a different command shell than the native "cmd

If you used the Borland compiler, you may see a failure in op/taint.t arising from the inability to fin
Borland Runtime DLLs on the system default path. You will need to copy the DLLs reported b
messages from where Borland chose to install it, into the Windows system directory (usually somewh
C:\WINNT\SYSTEM32), and rerun the test.

The Visual C runtime apparently has a bug that causes posix.t to fail one it test#2. This usually happ
if you extracted the files in text mode.

Please report any other failures as described under BUGS AND CAVEATS.

Installation
Type "dmake install" (or "nmake install"). This will put the newly built perl and the libraries under wha
INST_TOP points to in the Makefile. It will also install the pod documentation under
$INST_TOP\$VERSION\lib\pod and HTML versions of the same under
$INST_TOP\$VERSION\lib\pod\html. To use the Perl you just installed, you will need to add t
components to your PATH environment variable, $INST_TOP\$VERSION\bin, and
$INST_TOP\$VERSION\bin\$ARCHNAME. For example:

 set PATH c:\perl\5.005\bin;c:\perl\5.005\bin\MSWin32−x6;%PATH%

Usage Hints

Environment Variables
The installation paths that you set during the build get compiled into perl, so you don‘t have
anything additional to start using that perl (except add its location to your PATH variable).
1142 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

ted by
nment

 there.

both a
 default

u used,
reserve
rtable,

install
s the

s. See

ents,

that it
quoted).
 ("). It
ows NT
re some
es them to
m from
sh and
quotes

obably
 quotes
"^" has
).
If you put extensions in unusual places, you can set PERL5LIB to a list of paths separa
semicolons where you want perl to look for libraries. Look for descriptions of other enviro
variables you can set in perlrun.

You can also control the shell that perl uses to run system() and backtick commands via
PERL5SHELL. See perlrun.

Currently, Perl does not depend on the registry, but can look up values if you choose to put them
 [XXX add registry locations that perl looks at here.]

File Globbing
By default, perl spawns an external program to do file globbing. The install process installs
perlglob.exe and a perlglob.bat that perl can use for this purpose. Note that with the
installation, perlglob.exe will be found by the system before perlglob.bat.

perlglob.exe relies on the argv expansion done by the C Runtime of the particular compiler yo
and therefore behaves very differently depending on the Runtime used to build it. To p
compatiblity, perlglob.bat (a perl script that can be used portably) is installed. Besides being po
perlglob.bat also offers enhanced globbing functionality.

If you want perl to use perlglob.bat instead of perlglob.exe, just delete perlglob.exe from the
location (or move it somewhere perl cannot find). Using File::DosGlob.pm (which implement
core functionality of perlglob.bat) to override the internal CORE::glob() works about 10 times
faster than spawing perlglob.exe, and you should take this approach when writing new module
File::DosGlob for details.

Using perl from the command line
If you are accustomed to using perl from various command−line shells found in UNIX environm
you will be less than pleased with what Windows NT offers by way of a command shell.

The crucial thing to understand about the "cmd" shell (which is the default on Windows NT) is
does not do any wildcard expansions of command−line arguments (so wildcards need not be
It also provides only rudimentary quoting. The only (useful) quote character is the double quote
can be used to protect spaces in arguments and other special characters. The Wind
documentation has almost no description of how the quoting rules are implemented, but here a
general observations based on experiments: The shell breaks arguments at spaces and pass
programs in argc/argv. Doublequotes can be used to prevent arguments with spaces in the
being split up. You can put a double quote in an argument by escaping it with a backsla
enclosing the whole argument within double quotes. The backslash and the pair of double
surrounding the argument will be stripped by the shell.

The file redirection characters "<", "", and "|" cannot be quoted by double quotes (there are pr
more such). Single quotes will protect those three file redirection characters, but the single
don‘t get stripped by the shell (just to make this type of quoting completely useless). The caret
also been observed to behave as a quoting character (and doesn‘t get stripped by the shell also

Here are some examples of usage of the "cmd" shell:

This prints two doublequotes:

 perl −e "print ’\"\"’ "

This does the same:

 perl −e "print \"\\\"\\\"\" "

This prints "bar" and writes "foo" to the file "blurch":

 perl −e "print ’foo’; print STDERR ’bar’" > blurch

This prints "foo" ("bar" disappears into nowhereland):
18−Oct−1998 Version 5.005_02 1143

README Perl Programmers Reference Guide README

 to the

which

ith the

 (so

e sure

to the
ils of

ly do not
dle that.
 the C
ce the
n some
lternate

ing it
 you
d any
 perl −e "print ’foo’; print STDERR ’bar’" 2> nul

This prints "bar" and writes "foo" into the file "blurch":

 perl −e "print ’foo’; print STDERR ’bar’" 1> blurch

This pipes "foo" to the "less" pager and prints "bar" on the console:

 perl −e "print ’foo’; print STDERR ’bar’" | less

This pipes "foo\nbar\n" to the less pager:

 perl −le "print ’foo’; print STDERR ’bar’" 2>&1 | less

This pipes "foo" to the pager and writes "bar" in the file "blurch":

 perl −e "print ’foo’; print STDERR ’bar’" 2> blurch | less

Discovering the usefulness of the "command.com" shell on Windows95 is left as an exercise
reader :)

Building Extensions
The Comprehensive Perl Archive Network (CPAN) offers a wealth of extensions, some of
require a C compiler to build. Look in http://www.perl.com/ for more information on CPAN.

Most extensions (whether they require a C compiler or not) can be built, tested and installed w
standard mantra:

 perl Makefile.PL
 $MAKE
 $MAKE test
 $MAKE install

where $MAKE stands for NMAKE or DMAKE. Some extensions may not provide a testsuite
"$MAKE test" may not do anything, or fail), but most serious ones do.

If a module implements XSUBs, you will need one of the supported C compilers. You must mak
you have set up the environment for the compiler for command−line compilation.

If a module does not build for some reason, look carefully for why it failed, and report problems
module author. If it looks like the extension building support is at fault, report that with full deta
how the build failed using the perlbug utility.

Command−line Wildcard Expansion
The default command shells on DOS descendant operating systems (such as they are) usual
expand wildcard arguments supplied to programs. They consider it the application‘s job to han
This is commonly achieved by linking the application (in our case, perl) with startup code that
runtime libraries usually provide. However, doing that results in incompatible perl versions (sin
behavior of the argv expansion code differs depending on the compiler, and it is even buggy o
compilers). Besides, it may be a source of frustration if you use such a perl binary with an a
shell that *does* expand wildcards.

Instead, the following solution works rather well. The nice things about it: 1) you can start us
right away 2) it is more powerful, because it will do the right thing with a pattern like */*/*.c 3)
can decide whether you do/don‘t want to use it 4) you can extend the method to ad
customizations (or even entirely different kinds of wildcard expansion).

C:\> copy con c:\perl\lib\Wild.pm
Wild.pm − emulate shell @ARGV expansion on shells that don’t
use File::DosGlob;
@ARGV = map {

 my @g = File::DosGlob::glob($_) if /[*?]/;
 @g ? @g : $_;
1144 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

rl lib
ion to

nsion
 may
mewhat

 that
to be the
port for
r, and

ndle of
nsions

 This

ions

ute the

There

.0.
ndard

p for

h file
it look
ble the
e:
 } @ARGV;
1;
^Z
C:\> set PERL5OPT=−MWild
C:\> perl −le "for (@ARGV) { print }" */*/perl*.c
p4view/perl/perl.c
p4view/perl/perlio.c
p4view/perl/perly.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c

Note there are two distinct steps there: 1) You‘ll have to create Wild.pm and put it in your pe
directory. 2) You‘ll need to set the PERL5OPT environment variable. If you want argv expans
be the default, just set PERL5OPT in your default startup environment.

If you are using the Visual C compiler, you can get the C runtime‘s command line wildcard expa
built into perl binary. The resulting binary will always expand unquoted command lines, which
not be what you want if you use a shell that does that for you. The expansion done is also so
less powerful than the approach suggested above.

Win32 Specific Extensions
A number of extensions specific to the Win32 platform are available from CPAN. You may find
many of these extensions are meant to be used under the Activeware port of Perl, which used
only native port for the Win32 platform. Since the Activeware port does not have adequate sup
Perl‘s extension building tools, these extensions typically do not support those tools eithe
therefore cannot be built using the generic steps shown in the previous section.

To ensure smooth transitioning of existing code that uses the ActiveState port, there is a bu
Win32 extensions that contains all of the ActiveState extensions and most other Win32 exte
from CPAN in source form, along with many added bugfixes, and with MakeMaker support.
bundle is available at:

 http://www.perl.com/CPAN/authors/id/GSAR/libwin32−0.12.zip

See the README in that distribution for building and installation instructions. Look for later vers
that may be available at the same location.

Running Perl Scripts
Perl scripts on UNIX use the "#!" (a.k.a "shebang") line to indicate to the OS that it should exec
file using perl. Win32 has no comparable means to indicate arbitrary files are executables.

Instead, all available methods to execute plain text files on Win32 rely on the file "extension".
are three methods to use this to execute perl scripts:

1 There is a facility called "file extension associations" that will work in Windows NT 4
This can be manipulated via the two commands "assoc" and "ftype" that come sta
with Windows NT 4.0. Type "ftype /?" for a complete example of how to set this u
perl scripts (Say what? You thought Windows NT wasn‘t perl−ready? :).

2 Since file associations don‘t work everywhere, and there are reportedly bugs wit
associations where it does work, the old method of wrapping the perl script to make
like a regular batch file to the OS, may be used. The install process makes availa
"pl2bat.bat" script which can be used to wrap perl scripts into batch files. For exampl

pl2bat foo.pl
18−Oct−1998 Version 5.005_02 1145

README Perl Programmers Reference Guide README

x to

"%*"
u may
 users
cute

on
ts of

als get

h the
 is
name
" or
 file
on a

the
H

 web

lly in
e to
ation

 it

patible
 by one
 this,
 with.

ng that

ferent
consider
 Win32

s that
one for
will create the file "FOO.BAT". Note "pl2bat" strips any .pl suffix and adds a .bat suffi
the generated file.

If you use the 4DOS/NT or similar command shell, note that "pl2bat" uses the
variable in the generated batch file to refer to all the command line arguments, so yo
need to make sure that construct works in batch files. As of this writing, 4DOS/NT
will need a "ParameterChar = *" statement in their 4NT.INI file, or will need to exe
"setdos /p*" in the 4DOS/NT startup file to enable this to work.

3 Using "pl2bat" has a few problems: the file name gets changed, so scripts that rely $0
to find what they must do may not run properly; running "pl2bat" replicates the conten
the original script, and so this process can be maintenance intensive if the origin
updated often. A different approach that avoids both problems is possible.

A script called "runperl.bat" is available that can be copied to any filename (along wit
.bat suffix). For example, if you call it "foo.bat", it will run the file "foo" when it
executed. Since you can run batch files on Win32 platforms simply by typing the
(without the extension), this effectively runs the file "foo", when you type either "foo
"foo.bat". With this method, "foo.bat" can even be in a different location than the
"foo", as long as "foo" is available somewhere on the PATH. If your scripts are
filesystem that allows symbolic links, you can even avoid copying "runperl.bat".

Here‘s a diversion: copy "runperl.bat" to "runperl", and type "runperl". Explain
observed behavior, or lack thereof. :) Hint: .gnidnats llits er‘uoy fi ,"lrepnur" eteled :tni

Miscellaneous Things
A full set of HTML documentation is installed, so you should be able to use it if you have a
browser installed on your system.

perldoc is also a useful tool for browsing information contained in the documentation, especia
conjunction with a pager like less (recent versions of which have Win32 support). You may hav
set the PAGER environment variable to use a specific pager. "perldoc −f foo" will print inform
about the perl operator "foo".

If you find bugs in perl, you can run perlbug to create a bug report (you may have to send
manually if perlbug cannot find a mailer on your system).

BUGS AND CAVEATS
An effort has been made to ensure that the DLLs produced by the two supported compilers are com
with each other (despite the best efforts of the compiler vendors). Extension binaries produced
compiler should also coexist with a perl binary built by a different compiler. In order to accomplish
PERL.DLL provides a layer of runtime code that uses the C Runtime that perl was compiled
Extensions which include "perl.h" will transparently access the functions in this layer, thereby ensuri
both perl and extensions use the same runtime functions.

If you have had prior exposure to Perl on Unix platforms, you will notice this port exhibits behavior dif
from what is documented. Most of the differences fall under one of these categories. We do not
any of them to be serious limitations (especially when compared to the limited nature of some of the
OSes themselves :)

 stat() and lstat() functions may not behave as documented. They may return value
bear no resemblance to those reported on Unix platforms, and some fields (like the the
inode) may be completely bogus.

 The following functions are currently unavailable: fork() , dump() , chown() , link() ,
symlink() , chroot() , setpgrp() and related security functions, setpriority() ,
getpriority() , syscall() , fcntl() , getpw*() , msg*() , shm*() , sem*() ,
alarm() , socketpair() , *netent() , *protoent() , *servent() , *hostent() ,
getnetby*() . This list is possibly incomplete.
1146 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

ms.

 of

with

 the

either
ce
ork
 port

 calls
the

b.bat
 the
 all
b.exe
braries
lob)

 Hip
 Various socket() related calls are supported, but they may not behave as on Unix platfor

 The four−argument select() call is only supported on sockets.

 The ioctl() call is only supported on sockets (where it provides the functionality
ioctlsocket() in the Winsock API).

 Failure to spawn() a subprocess is indicated by setting $? to "255 << 8". $? is set in a way
compatible with Unix (i.e. the exitstatus of the subprocess is obtained by "$? 8", as described in
the documentation).

 You can expect problems building modules available on CPAN if you build perl itself
−DUSE_THREADS. These problems should be resolved as we get closer to 5.005.

 utime() , times() and process−related functions may not behave as described in
documentation, and some of the returned values or effects may be bogus.

 Signal handling may not behave as on Unix platforms (where it doesn‘t exactly "behave",
:). For instance, calling die() or exit() from signal handlers will cause an exception, sin
most implementations of signal() on Win32 are severely crippled. Thus, signals may w
only for simple things like setting a flag variable in the handler. Using signals under this
should currently be considered unsupported.

 kill() is implemented, but doesn‘t have the semantics of raise() , i.e. it doesn‘t send a
signal to the identified process like it does on Unix platforms. Instead it immediately
TerminateProcess(process,signal) . Thus the signal argument is used to set
exit−status of the terminated process. This behavior may change in future.

 File globbing may not behave as on Unix platforms. In particular, if you don‘t use perlglo
for globbing, it will understand wildcards only in the filename component (and not in
pathname). In other words, something like "print <*/*.pl" will not print all the perl scripts in
the subdirectories one level under the current one (like it does on UNIX platforms). perlglo
is also dependent on the particular implementation of wildcard expansion in the vendor li
used to build it (which varies wildly at the present time). Using perlglob.bat (or File::DosG
avoids these limitations, but still only provides DOS semantics (read "warts") for globbing.

Please send detailed descriptions of any problems and solutions that you may find to <perlbug@perl.com,
along with the output produced by perl −V .

AUTHORS
Gary Ng <71564.1743@CompuServe.COM>

Gurusamy Sarathy <gsar@umich.edu>

Nick Ing−Simmons <nick@ni−s.u−net.com>

This document is maintained by Gurusamy Sarathy.

SEE ALSO
perl

HISTORY
This port was originally contributed by Gary Ng around 5.003_24, and borrowed from the
Communications port that was available at the time.

Nick Ing−Simmons and Gurusamy Sarathy have made numerous and sundry hacks since then.

Borland support was added in 5.004_01 (Gurusamy Sarathy).

Last updated: 12 July 1998
18−Oct−1998 Version 5.005_02 1147

perlglob Perl Programmers Reference Guide perlglob

osoft

:glob
strongly
NAME
perlglob.bat − a more capable perlglob.exe replacement

SYNOPSIS
 @perlfiles = glob "..\\pe?l/*.p?";
 print <..\\pe?l/*.p?>;

 # more efficient version
 > perl −MFile::DosGlob=glob −e "print <../pe?l/*.p?>"

DESCRIPTION
This file is a portable replacement for perlglob.exe. It is largely compatible with perlglob.exe (the Micr
setargv.obj version) in all but one respect—it understands wildcards in directory components.

It prints null−separated filenames to standard output.

For details of the globbing features implemented, see File::DosGlob.

While one may replace perlglob.exe with this, usage by overriding CORE::glob with File::DosGlob:
should be much more efficient, because it avoids launching a separate process, and is therefore
recommended. See perlsub for details of overriding builtins.

AUTHOR
Gurusamy Sarathy <gsar@umich.edu

SEE ALSO
perl

File::DosGlob
1148 Version 5.005_02 18−Oct−1998

pl2bat Perl Programmers Reference Guide pl2bat

.

mes.

at
wn to

iven to

ows

 (ie.

 run

not

ter

t

NAME
pl2bat − wrap perl code into a batch file

SYNOPSIS
pl2bat −h

pl2bat [−w] [−a argstring] [−s stripsuffix] [files]

pl2bat [−w] [−n ntargs] [−o otherargs] [−s stripsuffix] [files]

DESCRIPTION
This utility converts a perl script into a batch file that can be executed on DOS−like operating systems

Note that by default, the ".pl" suffix will be stripped before adding a ".bat" suffix to the supplied file na
This can be controlled with the −s option.

The default behavior is to have the batch file compare the OS environment variable against
"Windows_NT" . If they match, it uses the %* construct to refer to all the command line arguments th
were given to it, so you‘ll need to make sure that works on your variant of the command shell. It is kno
work in the cmd.exe shell under WindowsNT. 4DOS/NT users will want to put a ParameterChar = *
line in their initialization file, or execute setdos /p* in the shell startup file.

On Windows95 and other platforms a nine−argument limit is imposed on command−line arguments g
the generated batch file, since they may not support %* in batch files.

These can be overridden using the −n and −o options or the deprecated −a option.

OPTIONS

−n ntargs Arguments to invoke perl with in generated batch file when run from Windows NT (or Wind
98, probably). Defaults to ‘−x −S "%0" %*’.

−o otherargs
Arguments to invoke perl with in generated batch file except when run from Windows NT
when run from DOS, Windows 3.1, or Windows 95). Defaults to
‘−x −S "%0" %1 %2 %3 %4 %5 %6 %7 %8 %9’.

−a argstring
Arguments to invoke perl with in generated batch file. Specifying −a prevents the batch file
from checking the OS environment variable to determine which operating system it is being
from.

−s stripsuffix
Strip a suffix string from file name before appending a ".bat" suffix. The suffix is
case−sensitive. It can be a regex if it begins with ‘/’ (the trailing ‘/’ is optional and a trailing $ is
always assumed). Defaults to /.plx?/ .

−w If no line matching /^#!.*perl/ is found in the script, then such a line is inserted just af
the new preamble. The exact line depends on $Config{startperl} [see Config]. With the
−w option, " −w" is added after the value of $Config{startperl}. If a line matching
/^#!.*perl/ already exists in the script, then it is not changed and the −w option is ignored.

−u If the script appears to have already been processed by pl2bat, then the script is skipped and no
processed unless −u was specified. If −u is specified, the existing preamble is replaced.

−h Show command line usage.

EXAMPLES
C:\> pl2bat foo.pl bar.PM
[..creates foo.bat, bar.PM.bat..]
18−Oct−1998 Version 5.005_02 1149

pl2bat Perl Programmers Reference Guide pl2bat

on‘t

is
C:\> pl2bat −s "/\.pl|\.pm/" foo.pl bar.PM
[..creates foo.bat, bar.bat..]

C:\> pl2bat < somefile > another.bat

C:\> pl2bat > another.bat
print scalar reverse "rekcah lrep rehtona tsuj\n";
^Z
[..another.bat is now a certified japh application..]

C:\> ren *.bat *.pl
C:\> pl2bat −u *.pl
[..updates the wrapping of some previously wrapped scripts..]

C:\> pl2bat −u −s .bat *.bat
[..same as previous example except more dangerous..]

BUGS
$0 will contain the full name, including the ".bat" suffix when the generated batch file runs. If you d
like this, see runperl.bat for an alternative way to invoke perl scripts.

Default behavior is to invoke Perl with the −S flag, so Perl will search the PATH to find the script. Th
may have undesirable effects.

SEE ALSO
perl, perlwin32, runperl.bat
1150 Version 5.005_02 18−Oct−1998

runperl Perl Programmers Reference Guide runperl

rating
 the
 in your

ny
; since

irable
NAME
runperl.bat − "universal" batch file to run perl scripts

SYNOPSIS
C:\> copy runperl.bat foo.bat
C:\> foo
[..runs the perl script ‘foo’..]

C:\> foo.bat
[..runs the perl script ‘foo’..]

DESCRIPTION
This file can be copied to any file name ending in the ".bat" suffix. When executed on a DOS−like ope
system, it will invoke the perl script of the same name, but without the ".bat" suffix. It will look for
script in the same directory as itself, and then in the current directory, and then search the directories
PATH.

It relies on the exec() operator, so you will need to make sure that works in your perl.

This method of invoking perl scripts has some advantages over batch−file wrappers like pl2bat.bat : it
avoids duplication of all the code; it ensures $0 contains the same name as the executing file, without a
egregious ".bat" suffix; it allows you to separate your perl scripts from the wrapper used to run them
the wrapper is generic, you can use symbolic links to simply link to runperl.bat , if you are serving your
files on a filesystem that supports that.

On the other hand, if the batch file is invoked with the ".bat" suffix, it does an extra exec() . This may be a
performance issue. You can avoid this by running it without specifying the ".bat" suffix.

Perl is invoked with the −x flag, so the script must contain a #!perl line. Any flags found on that line will
be honored.

BUGS
Perl is invoked with the −S flag, so it will search the PATH to find the script. This may have undes
effects.

SEE ALSO
perl, perlwin32, pl2bat.bat
18−Oct−1998 Version 5.005_02 1151

README Perl Programmers Reference Guide README

or a

 under
NAME
perlamiga − Perl under Amiga OS

SYNOPSIS
One can read this document in the following formats:

man perlamiga
multiview perlamiga.guide

to list some (not all may be available simultaneously), or it may be read as is: either as README.amiga, or
pod/perlamiga.pod.

DESCRIPTION

Prerequisites

Unix emulation for AmigaOS: ixemul.library
You need the Unix emulation for AmigaOS, whose most important part is ixemul.library . For a
minimum setup, get the following archives from ftp://ftp.ninemoons.com/pub/ade/current
mirror:

ixemul−46.0−bin.lha ixemul−46.0−env−bin.lha pdksh−4.9−bin.lha ADE−misc−bin.lha

Note that there might be newer versions available by the time you read this.

Note also that this is a minimum setup; you might want to add other packages of ADE (the Amiga
Developers Environment).

Version of Amiga OS
You need at the very least AmigaOS version 2.0. Recommended is version 3.1.

Starting Perl programs under AmigaOS
Start your Perl program foo with arguments arg1 arg2 arg3 the same way as on any other platform, by

perl foo arg1 arg2 arg3

If you want to specify perl options −my_opts to the perl itself (as opposed to to your program), use

perl −my_opts foo arg1 arg2 arg3

Alternately, you can try to get a replacement for the system‘s Execute command that honors the
#!/usr/bin/perl syntax in scripts and set the s−Bit of your scripts. Then you can invoke your scripts like
UNIX with

foo arg1 arg2 arg3

(Note that having *nixish full path to perl /usr/bin/perl is not necessary, perl would be enough, but having
full path would make it easier to use your script under *nix.)

Shortcomings of Perl under AmigaOS
Perl under AmigaOS lacks some features of perl under UNIX because of deficiencies in the
UNIX−emulation, most notably:

fork()
some features of the UNIX filesystem regarding link count and file dates
inplace operation (the −i switch) without backup file
umask() works, but the correct permissions are only set when the file is

 finally close()d

INSTALLATION
Change to the installation directory (most probably ADE:), and extract the binary distribution:
1152 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

man3

mes you

t

lha −mraxe x perl−5.003−bin.lha

or

tar xvzpf perl−5.003−bin.tgz

(Of course you need lha or tar and gunzip for this.)

For installation of the Unix emulation, read the appropriate docs.

Accessing documentation

Manpages
If you have man installed on your system, and you installed perl manpages, use something like this:

man perlfunc
man less
man ExtUtils.MakeMaker

to access documentation for different components of Perl. Start with

man perl

Note: You have to modify your man.conf file to search for manpages in the /ade/lib/perl5/man/
directory, or the man pages for the perl library will not be found.

Note that dot (.) is used as a package separator for documentation for packages, and as usual, someti
need to give the section − 3 above − to avoid shadowing by the less(1) manpage.

HTML
If you have some WWW browser available, you can build HTML docs. Cd to directory with .pod files, and
do like this

cd /ade/lib/perl5/pod
pod2html

After this you can direct your browser the file perl.html in this directory, and go ahead with reading docs.

Alternatively you may be able to get these docs prebuilt from CPAN.

GNU info files
Users of Emacs would appreciate it very much, especially with CPerl mode loaded. You need to get lates
pod2info from CPAN, or, alternately, prebuilt info pages.

LaTeX docs
can be constructed using pod2latex .

BUILD
Here we discuss how to build Perl under AmigaOS.

Prerequisites
You need to have the latest ADE (Amiga Developers Environment) from
ftp://ftp.ninemoons.com/pub/ade/current. Also, you need a lot of free memory, probably at least 8MB.

Getting the perl source
You can either get the latest perl−for−amiga source from Ninemoons and extract it with:

 tar xvzpf perl−5.004−src.tgz

or get the official source from CPAN:

 http://www.perl.com/CPAN/src/5.0

Extract it like this
18−Oct−1998 Version 5.005_02 1153

README Perl Programmers Reference Guide README

a

 tar xvzpf perl5.004.tar.gz

You will see a message about errors while extracting Configure. This is normal and expected. (There is
conflict with a similarly−named file configure, but it causes no harm.)

Making
 sh configure.gnu −−prefix=/ade

Now

 make

Testing
Now run

 make test

Some tests will be skipped because they need the fork() function:

io/pipe.t, op/fork.t, lib/filehand.t, lib/open2.t, lib/open3.t, lib/io_pipe.t, lib/io_sock.t

Installing the built perl
Run

 make install

AUTHOR
Norbert Pueschel, pueschel@imsdd.meb.uni−bonn.de

SEE ALSO
perl(1).
1154 Version 5.005_02 18−Oct−1998

perlvms Perl Programmers Reference Guide perlvms

t to the
 under

system.
tation,

 If you
line to

sed to
finished

rld

LLed,

ome
n Perl

XS is a

script
 the

 of two

ed

ost of
amic.

nerally
st
NAME
perlvms − VMS−specific documentation for Perl

DESCRIPTION
Gathered below are notes describing details of Perl 5‘s behavior on VMS. They are a supplemen
regular Perl 5 documentation, so we have focussed on the ways in which Perl 5 functions differently
VMS than it does under Unix, and on the interactions between Perl and the rest of the operating
We haven‘t tried to duplicate complete descriptions of Perl features from the main Perl documen
which can be found in the [.pod] subdirectory of the Perl distribution.

We hope these notes will save you from confusion and lost sleep when writing Perl scripts on VMS.
find we‘ve missed something you think should appear here, please don‘t hesitate to drop a
vmsperl@genetics.upenn.edu.

Installation
Directions for building and installing Perl 5 can be found in the file README.vms in the main source
directory of the Perl distribution..

Organization of Perl Images

Core Images
During the installation process, three Perl images are produced. Miniperl.Exe is an executable image which
contains all of the basic functionality of Perl, but cannot take advantage of Perl extensions. It is u
generate several files needed to build the complete Perl and various extensions. Once you‘ve
installing Perl, you can delete this image.

Most of the complete Perl resides in the shareable image PerlShr.Exe, which provides a core to which the
Perl executable image and all Perl extensions are linked. You should place this image in Sys$Share , or
define the logical name PerlShr to translate to the full file specification of this image. It should be wo
readable. (Remember that if a user has execute only access to PerlShr, VMS will treat it as if it were a
privileged shareable image, and will therefore require all downstream shareable images to be INSTA
etc.)

Finally, Perl.Exe is an executable image containing the main entry point for Perl, as well as s
initialization code. It should be placed in a public directory, and made world executable. In order to ru
with command line arguments, you should define a foreign command to invoke this image.

Perl Extensions
Perl extensions are packages which provide both XS and Perl code to add new functionality to perl. (
meta−language which simplifies writing C code which interacts with Perl, see perlxs for more details.) The
Perl code for an extension is treated like any other library module − it‘s made available in your
through the appropriate use or require statement, and usually defines a Perl package containing
extension.

The portion of the extension provided by the XS code may be connected to the rest of Perl in either
ways. In the static configuration, the object code for the extension is linked directly into PerlShr.Exe, and is
initialized whenever Perl is invoked. In the dynamic configuration, the extension‘s machine code is plac
into a separate shareable image, which is mapped by Perl‘s DynaLoader when the extension is use d or
require d in your script. This allows you to maintain the extension as a separate entity, at the c
keeping track of the additional shareable image. Most extensions can be set up as either static or dyn

The source code for an extension usually resides in its own directory. At least three files are ge
provided: Extshortname.xs (where Extshortname is the portion of the extension‘s name following the la
::), containing the XS code, Extshortname.pm, the Perl library module for the extension, and Makefile.PL,
a Perl script which uses the MakeMaker library modules supplied with Perl to generate a Descrip.MMS file
for the extension.
18−Oct−1998 Version 5.005_02 1155

perlvms Perl Programmers Reference Guide perlvms

ogram
the
e

der the
ectory
 in a
e files

wever,
sion, so

rl

on

sible.
he two
Installing static extensions
Since static extensions are incorporated directly into PerlShr.Exe, you‘ll have to rebuild Perl to incorporate a
new extension. You should edit the main Descrip.MMS or Makefile you use to build Perl, adding the
extension‘s name to the ext macro, and the extension‘s object file to the extobj macro. You‘ll also need
to build the extension‘s object file, either by adding dependencies to the main Descrip.MMS, or using a
separate Descrip.MMS for the extension. Then, rebuild PerlShr.Exe to incorporate the new code.

Finally, you‘ll need to copy the extension‘s Perl library module to the [.Extname] subdirectory under one of
the directories in @INC, where Extname is the name of the extension, with all :: replaced by . (e.g. the
library module for extension Foo::Bar would be copied to a [.Foo.Bar] subdirectory).

Installing dynamic extensions
In general, the distributed kit for a Perl extension includes a file named Makefile.PL, which is a Perl pr
which is used to create a Descrip.MMS file which can be used to build and install the files required by
extension. The kit should be unpacked into a directory tree not under the main Perl source directory, and th
procedure for building the extension is simply

 $ perl Makefile.PL ! Create Descrip.MMS
 $ mmk ! Build necessary files
 $ mmk test ! Run test code, if supplied
 $ mmk install ! Install into public Perl tree

N.B. The procedure by which extensions are built and tested creates several levels (at least 4) un
directory in which the extension‘s source files live. For this reason, you shouldn‘t nest the source dir
too deeply in your directory structure, lest you eccedd RMS’ maximum of 8 levels of subdirectory
filespec. (You can use rooted logical names to get another 8 levels of nesting, if you can‘t place th
near the top of the physical directory structure.)

VMS support for this process in the current release of Perl is sufficient to handle most extensions. Ho
it does not yet recognize extra libraries required to build shareable images which are part of an exten
these must be added to the linker options file for the extension by hand. For instance, if the PGPLOT
extension to Perl requires the PGPLOTSHR.EXE shareable image in order to properly link the Pe
extension, then the line PGPLOTSHR/Share must be added to the linker options file PGPLOT.Opt
produced during the build process for the Perl extension.

By default, the shareable image for an extension is placed [.lib.site_perl.autoArch.Extname] directory of the
installed Perl directory tree (where Arch is VMS_VAX or VMS_AXP, and Extname is the name of the
extension, with each :: translated to .). (See the MakeMaker documentation for more details
installation options for extensions.) However, it can be manually placed in any of several locations:
 − the [.Lib.Auto.Arch$PVers Extname] subdirectory
 of one of the directories in @INC (where PVers
 is the version of Perl you‘re using, as supplied in $],
 with ’.’ converted to ‘_’), or
 − one of the directories in @INC, or
 − a directory which the extensions Perl library module
 passes to the DynaLoader when asking it to map
 the shareable image, or
 − Sys$Share or Sys$Library .
If the shareable image isn‘t in any of these places, you‘ll need to define a logical name Extshortname, where
Extshortname is the portion of the extension‘s name after the last :: , which translates to the full file
specification of the shareable image.

File specifications

Syntax
We have tried to make Perl aware of both VMS−style and Unix− style file specifications wherever pos
You may use either style, or both, on the command line and in scripts, but you may not combine t
1156 Version 5.005_02 18−Oct−1998

perlvms Perl Programmers Reference Guide perlvms

as the
 file

s using
nly when

 that
, since

n

s (e.g.
 if a

l also
−style
ntain
rectory

lob

ript, lest

e of the
.

is

e shell

cter on
erl as its

an
styles within a single fle specification. VMS Perl interprets Unix pathnames in much the same way
CRTL (e.g. the first component of an absolute path is read as the device name for the VMS
specification). There are a set of functions provided in the VMS::Filespec package for explicit
interconversion between VMS and Unix syntax; its documentation provides more details.

Filenames are, of course, still case−insensitive. For consistency, most Perl routines return filespec
lower case letters only, regardless of the case used in the arguments passed to them. (This is true o
running under VMS; Perl respects the case−sensitivity of OSs like Unix.)

We‘ve tried to minimize the dependence of Perl library modules on Unix syntax, but you may find
some of these, as well as some scripts written for Unix systems, will require that you use Unix syntax
they will assume that ‘/’ is the directory separator, etc. If you find instances of this in the Perl distributio
itself, please let us know, so we can try to work around them.

Wildcard expansion
File specifications containing wildcards are allowed both on the command line and within Perl glob
<C<*.c>). If the wildcard filespec uses VMS syntax, the resultant filespecs will follow VMS syntax;
Unix−style filespec is passed in, Unix−style filespecs will be returned.

If the wildcard filespec contains a device or directory specification, then the resultant filespecs wil
contain a device and directory; otherwise, device and directory information are removed. VMS
resultant filespecs will contain a full device and directory, while Unix−style resultant filespecs will co
only as much of a directory path as was present in the input filespec. For example, if your default di
is Perl_Root:[000000], the expansion of [.t]*.* will yield filespecs like "perl_root:[t]base.dir", while
the expansion of t/*/* will yield filespecs like "t/base.dir". (This is done to match the behavior of g
expansion performed by Unix shells.)

Similarly, the resultant filespec will contain the file version only if one was present in the input filespec.

Pipes
Input and output pipes to Perl filehandles are supported; the "file name" is passed to lib$spawn() for
asynchronous execution. You should be careful to close any pipes you have opened in a Perl sc
you leave any "orphaned" subprocesses around when Perl exits.

You may also use backticks to invoke a DCL subprocess, whose output is used as the return valu
expression. The string between the backticks is passed directly to lib$spawn as the command to execute
In this case, Perl will wait for the subprocess to complete before continuing.

PERL5LIB and PERLLIB
The PERL5LIB and PERLLIB logical names work as documented perl, except that the element separator
‘|’ instead of ‘:’. The directory specifications may use either VMS or Unix syntax.

Command line

I/O redirection and backgrounding
Perl for VMS supports redirection of input and output on the command line, using a subset of Bourn
syntax:

 <F<file> reads stdin from F<file>,
 >F<file> writes stdout to F<file>,
 >>F<file> appends stdout to F<file>,
 2>F<file> writes stderr to F<file>, and
 2>>F<file> appends stderr to F<file>.

In addition, output may be piped to a subprocess, using the character ‘|’. Anything after this chara
the command line is passed to a subprocess for execution; the subprocess takes the output of P
input.

Finally, if the command line ends with ‘&‘, the entire command is run in the background as
asynchronous subprocess.
18−Oct−1998 Version 5.005_02 1157

perlvms Perl Programmers Reference Guide perlvms

ommand

ates a
isting
main as

 the
r the
ame

before

 VMS

 error

7.0 or

ou‘ve
Command line switches
The following command line switches behave differently under VMS than described in perlrun. Note also
that in order to pass uppercase switches to Perl, you need to enclose them in double−quotes on the c
line, since the CRTL downcases all unquoted strings.

−i If the −i switch is present but no extension for a backup copy is given, then inplace editing cre
new version of a file; the existing copy is not deleted. (Note that if an extension is given, an ex
file is renamed to the backup file, as is the case under other operating systems, so it does not re
a previous version under the original filename.)

−S If the −S switch is present and the script name does not contain a directory, then Perl translates
logical name DCL$PATH as a searchlist, using each translation as a directory in which to look fo
script. In addition, if no file type is specified, Perl looks in each directory for a file matching the n
specified, with a blank type, a type of .pl, and a type of .com, in that order.

−u The −u switch causes the VMS debugger to be invoked after the Perl program is compiled, but
it has run. It does not create a core dump file.

Perl functions
As of the time this document was last revised, the following Perl functions were implemented in the
port of Perl (functions marked with * are discussed in more detail below):

 file tests*, abs, alarm, atan, backticks*, binmode*, bless,
 caller, chdir, chmod, chown, chomp, chop, chr,
 close, closedir, cos, crypt*, defined, delete,
 die, do, dump*, each, endpwent, eof, eval, exec*,
 exists, exit, exp, fileno, fork*, getc, getlogin,
 getpwent*, getpwnam*, getpwuid*, glob, gmtime*, goto,
 grep, hex, import, index, int, join, keys, kill*,
 last, lc, lcfirst, length, local, localtime, log, m//,
 map, mkdir, my, next, no, oct, open, opendir, ord, pack,
 pipe, pop, pos, print, printf, push, q//, qq//, qw//,
 qx//*, quotemeta, rand, read, readdir, redo, ref, rename,
 require, reset, return, reverse, rewinddir, rindex,
 rmdir, s///, scalar, seek, seekdir, select(internal),
 select (system call)*, setpwent, shift, sin, sleep,
 sort, splice, split, sprintf, sqrt, srand, stat,
 study, substr, sysread, system*, syswrite, tell,
 telldir, tie, time, times*, tr///, uc, ucfirst, umask,
 undef, unlink*, unpack, untie, unshift, use, utime*,
 values, vec, wait, waitpid*, wantarray, warn, write, y///

The following functions were not implemented in the VMS port, and calling them produces a fatal
(usually) or undefined behavior (rarely, we hope):

 chroot, dbmclose, dbmopen, fcntl, flock,
 getpgrp, getppid, getpriority, getgrent, getgrgid,
 getgrnam, setgrent, endgrent, ioctl, link, lstat,
 msgctl, msgget, msgsend, msgrcv, readlink, semctl,
 semget, semop, setpgrp, setpriority, shmctl, shmget,
 shmread, shmwrite, socketpair, symlink, syscall

The following functions are available on Perls compiled with Dec C 5.2 or greater and running VMS
greater

 truncate

The following functions may or may not be implemented, depending on what type of socket support y
built into your copy of Perl:
1158 Version 5.005_02 18−Oct−1998

perlvms Perl Programmers Reference Guide perlvms

lect

eflect

tended
eturn

your C
s.

mmand.

nput
 file

o an

 that
e the
ith

ed
taken
. The

AF
ber

assword
 accept, bind, connect, getpeername,
 gethostbyname, getnetbyname, getprotobyname,
 getservbyname, gethostbyaddr, getnetbyaddr,
 getprotobynumber, getservbyport, gethostent,
 getnetent, getprotoent, getservent, sethostent,
 setnetent, setprotoent, setservent, endhostent,
 endnetent, endprotoent, endservent, getsockname,
 getsockopt, listen, recv, select(system call)*,
 send, setsockopt, shutdown, socket

File tests
The tests −b, −B, −c , −C, −d, −e, −f , −o, −M, −s , −S, −t , −T, and −z work as advertised. The
return values for −r , −w, and −x tell you whether you can actually access the file; this may not ref
the UIC−based file protections. Since real and effective UIC don‘t differ under VMS, −O, −R, −W, and
−X are equivalent to −o, −r , −w, and −x . Similarly, several other tests, including −A, −g, −k , −l , −p,
and −u, aren‘t particularly meaningful under VMS, and the values returned by these tests r
whatever your CRTL stat() routine does to the equivalent bits in the st_mode field. Finally, −d
returns true if passed a device specification without an explicit directory (e.g. DUA1:), as well as if
passed a directory.

Note: Some sites have reported problems when using the file−access tests (−r , −w, and −x) on files
accessed via DEC‘s DFS. Specifically, since DFS does not currently provide access to the ex
file header of files on remote volumes, attempts to examine the ACL fail, and the file tests will r
false, with $! indicating that the file does not exist. You can use stat on these files, since that
checks UIC−based protection only, and then manually check the appropriate bits, as defined by
compiler‘s stat.h, in the mode value it returns, if you need an approximation of the file‘s protection

backticks
Backticks create a subprocess, and pass the enclosed string to it for execution as a DCL co
Since the subprocess is created directly via lib$spawn() , any valid DCL command string may be
specified.

binmode FILEHANDLE
The binmode operator will attempt to insure that no translation of carriage control occurs on i
from or output to this filehandle. Since this involves reopening the file and then restoring its
position indicator, if this function returns FALSE, the underlying filehandle may no longer point t
open file, or may point to a different position in the file than before binmode was called.

Note that binmode is generally not necessary when using normal filehandles; it is provided so
you can control I/O to existing record−structured files when necessary. You can also us
vmsfopen function in the VMS::Stdio extension to gain finer control of I/O to files and devices w
different record structures.

crypt PLAINTEXT, USER
The crypt operator uses the sys$hash_password system service to generate the hash
representation of PLAINTEXT. If USER is a valid username, the algorithm and salt values are
from that user‘s UAF record. If it is not, then the preferred algorithm and a salt of 0 are used
quadword encrypted value is returned as an 8−character string.

The value returned by crypt may be compared against the encrypted password from the U
returned by the getpw* functions, in order to authenticate users. If you‘re going to do this, remem
that the encrypted password in the UAF was generated using uppercase username and p
strings; you‘ll have to upcase the arguments to crypt to insure that you‘ll get the proper value:

 sub validate_passwd {
 my($user,$passwd) = @_;
 my($pwdhash);
 if (!($pwdhash = (getpwnam($user))[1]) ||
18−Oct−1998 Version 5.005_02 1159

perlvms Perl Programmers Reference Guide perlvms

f
e label
m.

ling

de, and

e first
ade to

ss
ere is

S;

o

e

st
ing a
ge is

. (The
 $pwdhash ne crypt("\U$passwd","\U$name")) {
 intruder_alert($name);
 }
 return 1;
 }

dump
Rather than causing Perl to abort and dump core, the dump operator invokes the VMS debugger. I
you continue to execute the Perl program under the debugger, control will be transferred to th
specified as the argument to dump, or, if no label was specified, back to the beginning of the progra
All other state of the program (e.g. values of variables, open file handles) are not affected by cal
dump.

exec LIST
The exec operator behaves in one of two different ways. If called after a call to fork , it will invoke
the CRTL execv() routine, passing its arguments to the subprocess created by fork for execution.
 In this case, it is subject to all limitations that affect execv() . (In particular, this usually means
that the command executed in the subprocess must be an image compiled from C source co
that your options for passing file descriptors and signal handlers to the subprocess are limited.)

If the call to exec does not follow a call to fork , it will cause Perl to exit, and to invoke the
command given as an argument to exec via lib$do_command. If the argument begins with a
‘$’ (other than as part of a filespec), then it is executed as a DCL command. Otherwise, th
token on the command line is treated as the filespec of an image to run, and an attempt is m
invoke it (using .Exe and the process defaults to expand the filespec) and pass the rest of exec ‘s
argument to it as parameters.

You can use exec in both ways within the same script, as long as you call fork and exec in pairs.
Perl keeps track of how many times fork and exec have been called, and will call the CRTL
execv() routine if there have previously been more calls to fork than to exec .

fork The fork operator works in the same way as the CRTL vfork() routine, which is quite different
under VMS than under Unix. Specifically, while fork returns 0 after it is called and the subproce
PID after exec is called, in both cases the thread of execution is within the parent process, so th
no opportunity to perform operations in the subprocess before calling exec .

In general, the use of fork and exec to create subprocess is not recommended under VM
wherever possible, use the system operator or piped filehandles instead.

getpwent
getpwnam
getpwuid

These operators obtain the information described in perlfunc, if you have the privileges necessary t
retrieve the named user‘s UAF information via sys$getuai. If not, then only the $name, $uid,
and $gid items are returned. The $dir item contains the login directory in VMS syntax, while th
$comment item contains the login directory in Unix syntax. The $gcos item contains the owner
field from the UAF record. The $quota item is not used.

gmtime
The gmtime operator will function properly if you have a working CRTL gmtime() routine, or if
the logical name SYS$TIMEZONE_DIFFERENTIAL is defined as the number of seconds which mu
be added to UTC to yield local time. (This logical name is defined automatically if you are runn
version of VMS with built−in UTC support.) If neither of these cases is true, a warning messa
printed, and undef is returned.

kill In most cases, kill kill is implemented via the CRTL‘s kill() function, so it will behave
according to that function‘s documentation. If you send a SIGKILL, however, the $DELPRC system
service is called directly. This insures that the target process is actually deleted, if at all possible
1160 Version 5.005_02 18−Oct−1998

perlvms Perl Programmers Reference Guide perlvms

 the

RTL

le to

 can‘t

xecution

ibed in
he
ss is

he
nix

TL
s no
d by
r
ck only
ed

ay

 call to
le

n‘t
elete
CRTL‘s kill() function is presently implemented via $FORCEX, which is ignored by
supervisor−mode images like DCL.)

Also, negative signal values don‘t do anything special under VMS; they‘re just converted to
corresponding positive value.

qx// See the entry on backticks above.

select (system call)
If Perl was not built with socket support, the system call version of select is not available at all. If
socket support is present, then the system call version of select functions only for file descriptors
attached to sockets. It will not provide information about regular files or pipes, since the C
select() routine does not provide this functionality.

stat EXPR
Since VMS keeps track of files according to a different scheme than Unix, it‘s not really possib
represent the file‘s ID in the st_dev and st_ino fields of a struct stat . Perl tries its best,
though, and the values it uses are pretty unlikely to be the same for two different files. We
guarantee this, though, so caveat scriptor.

system LIST
The system operator creates a subprocess, and passes its arguments to the subprocess for e
as a DCL command. Since the subprocess is created directly via lib$spawn() , any valid DCL
command string may be specified. If LIST consists of the empty string, system spawns an
interactive DCL subprocess, in the same fashion as typiing SPAWN at the DCL prompt. Perl waits for
the subprocess to complete before continuing execution in the current process. As descr
perlfunc, the return value of system is a fake "status" which follows POSIX semantics; see t
description of $? in this document for more detail. The actual VMS exit status of the subproce
available in $^S (as long as you haven‘t used another Perl function that resets $? and $^S in the
meantime).

time The value returned by time is the offset in seconds from 01−JAN−1970 00:00:00 (just like t
CRTL‘s times() routine), in order to make life easier for code coming in from the POSIX/U
world.

times
The array returned by the times operator is divided up according to the same rules the CR
times() routine. Therefore, the "system time" elements will always be 0, since there i
difference between "user time" and "system" time under VMS, and the time accumulate
subprocess may or may not appear separately in the "child time" field, depending on whethetimes
keeps track of subprocesses separately. Note especially that the VAXCRTL (at least) keeps tra
of subprocesses spawned using fork and exec; it will not accumulate the times of suprocesses spawn
via pipes, system, or backticks.

unlink LIST
unlink will delete the highest version of a file only; in order to delete all versions, you need to s
 1 while (unlink LIST);
You may need to make this change to scripts written for a Unix system which expect that after a
unlink , no files with the names passed to unlink will exist. (Note: This can be changed at compi
time; if you use Config and $Config{‘d_unlink_all_versions‘} is define , then
unlink will delete all versions of a file on the first call.)

unlink will delete a file if at all possible, even if it requires changing file protection (though it wo
try to change the protection of the parent directory). You can tell whether you‘ve got explicit d
access to a file by using the VMS::Filespec::candelete operator. For instance, in order to
delete only files to which you have delete access, you could say something like

 sub safe_unlink {
 my($file,$num);
18−Oct−1998 Version 5.005_02 1161

perlvms Perl Programmers Reference Guide perlvms

upt

erator

s
erl was
r
isn‘t a

 the

by the
ppend a
ex for
stance,

ether
re is
entify

ts you
n

ersion

 name
 or

ion
eplace
e via

h isn‘t
 foreach $file (@_) {
 next unless VMS::Filespec::candelete($file);
 $num += unlink $file;
 }
 $num;
 }

(or you could just use VMS::Stdio::remove , if you‘ve installed the VMS::Stdio extension
distributed with Perl). If unlink has to change the file protection to delete the file, and you interr
it in midstream, the file may be left intact, but with a changed ACL allowing you delete access.

utime LIST
Since ODS−2, the VMS file structure for disk files, does not keep track of access times, this op
changes only the modification time of the file (VMS revision date).

waitpid PID,FLAGS
If PID is a subprocess started by a piped open, waitpid will wait for that subprocess, and return it
final status value. If PID is a subprocess created in some other way (e.g. SPAWNed before P
invoked), or is not a subprocess of the current process, waitpid will check once per second whethe
the process has completed, and when it has, will return 0. (If PID specifies a process that
subprocess of the current process, and you invoked Perl with the −w switch, a warning will be issued.)

The FLAGS argument is ignored in all cases.

Perl variables
The following VMS−specific information applies to the indicated "special" Perl variables, in addition to
general information in perlvar. Where there is a conflict, this infrmation takes precedence.

%ENV
Reading the elements of the %ENV array returns the translation of the logical name specified
key, according to the normal search order of access modes and logical name tables. If you a
semicolon to the logical name, followed by an integer, that integer is used as the translation ind
the logical name, so that you can look up successive values for search list logical names. For in
if you say

 $ Define STORY once,upon,a,time,there,was
 $ perl −e "for ($i = 0; $i <= 6; $i++) " −
 _$ −e "{ print $ENV{’story;’.$i},’ ’}"

Perl will print ONCE UPON A TIME THERE WAS.

The key default returns the current default device and directory specification, regardless of wh
there is a logical name DEFAULT defined. If you try to read an element of %ENV for which the
no corresponding logical name, and for which no corresponding CLI symbol exists (this is to id
"blocking" symbols only; to manipulate CLI symbols, see VMS::DCLSym) then the key will be looked
up in the CRTL−local environment array, and the corresponding value, if any returned. This le
get at C−specific keys like home, path ,term , and user , as well as other keys which may have bee
passed directly into the C−specific array if Perl was called from another C program using the v
of execve() or execle() present in recent revisions of the DECCRTL.

Setting an element of %ENV defines a supervisor−mode logical name in the process logical
table. Undef ing or delete ing an element of %ENV deletes the equivalent user− mode
supervisor−mode logical name from the process logical name table. If you use undef , the %ENV
element remains empty. If you use delete , another attempt is made at logical name translat
after the deletion, so an inner−mode logical name or a name in another logical name table will r
the logical name just deleted. It is not possible at present to define a search list logical nam
%ENV. It is also not possible to delete an element from the C−local environ array.

Note that if you want to pass on any elements of the C−local environ array to a subprocess whic
1162 Version 5.005_02 18−Oct−1998

perlvms Perl Programmers Reference Guide perlvms

in the

to

ill not
l name

ames

 of the

d by

 way
st for

xt 8 bits
ss or

. As a
, and

Unlink
 as a

ry file
started by fork/exec, or isn‘t running a C program, you can "promote" them to logical names
current process, which will then be inherited by all subprocesses, by saying

 foreach my $key (qw[C−local keys you want promoted]) {
 my $temp = $ENV{$key}; # read from C−local array
 $ENV{$key} = $temp; # and define as logical name
 }

(You can‘t just say $ENV{$key} = $ENV{$key}, since the Perl optimizer is smart enough
elide the expression.)

At present, the first time you iterate over %ENV using keys , or values , you will incur a time
penalty as all logical names are read, in order to fully populate %ENV. Subsequent iterations w
reread logical names, so they won‘t be as slow, but they also won‘t reflect any changes to logica
tables caused by other programs. The each operator is special: it returns each element already in
%ENV, but doesn‘t go out and look for more. Therefore, if you‘ve previously used keys or
values , you‘ll see all the logical names visible to your process, and if not, you‘ll see only the n
you‘ve looked up so far. (This is a consequence of the way each is implemented now, and it may
change in the future, so it wouldn‘t be a good idea to rely on it too much.)

In all operations on %ENV, the key string is treated as if it were entirely uppercase, regardless
case actually specified in the Perl expression.

$! The string value of $! is that returned by the CRTL‘s strerror() function, so it will include the
VMS message for VMS−specific errors. The numeric value of $! is the value of errno , except if
errno is EVMSERR, in which case $! contains the value of vaxc$errno. Setting $! always sets
errno to the value specified. If this value is EVMSERR, it also sets vaxc$errno to 4
(NONAME−F−NOMSG), so that the string value of $! won‘t reflect the VMS error message from
before $! was set.

$^E This variable provides direct access to VMS status values in vaxc$errno, which are often more
specific than the generic Unix−style error messages in $!. Its numeric value is the value of
vaxc$errno, and its string value is the corresponding VMS message string, as retrieve
sys$getmsg() . Setting $^E sets vaxc$errno to the value specified.

$? The "status value" returned in $? is synthesized from the actual exit status of the subprocess in a
that approximates POSIX wait(5) semantics, in order to allow Perl programs to portably te
successful completion of subprocesses. The low order 8 bits of $? are always 0 under VMS, since the
termination status of a process may or may not have been generated by an exception. The ne
are derived from severity portion of the subprocess’ exit status: if the severity was succe
informational, these bits are all 0; otherwise, they contain the severity value shifted left one bit
result, $? will always be zero if the subprocess’ exit status indicated successful completion
non−zero if a warning or error occurred. The actual VMS exit status may be found in $^S (q.v.).

$^S Under VMS, this is the 32−bit VMS status value returned by the last subprocess to complete.
$?, no manipulation is done to make this look like a POSIX wait(5) value, so it may be treated
normal VMS status value.

$| Setting $| for an I/O stream causes data to be flushed all the way to disk on each write (i.e. not just to
the underlying RMS buffers for a file). In other words, it‘s equivalent to calling fflush() and
fsync() from C.

Standard modules with VMS−specific differences

SDBM_File
SDBM_File works peroperly on VMS. It has, however, one minor difference. The database directo
created has a .sdbm_dir extension rather than a .dir extension. .dir files are VMS filesystem directory files,
and using them for other purposes could cause unacceptable problems.
18−Oct−1998 Version 5.005_02 1163

perlvms Perl Programmers Reference Guide perlvms
Revision date
This document was last updated on 26−Feb−1998, for Perl 5, patchlevel 5.

AUTHOR
Charles Bailey bailey@cor.newman.upenn.edu

Last revision by Dan Sugalski sugalskd@ous.edu
1164 Version 5.005_02 18−Oct−1998

Filespec Perl Programmers Reference Guide Filespec

ng file
 you to

made

e
name,
ve
tes to

verted
ring
). There

tope of
l file

s unary
s

m,
tion or
s

a valid
e for
 be a
NAME
VMS::Filespec − convert between VMS and Unix file specification syntax

SYNOPSIS
use VMS::Filespec; $fullspec = rmsexpand(‘[.VMS]file.specification‘[, ‘default:[file.spec]‘]);
$vmsspec = vmsify(‘/my/Unix/file/specification’); $unixspec = unixify(‘my:[VMS]file.specification’);
$path = pathify(‘my:[VMS.or.Unix.directory]specification.dir’); $dirfile =
fileify(‘my:[VMS.or.Unix.directory.specification]’); $vmsdir =
vmspath(‘my/VMS/or/Unix/directory/specification.dir’); $unixdir =
unixpath(‘my:[VMS.or.Unix.directory]specification.dir’); candelete(‘my:[VMS.or.Unix]file.specification’);

DESCRIPTION
This package provides routines to simplify conversion between VMS and Unix syntax when processi
specifications. This is useful when porting scripts designed to run under either OS, and also allows
take advantage of conveniences provided by either syntax (e.g. ability to easily concatenate Unix−style
specifications). In addition, it provides an additional file test routine, candelete , which determines
whether you have delete access to a file.

If you‘re running under VMS, the routines in this package are special, in that they‘re automatically
available to any Perl script, whether you‘re running miniperl or the full perl. The use VMS::Filespec
or require VMS::Filespec; import VMS::Filespec ... statement can be used to import th
function names into the current package, but they‘re always available if you use the fully qualified
whether or not you‘ve mentioned the .pm file in your script. If you‘re running under another OS and ha
installed this package, it behaves like a normal Perl extension (in fact, you‘re using Perl substitu
emulate the necessary VMS system calls).

Each of these routines accepts a file specification in either VMS or Unix syntax, and returns the con
file specification, or undef if an error occurs. The conversions are, for the most part, simply st
manipulations; the routines do not check the details of syntax (e.g. that only legal characters are used
is one exception: when running under VMS, conversions from VMS syntax use the $PARSE service to
expand specifications, so illegal syntax, or a relative directory specification which extends above the
the current directory path (e.g [—−.foo] when in dev:[dir.sub]) will cause errors. In general, any lega
specification will be converted properly, but garbage input tends to produce garbage output.

Each of these routines is prototyped as taking a single scalar argument, so you can use them a
operators in complex expressions (as long as you don‘t use the & form of subroutine call, which bypasse
prototype checking).

The routines provided are:

rmsexpand
Uses the RMS $PARSE and $SEARCH services to expand the input specification to its fully qualified for
except that a null type or version is not added unless it was present in either the original file specifica
the default specification passed to rmsexpand . (If the file does not exist, the input specification i
expanded as much as possible.) If an error occurs, returns undef and sets $! and $^E.

vmsify
Converts a file specification to VMS syntax.

unixify
Converts a file specification to Unix syntax.

pathify
Converts a directory specification to a path − that is, a string you can prepend to a file name to form
file specification. If the input file specification uses VMS syntax, the returned path does, too; likewis
Unix syntax (Unix paths are guaranteed to end with ‘/’). Note that this routine will insist that the input
legal directory file specification; the file type and version, if specified, must be .DIR;1. For compatibility
with Unix usage, the type and version may also be omitted.
18−Oct−1998 Version 5.005_02 1165

Filespec Perl Programmers Reference Guide Filespec

 pass
es

list
d in the
fileify
Converts a directory specification to the file specification of the directory file − that is, a string you can
to functions like stat or rmdir to manipulate the directory file. If the input directory specification us
VMS syntax, the returned file specification does, too; likewise for Unix syntax. As with pathify , the
input file specification must have a type and version of .DIR;1, or the type and version must be omitted.

vmspath
Acts like pathify , but insures the returned path uses VMS syntax.

unixpath
Acts like pathify , but insures the returned path uses Unix syntax.

candelete
Determines whether you have delete access to a file. If you do, candelete returns true. If you don‘t, or
its argument isn‘t a legal file specification, candelete returns FALSE. Unlike other file tests, the
argument to candelete must be a file name (not a FileHandle), and, since it‘s an XSUB, it‘s a
operator, so you need to be careful about parentheses. Both of these restrictions may be remove
future if the functionality of candelete becomes part of the Perl core.

REVISION
This document was last revised 22−Feb−1996, for Perl 5.002.
1166 Version 5.005_02 18−Oct−1998

XSSymSet Perl Programmers Reference Guide XSSymSet

s, it is
true of
ite long.)

names

hod
for

t,
s

ust be

ving
y type.

 latter

d
nt,

st be
NAME
VMS::XSSymSet − keep sets of symbol names palatable to the VMS linker

SYNOPSIS
 use VMS::XSSymSet;

 $set = new VMS::XSSymSet;
 while ($sym = make_symbol()) { $set−>addsym($sym); }
 foreach $safesym ($set−>all_trimmed) {
 print "Processing $safesym (derived from ",$self−>get_orig($safesym),")\n";
 do_stuff($safesym);
 }

 $safesym = VMS::XSSymSet−>trimsym($onesym);

DESCRIPTION
Since the VMS linker distinguishes symbols based only on the first 31 characters of their name
occasionally necessary to shorten symbol names in order to avoid collisions. (This is especially
names generated by xsubpp, since prefixes generated by nested package names can become qu
VMS::XSSymSet provides functions to shorten names in a consistent fashion, and to track a set of
to insure that each is unique. While designed with xsubpp in mind, it may be used with any set of strings.

This package supplies the following functions, all of which should be called as methods.

new([$maxlen[,$silent]])
Creates an empty VMS::XSSymset set of symbols. This function may be called as a static met
or via an existing object. If $maxlen or $silent are specified, they are used as the defaults
maximum name length and warning behavior in future calls to addsym() or trimsym() via this
object.

addsym($name[,$maxlen[,$silent]])
Creates a symbol name from $name, using the methods described under trimsym() , which is
unique in this set of symbols, and returns the new name. $name and its resultant are added to the se
and any future calls to addsym() specifying the same $name will return the same result, regardles
of the value of $maxlen specified. Unless $silent is true, warnings are output if $name had to be
trimmed or changed in order to avoid collision with an existing symbol name. $maxlen and
$silent default to the values specified when this set of symbols was created. This method m
called via an existing object.

trimsym($name[,$maxlen[,$silent]])
Creates a symbol name $maxlen or fewer characters long from $name and returns it. If $name is
too long, it first tries to shorten it by removing duplicate characters, then by periodically remo
non−underscore characters, and finally, if necessary, by periodically removing characters of an
$maxlen defaults to 31. Unless $silent is true, a warning is output if $name is altered in any
way. This function may be called either as a static method or via an existing object, but in the
case no check is made to insure that the resulting name is unique in the set of symbols.

delsym($name)
Removes $name from the set of symbols, where $name is the original symbol name passe
previously to addsym() . If $name existed in the set of symbols, returns its "trimmed" equivale
otherwise returns undef . This method must be called via an existing object.

get_orig($trimmed)
Returns the original name which was trimmed to $trimmed by a previous call to addsym() , or
undef if $trimmed does not correspond to a member of this set of symbols. This method mu
called via an existing object.
18−Oct−1998 Version 5.005_02 1167

XSSymSet Perl Programmers Reference Guide XSSymSet

isting
get_trimmed($name)
Returns the trimmed name which was generated from $name by a previous call to addsym() , or
undef if $name is not a member of this set of symbols. This method must be called via an ex
object.

all_orig()
Returns a list containing all of the original symbol names from this set.

all_trimmed()
Returns a list containing all of the trimmed symbol names from this set.

AUTHOR
Charles Bailey <bailey@genetics.upenn.edu>

REVISION
Last revised 14−Feb−1997, for Perl 5.004.
1168 Version 5.005_02 18−Oct−1998

vmsish Perl Programmers Reference Guide vmsish

 three

xit

(a.k.a
NAME
vmsish − Perl pragma to control VMS−specific language features

SYNOPSIS
 use vmsish;

 use vmsish ’status’; # or ’$?’
 use vmsish ’exit’;
 use vmsish ’time’;

 use vmsish;
 no vmsish ’time’;

DESCRIPTION
If no import list is supplied, all possible VMS−specific features are assumed. Currently, there are
VMS−specific features available: ‘status’ (a.k.a ‘$?’), ‘exit‘, and ‘time’.

vmsish status
This makes $? and system return the native VMS exit status instead of emulating the POSIX e
status.

vmsish exit
This makes exit 1 produce a successful exit (with status SS$_NORMAL), instead of emulating
UNIX exit() , which considers exit 1 to indicate an error. As with the CRTL‘s exit()
function, exit 0 is also mapped to an exit status of SS$_NORMAL, and any other argument to
exit() is used directly as Perl‘s exit status.

vmsish time
This makes all times relative to the local time zone, instead of the default of Universal Time
Greenwich Mean Time, or GMT).

See Pragmatic Modules.
18−Oct−1998 Version 5.005_02 1169

DCLsym Perl Programmers Reference Guide DCLsym

s Perl
via the
delete

f each
icant in
 All of
 value of
l), and

BAL’

tional
 string
 used.
e exists
 global

ectly to
regate.

ingle
way as

the
ays

lement

should
 used;
e. If
NAME
VMS::DCLsym − Perl extension to manipulate DCL symbols

SYNOPSIS
 tie %allsyms, VMS::DCLsym;
 tie %cgisyms, VMS::DCLsym, ’GLOBAL’;

 $handle = new VMS::DCLsyms;
 $value = $handle−>getsym($name);
 $handle−>setsym($name,$value,’GLOBAL’) or die "Can’t create symbol: $!\n";
 $handle−>delsym($name,’LOCAL’) or die "Can’t delete symbol: $!\n";
 $handle−>clearcache();

DESCRIPTION
The VMS::DCLsym extension provides access to DCL symbols using a tied hash interface. This allow
scripts to manipulate symbols in a manner similar to the way in which logical names are manipulated
built−in %ENV hash. Alternatively, one can call methods in this package directly to read, create, and
symbols.

Tied hash interface
This interface lets you treat the DCL symbol table as a Perl associative array, in which the key o
element is the symbol name, and the value of the element is that symbol‘s value. Case is not signif
the key string, as DCL converts symbol names to uppercase, but it is significant in the value string.
the usual operations on associative arrays are supported. Reading an element retrieves the current
the symbol, assigning to it defines a new symbol (or overwrites the old value of an existing symbo
deleting an element deletes the corresponding symbol. Setting an element to undef , or undef ing it
directly, sets the corresponding symbol to the null string. You may also read the special keys ‘:GLO
and ‘:LOCAL’ to find out whether a default symbol table has been specified for this hash (see table
below), or set either or these keys to specify a default symbol table.

When you call the tie function to bind an associative array to this package, you may specify as an op
argument the symbol table in which you wish to create and delete symbols. If the argument is the
‘GLOBAL‘, then the global symbol table is used; any other string causes the local symbol table to be
Note that this argument does not affect attempts to read symbols; if a symbol with the specified nam
in the local symbol table, it is always returned in preference to a symbol by the same name in the
symbol table.

Object interface
Although it‘s less convenient in some ways than the tied hash interface, you can also call methods dir
manipulate individual symbols. In some cases, this allows you finer control than using a tied hash agg
 The following methods are supported:

new This creates a VMS::DCLsym object which can be used as a handle for later method calls. The s
optional argument specifies the symbol table used by default in future method calls, in the same
the optional argument to tie described above.

getsym
If called in a scalar context, getsym returns the value of the symbol whose name is given as
argument to the call, or undef if no such symbol exists. Symbols in the local symbol table are alw
used in preference to symbols in the global symbol table. If called in an array context, getsym
returns a two−element list, whose first element is the value of the symbol, and whose second e
is the string ‘GLOBAL’ or ‘LOCAL‘, indicating the table from which the symbol‘s value was read.

setsym
The first two arguments taken by this method are the name of the symbol and the value which
be assigned to it. The optional third argument is a string specifying the symbol table to be
‘GLOBAL’ specifies the global symbol table, and any other string specifies the local symbol tabl
1170 Version 5.005_02 18−Oct−1998

DCLsym Perl Programmers Reference Guide DCLsym

second

terator,
 through
ble from
th the
dition,

ater by
 to

rocess’

Ideally,
this argument is omitted, the default symbol table for the object is used. setsym returns TRUE if
successful, and FALSE otherwise.

delsym
This method deletes the symbol whose name is given as the first argument. The optional
argument specifies the symbol table, as described above under setsym . It returns TRUE if the
symbol was successfully deleted, and FALSE if it was not.

clearcache
Because of the overhead associated with obtaining the list of defined symbols for the tied hash i
it is only done once, and the list is reused for subsequent iterations. Changes to symbols made
this package are recorded, but in the rare event that someone changes the process’ symbol ta
outside (as is possible using some software from the net), the iterator will be out of sync wi
symbol table. If you expect this to happen, you can reset the cache by calling this method. In ad
if you pass a FALSE value as the first argument, caching will be disabled. It can be reenabled l
calling clearcache again with a TRUE value as the first argument. It returns TRUE or FALSE
indicate whether caching was previously enabled or disabled, respectively.

This method is a stopgap until we can incorporate code into this extension to traverse the p
symbol table directly, so it may disappear in a future version of this package.

AUTHOR
Charles Bailey bailey@genetics.upenn.edu

VERSION
1.01 08−Dec−1996

BUGS
The list of symbols for the iterator is assembled by spawning off a subprocess, which can be slow.
we should just traverse the process’ symbol table directly from C.
18−Oct−1998 Version 5.005_02 1171

Stdio Perl Programmers Reference Guide Stdio

|

vailable
s are

sed by
ith the
ou can

that
::File

f this
ve been
valent
n, so

L
t be

rror

e

NAME
VMS::Stdio − standard I/O functions via VMS extensions

SYNOPSIS
use VMS::Stdio qw(&flush &getname &remove &rewind &setdef &sync &tmpnam
 &vmsopen &vmssysopen &waitfh &writeof);
setdef("new:[default.dir]"); $uniquename = tmpnam; $fh = vmsopen("my.file","rfm=var","alq=100",...)
or die $!; $name = getname($fh); print $fh "Hello, world!\n"; flush($fh); sync($fh);
rewind($fh); $line = <$fh ; undef $fh; # closes file $fh = vmssysopen("another.file", O_RDONLY
O_NDELAY, 0, "ctx=bin"); sysread($fh,$data,128); waitfh($fh); close($fh);
remove("another.file"); writeof($pipefh);

DESCRIPTION
This package gives Perl scripts access via VMS extensions to several C stdio operations not a
through Perl‘s CORE I/O functions. The specific routines are described below. These function
prototyped as unary operators, with the exception of vmsopen and vmssysopen , which can take any
number of arguments, and tmpnam, which takes none.

All of the routines are available for export, though none are exported by default. All of the constants u
vmssysopen to specify access modes are exported by default. The routines are associated w
Exporter tag FUNCTIONS, and the constants are associated with the Exporter tag CONSTANTS, so y
more easily choose what you‘d like to import:

 # import constants, but not functions
 use VMS::Stdio; # same as use VMS::Stdio qw(:DEFAULT);
 # import functions, but not constants
 use VMS::Stdio qw(!:CONSTANTS :FUNCTIONS);
 # import both
 use VMS::Stdio qw(:CONSTANTS :FUNCTIONS);
 # import neither
 use VMS::Stdio ();

Of course, you can also choose to import specific functions by name, as usual.

This package ISA IO::File, so that you can call IO::File methods on the handles returned by vmsopen and
vmssysopen . The IO::File package is not initialized, however, until you actually call a method
VMS::Stdio doesn‘t provide. This is doen to save startup time for users who don‘t wish to use the IO
methods.

Note: In order to conform to naming conventions for Perl extensions and functions, the name o
package has been changed to VMS::Stdio as of Perl 5.002, and the names of some routines ha
changed. Calls to the old VMS::stdio routines will generate a warning, and will be routed to the equi
VMS::Stdio function. This compatibility interface will be removed in a future release of this extensio
please update your code to use the new routines.

flush
This function causes the contents of stdio buffers for the specified file handle to be flushed. If undef
is used as the argument to flush , all currently open file handles are flushed. Like the CRT
fflush() routine, it does not flush any underlying RMS buffers for the file, so the data may no
flushed all the way to the disk. flush returns a true value if successful, and undef if not.

getname
The getname function returns the file specification associated with a Perl I/O handle. If an e
occurs, it returns undef .

remove
This function deletes the file named in its argument, returning a true value if successful and undef if
not. It differs from the CORE Perl function unlink in that it does not try to reset file protection if th
1172 Version 5.005_02 18−Oct−1998

Stdio Perl Programmers Reference Guide Stdio

eally

ilt−in
uccess,

ll the

ating

hen

dles.
which
anual

e
d by

d of

tten,

 Like
turn

e also

ied as
ing the

mary
ipe. It
original protection does not give you delete access to the file (cf. perlvms). In other words, remove is
equivalent to

 unlink($file) if VMS::Filespec::candelete($file);

rewind
rewind resets the current position of the specified file handle to the beginning of the file. It‘s r
just a convenience method equivalent in effect to seek($fh,0,0). It returns a true value if
successful, and undef if it fails.

setdef
This function sets the default device and directory for the process. It is identical to the bu
chdir() operator, except that the change persists after Perl exits. It returns a true value on s
and undef if it encounters and error.

sync
This function flushes buffered data for the specified file handle from stdio and RMS buffers a
way to disk. If successful, it returns a true value; otherwise, it returns undef .

tmpnam
The tmpnam function returns a unique string which can be used as a filename when cre
temporary files. If, for some reason, it is unable to generate a name, it returns undef .

vmsopen
The vmsopen function enables you to specify optional RMS arguments to the VMS CRTL w
opening a file. Its operation is similar to the built−in Perl open function (see perlfunc for a complete
description), but it will only open normal files; it cannot open pipes or duplicate existing I/O han
Up to 8 optional arguments may follow the file name. These arguments should be strings
specify optional file characteristics as allowed by the CRTL. (See the CRTL reference m
description of creat() and fopen() for details.) If successful, vmsopen returns a VMS::Stdio file
handle; if an error occurs, it returns undef .

You can use the file handle returned by vmsopen just as you would any other Perl file handle. Th
class VMS::Stdio ISA IO::File, so you can call IO::File methods using the handle returne
vmsopen . However, use ing VMS::Stdio does not automatically use IO::File; you must do so
explicitly in your program if you want to call IO::File methods. This is done to avoid the overhea
initializing the IO::File package in programs which intend to use the handle returned by vmsopen as a
normal Perl file handle only. When the scalar containing a VMS::Stdio file handle is overwri
undef d, or goes out of scope, the associated file is closed automatically.

vmssysopen
This function bears the same relationship to the CORE function sysopen as vmsopen does to
open . Its first three arguments are the name, access flags, and permissions for the file.
vmsopen , it takes up to 8 additional string arguments which specify file characteristics. Its re
value is identical to that of vmsopen .

The symbolic constants for the mode argument are exported by VMS::Stdio by default, and ar
exported by the Fcntl package.

waitfh
This function causes Perl to wait for the completion of an I/O operation on the file handle specif
its argument. It is used with handles opened for asynchronous I/O, and performs its task by call
CRTL routine fwait() .

writeof
This function writes an EOF to a file handle, if the device driver supports this operation. Its pri
use is to send an EOF to a subprocess through a pipe opened for writing without closing the p
returns a true value if successful, and undef if it encounters an error.
18−Oct−1998 Version 5.005_02 1173

Stdio Perl Programmers Reference Guide Stdio
REVISION
This document was last revised on 10−Dec−1996, for Perl 5.004.
1174 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

5 long

re the
ftware is

 perl).

mode
y DJ

jgpp, or

ne of
NAME
perldos − Perl under DOS, W31, W95.

SYNOPSIS
These are instructions for building Perl under DOS (or w??), using DJGPP v2.01 or later. Under w9
filenames are supported.

DESCRIPTION
Before you start, you should glance through the README file found in the top−level directory whe
Perl distribution was extracted. Make sure you read and understand the terms under which this so
being distributed.

This port currently supports MakeMaker (the set of modules that is used to build extensions to
Therefore, you should be able to build and install most extensions found in the CPAN sites.

Prerequisites

DJGPP
DJGPP is a port of GNU C/C++ compiler and development tools to 32−bit, protected−
environment on Intel 32−bit CPUs running MS−DOS and compatible operating systems, b
Delorie <dj@delorie.com and friends.

For more details (FAQ), check out the home of DJGPP at:

 http://www.delorie.com/djgpp/

If you have questions about DJGPP, try posting to the DJGPP newsgroup: comp.os.msdos.d
use the email gateway djgpp@delorie.com.

You can find the full DJGPP distribution on any SimTel.Net mirror all over the world. Like:

 ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2*

You need the following files to build perl (or add new modules):

 v2/djdev201.zip
 v2/bnu27b.zip
 v2gnu/gcc2721b.zip
 v2gnu/bsh1147b.zip
 v2gnu/mak3761b.zip
 v2gnu/fil316b.zip
 v2gnu/sed118b.zip
 v2gnu/txt122b.zip
 v2gnu/dif271b.zip
 v2gnu/grep21b.zip
 v2gnu/shl112b.zip
 v2gnu/gawk303b.zip
 v2misc/csdpmi4b.zip

or any newer version.

Pthreads
If you want multithreading support in perl, you need a pthread library that supports DJGPP. O
them can be found at:

 ftp://ftp.cs.fsu.edu/pub/PART/PTHREADS/pthreads.zip

But thread support is still in alpha, it may be unstable. For more information see below.
18−Oct−1998 Version 5.005_02 1175

README Perl Programmers Reference Guide README

lation,

er

ipt is

 with Y

andling
OSIX

fore
Shortcomings of Perl under DOS
Perl under DOS lacks some features of perl under UNIX because of deficiencies in the UNIX−emu
most notably:

 fork() and pipe()

 some features of the UNIX filesystem regarding link count and file dates

 in−place operation is a little bit broken with short filenames

 sockets

Building

 Unpack the source package perl5.00?_??.tar.gz with djtarx. If you want to use long file names und
w95, don‘t forget to use

 set LFN=y

before unpacking the archive.

 Create a "symlink" or copy your bash.exe to sh.exe in your ($DJDIR)/bin directory.

 ln −s bash.exe sh.exe

And make the SHELL environment variable point to this sh.exe:

 set SHELL=c:/djgpp/bin/sh.exe (use full path name!)

You can do this in djgpp.env too. Add this line BEFORE any section definition:

 +SHELL=%DJDIR%/bin/sh.exe

 If you have split.exe and gsplit.exe in your path, then rename split.exe to djsplit.exe, and gsplit.exe to
split.exe. Copy or link gecho.exe to echo.exe if you don‘t have echo.exe. Copy or link gawk.exe to
awk.exe if you don‘t have awk.exe.

 Chdir to the djgpp subdirectory of perl toplevel and type the following command:

 configure.bat

This will do some preprocessing then run the Configure script for you. The Configure scr
interactive, but in most cases you just need to press ENTER.

If the script says that your package is incomplete, and asks whether to continue, just answer
(this can only happen if you don‘t use long filenames).

When Configure asks about the extensions, I suggest IO and Fcntl, and if you want database h
then SDBM_File or GDBM_File (you need to install gdbm for this one). If you want to use the P
extension (this is the default), make sure that the stack size of your cc1.exe is at least 512kbyte (you
can check this with: stubedit cc1.exe).

You can use the Configure script in non−interactive mode too. When I built my perl.exe, I used
something like this:

 configure.bat −Uuseposix −des

You can find more info about Configure‘s command line switches in the INSTALL file.

When the script ends, and you want to change some values in the generated config.sh file, then run

 sh Configure −S

after you made your modifications.

IMPORTANT: if you use this −S switch, be sure to delete the CONFIG environment variable be
running the script:
1176 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

t if not

nd the

 is not
 set CONFIG=

 Now you can compile Perl. Type:

 make

Testing
Type:

 make test

You should see "All tests successful" if you configured a database manager, and 1 failed test scrip
(lib/anydbm.t). If you configured POSIX you will see 1 additional failed subtest in lib/posix.t.

Installation
Type:

 make install

This will copy the newly compiled perl and libraries into your DJGPP directory structure. Perl.exe a
utilities go into ($DJDIR)/bin, and the library goes under ($DJDIR)/lib/perl5. The pod
documentation goes under ($DJDIR)/lib/perl5/pod.

Threaded perl under dos−djgpp
Multithreading support is considered alpha, because some of the tests in ext/Thread still die with
SIGSEGV (patches are welcome). But if you want to give it a try, here are the necessary steps:

 1. You will need a pthread library which supports djgpp. Go, and download FSU‘s version from:

 ftp://ftp.cs.fsu.edu/pub/PART/PTHREADS/pthreads.zip

The latest version is 3.5, released in Feb 98.

 2. Unzip the file, cd to threads\src and run configur.bat.

 3. Add RAND_SWITCH or MUTEX_SWITCH or RR_SWITCH to CFLAGS in the makefile. Note that
using these values, multithreading will NOT be preemptive. This is necessary, since djgpp‘s libc
thread safe.

 4. Apply the following patch:

 *** include/pthread/signal.h~ Wed Feb 4 10:51:24 1998
 −−− include/pthread/signal.h Tue Feb 10 22:40:32 1998

 *** 364,368 ****
 −−− 364,370 −−−−

 #ifndef SA_ONSTACK
 + #ifdef SV_ONSTACK
 #define SA_ONSTACK SV_ONSTACK
 + #endif
 #endif /* !SA_ONSTACK */

 5. run make (before you do this, you must make sure your SHELL environment variable does NOT
point to bash).

 6. Install the library and header files into your djgpp directory structure.

 7. Add −Dusethreads to the commmand line of perl‘s configure.bat.

AUTHOR
Laszlo Molnar, molnarl@cdata.tvnet.hu
18−Oct−1998 Version 5.005_02 1177

README Perl Programmers Reference Guide README
SEE ALSO
perl(1).
1178 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

‘s
IBM‘s

o try to

(Is it

and −
OS,
see

ures the
NAME
perlos2 − Perl under OS/2, DOS, Win0.3*, Win0.95 and WinNT.

SYNOPSIS
One can read this document in the following formats:

man perlos2
view perl perlos2
explorer perlos2.html
info perlos2

to list some (not all may be available simultaneously), or it may be read as is: either as README.os2, or
pod/perlos2.pod.

To read the .INF version of documentation (very recommended) outside of OS/2, one needs an IBM
reader (may be available on IBM ftp sites (?) (URL anyone?)) or shipped with PC DOS 7.0 and
Visual Age C++ 3.5.

A copy of a Win* viewer is contained in the "Just add OS/2 Warp" package

 ftp://ftp.software.ibm.com/ps/products/os2/tools/jaow/jaow.zip

in ?:\JUST_ADD\view.exe. This gives one an access to EMX‘s .INF docs as well (text form is available in
/emx/doc in EMX‘s distribution).

Note that if you have lynx.exe installed, you can follow WWW links from this document in .INF format. If
you have EMX docs installed correctly, you can follow library links (you need to have view emxbook
working by setting EMXBOOK environment variable as it is described in EMX docs).

DESCRIPTION

Target
The target is to make OS/2 the best supported platform for using/building/developing Perl andPerl
applications, as well as make Perl the best language to use under OS/2. The secondary target is t
make this work under DOS and Win* as well (but not too hard).

The current state is quite close to this target. Known limitations:

 Some *nix programs use fork() a lot, but currently fork() is not supported after useing
dynamically loaded extensions.

 You need a separate perl executable perl__.exe (see perl__.exe) to use PM code in your application
(like the forthcoming Perl/Tk).

 There is no simple way to access WPS objects. The only way I know is via OS2::REXX extension
(see OS2::REXX), and we do not have access to convenience methods of Object−REXX.
possible at all? I know of no Object−REXX API.)

Please keep this list up−to−date by informing me about other items.

Other OSes
Since OS/2 port of perl uses a remarkable EMX environment, it can run (and build extensions,
possibly − be build itself) under any environment which can run EMX. The current list is D
DOS−inside−OS/2, Win0.3*, Win0.95 and WinNT. Out of many perl flavors, only one works,
"perl_.exe".

Note that not all features of Perl are available under these environments. This depends on the feat
extender − most probably RSX − decided to implement.

Cf. Prerequisites.
18−Oct−1998 Version 5.005_02 1179

README Perl Programmers Reference Guide README

ctions
ote

,

m

OS/2,

,
erl

 a file

 file

nd/or
amed

 under

,

Prerequisites

EMX EMX runtime is required (may be substituted by RSX). Note that it is possible to make perl_.exe to
run under DOS without any external support by binding emx.exe/rsx.exe to it, see emxbind. Note
that under DOS for best results one should use RSX runtime, which has much more fun
working (like fork , popen and so on). In fact RSX is required if there is no VCPI present. N
the RSX requires DPMI.

Only the latest runtime is supported, currently 0.9c . Perl may run under earlier versions of EMX
but this is not tested.

One can get different parts of EMX from, say

 ftp://ftp.cdrom.com/pub/os2/emx09c/
 ftp://hobbes.nmsu.edu/os2/unix/emx09c/

The runtime component should have the name emxrt.zip.

NOTE. It is enough to have emx.exe/rsx.exe on your path. One does not need to specify the
explicitly (though this

 emx perl_.exe −de 0

will work as well.)

RSX To run Perl on DPMI platforms one needs RSX runtime. This is needed under DOS−inside−
Win0.3*, Win0.95 and WinNT (see "Other OSes"). RSX would not work with VCPI only, as EMX
would, it requires DMPI.

Having RSX and the latest sh.exe one gets a fully functional *nix −ish environment under DOS, say
fork , ‘‘ and pipe−open work. In fact, MakeMaker works (for static build), so one can have P
development environment under DOS.

One can get RSX from, say

 ftp://ftp.cdrom.com/pub/os2/emx09c/contrib
 ftp://ftp.uni−bielefeld.de/pub/systems/msdos/misc
 ftp://ftp.leo.org/pub/comp/os/os2/leo/devtools/emx+gcc/contrib

Contact the author on rainer@mathematik.uni−bielefeld.de .

The latest sh.exe with DOS hooks is available at

 ftp://ftp.math.ohio−state.edu/pub/users/ilya/os2/sh_dos.zip

HPFS Perl does not care about file systems, but to install the whole perl library intact one needs
system which supports long file names.

Note that if you do not plan to build the perl itself, it may be possible to fool EMX to truncate
names. This is not supported, read EMX docs to see how to do it.

pdksh To start external programs with complicated command lines (like with pipes in between, a
quoting of arguments), Perl uses an external shell. With EMX port such shell should be n
<sh.exe, and located either in the wired−in−during−compile locations (usually F:/bin), or in
configurable location (see "PERL_SH_DIR").

For best results use EMX pdksh. The soon−to−be−available standard binary (5.2.12?) runs
DOS (with RSX) as well, meanwhile use the binary from

 ftp://ftp.math.ohio−state.edu/pub/users/ilya/os2/sh_dos.zip

Starting Perl programs under OS/2 (and DOS and...)
Start your Perl program foo.pl with arguments arg1 arg2 arg3 the same way as on any other platform
by
1180 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

t:

u use
, if

e

ll
perl foo.pl arg1 arg2 arg3

If you want to specify perl options −my_opts to the perl itself (as opposed to to your program), use

perl −my_opts foo.pl arg1 arg2 arg3

Alternately, if you use OS/2−ish shell, like CMD or 4os2, put the following at the start of your perl scrip

extproc perl −S −my_opts

rename your program to foo.cmd, and start it by typing

foo arg1 arg2 arg3

Note that because of stupid OS/2 limitations the full path of the perl script is not available when yo
extproc , thus you are forced to use −S perl switch, and your script should be on path. As a plus side
you know a full path to your script, you may still start it with

perl ../../blah/foo.cmd arg1 arg2 arg3

(note that the argument −my_opts is taken care of by the extproc line in your script, see extproc on
the first line).

To understand what the above magic does, read perl docs about −S switch − see perlrun, and cmdref about
extproc :

view perl perlrun
man perlrun
view cmdref extproc
help extproc

or whatever method you prefer.

There are also endless possibilities to use executable extensions of 4os2, associations of WPS and so on...
However, if you use *nixish shell (like sh.exe supplied in the binary distribution), you need to follow th
syntax specified in Switches in perlrun.

Note that −S switch enables a search with additional extensions .cmd, .btm, .bat, .pl as well.

Starting OS/2 (and DOS) programs under Perl
This is what system() (see system), ‘‘ (see I/O Operators in perlop), and open pipe (see open) are for.
(Avoid exec() (see exec) unless you know what you do).

Note however that to use some of these operators you need to have a sh−syntax shell installed (see"Pdksh",
"Frequently asked questions"), and perl should be able to find it (see "PERL_SH_DIR").

The cases when the shell is used are:

1 One−argument system() (see system), exec() (see exec) with redirection or shell
meta−characters;

2 Pipe−open (see open) with the command which contains redirection or shell meta−characters;

3 Backticks ‘‘ (see I/O Operators in perlop) with the command which contains redirection or she
meta−characters;

4 If the executable called by system()/exec()/pipe−open() /‘‘ is a script with the "magic" #!
line or extproc line which specifies shell;

5 If the executable called by system()/exec()/pipe−open() /‘‘ is a script without "magic" line,
and $ENV{EXECSHELL} is set to shell;

6 If the executable called by system()/exec()/pipe−open() /‘‘ is not found;
18−Oct−1998 Version 5.005_02 1181

README Perl Programmers Reference Guide README

e are not

l

ent

then

by

t

 Perl

d not
7 For globbing (see glob, I/O Operators in perlop).

For the sake of speed for a common case, in the above algorithms backslashes in the command nam
considered as shell metacharacters.

Perl starts scripts which begin with cookies extproc or #! directly, without an intervention of shell. Per
uses the same algorithm to find the executable as pdksh: if the path on #! line does not work, and contains
/ , then the executable is searched in . and on PATH. To find arguments for these scripts Perl uses a differ
algorithm than pdksh: up to 3 arguments are recognized, and trailing whitespace is stripped.

If a script does not contain such a cooky, then to avoid calling sh.exe, Perl uses the same algorithm as pdksh:
if $ENV{EXECSHELL} is set, the script is given as the first argument to this command, if not set,
$ENV{COMSPEC} /c is used (or a hardwired guess if $ENV{COMSPEC} is not set).

If starting scripts directly, Perl will use exactly the same algorithm as for the search of script given −S
command−line option: it will look in the current directory, then on components of $ENV{PATH} using the
following order of appended extensions: no extension, .cmd, .btm, .bat, .pl.

Note that Perl will start to look for scripts only if OS/2 cannot start the specified application, thus system
‘blah’ will not look for a script if there is an executable file blah.exe anywhere on PATH.

Note also that executable files on OS/2 can have an arbitrary extension, but .exe will be automatically
appended if no dot is present in the name. The workaround as as simple as that: since blah. and blah
denote the same file, to start an executable residing in file n:/bin/blah (no extension) give an argumen
n:/bin/blah. to system() .

The last note is that currently it is not straightforward to start PM programs from VIO (=text−mode)
process and visa versa. Either ensure that shell will be used, as in system ‘cmd /c epm’ , or start it
using optional arguments to system() documented in OS2::Process module. This is considered a bug
and should be fixed soon.

Frequently asked questions

I cannot run external programs

 Did you run your programs with −w switch? See 2 (and DOS) programs under Perl.

 Do you try to run internal shell commands, like ‘copy a b‘ (internal for cmd.exe), or ‘glob
a*b‘ (internal for ksh)? You need to specify your shell explicitly, like ‘cmd /c copy a b‘ ,
since Perl cannot deduce which commands are internal to your shell.

I cannot embed perl into my program, or use perl.dll from my
program.

Is your program EMX−compiled with −Zmt −Zcrtdll ?
If not, you need to build a stand−alone DLL for perl. Contact me, I did it once. Sockets woul
work, as a lot of other stuff.

Did you use ExtUtils::Embed?
I had reports it does not work. Somebody would need to fix it.

‘‘ and pipe− open do not work under DOS.
This may a variant of just "I cannot run external programs", or a deeper problem. Basically: you need RSX
(see "Prerequisites") for these commands to work, and you may need a port of sh.exe which understands
command arguments. One of such ports is listed in "Prerequisites" under RSX. Do not forget to set variable
"PERL_SH_DIR" as well.

DPMI is required for RSX.
1182 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

se

d it

f
ed if

ly, to
 some

ries in
(like
Cannot start find.exe "pattern" file
Use one of

 system ’cmd’, ’/c’, ’find "pattern" file’;
 ‘cmd /c ’find "pattern" file’‘

This would start find.exe via cmd.exe via sh.exe via perl.exe , but this is a price to pay if you want to
use non−conforming program. In fact find.exe cannot be started at all using C library API only. Otherwi
the following command−lines were equivalent:

 find "pattern" file
 find pattern file

INSTALLATION

Automatic binary installation
The most convenient way of installing perl is via perl installer install.exe. Just follow the instructions, and
99% of the installation blues would go away.

Note however, that you need to have unzip.exe on your path, and EMX environment running. The latter
means that if you just installed EMX, and made all the needed changes to Config.sys, you may need to
reboot in between. Check EMX runtime by running

emxrev

A folder is created on your desktop which contains some useful objects.

Things not taken care of by automatic binary installation:

PERL_BADLANG may be needed if you change your codepage after perl installation, and the new value
is not supported by EMX. See "PERL_BADLANG".

PERL_BADFREE see "PERL_BADFREE".

Config.pm This file resides somewhere deep in the location you installed your perl library, fin
out by

 perl −MConfig −le "print $INC{’Config.pm’}"

While most important values in this file are updated by the binary installer, some o
them may need to be hand−edited. I know no such data, please keep me inform
you find one.

NOTE. Because of a typo the binary installer of 5.00305 would install a variable PERL_SHPATH into
Config.sys. Please remove this variable and put PERL_SH_DIR instead.

Manual binary installation
As of version 5.00305, OS/2 perl binary distribution comes split into 11 components. Unfortunate
enable configurable binary installation, the file paths in the zip files are not absolute, but relative to
directory.

Note that the extraction with the stored paths is still necessary (default with unzip, specify −d to pkunzip).
However, you need to know where to extract the files. You need also to manually change ent
Config.sys to reflect where did you put the files. Note that if you have some primitive unzipper
pkunzip), you may get a lot of warnings/errors during unzipping. Upgrade to (w)unzip .

Below is the sample of what to do to reproduce the configuration on my machine:

Perl VIO and PM executables (dynamically linked)
 unzip perl_exc.zip *.exe *.ico −d f:/emx.add/bin
 unzip perl_exc.zip *.dll −d f:/emx.add/dll

(have the directories with *.exe on PATH, and *.dll on LIBPATH);
18−Oct−1998 Version 5.005_02 1183

README Perl Programmers Reference Guide README

 it is

e

 it is

on

using

nd it
Perl_ VIO executable (statically linked)
 unzip perl_aou.zip −d f:/emx.add/bin

(have the directory on PATH);

Executables for Perl utilities
 unzip perl_utl.zip −d f:/emx.add/bin

(have the directory on PATH);

Main Perl library
 unzip perl_mlb.zip −d f:/perllib/lib

If this directory is preserved, you do not need to change anything. However, for perl to find it if
changed, you need to set PERLLIB_PREFIX in Config.sys, see "PERLLIB_PREFIX".

Additional Perl modules
 unzip perl_ste.zip −d f:/perllib/lib/site_perl

If you do not change this directory, do nothing. Otherwise put this directory and subdirectory ./os2 in
PERLLIB or PERL5LIB variable. Do not use PERL5LIB unless you have it set already. Se
ENVIRONMENT in perl.

Tools to compile Perl modules
 unzip perl_blb.zip −d f:/perllib/lib

If this directory is preserved, you do not need to change anything. However, for perl to find it if
changed, you need to set PERLLIB_PREFIX in Config.sys, see "PERLLIB_PREFIX".

Manpages for Perl and utilities
 unzip perl_man.zip −d f:/perllib/man

This directory should better be on MANPATH. You need to have a working man to access these files.

Manpages for Perl modules
 unzip perl_mam.zip −d f:/perllib/man

This directory should better be on MANPATH. You need to have a working man to access these files.

Source for Perl documentation
 unzip perl_pod.zip −d f:/perllib/lib

This is used by by perldoc program (see perldoc), and may be used to generate HTML documentati
usable by WWW browsers, and documentation in zillions of other formats: info , LaTeX, Acrobat ,
FrameMaker and so on.

Perl manual in .INF format
 unzip perl_inf.zip −d d:/os2/book

This directory should better be on BOOKSHELF.

Pdksh
 unzip perl_sh.zip −d f:/bin

This is used by perl to run external commands which explicitly require shell, like the commands
redirection and shell metacharacters. It is also used instead of explicit /bin/sh.

Set PERL_SH_DIR (see "PERL_SH_DIR") if you move sh.exe from the above location.

Note. It may be possible to use some other sh−compatible shell (not tested).

After you installed the components you needed and updated the Config.sys correspondingly, you need to
hand−edit Config.pm. This file resides somewhere deep in the location you installed your perl library, fi
1184 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

 these
y

in the

 may

ages).

mes you
out by

 perl −MConfig −le "print $INC{’Config.pm’}"

You need to correct all the entries which look like file paths (they currently start with f:/).

Warning
The automatic and manual perl installation leave precompiled paths inside perl executables. While
paths are overwriteable (see "PERLLIB_PREFIX", "PERL_SH_DIR"), one may get better results by binar
editing of paths inside the executables/DLLs.

Accessing documentation
Depending on how you built/installed perl you may have (otherwise identical) Perl documentation
following formats:

OS/2 .INF file
Most probably the most convenient form. Under OS/2 view it as

 view perl
 view perl perlfunc
 view perl less
 view perl ExtUtils::MakeMaker

(currently the last two may hit a wrong location, but this may improve soon). Under Win* see "SYNOPSIS".

If you want to build the docs yourself, and have OS/2 toolkit, run

pod2ipf > perl.ipf

in /perllib/lib/pod directory, then

ipfc /inf perl.ipf

(Expect a lot of errors during the both steps.) Now move it on your BOOKSHELF path.

Plain text
If you have perl documentation in the source form, perl utilities installed, and GNU groff installed, you
use

perldoc perlfunc
perldoc less
perldoc ExtUtils::MakeMaker

to access the perl documentation in the text form (note that you may get better results using perl manp

Alternately, try running pod2text on .pod files.

Manpages
If you have man installed on your system, and you installed perl manpages, use something like this:

man perlfunc
man 3 less
man ExtUtils.MakeMaker

to access documentation for different components of Perl. Start with

man perl

Note that dot (.) is used as a package separator for documentation for packages, and as usual, someti
need to give the section − 3 above − to avoid shadowing by the less(1) manpage.

Make sure that the directory above the directory with manpages is on our MANPATH, like this

 set MANPATH=c:/man;f:/perllib/man
18−Oct−1998 Version 5.005_02 1185

README Perl Programmers Reference Guide README

d Perl

s,

t

w on

 awk,

 and

.zip,
these

 older
HTML
If you have some WWW browser available, installed the Perl documentation in the source form, an
utilities, you can build HTML docs. Cd to directory with .pod files, and do like this

cd f:/perllib/lib/pod
pod2html

After this you can direct your browser the file perl.html in this directory, and go ahead with reading doc
like this:

explore file:///f:/perllib/lib/pod/perl.html

Alternatively you may be able to get these docs prebuilt from CPAN.

GNU info files
Users of Emacs would appreciate it very much, especially with CPerl mode loaded. You need to get lates
pod2info from CPAN, or, alternately, prebuilt info pages.

.PDF files
for Acrobat are available on CPAN (for slightly old version of perl).

LaTeX docs
can be constructed using pod2latex .

BUILD
Here we discuss how to build Perl under OS/2. There is an alternative (but maybe older) vie
http://www.shadow.net/~troc/os2perl.html.

Prerequisites
You need to have the latest EMX development environment, the full GNU tool suite (gawk renamed to
and GNU find.exe earlier on path than the OS/2 find.exe, same with sort.exe, to check use

 find −−version
 sort −−version

). You need the latest version of pdksh installed as sh.exe.

Check that you have BSD libraries and headers installed, and − optionally − Berkeley DB headers
libraries, and crypt.

Possible locations to get this from are

 ftp://hobbes.nmsu.edu/os2/unix/
 ftp://ftp.cdrom.com/pub/os2/unix/
 ftp://ftp.cdrom.com/pub/os2/dev32/
 ftp://ftp.cdrom.com/pub/os2/emx09c/

It is reported that the following archives contain enough utils to build perl: gnufutil.zip, gnusutil
gnututil.zip, gnused.zip, gnupatch.zip, gnuawk.zip, gnumake.zip and ksh527rt.zip. Note that all
utilities are known to be available from LEO:

 ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu

Make sure that no copies or perl are currently running. Later steps of the build may fail since an
version of perl.dll loaded into memory may be found.

Also make sure that you have /tmp directory on the current drive, and . directory in your LIBPATH. One
may try to correct the latter condition by

 set BEGINLIBPATH .

if you use something like CMD.EXE or latest versions of 4os2.exe.
1186 Version 5.005_02 18−Oct−1998

http://www.shadow.net/~troc/os2perl.html

README Perl Programmers Reference Guide README

ue to

ated in

se may

a

ile
 with
Make sure your gcc is good for −Zomf linking: run omflibs script in /emx/lib directory.

Check that you have link386 installed. It comes standard with OS/2, but may be not installed d
customization. If typing

 link386

shows you do not have it, do Selective install, and choose Link object modules in Optional system
utilities/More. If you get into link386, press Ctrl−C .

Getting perl source
You need to fetch the latest perl source (including developers releases). With some probability it is loc

 http://www.perl.com/CPAN/src/5.0
 http://www.perl.com/CPAN/src/5.0/unsupported

If not, you may need to dig in the indices to find it in the directory of the current maintainer.

Quick cycle of developers release may break the OS/2 build time to time, looking into

 http://www.perl.com/CPAN/ports/os2/ilyaz/

may indicate the latest release which was publicly released by the maintainer. Note that the relea
include some additional patches to apply to the current source of perl.

Extract it like this

 tar vzxf perl5.00409.tar.gz

You may see a message about errors while extracting Configure. This is because there is a conflict with
similarly−named file configure.

Change to the directory of extraction.

Application of the patches
You need to apply the patches in ./os2/diff.* and ./os2/POSIX.mkfifo like this:

 gnupatch −p0 < os2\POSIX.mkfifo
 gnupatch −p0 < os2\diff.configure

You may also need to apply the patches supplied with the binary distribution of perl.

Note also that the db.lib and db.a from the EMX distribution are not suitable for multi−threaded comp
(note that currently perl is not multithread−safe, but is compiled as multithreaded for compatibility
XFree86−OS/2). Get a corrected one from

 ftp://ftp.math.ohio−state.edu/pub/users/ilya/os2/db_mt.zip

To make −p filetest work, one may also need to apply the following patch to EMX headers:

 −−− /emx/include/sys/stat.h.orig Thu May 23 13:48:16 1996
 +++ /emx/include/sys/stat.h Sun Jul 12 14:11:32 1998
 @@ −53,7 +53,7 @@ struct stat
 #endif

 #if !defined (S_IFMT)
 −#define S_IFMT 0160000 /* Mask for file type */
 +#define S_IFMT 0170000 /* Mask for file type */
 #define S_IFIFO 0010000 /* Pipe */
 #define S_IFCHR 0020000 /* Character device */
 #define S_IFDIR 0040000 /* Directory */
18−Oct−1998 Version 5.005_02 1187

README Perl Programmers Reference Guide README

 is

ed to

r

ce

perl

rmittent

 this

. It is

es of this

e

d tests
Hand−editing
You may look into the file ./hints/os2.sh and correct anything wrong you find there. I do not expect it
needed anywhere.

Making
 sh Configure −des −D prefix=f:/perllib

prefix means: where to install the resulting perl library. Giving correct prefix you may avoid the ne
specify PERLLIB_PREFIX , see "PERLLIB_PREFIX".

Ignore the message about missing ln , and about −c option to tr. In fact if you can trace where the latte
spurious warning comes from, please inform me.

Now

 make

At some moment the built may die, reporting a version mismatch or unable to run perl. This means that most
of the build has been finished, and it is the time to move the constructed perl.dll to some absolute location in
LIBPATH. After this is done the build should finish without a lot of fuss. One can avoid the interruption if
one has the correct prebuilt version of perl.dll on LIBPATH, but probably this is not needed anymore, sin
miniperl.exe is linked statically now.

Warnings which are safe to ignore: mkfifo() redefined inside POSIX.c.

Testing
If you haven‘t yet moved perl.dll onto LIBPATH, do it now (alternatively, if you have a previous
installation you‘d rather not disrupt until this one is installed, copy perl.dll to the t directory).

Now run

 make test

All tests should succeed (with some of them skipped). Note that on one of the systems I see inte
failures of io/pipe.t subtest 9. Any help to track what happens with this test is appreciated.

Some tests may generate extra messages similar to

A lot of bad free
in database tests related to Berkeley DB. This is a confirmed bug of DB. You may disable
warnings, see "PERL_BADFREE".

There is not much we can do with it (but apparently it does not cause any real error with data).

Process terminated by SIGTERM/SIGINT
This is a standard message issued by OS/2 applications. *nix applications die in silence
considered a feature. One can easily disable this by appropriate sighandlers.

However the test engine bleeds these message to screen in unexpected moments. Two messag
kind should be present during testing.

Two lib/io_* tests may generate popups (system error SYS3175), but should succeed anyway. This is du
to a bug of EMX related to fork() ing with dynamically loaded libraries.

I submitted a patch to EMX which makes it possible to fork() with EMX dynamic libraries loaded, which
makes lib/io* tests pass without skipping offended tests. This means that soon the number of skippe
may decrease yet more.

To get finer test reports, call

 perl t/harness

The report with io/pipe.t failing may look like this:
1188 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

e

 or

ity

.
 Failed Test Status Wstat Total Fail Failed List of failed
 −−
 io/pipe.t 12 1 8.33% 9
 7 tests skipped, plus 56 subtests skipped.
 Failed 1/195 test scripts, 99.49% okay. 1/6542 subtests failed, 99.98% okay.

The reasons for most important skipped tests are:

op/fs.t
18 Checks atime and mtime of stat() − unfortunately, HPFS provides only 2sec tim

granularity (for compatibility with FAT?).

25 Checks truncate() on a filehandle just opened for write − I do not know why this should
should not work.

lib/io_pipe.t
Checks IO::Pipe module. Some feature of EMX − test fork() s with dynamic extension loaded −
unsupported now.

lib/io_sock.t
Checks IO::Socket module. Some feature of EMX − test fork() s with dynamic extension loaded −
unsupported now.

op/stat.t
Checks stat() . Tests:

4 Checks atime and mtime of stat() − unfortunately, HPFS provides only 2sec time granular
(for compatibility with FAT?).

lib/io_udp.t
It never terminates, apparently some bug in storing the last socket from which we obtained a message

Installing the built perl
If you haven‘t yet moved perl.dll onto LIBPATH, do it now.

Run

 make install

It would put the generated files into needed locations. Manually put perl.exe, perl__.exe and perl___.exe to a
location on your PATH, perl.dll to a location on your LIBPATH.

Run

 make cmdscripts INSTALLCMDDIR=d:/ir/on/path

to convert perl utilities to .cmd files and put them on PATH. You need to put .EXE−utilities on path
manually. They are installed in $prefix/bin, here $prefix is what you gave to Configure, see
Making.

a.out −style build
Proceed as above, but make perl_.exe (see "perl_.exe") by

 make perl_

test and install by

 make aout_test
 make aout_install

Manually put perl_.exe to a location on your PATH.

Since perl_ has the extensions prebuilt, it does not suffer from the dynamic extensions + fork()
syndrome, thus the failing tests look like
18−Oct−1998 Version 5.005_02 1189

README Perl Programmers Reference Guide README

that

s are

ent

ric
XX
 Failed Test Status Wstat Total Fail Failed List of failed
 −−−
 io/fs.t 26 11 42.31% 2−5, 7−11, 18, 25
 op/stat.t 56 5 8.93% 3−4, 20, 35, 39
 Failed 2/118 test scripts, 98.31% okay. 16/2445 subtests failed, 99.35% okay.

Note. The build process for perl_ does not know about all the dependencies, so you should make sure
anything is up−to−date, say, by doing

 make perl.dll

first.

Build FAQ

Some / became \ in pdksh.
You have a very old pdksh. See Prerequisites.

‘errno’ − unresolved external
You do not have MT−safe db.lib. See Prerequisites.

Problems with tr or sed
reported with very old version of tr and sed.

Some problem (forget which ;−)
You have an older version of perl.dll on your LIBPATH, which broke the build of extensions.

Library ... not found
You did not run omflibs . See Prerequisites.

Segfault in make
You use an old version of GNU make. See Prerequisites.

Specific (mis)features of OS/2 port

setpriority , getpriority
Note that these functions are compatible with *nix, not with the older ports of ‘94 − 95. The prioritie
absolute, go from 32 to −95, lower is quicker. 0 is the default priority.

system()
Multi−argument form of system() allows an additional numeric argument. The meaning of this argum
is described in OS2::Process.

extproc on the first line
If the first chars of a script are "extproc " , this line is treated as #! −line, thus all the switches on this line
are processed (twice if script was started via cmd.exe).

Additional modules:
OS2::Process, OS2::REXX, OS2::PrfDB, OS2::ExtAttr. These modules provide access to additional nume
argument for system and to the list of the running processes, to DLLs having functions with RE
signature and to REXX runtime, to OS/2 databases in the .INI format, and to Extended Attributes.

Two additional extensions by Andreas Kaiser, OS2::UPM, and OS2::FTP , are included into my ftp
directory, mirrored on CPAN.

Prebuilt methods:

File::Copy::syscopy
used by File::Copy::copy , see File::Copy.
1190 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

the
DynaLoader::mod2fname
used by DynaLoader for DLL name mangling.

Cwd::current_drive()
Self explanatory.

Cwd::sys_chdir(name)
leaves drive as it is.

Cwd::change_drive(name)
Cwd::sys_is_absolute(name)

means has drive letter and is_rooted.

Cwd::sys_is_rooted(name)
means has leading [/\\] (maybe after a drive−letter:).

Cwd::sys_is_relative(name)
means changes with current dir.

Cwd::sys_cwd(name)
Interface to cwd from EMX. Used by Cwd::cwd .

Cwd::sys_abspath(name, dir)
Really really odious function to implement. Returns absolute name of file which would have name if
CWD were dir . Dir defaults to the current dir.

Cwd::extLibpath([type])

Get current value of extended library search path. If type is present and true, works with
END_LIBPATH, otherwise with BEGIN_LIBPATH.

Cwd::extLibpath_set(path [, type])
Set current value of extended library search path. If type is present and true, works with
END_LIBPATH, otherwise with BEGIN_LIBPATH.

(Note that some of these may be moved to different libraries − eventually).

Misfeatures

 Since flock(3) is present in EMX, but is not functional, it is emulated by perl. To disable
emulations, set environment variable USE_PERL_FLOCK=0.

 Here is the list of things which may be "broken" on EMX (from EMX docs):

 The functions recvmsg(3), sendmsg(3), and socketpair(3) are not implemented.

 sock_init(3) is not required and not implemented.

 flock(3) is not yet implemented (dummy function). (Perl has a workaround.)

 kill(3): Special treatment of PID=0, PID=1 and PID=−1 is not implemented.

 waitpid(3):

 WUNTRACED
 Not implemented.

 waitpid() is not implemented for negative values of PID.

Note that kill −9 does not work with the current version of EMX.

 Since sh.exe is used for globing (see glob), the bugs of sh.exe plague perl as well.

In particular, uppercase letters do not work in [...] −patterns with the current pdksh.
18−Oct−1998 Version 5.005_02 1191

README Perl Programmers Reference Guide README

the

h EMX
 are 4

s.
m tasks
able

files

priate

ke

e

Modifications
Perl modifies some standard C library calls in the following ways:

popen my_popen uses sh.exe if shell is required, cf. "PERL_SH_DIR".

tmpnam is created using TMP or TEMP environment variable, via tempnam.

tmpfile If the current directory is not writable, file is created using modified tmpnam, so there may be
a race condition.

ctermid a dummy implementation.

stat os2_stat special−cases /dev/tty and /dev/con.

flock Since flock(3) is present in EMX, but is not functional, it is emulated by perl. To disable
emulations, set environment variable USE_PERL_FLOCK=0.

Perl flavors
Because of idiosyncrasies of OS/2 one cannot have all the eggs in the same basket (thoug
environment tries hard to overcome this limitations, so the situation may somehow improve). There
executables for Perl provided by the distribution:

perl.exe
The main workhorse. This is a chimera executable: it is compiled as an a.out −style executable, but is
linked with omf−style dynamic library perl.dll, and with dynamic CRT DLL. This executable is a VIO
application.

It can load perl dynamic extensions, and it can fork() . Unfortunately, with the current version of EMX it
cannot fork() with dynamic extensions loaded (may be fixed by patches to EMX).

Note. Keep in mind that fork() is needed to open a pipe to yourself.

perl_.exe
This is a statically linked a.out −style executable. It can fork() , but cannot load dynamic Perl extension
The supplied executable has a lot of extensions prebuilt, thus there are situations when it can perfor
not possible using perl.exe, like fork() ing when having some standard extension loaded. This execut
is a VIO application.

Note. A better behaviour could be obtained from perl.exe if it were statically linked with standard Perl
extensions, but dynamically linked with the Perl DLL and CRT DLL. Then it would be able to fork() with
standard extensions, and would be able to dynamically load arbitrary extensions. Some changes to Make
and hint files should be necessary to achieve this.

This is also the only executable with does not require OS/2. The friends locked into M$ world would
appreciate the fact that this executable runs under DOS, Win0.3*, Win0.95 and WinNT with an appro
extender. See "Other OSes".

perl__.exe
This is the same executable as perl___.exe, but it is a PM application.

Note. Usually STDIN, STDERR, and STDOUT of a PM application are redirected to nul . However, it is
possible to see them if you start perl__.exe from a PM program which emulates a console window, li
Shell mode of Emacs or EPM. Thus it is possible to use Perl debugger (see perldebug) to debug your PM
application.

This flavor is required if you load extensions which use PM, like the forthcoming Perl/Tk .

perl___.exe
This is an omf−style executable which is dynamically linked to perl.dll and CRT DLL. I know no
advantages of this executable over perl.exe , but it cannot fork() at all. Well, one advantage is that th
build process is not so convoluted as with perl.exe .
1192 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

ost the
erent

but this
hard"

ints into
ount of

 above
eed a

 to find
rpreter

s

uring
rwise

 forces

more
It is a VIO application.

Why strange names?
Since Perl processes the #! −line (cf. DESCRIPTION, Switches, Not a perl script in perldiag,
No Perl script found in input in perldiag), it should know when a program is a Perl. There is some naming
convention which allows Perl to distinguish correct lines from wrong ones. The above names are alm
only names allowed by this convention which do not contain digits (which have absolutely diff
semantics).

Why dynamic linking?
Well, having several executables dynamically linked to the same huge library has its advantages,
would not substantiate the additional work to make it compile. The reason is stupid−but−quick "
dynamic linking used by OS/2.

The address tables of DLLs are patched only once, when they are loaded. The addresses of entry po
DLLs are guaranteed to be the same for all programs which use the same DLL, which reduces the am
runtime patching − once DLL is loaded, its code is read−only.

While this allows some performance advantages, this makes life terrible for developers, since the
scheme makes it impossible for a DLL to be resolved to a symbol in the .EXE file, since this would n
DLL to have different relocations tables for the executables which use it.

However, a Perl extension is forced to use some symbols from the perl executable, say to know how
the arguments provided on the perl internal evaluation stack. The solution is that the main code of inte
should be contained in a DLL, and the .EXE file just loads this DLL into memory and supplie
command−arguments.

This greatly increases the load time for the application (as well as the number of problems d
compilation). Since interpreter is in a DLL, the CRT is basically forced to reside in a DLL as well (othe
extensions would not be able to use CRT).

Why chimera build?
Current EMX environment does not allow DLLs compiled using Unixish a.out format to export symbols
for data. This forces omf−style compile of perl.dll.

Current EMX environment does not allow .EXE files compiled in omf format to fork() . fork() is
needed for exactly three Perl operations:

explicit fork()
in the script, and

open FH, "|−"
open FH, "−|"

opening pipes to itself.

While these operations are not questions of life and death, a lot of useful scripts use them. This
a.out −style compile of perl.exe.

ENVIRONMENT
Here we list environment variables with are either OS/2− and DOS− and Win*−specific, or are
important under OS/2 than under other OSes.

PERLLIB_PREFIX
Specific for EMX port. Should have the form

 path1;path2

or

 path1 path2
18−Oct−1998 Version 5.005_02 1193

README Perl Programmers Reference Guide README

C in

o

ee

e now
aching

iled
eir

port.
,

time,

per

h
abled

for
If the beginning of some prebuilt path matches path1, it is substituted with path2.

Should be used if the perl library is moved from the default location in preference to PERL(5)LIB , since
this would not leave wrong entries in @INC. Say, if the compiled version of perl looks for @IN
f:/perllib/lib , and you want to install the library in h:/opt/gnu, do

 set PERLLIB_PREFIX=f:/perllib/lib;h:/opt/gnu

PERL_BADLANG
If 1, perl ignores setlocale() failing. May be useful with some strange locales.

PERL_BADFREE
If 1, perl would not warn of in case of unwarranted free() . May be useful in conjunction with the module
DB_File, since Berkeley DB memory handling code is buggy.

PERL_SH_DIR
Specific for EMX port. Gives the directory part of the location for sh.exe.

USE_PERL_FLOCK
Specific for EMX port. Since flock(3) is present in EMX, but is not functional, it is emulated by perl. T
disable the emulations, set environment variable USE_PERL_FLOCK=0.

TMP or TEMP
Specific for EMX port. Used as storage place for temporary files, most notably −e scripts.

Evolution
Here we list major changes which could make you by surprise.

Priorities
setpriority and getpriority are not compatible with earlier ports by Andreas Kaiser. S
"setpriority, getpriority" .

DLL name mangling
With the release 5.003_01 the dynamically loadable libraries should be rebuilt. In particular, DLLs ar
created with the names which contain a checksum, thus allowing workaround for OS/2 scheme of c
DLLs.

Threading
As of release 5.003_01 perl is linked to multithreaded CRT DLL. If perl itself is not comp
multithread−enabled, so will not be perl malloc() . However, extensions may use multiple thread on th
own risk.

Needed to compile Perl/Tk for XFree86−OS/2 out−of−the−box.

Calls to external programs
Due to a popular demand the perl external program calling has been changed wrt Andreas Kaiser‘s If
perl needs to call an external program via shell, the f:/bin/sh.exe will be called, or whatever is the override
see "PERL_SH_DIR".

Thus means that you need to get some copy of a sh.exe as well (I use one from pdksh). The drive F: above is
set up automatically during the build to a correct value on the builder machine, but is overridable at run

Reasons: a consensus on perl5−porters was that perl should use one non−overridable shell
platform. The obvious choices for OS/2 are cmd.exe and sh.exe. Having perl build itself would be
impossible with cmd.exe as a shell, thus I picked up sh.exe . Thus assures almost 100% compatibility wit
the scripts coming from *nix. As an added benefit this works as well under DOS if you use DOS−en
port of pdksh (see "Prerequisites").

Disadvantages: currently sh.exe of pdksh calls external programs via fork()/exec() , and there is no
functioning exec() on OS/2. exec() is emulated by EMX by asyncroneous call while the caller waits
child completion (to pretend that the pid did not change). This means that 1 extra copy of sh.exe is made
1194 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

o not

ution

e

ing

 not,
 times
dom)

ry

prefix

, with

thread

ffecting
active via fork()/exec() , which may lead to some resources taken from the system (even if we d
count extra work needed for fork() ing).

Note that this a lesser issue now when we do not spawn sh.exe unless needed (metachars found).

One can always start cmd.exe explicitly via

 system ’cmd’, ’/c’, ’mycmd’, ’arg1’, ’arg2’, ...

If you need to use cmd.exe, and do not want to hand−edit thousands of your scripts, the long−term sol
proposed on p5−p is to have a directive

 use OS2::Cmd;

which will override system() , exec() , ‘‘ , and open(,’...|’) . With current perl you may override
only system() , readpipe() − the explicit version of ‘‘ , and maybe exec() . The code will substitute
the one−argument call to system() by CORE::system(‘cmd.exe‘, ‘/c‘, shift) .

If you have some working code for OS2::Cmd , please send it to me, I will include it into distribution. I hav
no need for such a module, so cannot test it.

For the details of the current situation with calling external programs, see 2 (and DOS) programs under Perl.

 External scripts may be called by name. Perl will try the same extensions as when process−S
command−line switch.

Memory allocation
Perl uses its own malloc() under OS/2 − interpreters are usually malloc−bound for speed, but perl is
since its malloc is lightning−fast. Perl−memory−usage−tuned benchmarks show that Perl‘s malloc is 5
quickier than EMX one. I do not have convincing data about memory footpring, but a (pretty ran
benchmark showed that Perl one is 5% better.

Combination of perl‘s malloc() and rigid DLL name resolution creates a special problem with libra
functions which expect their return value to be free() d by system‘s free() . To facilitate extensions
which need to call such functions, system memory−allocation functions are still available with the
emx_ added. (Currently only DLL perl has this, it should propagate to perl_.exe shortly.)

Threads
One can build perl with thread support enabled by providing −D usethreads option to Configure.
Currently OS/2 support of threads is very preliminary.

Most notable problems:

COND_WAIT
may have a race condition. Needs a reimplementation (in terms of chaining waiting threads
linker list stored in per−thread structure?).

os2.c
has a couple of static variables used in OS/2−specific functions. (Need to be moved to per−
structure, or serialized?)

Note that these problems should not discourage experimenting, since they have a low probability of a
small programs.

AUTHOR
Ilya Zakharevich, ilya@math.ohio−state.edu

SEE ALSO
perl(1).
18−Oct−1998 Version 5.005_02 1195

ExtAttr Perl Programmers Reference Guide ExtAttr

ould be

se the

g

NAME
OS2::ExtAttr − Perl access to extended attributes.

SYNOPSIS
 use OS2::ExtAttr;
 tie %ea, ’OS2::ExtAttr’, ’my.file’;
 print $ea{eaname};
 $ea{myfield} = ’value’;

 untie %ea;

DESCRIPTION
The package provides low−level and high−level interface to Extended Attributes under OS/2.

High−level interface: tie
The only argument of tie() is a file name, or an open file handle.

Note that all the changes of the tied hash happen in core, to propagate it to disk the tied hash sh
untie() ed or should go out of scope. Alternatively, one may use the low−level update method on the
corresponding object. Example:

 tied(%hash)−>update;

Note also that setting/getting EA flag is not supported by the high−level interface, one should u
low−level interface instead. To use it on a tied hash one needs undocumented way to find eas give the tied
hash.

Low−level interface
Two low−level methods are supported by the objects: copy() and update() . The copy() takes one
argument: the name of a file to copy the attributes to, or an opened file handle. update() takes no
arguments, and is discussed above.

Three convenience functions are provided:

 value($eas, $key)
 add($eas, $key, $value [, $flag])
 replace($eas, $key, $value [, $flag])

The default value for flag is 0.

In addition, all the _ea_* and _ead_* functions defined in EMX library are supported, with leadin
_ea/_ead stripped.

AUTHOR
Ilya Zakharevich, ilya@math.ohio−state.edu

SEE ALSO
perl(1).
1196 Version 5.005_02 18−Oct−1998

PrfDB Perl Programmers Reference Guide PrfDB

n and so

−level

for

 a
NAME
OS2::PrfDB − Perl extension for access to OS/2 setting database.

SYNOPSIS
 use OS2::PrfDB;
 tie %settings, OS2::PrfDB, ’my.ini’;
 tie %subsettings, OS2::PrfDB::Sub, ’my.ini’, ’mykey’;

 print "$settings{firstkey}{subkey}\n";
 print "$subsettings{subkey}\n";

 tie %system, OS2::PrfDB, SystemIni;
 $system{myapp}{mykey} = "myvalue";

DESCRIPTION
The extention provides both high−level and low−level access to .ini files.

High level access
High−level access is the tie−hash access via two packages: OS2::PrfDB and OS2::PrfDB::Sub . First
one supports one argument, the name of the file to open, the second one the name of the file to ope
called Application name, or the primary key of the database.

 tie %settings, OS2::PrfDB, ’my.ini’;
 tie %subsettings, OS2::PrfDB::Sub, ’my.ini’, ’mykey’;

One may substitute a handle for already opened ini−file instead of the file name (obtained via low
access functions). In particular, 3 functions SystemIni() , UserIni() , and AnyIni() provide handles
to the "systemish" databases. AniIni will read from both, and write into User database.

Low−level access
Low−level access functions reside in the package OS2::Prf . They are

Open(file) Opens the database, returns an integer handle.

Close(hndl) Closes the database given an integer handle.

Get(hndl, appname, key)
Retrieves data from the database given 2−part−key appname key . If key is undef ,
return the "\0" delimited list of key s, terminated by \0. If appname is undef , returns
the list of possible appnames in the same form.

GetLength(hndl, appname, key)
Same as above, but returns the length of the value.

Set(hndl, appname, key, value [, length])
Sets the value. If the value is not defined, removes the key . If the key is not defined,
removes the appname.

System(val) Return an integer handle associated with the system database. If val is 1, it is User
database, if 2, System database, if 0, handle for "both" of them: the handle works
read from any one, and for write into User one.

Profiles() returns a reference to a list of two strings, giving names of the User and System
databases.

SetUser(file) (Not tested.) Sets the profile name of the User database. The application should have
message queue to use this function!
18−Oct−1998 Version 5.005_02 1197

PrfDB Perl Programmers Reference Guide PrfDB
Integer handles
To convert a name or an integer handle into an object acceptable as argument to tie() interface, one may
use the following functions from the package OS2::Prf::Hini :

new(package, file)
new_from_int(package, int_hndl [, filename])

Exports
SystemIni() , UserIni() , and AnyIni() .

AUTHOR
Ilya Zakharevich, ilya@math.ohio−state.edu

SEE ALSO
perl(1).
1198 Version 5.005_02 18−Oct−1998

Process Perl Programmers Reference Guide Process

f the

s

 of

f the
NAME
OS2::Process − exports constants for system() call on OS2.

SYNOPSIS
 use OS2::Process;
 $pid = system(P_PM+P_BACKGROUND, "epm.exe");

DESCRIPTION
the builtin function system() under OS/2 allows an optional first argument which denotes the mode o
process. Note that this argument is recognized only if it is strictly numerical.

You can use either one of the process modes:

P_WAIT (0) = wait until child terminates (default)
P_NOWAIT = do not wait until child terminates
P_SESSION = new session
P_DETACH = detached
P_PM = PM program

and optionally add PM and session option bits:

P_DEFAULT (0) = default
P_MINIMIZE = minimized
P_MAXIMIZE = maximized
P_FULLSCREEN = fullscreen (session only)
P_WINDOWED = windowed (session only)

P_FOREGROUND = foreground (if running in foreground)
P_BACKGROUND = background

P_NOCLOSE = don’t close window on exit (session only)

P_QUOTE = quote all arguments
P_TILDE = MKS argument passing convention
P_UNRELATED = do not kill child when father terminates

Access to process properties
Additionaly, subroutines my_type() , process_entry() and file_type(file) , get_title()
and set_title(newtitle) are implemented. my_type() returns the type of the current proces
(one of "FS", "DOS", "VIO", "PM", "DETACH" and "UNKNOWN"), or undef on error.

file_type(file)
returns the type of the executable file file , or dies on error. The bits 0−2 of the result contain one
the values

T_NOTSPEC (0)
Application type is not specified in the executable header.

T_NOTWINDOWCOMPAT (1)
Application type is not−window−compatible.

T_WINDOWCOMPAT (2)
Application type is window−compatible.

T_WINDOWAPI (3)
Application type is window−API.

The remaining bits should be masked with the following values to determine the type o
executable:
18−Oct−1998 Version 5.005_02 1199

Process Perl Programmers Reference Guide Process

 API

will

on

ow up
ed.
 is
 is a

it‘s
T_BOUND (8)
Set to 1 if the executable file has been "bound" (by the BIND command) as a Family
application. Bits 0, 1, and 2 still apply.

T_DLL (0x10)
Set to 1 if the executable file is a dynamic link library (DLL) module. Bits 0, 1, 2, 3, and 5
be set to 0.

T_DOS (0x20)
Set to 1 if the executable file is in PC/DOS format. Bits 0, 1, 2, 3, and 4 will be set to 0.

T_PHYSDRV (0x40)
Set to 1 if the executable file is a physical device driver.

T_VIRTDRV (0x80)
Set to 1 if the executable file is a virtual device driver.

T_PROTDLL (0x100)
Set to 1 if the executable file is a protected−memory dynamic link library module.

T_32BIT (0x4000)
Set to 1 for 32−bit executable files.

file_type() may croak with one of the strings "Invalid EXE signature" or "EXE
marked invalid" to indicate typical error conditions. If given non−absolute path, will look
PATH, will add extention .exe if no extension is present (add extension . to suppress).

process_entry()
returns a list of the following data:

 Title of the process (in the Ctrl−Esc list);

 window handle of switch entry of the process (in the Ctrl−Esc list);

 window handle of the icon of the process;

 process handle of the owner of the entry in Ctrl−Esc list;

 process id of the owner of the entry in Ctrl−Esc list;

 session id of the owner of the entry in Ctrl−Esc list;

 whether visible in Ctrl−Esc list;

 whether item cannot be switched to (note that it is not actually grayed in the Ctrl−Esc list));

 whether participates in jump sequence;

 program type. Possible values are:

 PROG_DEFAULT 0
 PROG_FULLSCREEN 1
 PROG_WINDOWABLEVIO 2
 PROG_PM 3
 PROG_VDM 4
 PROG_WINDOWEDVDM 7

Although there are several other program types for WIN−OS/2 programs, these do not sh
in this field. Instead, the PROG_VDM or PROG_WINDOWEDVDM program types are us
For instance, for PROG_31_STDSEAMLESSVDM, PROG_WINDOWEDVDM is used. This
because all the WIN−OS/2 programs run in DOS sessions. For example, if a program
windowed WIN−OS/2 program, it runs in a PROG_WINDOWEDVDM session. Likewise, if
1200 Version 5.005_02 18−Oct−1998

Process Perl Programmers Reference Guide Process

2, in
a full−screen WIN−OS/2 program, it runs in a PROG_VDM session.

set_title(newtitle)
− does not work with some windows (if the title is set from the start). This is a limitation of OS/
such a case $^E is set to 372 (type

 help 372

for a funny − and wrong − explanation ;−).

get_title()
is a shortcut implemented via process_entry() .

AUTHOR
Andreas Kaiser <ak@ananke.s.bawue.de, Ilya Zakharevich <ilya@math.ohio−state.edu.

SEE ALSO
spawn*() system calls.
18−Oct−1998 Version 5.005_02 1201

REXX Perl Programmers Reference Guide REXX

. To

XX,
s and

 when

ION".
NAME
OS2::REXX − access to DLLs with REXX calling convention and REXX runtime.

NOTE
By default, the REXX variable pool is not available, neither to Perl, nor to external REXX functions
enable it, you need to put your code inside REXX_call function. REXX functions which do not use
variables may be usable even without REXX_call though.

SYNOPSIS
use OS2::REXX;
$ydb = load OS2::REXX "ydbautil" or die "Cannot load: $!";
@pid = $ydb−>RxProcId();
REXX_call {
 tie $s, OS2::REXX, "TEST";
 $s = 1;
};

DESCRIPTION

Load REXX DLL
$dll = load OS2::REXX NAME [, WHERE];

NAME is DLL name, without path and extension.

Directories are searched WHERE first (list of dirs), then environment paths PERL5REXX, PERLRE
PATH or, as last resort, OS/2−ish search is performed in default DLL path (without adding path
extensions).

The DLL is not unloaded when the variable dies.

Returns DLL object reference, or undef on failure.

Define function prefix:
$dll−>prefix(NAME);

Define the prefix of external functions, prepended to the function names used within your program,
looking for the entries in the DLL.

Example
$dll = load OS2::REXX "RexxBase";
$dll−>prefix("RexxBase_");
$dll−>Init();

is the same as

$dll = load OS2::REXX "RexxBase";
$dll−>RexxBase_Init();

Define queue:
$dll−>queue(NAME);

Define the name of the REXX queue passed to all external functions of this module. Defaults to "SESS

Check for functions (optional):

BOOL = $dll−>find(NAME [, NAME [, ...]]);

Returns true if all functions are available.
1202 Version 5.005_02 18−Oct−1998

REXX Perl Programmers Reference Guide REXX

 is not

 there
les by

 based

rt of the
nd it is

names
sitive!

names
rched. If
e any

dule
 calling
Call external REXX function:
$dll−>function(arguments);

Returns the return string if the return code is 0, else undef. Dies with error message if the function
available.

Accessing REXX−runtime
While calling functions with REXX signature does not require the presence of the system REXX DLL,
are some actions which require REXX−runtime present. Among them is the access to REXX variab
name.

One enables REXX runtime by bracketing your code by

REXX_call BLOCK;

(trailing semicolon required!) or

REXX_call \&subroutine_name;

Inside such a call one has access to REXX variables (see below), and to

REXX_eval EXPR;
REXX_eval_with EXPR,

subroutine_name_in_REXX => \&Perl_subroutine

Bind scalar variable to REXX variable:
tie $var, OS2::REXX, "NAME";

Bind array variable to REXX stem variable:
tie @var, OS2::REXX, "NAME.";

Only scalar operations work so far. No array assignments, no array operations, ... FORGET IT.

Bind hash array variable to REXX stem variable:
tie %var, OS2::REXX, "NAME.";

To access all visible REXX variables via hash array, bind to "";

No array assignments. No array operations, other than hash array operations. Just like the *dbm
implementations.

For the usual REXX stem variables, append a "." to the name, as shown above. If the hash key is pa
stem name, for example if you bind to "", you cannot use lower case in the stem part of the key a
subject to character set restrictions.

Erase individual REXX variables (bound or not):
OS2::REXX::drop("NAME" [, "NAME" [, ...]]);

Erase REXX variables with given stem (bound or not):
OS2::REXX::dropall("STEM" [, "STEM" [, ...]]);

NOTES
Note that while function and variable names are case insensitive in the REXX language, function
exported by a DLL and the REXX variables (as seen by Perl through the chosen API) are all case sen

Most REXX DLLs export function names all upper case, but there are a few which export mixed case
(such as RxExtras). When trying to find the entry point, both exact case and all upper case are sea
the DLL exports "RxNap", you have to specify the exact case, if it exports "RXOPEN", you can us
case.

To avoid interfering with subroutine names defined by Perl (DESTROY) or used within the REXX mo
(prefix, find), it is best to use mixed case and to avoid lowercase only or uppercase only names when
18−Oct−1998 Version 5.005_02 1203

REXX Perl Programmers Reference Guide REXX

bs.

fected

heir
ly.

their

EXX
REXX
EXX

.
REXX functions. Be consistent. The same function written in different ways results in different Perl stu

There is no REXX interpolation on variable names, so the REXX variable name TEST.ONE is not af
by some other REXX variable ONE. And it is not the same variable as TEST.one!

You cannot call REXX functions which are not exported by the DLL. While most DLLs export all t
functions, some, like RxFTP, export only "...LoadFuncs", which registers the functions within REXX on

You cannot call 16−bit DLLs. The few interesting ones I found (FTP,NETB,APPC) do not export
functions.

I do not know whether the REXX API is reentrant with respect to exceptions (signals) when the R
top−level exception handler is overridden. So unless you know better than I do, do not access
variables (probably tied to Perl variables) or call REXX functions which access REXX queues or R
variables in signal handlers.

See t/rx*.t for examples.

AUTHOR
Andreas Kaiser ak@ananke.s.bawue.de, with additions by Ilya Zakharevich ilya@math.ohio−state.edu
1204 Version 5.005_02 18−Oct−1998

perlplan9 Perl Programmers Reference Guide perlplan9

to be a
ve any
an at

e
S shell
e able

create
orried

ions.
 in the

 are

hers,
tegory

sidered

ignal
 The
NAME
perlplan9 − Plan 9−specific documentation for Perl

DESCRIPTION
These are a few notes describing features peculiar to Plan 9 Perl. As such, it is not intended
replacement for the rest of the Perl 5 documentation (which is both copious and excellent). If you ha
questions to which you can‘t find answers in these man pages, contact Luther Huffm
lutherh@stratcom.com and we‘ll try to answer them.

Invoking Perl
Perl is invoked from the command line as described in perl. Most perl scripts, however, do have a first lin
such as "#!/usr/local/bin/perl". This is known as a shebang (shell−bang) statement and tells the O
where to find the perl interpreter. In Plan 9 Perl this statement should be "#!/bin/perl" if you wish to b
to directly invoke the script by its name.
 Alternatively, you may invoke perl with the command "Perl"
instead of "perl". This will produce Acme−friendly error messages of the form "filename:18".

Some scripts, usually identified with a *.PL extension, are self−configuring and are able to correctly
their own shebang path from config information located in Plan 9 Perl. These you won‘t need to be w
about.

What‘s in Plan 9 Perl
Although Plan 9 Perl currently only provides static loading, it is built with a number of useful extens
These include Opcode, FileHandle, Fcntl, and POSIX. Expect to see others (and DynaLoading!)
future.

What‘s not in Plan 9 Perl
As mentioned previously, dynamic loading isn‘t currently available nor is MakeMaker. Both
high−priority items.

Perl5 Functions not currently supported
Some, such as chown and umask aren‘t provided because the concept does not exist within Plan 9. Ot
such as some of the socket−related functions, simply haven‘t been written yet. Many in the latter ca
may be supported in the future.

The functions not currently implemented include:

 chown, chroot, dbmclose, dbmopen, getsockopt,
 setsockopt, recvmsg, sendmsg, getnetbyname,
 getnetbyaddr, getnetent, getprotoent, getservent,
 sethostent, setnetent, setprotoent, setservent,
 endservent, endnetent, endprotoent, umask

There may be several other functions that have undefined behavior so this list shouldn‘t be con
complete.

Signals
For compatibility with perl scripts written for the Unix environment, Plan 9 Perl uses the POSIX s
emulation provided in Plan 9‘s ANSI POSIX Environment (APE). Signal stacking isn‘t supported.
signals provided are:

 SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGABRT,
 SIGFPE, SIGKILL, SIGSEGV, SIGPIPE, SIGPIPE, SIGALRM,
 SIGTERM, SIGUSR1, SIGUSR2, SIGCHLD, SIGCONT,
 SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU
18−Oct−1998 Version 5.005_02 1205

perlplan9 Perl Programmers Reference Guide perlplan9
BUGS
"As many as there are grains of sand on all the beaches of the world . . ." − Carl Sagan

Revision date
This document was revised 09−October−1996 for Perl 5.003_7.

AUTHOR
Luther Huffman, lutherh@stratcom.com
1206 Version 5.005_02 18−Oct−1998

bytecode Perl Programmers Reference Guide bytecode
NAME
B::Asmdata − Autogenerated data about Perl ops, used to generate bytecode

SYNOPSIS
use Asmdata;

DESCRIPTION
See ext/B/B/Asmdata.pm.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk
18−Oct−1998 Version 5.005_02 1207

configpm Perl Programmers Reference Guide configpm

able

 line in
NAME
Config − access Perl configuration information

SYNOPSIS
 use Config;
 if ($Config{’cc’} =~ /gcc/) {

print "built by gcc\n";
 }

 use Config qw(myconfig config_sh config_vars);

 print myconfig();

 print config_sh();

 config_vars(qw(osname archname));

DESCRIPTION
The Config module contains all the information that was available to the Configure program at Perl build
time (over 900 values).

Shell variables from the config.sh file (written by Configure) are stored in the readonly−variable %Config ,
indexed by their names.

Values stored in config.sh as ‘undef’ are returned as undefined values. The perl exists function can be
used to check if a named variable exists.

myconfig()
Returns a textual summary of the major perl configuration values. See also −V in Switches.

config_sh()
Returns the entire perl configuration information in the form of the original config.sh shell vari
assignment script.

config_vars(@names)
Prints to STDOUT the values of the named configuration variable. Each is printed on a separate
the form:

 name=’value’;

Names which are unknown are output as name=‘UNKNOWN‘;. See also −V:name in Switches.

EXAMPLE
Here‘s a more sophisticated example of using %Config:

 use Config;
 use strict;

 my %sig_num;
 my @sig_name;
 unless($Config{sig_name} && $Config{sig_num}) {

die "No sigs?";
 } else {

my @names = split ’ ’, $Config{sig_name};
@sig_num{@names} = split ’ ’, $Config{sig_num};
foreach (@names) {
 $sig_name[$sig_num{$_}] ||= $_;
}

 }

 print "signal #17 = $sig_name[17]\n";
1208 Version 5.005_02 18−Oct−1998

configpm Perl Programmers Reference Guide configpm

at the

gs are
 variable

e

e
See the
 if ($sig_num{ALRM}) {
print "SIGALRM is $sig_num{ALRM}\n";

 }

WARNING
Because this information is not stored within the perl executable itself it is possible (but unlikely) th
information does not relate to the actual perl binary which is being used to access it.

The Config module is installed into the architecture and version specific library directory
($Config{installarchlib}) and it checks the perl version number when loaded.

The values stored in config.sh may be either single−quoted or double−quoted. Double−quoted strin
handy for those cases where you need to include escape sequences in the strings. To avoid runtime
interpolation, any $ and @ characters are replaced by \$ and \@, respectively. This isn‘t foolproof, of
course, so don‘t embed \$ or \@ in double−quoted strings unless you‘re willing to deal with th
consequences. (The slashes will end up escaped and the $ or @ will trigger variable interpolation)

GLOSSARY
Most Config variables are determined by the Configure script on platforms supported by it (which is
most UNIX platforms). Some platforms have custom−made Config variables, and may thus not have som
of the variables described below, or may have extraneous variables specific to that particular port.
port specific documentation in such cases.

ENDOFTAIL

open(GLOS, "<$glossary") or die "Can‘t open $glossary: $!"; %seen = () ; $text = 0; $/ = ‘’;

sub process {
 s/\A(\w*)\s+\(([\w.]+)\):\s*\n(\t?)/=item $1\n\nFrom $2 :\n\n/m;
 my $c = substr $1, 0, 1;
 unless ($seen{$c}++) {
 print CONFIG <<EOF if $text;

EOF
 print CONFIG <<EOF;

$c
EOF
 $text = 1;
 }
 s/n‘t/n\00t/g; # leave can‘t, won‘t etc untouched
 s/^\t\s+(.*)/\n\t$1\n/gm; # Indented lines === paragraphs
 s/^(?<!\n\n)\t(.*)/$1/gm; # Not indented lines === text
 s{([\‘\"])(?=[^\‘\"\s]*[./][^\‘\"\s]*\1)([^\‘\"\s]+)\1}($2)g; # ’.o’
 s{([\‘\"])([^\‘\"\s]+)\1}($2)g; # "date" command
 s{\‘([A−Za−z_\− *=/]+)\‘}($1)g; # ‘ln −s’
 s{
 (?<! [\w./<\‘\"]) # Only standalone file names
 (?! e \. g \.) # Not e.g.
 (?! \. \. \.) # Not ...
 (?! \d) # Not 5.004
 ([\w./]* [./] [\w./]*)# Require . or / inside
 (?<! \. (?= \s)) # Do not include trailing dot
 (?! [\w/]) # Include all of it
 }
 ($1)xg; # /usr/local
 s/((?<=\s)~\w*)/$1 /g; # ~name
 s/(?<![.<\‘\"])\b([A−Z_]{2,})\b(?![\‘\"])/ $1/g; # UNISTD
18−Oct−1998 Version 5.005_02 1209

configpm Perl Programmers Reference Guide configpm

how to
 s/(?<![.<\‘\"])\b(?!the\b)(\w+)\s+macro\b/$1 macro/g; # FILE_cnt macro
 s/n[\0]t/n‘t/g; # undo can‘t, won‘t damage
}

<GLOS; # Skip the preamble while (<GLOS) {
 process;
 print CONFIG;
}

print CONFIG <<‘ENDOFTAIL‘;

NOTE
This module contains a good example of how to use tie to implement a cache and an example of
make a tied variable readonly to those outside of it.
1210 Version 5.005_02 18−Oct−1998

installhtml Perl Programmers Reference Guide installhtml

is is

y.

rse.

 the

hese

nal.

when
NAME
installhtml − converts a collection of POD pages to HTML format.

SYNOPSIS
 installhtml [−−help] [−−podpath=<name>:...:<name>] [−−podroot=<name>]
 [−−htmldir=<name>] [−−htmlroot=<name>] [−−norecurse] [−−recurse]
 [−−splithead=<name>,...,<name>] [−−splititem=<name>,...,<name>]

 [−−libpods=<name>,...,<name>] [−−verbose]

DESCRIPTION
installhtml converts a collection of POD pages to a corresponding collection of HTML pages. Th
primarily used to convert the pod pages found in the perl distribution.

OPTIONS

—help help
Displays the usage.

—podroot POD search path base directory
The base directory to search for all .pod and .pm files to be converted. Default is current director

—podpath POD search path
The list of directories to search for .pod and .pm files to be converted. Default is ‘podroot/.’.

—recurse recurse on subdirectories
Whether or not to convert all .pm and .pod files found in subdirectories too. Default is to not recu

—htmldir HTML destination directory
The base directory which all HTML files will be written to. This should be a path relative to
filesystem, not the resulting URL.

—htmlroot URL base directory
The base directory which all resulting HTML files will be visible at in a URL. The default is ‘/’.

—splithead POD files to split on =head directive
Colon−separated list of pod files to split by the =head directive. The .pod suffix is optional. T
files should have names specified relative to podroot.

—splititem POD files to split on =item directive
Colon−separated list of all pod files to split by the =item directive. The .pod suffix is optio
installhtml does not do the actual split, rather it invokes splitpod to do the dirty work. As with
—splithead, these files should have names specified relative to podroot.

—splitpod Directory containing the splitpod program
The directory containing the splitpod program. The default is ‘podroot/pod’.

—libpods library PODs for L<> links
Colon−separated list of "library" pod files. This is the same list that will be passed to pod2html
any pod is converted.

—verbose verbose output
Self−explanatory.

EXAMPLE
The following command−line is an example of the one we use to convert perl documentation:

 ./installhtml −−podpath=lib:ext:pod:vms \
−−podroot=/usr/src/perl \
−−htmldir=/perl/nmanual \
18−Oct−1998 Version 5.005_02 1211

installhtml Perl Programmers Reference Guide installhtml
−−htmlroot=/perl/nmanual \
−−splithead=pod/perlipc \
−−splititem=pod/perlfunc \
−−libpods=perlfunc:perlguts:perlvar:perlrun:perlop \
−−recurse \
−−verbose

AUTHOR
Chris Hall <hallc@cs.colorado.edu>

TODO
1212 Version 5.005_02 18−Oct−1998

makeaperl Perl Programmers Reference Guide makeaperl

t any
e
 is a

 not
t

e. If

than to
NAME
makeaperl − create a new perl binary from static extensions

SYNOPSIS
makeaperl −l library −m makefile −o target −t tempdir [object_files]
[static_extensions] [search_directories]

DESCRIPTION
This utility is designed to build new perl binaries from existing extensions on the fly. Called withou
arguments it produces a new binary with the name perl in the current directory. Intermediate files ar
produced in /tmp , if that is writeable, else in the current directory. The most important intermediate file
Makefile, that is used internally to call make. The new perl binary will consist

The −l switch lets you specify the name of a perl library to be linked into the new binary. If you do
specify a library, makeaperl writes targets for any libperl*.a it finds in the search path. The topmos
target will be the one related to libperl.a .

With the −m switch you can provide a name for the Makefile that will be written (default
/tmp/Makefile.$$). Likewise specifies the −o switch a name for the perl binary (default perl). The
−t switch lets you determine, in which directory the intermediate files should be stored.

All object files and static extensions following on the command line will be linked into the target fil
there are any directories specified on the command line, these directories are searched for *.a files, and all
of the found ones will be linked in, too. If there is no directory named, then the contents of $INC[0] are
searched.

If the command fails, there is currently no other mechanism to adjust the behaviour of the program
alter the generated Makefile and run make by hand.

AUTHORS
Tim Bunce <Tim.Bunce@ig.co.uk, Andreas Koenig <koenig@franz.ww.TU−Berlin.DE;

STATUS
First version, written 5 Feb 1995, is considered alpha.
18−Oct−1998 Version 5.005_02 1213

minimod Perl Programmers Reference Guide minimod

nt to

dules
t is a
ailable

rmal
NAME
ExtUtils::Miniperl, writemain − write the C code for perlmain.c

SYNOPSIS
use ExtUtils::Miniperl;

writemain(@directories);

DESCRIPTION
This whole module is written when perl itself is built from a script called minimod.PL. In case you wa
patch it, please patch minimod.PL in the perl distribution instead.

writemain() takes an argument list of directories containing archive libraries that relate to perl mo
and should be linked into a new perl binary. It writes to STDOUT a corresponding perlmain.c file tha
plain C file containing all the bootstrap code to make the modules associated with the libraries av
from within perl.

The typical usage is from within a Makefile generated by ExtUtils::MakeMaker. So under no
circumstances you won‘t have to deal with this module directly.

SEE ALSO
ExtUtils::MakeMaker
1214 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

. Most
 perl4.

y to
tems.
s

g

 version
:

ix_6.sh.

efault
ork

nfigure

n, you
ts of
o set

figure.
NAME
README.hints

DESCRIPTION
These files are used by Configure to set things which Configure either can‘t or doesn‘t guess properly
of these hint files have been tested with at least some version of perl5, but some are still left over from

Please send any problems or suggested changes to perlbug@perl.com.

Hint file naming convention: Each hint file name should have only one ’.’. (This is for portabilit
non−unix file systems.) Names should also fit in <= 14 characters, for portability to older SVR3 sys
File names are of the form $osname_$osvers.sh, with all ’.’ changed to ‘_‘, and all characters (such a
‘/’) that don‘t belong in Unix filenames omitted.

For example, consider Sun OS 4.1.3. Configure determines $osname=sunos (all names are converted to
lower case) and $osvers=4.1.3. Configure will search for an appropriate hint file in the followin
order:

sunos_4_1_3.sh
sunos_4_1.sh
sunos_4.sh
sunos.sh

If you need to create a hint file, please try to use as general a name as possible and include minor
differences inside case or test statements. For example, for IRIX 6.X, we have the following hints files

irix_6_0.sh
irix_6_1.sh
irix_6.sh

That is, 6.0 and 6.1 have their own special hints, but 6.2, 6.3, and up are all handled by the same ir
That way, we don‘t have to make a new hint file every time the IRIX O/S is upgraded.

If you need to test for specific minor version differences in your hints file, be sure to include a d
choice. (See aix.sh for one example.) That way, if you write a hint file for foonix 3.2, it might still w
without any changes when foonix 3.3 is released.

Please also comment carefully on why the different hints are needed. That way, a future version of Co
may be able to automatically detect what is needed.

A glossary of config.sh variables is in the file Porting/Glossary.

Hint file tricks

Printing critical messages
[This is still experimental]

If you have a *REALLY* important message that the user ought to see at the end of the Configure ru
can store it in the file ‘config.msg’. At the end of the Configure run, Configure will display the conten
this file. Currently, the only place this is used is in Configure itself to warn about the need t
LD_LIBRARY_PATH if you are building a shared libperl.so.

To use this feature, just do something like the following

$cat <<EOM | $tee −a ../config.msg >&4

 This is a really important message. Be sure to read it
 before you type ’make’.
 EOM

This message will appear on the screen as the hint file is being processed and again at the end of Con
18−Oct−1998 Version 5.005_02 1215

README Perl Programmers Reference Guide README

ompile

your

nt file.
en‘t any

ading

. The

ble that

ular aix

. Of

le to

te the

)
Please use this sparingly.

Propagating variables to config.sh
Sometimes, you want an extra variable to appear in config.sh. For example, if your system can‘t c
toke.c with the optimizer on, you can put

 toke_cflags=’optimize=""’

at the beginning of a line in your hints file. Configure will then extract that variable and place it in
config.sh file. Later, while compiling toke.c, the cflags shell script will eval $toke_cflags and hence
compile toke.c without optimization.

Note that for this to work, the variable you want to propagate must appear in the first column of the hi
It is extracted by Configure with a simple sed script, so beware that surrounding case statements ar
help.

By contrast, if you don‘t want Configure to propagate your temporary variable, simply indent it by a le
tab in your hint file.

For example, prior to 5.002, a bug in scope.c led to perl crashing when compiled with −O in AIX 4.1.1
following "obvious" workaround in hints/aix.sh wouldn‘t work as expected:

 case "$osvers" in
4.1.1)

 scope_cflags=’optimize=""’
;;

 esac

because Configure doesn‘t parse the surrounding ‘case’ statement, it just blindly propagates any varia
starts in the first column. For this particular case, that‘s probably harmless anyway.

Three possible fixes are:

1 Create an aix_4_1_1.sh hint file that contains the scope_cflags line and then sources the reg
hints file for the rest of the information.

2 Do the following trick:

 scope_cflags=’case "$osvers" in 4.1*) optimize=" ";; esac’

Now when $scope_cflags is eval‘d by the cflags shell script, the case statement is executed
course writing scripts to be eval‘d is tricky, especially if there is complex quoting. Or,

3 Write directly to Configure‘s temporary file UU/config.sh. You can do this with

 case "$osvers" in
4.1.1)
echo "scope_cflags=’optimize=\"\"’" >> UU/config.sh
scope_cflags=’optimize=""’
;;

 esac

Note you have to both write the definition to the temporary UU/config.sh file and set the variab
the appropriate value.

This is sneaky, but it works. Still, if you need anything this complex, perhaps you should crea
separate hint file for aix 4.1.1.

Call−backs

Warning
All of the following is experimental and subject to change. But it probably won‘t change much. :−
1216 Version 5.005_02 18−Oct−1998

README Perl Programmers Reference Guide README

r used.

Thus in
d line,

l−back
fter

unit.

it will

most
tually

ght to
n the
Compiler−related flags
The settings of some things, such as optimization flags, may depend on the particular compile
For example, for ISC we have the following:

 case "$cc" in
 gcc) ccflags="$ccflags −posix"

 ldflags="$ldflags −posix"
 ;;

 *) ccflags="$ccflags −Xp −D_POSIX_SOURCE"
 ldflags="$ldflags −Xp"
 ;;

 esac

However, the hints file is processed before the user is asked which compiler should be used.
order for these hints to be useful, the user must specify sh Configure −Dcc=gcc on the comman
as advised by the INSTALL file.

For versions of perl later than 5.004_61, this problem can be circumvented by the use of "cal
units". That is, the hints file can tuck this information away into a file UU/cc.cbu. Then, a
Configure prompts the user for the C compiler, it will load in and run the UU/cc.cbu "call−back"
See hints/solaris_2.sh for an example.

Threading−related flags
Similarly, after Configure prompts the user about whether or not to compile Perl with threads,
look for a "call−back" unit usethreads.cbu. See hints/linux.sh for an example.

Future status
I hope this "call−back" scheme is simple enough to use but powerful enough to deal with
situations. Still, there are certainly cases where it‘s not enough. For example, for aix we ac
change compilers if we are using threads.

I‘d appreciate feedback on whether this is sufficiently general to be helpful, or whether we ou
simply continue to require folks to say things like "sh Configure −Dcc=gcc −Dusethreads" o
command line.

Have the appropriate amount of fun :−)

 Andy Dougherty doughera@lafcol.lafayette.edu
18−Oct−1998 Version 5.005_02 1217

lwpcook Perl Programmers Reference Guide lwpcook

hould

ing the

vides

ing

st sent
dle the

uments

is:
NAME
lwpcook − libwww−perl cookbook

DESCRIPTION
This document contain some examples that show typical usage of the libwww−perl library. You s
consult the documentation for the individual modules for more detail.

All examples should be runnable programs. You can, in most cases, test the code sections by pip
program text directly to perl.

GET
It is very easy to use this library to just fetch documents from the net. The LWP::Simple module pro
the get() function that return the document specified by its URL argument:

 use LWP::Simple;
 $doc = get ’http://www.sn.no/libwww−perl/’;

or, as a perl one−liner using the getprint() function:

 perl −MLWP::Simple −e ’getprint "http://www.sn.no/libwww−perl/"’

or, how about fetching the latest perl by running this command:

 perl −MLWP::Simple −e ’
 getstore "ftp://ftp.sunet.se/pub/lang/perl/CPAN/src/latest.tar.gz",
 "perl.tar.gz"’

You will probably first want to find a CPAN site closer to you by running something like the follow
command:

 perl −MLWP::Simple −e ’getprint "http://www.perl.com/perl/CPAN/CPAN.html"’

Enough of this simple stuff! The LWP object oriented interface gives you more control over the reque
to the server. Using this interface you have full control over headers sent and how you want to han
response returned.

 use LWP::UserAgent;
 $ua = new LWP::UserAgent;
 $ua−>agent("$0/0.1 " . $ua−>agent);
 # $ua−>agent("Mozilla/8.0") # pretend we are very capable browser

 $req = new HTTP::Request ’GET’ => ’http://www.sn.no/libwww−perl’;
 $req−>header(’Accept’ => ’text/html’);

 # send request
 $res = $ua−>request($req);

 # check the outcome
 if ($res−>is_success) {
 print $res−>content;
 } else {
 print "Error: " . $res−>status_line . "\n";
 }

The lwp−request program (alias GET) that is distributed with the library can also be used to fetch doc
from WWW servers.

HEAD
If you just want to check if a document is present (i.e. the URL is valid) try to run code that looks like th

 use LWP::Simple;
1218 Version 5.005_02 18−Oct−1998

lwpcook Perl Programmers Reference Guide lwpcook

es of

 oriented

riented

t handles

data.

mance.
ed badly

e

u should
 if (head($url)) {
 # ok document exists
 }

The head() function really returns a list of meta−information about the document. The first three valu
the list returned are the document type, the size of the document, and the age of the document.

More control over the request or access to all header values returned require that you use the object
interface described for GET above. Just s/GET/HEAD/g.

POST
There is no simple procedural interface for posting data to a WWW server. You must use the object o
interface for this. The most common POST operation is to access a WWW form application:

 use LWP::UserAgent;
 $ua = new LWP::UserAgent;

 my $req = new HTTP::Request ’POST’,’http://www.perl.com/cgi−bin/BugGlimpse’;
 $req−>content_type(’application/x−www−form−urlencoded’);
 $req−>content(’match=www&errors=0’);

 my $res = $ua−>request($req);
 print $res−>as_string;

Lazy people use the HTTP::Request::Common module to set up a suitable POST request message (i
all the escaping issues) and has a suitable default for the content_type:

 use HTTP::Request::Common qw(POST);
 use LWP::UserAgent;
 $ua = new LWP::UserAgent;

 my $req = POST ’http://www.perl.com/cgi−bin/BugGlimpse’,
 [search => ’www’, errors => 0];

 print $ua−>request($req)−>as_string;

The lwp−request program (alias POST) that is distributed with the library can also be used for posting

PROXIES
Some sites use proxies to go through fire wall machines, or just as cache in order to improve perfor
Proxies can also be used for accessing resources through protocols not supported directly (or support
:−) by the libwww−perl library.

You should initialize your proxy setting before you start sending requests:

 use LWP::UserAgent;
 $ua = new LWP::UserAgent;
 $ua−>env_proxy; # initialize from environment variables
 # or
 $ua−>proxy(ftp => ’http://proxy.myorg.com’);
 $ua−>proxy(wais => ’http://proxy.myorg.com’);
 $ua−>no_proxy(qw(no se fi));

 my $req = HTTP::Request−>new(GET => ’wais://xxx.com/’);
 print $ua−>request($req)−>as_string;

The LWP::Simple interface will call env_proxy() for you automatically. Applications that use th
$ua− env_proxy() method will normally not use the $ua− proxy() and $ua− no_proxy() methods.

Some proxies also require that you send it a username/password in order to let requests through. Yo
be able to add the required header, with something like this:

 use LWP::UserAgent;
18−Oct−1998 Version 5.005_02 1219

lwpcook Perl Programmers Reference Guide lwpcook

rvals:

. You
 $ua = new LWP::UserAgent;
 $ua−>proxy([’http’, ’ftp’] => ’http://proxy.myorg.com’);

 $req = new HTTP::Request ’GET’,"http://www.perl.com";
 $req−>proxy_authorization_basic("proxy_user", "proxy_password");

 $res = $ua−>request($req);
 print $res−>content if $res−>is_success;

Replace proxy.myorg.com , proxy_user and proxy_password with something suitable for your
site.

ACCESS TO PROTECTED DOCUMENTS
Documents protected by basic authorization can easily be accessed like this:

 use LWP::UserAgent;
 $ua = new LWP::UserAgent;
 $req = new HTTP::Request GET => ’http://www.sn.no/secret/’;
 $req−>authorization_basic(’aas’, ’mypassword’);
 print $ua−>request($req)−>as_string;

The other alternative is to provide a subclass of LWP::UserAgent that overrides the
get_basic_credentials() method. Study the lwp−request program for an example of this.

MIRRORING
If you want to mirror documents from a WWW server, then try to run code similar to this at regular inte

 use LWP::Simple;

 %mirrors = (
 ’http://www.sn.no/’ => ’sn.html’,
 ’http://www.perl.com/’ => ’perl.html’,
 ’http://www.sn.no/libwww−perl/’ => ’lwp.html’,
 ’gopher://gopher.sn.no/’ => ’gopher.html’,
);

 while (($url, $localfile) = each(%mirrors)) {
 mirror($url, $localfile);
 }

Or, as a perl one−liner:

 perl −MLWP::Simple −e ’mirror("http://www.perl.com/", "perl.html")’;

The document will not be transfered unless it has been updated.

LARGE DOCUMENTS
If the document you want to fetch is too large to be kept in memory, then you have two alternatives
can instruct the library to write the document content to a file (second $ua− request() argument is a file
name):

 use LWP::UserAgent;
 $ua = new LWP::UserAgent;

 my $req = new HTTP::Request ’GET’,
 ’http://www.sn.no/~aas/perl/www/libwww−perl−5.00.tar.gz’;
 $res = $ua−>request($req, "libwww−perl.tar.gz");
 if ($res−>is_success) {
 print "ok\n";
 }
1220 Version 5.005_02 18−Oct−1998

lwpcook Perl Programmers Reference Guide lwpcook

.
Or you can process the document as it arrives (second $ua− request() argument is a code reference):

 use LWP::UserAgent;
 $ua = new LWP::UserAgent;
 $URL = ’ftp://ftp.unit.no/pub/rfc/rfc−index.txt’;

 my $expected_length;
 my $bytes_received = 0;
 $ua−>request(HTTP::Request−>new(’GET’, $URL),
 sub {
 my($chunk, $res) = @_;
 $bytes_received += length($chunk);

 unless (defined $expected_length) {
 $expected_length = $res−>content_length || 0;

 }
 if ($expected_length) {
 printf STDERR "%d%% − ",

 100 * $bytes_received / $expected_length;
 }

 print STDERR "$bytes_received bytes received\n";

 # XXX Should really do something with the chunk itself
 # print $chunk;

 });

COPYRIGHT
Copyright 1996−1998, Gisle Aas

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1221

LWP::RobotUA Perl Programmers Reference Guide LWP::RobotUA

 to the
uld

ings

ion the

ired by

hat

hould

 to this
NAME
LWP::RobotUA − A class for Web Robots

SYNOPSIS
 require LWP::RobotUA;
 $ua = new LWP::RobotUA ’my−robot/0.1’, ’me@foo.com’;
 $ua−>delay(10); # be very nice, go slowly
 ...
 # just use it just like a normal LWP::UserAgent
 $res = $ua−>request($req);

DESCRIPTION
This class implements a user agent that is suitable for robot applications. Robots should be nice
servers they visit. They should consult the robots.txt file to ensure that they are welcomed and they sho
not send too frequent requests.

But, before you consider writing a robot take a look at
<URL:http://info.webcrawler.com/mak/projects/robots/robots.html.

When you use a LWP::RobotUA as your user agent, then you do not really have to think about these th
yourself. Just send requests as you do when you are using a normal LWP::UserAgent and this special agent
will make sure you are nice.

METHODS
The LWP::RobotUA is a sub−class of LWP::UserAgent and implements the same methods. In addit
following methods are provided:

$ua = LWP::RobotUA−new($agent_name, $from, [$rules])
Your robot‘s name and the mail address of the human responsible for the robot (i.e. you) is requ
the constructor.

Optionally it allows you to specify the WWW::RobotRules object to use.

$ua− delay([$minutes])
Set the minimum delay between requests to the same server. The default is 1 minute.

$ua− use_sleep([$boolean])
Get/set a value indicating wether the UA should sleep() if request arrive to fast (before $ua− delay
minutes has passed). The default is TRUE. If this value is FALSE then an internal
SERVICE_UNAVAILABLE response will be generated. It will have an Retry−After header t
indicate when it is OK to send another request to this server.

$ua− rules([$rules])
Set/get which WWW::RobotRules object to use.

$ua− no_visits($netloc)
Returns the number of documents fetched from this server host. Yes I know, this method s
probably have been named num_visits() or something like that :−(

$ua− host_wait($netloc)
Returns the number of seconds (from now) you must wait before you can make a new request
host.

$ua− as_string
Returns a text that describe the state of the UA. Mainly useful for debugging.
1222 Version 5.005_02 18−Oct−1998

LWP::RobotUA Perl Programmers Reference Guide LWP::RobotUA

.
SEE ALSO
LWP::UserAgent, WWW::RobotRules

COPYRIGHT
Copyright 1996−1997 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1223

LWP::MediaTypes Perl Programmers Reference Guide LWP::MediaTypes

 The

which
 the
, as the

ct that
f the

dcard
NAME
LWP::MediaTypes − guess media type for a file or a URL

SYNOPSIS
 use LWP::MediaTypes qw(guess_media_type);
 $type = guess_media_type("/tmp/foo.gif");

DESCRIPTION
This module provides functions for handling of media (also known as MIME) types and encodings.
mapping from file extentions to media types is defined by the media.types file. If the ~/.media.types file
exist it is used as a replacement. For backwards compatability we will also look for ~/.mime.types.

The following functions are exported by default:

guess_media_type($filename_or_url, [$header_to_modify])
This function tries to guess media type and encoding for given file. It returns the content−type,
is a string like "text/html" . In array context it also returns any content−encodings applied (in
order used to encode the file). You can pass a URI object reference, instead of the file name
first parameter too.

If the type can not be deduced from looking at the file name only, then guess_media_type() will
let the −T Perl operator take a look. If this works (and −T returns a TRUE value) then we return
text/plain as the type, otherwise we return application/octet−stream as the type.

The optional second argument should be a reference to a HTTP::Headers object (or any obje
implement the $obj− header method in a similar way). When present we will set the values o
‘Content−Type’ and ‘Content−Encoding’ for this header.

media_suffix($type,...)
This function will return all suffixes that can be used to denote the specified media type(s). Wil
types can be used. In scalar context it will return the first suffix found.

Examples:

 @suffixes = media_suffix(’image/*’, ’audio/basic’);
 $suffix = media_suffix(’text/html’);

The following functions are only exported by explict request:

add_type($type, @exts)
Associate a list of file extensions with the given media type.

Example:

 add_type("x−world/x−vrml" => qw(wrl vrml));

add_encoding($type, @ext)
Associate a list of file extensions with and encoding type.

Example:

 add_encoding("x−gzip" => "gz");

read_media_types(@files)
Parse a media types file from disk and add the type mappings found there.

Example:

 read_media_types("conf/mime.types");
1224 Version 5.005_02 18−Oct−1998

LWP::MediaTypes Perl Programmers Reference Guide LWP::MediaTypes

.
COPYRIGHT
Copyright 1995−1998 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1225

LWP::MemberMixin Perl Programmers Reference Guide LWP::MemberMixin

es the
NAME
LWP::MemberMixin − Member access mixin class

SYNOPSIS
 package Foo;
 require LWP::MemberMixin;
 @ISA=qw(LWP::MemberMixin);

DESCRIPTION
A mixin class to get methods that provide easy access to member variables in the %$self. Ideally there
should be better Perl langauge support for this.

There is only one method provided:

_elem($elem [, $val])
Internal method to get/set the value of member variable $elem. If $val is defined it is used as the
new value for the member variable. If it is undefined the current value is not touched. In both cas
previous value of the member variable is returned.
1226 Version 5.005_02 18−Oct−1998

LWP::Simple Perl Programmers Reference Guide LWP::Simple

o be
ent and

rns

en you
ll OO

ceived
. The

ponse

check the
NAME
get, head, getprint, getstore, mirror − Procedural LWP interface

SYNOPSIS
 perl −MLWP::Simple −e ’getprint "http://www.sn.no"’

 use LWP::Simple;
 $content = get("http://www.sn.no/")
 if (mirror("http://www.sn.no/", "foo") == RC_NOT_MODIFIED) {
 ...
 }

 if (is_success(getprint("http://www.sn.no/"))) {
 ...
 }

DESCRIPTION
This interface is intended for those who want a simplified view of the libwww−perl library. It should als
suitable for one−liners. If you need more control or access to the header fields in the requests s
responses received you should use the full object oriented interface provided by the LWP::UserAgent
module.

The following functions are provided (and exported) by this module:

get($url)
The get() function will fetch the document identified by the given URL and return it. It retu
undef if it fails. The $url argument can be either a simple string or a reference to a URI object.

You will not be able to examine the response code or response headers (like ‘Content−Type’) wh
are accessing the web using this function. If you need this information you should use the fu
interface (see LWP::UserAgent).

head($url)
Get document headers. Returns the following 5 values if successful: ($content_type,
$document_length, $modified_time, $expires, $server)

Returns an empty list if it fails. In scalar context returns TRUE if successful.

getprint($url)
Get and print a document identified by a URL. The document is printed on STDOUT as data is re
from the network. If the request fails, then the status code and message is printed on STDERR
return value is the HTTP response code.

getstore($url, $file)
Gets a document identified by a URL and stores it in the file. The return value is the HTTP res
code.

mirror($url, $file)
Get and store a document identified by a URL, using If−modified−since, and checking of the
Content−Length. Returns the HTTP response code.

This module also exports the HTTP::Status constants and procedures. These can be used when you
response code from getprint() , getstore() and mirror() . The constants are:

 RC_CONTINUE
 RC_SWITCHING_PROTOCOLS
 RC_OK
 RC_CREATED
 RC_ACCEPTED
18−Oct−1998 Version 5.005_02 1227

LWP::Simple Perl Programmers Reference Guide LWP::Simple

 the
ing
 RC_NON_AUTHORITATIVE_INFORMATION
 RC_NO_CONTENT
 RC_RESET_CONTENT
 RC_PARTIAL_CONTENT
 RC_MULTIPLE_CHOICES
 RC_MOVED_PERMANENTLY
 RC_MOVED_TEMPORARILY
 RC_SEE_OTHER
 RC_NOT_MODIFIED
 RC_USE_PROXY
 RC_BAD_REQUEST
 RC_UNAUTHORIZED
 RC_PAYMENT_REQUIRED
 RC_FORBIDDEN
 RC_NOT_FOUND
 RC_METHOD_NOT_ALLOWED
 RC_NOT_ACCEPTABLE
 RC_PROXY_AUTHENTICATION_REQUIRED
 RC_REQUEST_TIMEOUT
 RC_CONFLICT
 RC_GONE
 RC_LENGTH_REQUIRED
 RC_PRECONDITION_FAILED
 RC_REQUEST_ENTITY_TOO_LARGE
 RC_REQUEST_URI_TOO_LARGE
 RC_UNSUPPORTED_MEDIA_TYPE
 RC_INTERNAL_SERVER_ERROR
 RC_NOT_IMPLEMENTED
 RC_BAD_GATEWAY
 RC_SERVICE_UNAVAILABLE
 RC_GATEWAY_TIMEOUT
 RC_HTTP_VERSION_NOT_SUPPORTED

The HTTP::Status classification functions are:

is_success($rc)
Check if response code indicated successfull request.

is_error($rc)
Check if response code indicated that an error occured.

The module will also export the LWP::UserAgent object as $ua if you ask for it explicitly.

The user agent created by this module will identify itself as "LWP::Simple/#.##" (where "#.##" is
libwww−perl version number) and will initialize its proxy defaults from the environment (by call
$ua− env_proxy).

SEE ALSO
LWP, LWP::UserAgent, HTTP::Status, lwp−request, lwp−mirror
1228 Version 5.005_02 18−Oct−1998

LWP::Debug Perl Programmers Reference Guide LWP::Debug

ed is

nd
 level

o the
lent (if

e is
.

nerate
NAME
LWP::Debug − debug routines for the libwww−perl library

SYNOPSIS
 use LWP::Debug qw(+ −conns);

 # Used internally in the library
 LWP::Debug::trace(’send()’);
 LWP::Debug::debug(’url ok’);
 LWP::Debug::conns("read $n bytes: $data");

DESCRIPTION
LWP::Debug provides tracing facilities. The trace() , debug() and conns() function are called within
the library and they log information at increasing levels of detail. Which level of detail is actually print
controlled with the level() function.

The following functions are available:

level(...)
The level() function controls the level of detail being logged. Passing ‘+’ or ‘−’ indicates full a
no logging respectively. Inidividual levels can switched on and of by passing the name of the
with a ‘+’ or ‘−’ prepended. The levels are:

 trace : trace function calls
 debug : print debug messages
 conns : show all data transfered over the connections

The LWP::Debug module provide a special import() method that allows you to pass the level()
arguments with initial use statement. If a use argument start with ‘+’ or ‘−’ then it is passed t
level function, else the name is exported as usual. The following two statements are thus equiva
you ignore that the second pollutes your namespace):

 use LWP::Debug qw(+);
 use LWP::Debug qw(level); level(’+’);

trace($msg)
The trace() function is used for tracing function calls. The package and calling subroutine nam
printed along with the passed argument. This should be called at the start of every major function

debug($msg)
The debug() function is used for high−granularity reporting of state in functions.

conns($msg)
The conns() function is used to show data being transferred over the connections. This may ge
considerable output.
18−Oct−1998 Version 5.005_02 1229

LWP::UserAgent Perl Programmers Reference Guide LWP::UserAgent

ings
he core
ests,

meouts

u will
ore

TML

 file, or
second

econd

arge

.

−lined"
d. The

e object

 the

le

broutine
re is no
NAME
LWP::UserAgent − A WWW UserAgent class

SYNOPSIS
 require LWP::UserAgent;
 $ua = new LWP::UserAgent;

 $request = new HTTP::Request(’GET’, ’file://localhost/etc/motd’);

 $response = $ua−>request($request); # or
 $response = $ua−>request($request, ’/tmp/sss’); # or
 $response = $ua−>request($request, \&callback, 4096);

 sub callback { my($data, $response, $protocol) = @_; }

DESCRIPTION
The LWP::UserAgent is a class implementing a simple World−Wide Web user agent in Perl. It br
together the HTTP::Request, HTTP::Response and the LWP::Protocol classes that form the rest of t
of libwww−perl library. For simple uses this class can be used directly to dispatch WWW requ
alternatively it can be subclassed for application−specific behaviour.

In normal usage the application creates a UserAgent object, and then configures it with values for ti
proxies, name, etc. The next step is to create an instance of HTTP::Request for the request that needs to
be performed. This request is then passed to the UserAgent request() method, which dispatches it using
the relevant protocol, and returns a HTTP::Response object.

The basic approach of the library is to use HTTP style communication for all protocol schemes, i.e. yo
receive an HTTP::Response object also for gopher or ftp requests. In order to achieve even m
similarities with HTTP style communications, gopher menus and file directories will be converted to H
documents.

The request() method can process the content of the response in one of three ways: in core, into a
into repeated calls of a subroutine. You choose which one by the kind of value passed as the
argument to request() .

The in core variant simply returns the content in a scalar attribute called content() of the response object,
and is suitable for small HTML replies that might need further parsing. This variant is used if the s
argument is missing (or is undef).

The filename variant requires a scalar containing a filename as the second argument to request() , and is
suitable for large WWW objects which need to be written directly to the file, without requiring l
amounts of memory. In this case the response object returned from request() will have empty
content() . If the request fails, then the content() might not be empty, and the file will be untouched

The subroutine variant requires a reference to callback routine as the second argument to request() and it
can also take an optional chuck size as third argument. This variant can be used to construct "pipe
processing, where processing of received chuncks can begin before the complete data has arrive
callback function is called with 3 arguments: the data received this time, a reference to the respons
and a reference to the protocol object. The response object returned from request() will have empty
content() . If the request fails, then the the callback routine will not have been called, and
response− content() might not be empty.

The request can be aborted by calling die() within the callback routine. The die message will be availab
as the "X−Died" special response header field.

The library also accepts that you put a subroutine reference as content in the request object. This su
should return the content (possibly in pieces) when called. It should return an empty string when the
more content.
1230 Version 5.005_02 18−Oct−1998

LWP::UserAgent Perl Programmers Reference Guide LWP::UserAgent

eceived.
t

ceived.

ifferent

lue

lize the

 or

olution

ride this
und in

 is sent
where

umber

nt. The
 "From"
METHODS
The following methods are available:

$ua = new LWP::UserAgent;
Constructor for the UserAgent. Returns a reference to a LWP::UserAgent object.

$ua− simple_request($request, [$arg [, $size]])
This method dispatches a single WWW request on behalf of a user, and returns the response r
The $request should be a reference to a HTTP::Request object with values defined for at leas
the method() and url() attributes.

If $arg is a scalar it is taken as a filename where the content of the response is stored.

If $arg is a reference to a subroutine, then this routine is called as chunks of the content is re
An optional $size argument is taken as a hint for an appropriate chunk size.

If $arg is omitted, then the content is stored in the response object itself.

$ua− request($request, $arg [, $size])
Process a request, including redirects and security. This method may actually send several d
simple reqeusts.

The arguments are the same as for simple_request() .

$ua− redirect_ok
This method is called by request() before it tries to do any redirects. It should return a true va
if the redirect is allowed to be performed. Subclasses might want to override this.

The default implementation will return FALSE for POST request and TRUE for all others.

$ua− credentials($netloc, $realm, $uname, $pass)
Set the user name and password to be used for a realm. It is often more useful to specia
get_basic_credentials() method instead.

$ua− get_basic_credentials($realm, $uri, [$proxy])
This is called by request() to retrieve credentials for a Realm protected by Basic Authentication
Digest Authentication.

Should return username and password in a list. Return undef to abort the authentication res
atempts.

This implementation simply checks a set of pre−stored member variables. Subclasses can over
method to e.g. ask the user for a username/password. An example of this can be fo
lwp−request program distributed with this library.

$ua− agent([$product_id])
Get/set the product token that is used to identify the user agent on the network. The agent value
as the "User−Agent" header in the requests. The default agent name is "libwww−perl/#.##",
"#.##" is substitued with the version numer of this library.

The user agent string should be one or more simple product identifiers with an optional version n
separated by the "/" character. Examples are:

 $ua−>agent(’Checkbot/0.4 ’ . $ua−>agent);
 $ua−>agent(’Mozilla/5.0’);

$ua− from([$email_address])
Get/set the Internet e−mail address for the human user who controls the requesting user age
address should be machine−usable, as defined in RFC 822. The from value is send as the
header in the requests. There is no default. Example:
18−Oct−1998 Version 5.005_02 1231

LWP::UserAgent Perl Programmers Reference Guide LWP::UserAgent

cally

tion of
g.

mit. If
then a

f the

list in

this

list of
 $ua−>from(’aas@sn.no’);

$ua− timeout([$secs])
Get/set the timeout value in seconds. The default timeout() value is 180 seconds, i.e. 3 minutes.

$ua− cookie_jar([$cookies])
Get/set the HTTP::Cookies object to use. The default is to have no cookie_jar, i.e. never automati
add "Cookie" headers to the requests.

$ua− parse_head([$boolean])
Get/set a value indicating wether we should initialize response headers from the <head sec
HTML documents. The default is TRUE. Do not turn this off, unless you know what you are doin

$ua− max_size([$bytes])
Get/set the size limit for response content. The default is undef, which means that there is not li
the returned response content is only partial, because the size limit was exceeded,
"X−Content−Range" header will be added to the response.

$ua− clone;
Returns a copy of the LWP::UserAgent object

$ua− is_protocol_supported($scheme)
You can use this method to query if the library currently support the specified scheme . The scheme
might be a string (like ‘http’ or ‘ftp’) or it might be an URI object reference.

$ua− mirror($url, $file)
Get and store a document identified by a URL, using If−Modified−Since, and checking o
Content−Length. Returns a reference to the response object.

$ua− proxy(...)
Set/retrieve proxy URL for a scheme:

 $ua−>proxy([’http’, ’ftp’], ’http://proxy.sn.no:8001/’);
 $ua−>proxy(’gopher’, ’http://proxy.sn.no:8001/’);

The first form specifies that the URL is to be used for proxying of access methods listed in the
the first method argument, i.e. ‘http’ and ‘ftp’.

The second form shows a shorthand form for specifying proxy URL for a single access scheme.

$ua− env_proxy()
Load proxy settings from *_proxy environment variables. You might specify proxies like
(sh−syntax):

 gopher_proxy=http://proxy.my.place/
 wais_proxy=http://proxy.my.place/
 no_proxy="my.place"
 export gopher_proxy wais_proxy no_proxy

Csh or tcsh users should use the setenv command to define these envirionment variables.

$ua− no_proxy($domain,...)
Do not proxy requests to the given domains. Calling no_proxy without any domains clears the
domains. Eg:

 $ua−>no_proxy(’localhost’, ’no’, ...);

SEE ALSO
See LWP for a complete overview of libwww−perl5. See lwp−request and lwp−mirror for examples of
usage.
1232 Version 5.005_02 18−Oct−1998

LWP::UserAgent Perl Programmers Reference Guide LWP::UserAgent

.
COPYRIGHT
Copyright 1995−1998 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1233

HTTP::Headers::Util Perl Programmers Reference Guide HTTP::Headers::Util

 None

taining
after

s if they

m the

 then
ould

 value.
NAME
HTTP::Headers::Util − Header value parsing utility functions

SYNOPSIS
 use HTTP::Headers::Util qw(split_header_words);
 @values = split_header_words($h−>header("Content−Type"));

DESCRIPTION
This module provide a few functions that helps parsing and construction of valid HTTP header values.
of the functions are exported by default.

The following functions are provided:

split_header_words(@header_values)
This function will parse the header values given as argument into a list of anonymous arrays con
key/value pairs. The function know how to deal with ",", ";" and "=" as well as quoted values
"=". A list of space separated tokens are parsed as if they were separated by ";".

If the @header_values passed as argument contains multiple values, then they are treated a
were a single value separated by comma ",".

This means that this function is useful to parse header fields that follow this syntax (BNF as fro
HTTP/1.1 specification, but we relax the requirement for tokens).

 headers = #header
 header = (token | parameter) *([";"] (token | parameter))

 token = 1*<any CHAR except CTLs or separators>
 separators = "(" | ")" | "<" | ">" | "@"
 | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | "="
 | "{" | "}" | SP | HT

 quoted−string = (<"> *(qdtext | quoted−pair) <">)
 qdtext = <any TEXT except <">>
 quoted−pair = "\" CHAR

 parameter = attribute "=" value
 attribute = token
 value = token | quoted−string

Each header is represented by an anonymous array of key/value pairs. If a token is recognized
the value will be undef . Syntactically incorrect headers will not necessary be parsed as you w
want.

This is easier to describe with some examples:

 split_header_words(’foo="bar"; port="80,81"; discard, bar=baz’)
 split_header_words(’text/html; charset="iso−8859−1");
 split_header_words(’Basic realm="\"foo\\bar\""’);

will return

 [foo=>’bar’, port=>’80,81’, discard=> undef], [bar=>’baz’]
 [’text/html’ => undef, charset => ’iso−8859−1’]
 [Basic => undef, realm => ’"foo\bar"’]

join_header_words(@arrays)
This will do the opposite convertion of what split_header_words() does. It takes a list of
anonymous arrays as argument (or a list of key/value pairs) and produce a single header
Attribute values are quoted if needed.
1234 Version 5.005_02 18−Oct−1998

HTTP::Headers::Util Perl Programmers Reference Guide HTTP::Headers::Util

.
Example:

 join_header_words(["text/plain" => undef, charset => "iso−8859/1"]);
 join_header_words(""text/plain" => undef, charset => "iso−8859/1");

will both return the string:

 text/plain; charset="iso−8859/1"

COPYRIGHT
Copyright 1997−1998, Gisle Aas

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1235

HTTP::Daemon Perl Programmers Reference Guide HTTP::Daemon

ests.

ill be

an

es that
is

ns and
on the
NAME
HTTP::Daemon − a simple http server class

SYNOPSIS
 use HTTP::Daemon;
 use HTTP::Status;

 my $d = new HTTP::Daemon;
 print "Please contact me at: <URL:", $d−>url, ">\n";
 while (my $c = $d−>accept) {
 while (my $r = $c−>get_request) {

 if ($r−>method eq ’GET’ and $r−>url−>path eq "/xyzzy") {
 # remember, this is *not* recommened practice :−)

 $c−>send_file_response("/etc/passwd");
 } else {
 $c−>send_error(RC_FORBIDDEN)
 }

 }
 $c−>close;
 undef($c);
 }

DESCRIPTION
Instances of the HTTP::Daemon class are HTTP/1.1 servers that listens on a socket for incoming requ
The HTTP::Daemon is a sub−class of IO::Socket::INET, so you can do socket operations directly on it too.

The accept() method will return when a connection from a client is available. The returned value w
a reference to a object of the HTTP::Daemon::ClientConn class which is another IO::Socket::INET subclass.
Calling the get_request() method on this object will read data from the client and return
HTTP::Request object reference.

This HTTP daemon does not fork(2) for you. Your application, i.e. the user of the HTTP::Daemon is
reponsible for forking if that is desirable. Also note that the user is responsible for generating respons
conforms to the HTTP/1.1 protocol. The HTTP::Daemon::ClientConn provide some methods that make th
easier.

METHODS
The following is a list of methods that are new (or enhanced) relative to the IO::Socket::INET base class.

$d = new HTTP::Daemon
The object constructor takes the same parameters as the IO::Socket::INET constructor. It can be called
without specifying any parameters. The daemon will then set up a listen queue of 5 connectio
allocate some random port number. A server that want to bind to some specific address
standard HTTP port will be constructed like this:

 $d = new HTTP::Daemon
 LocalAddr => ’www.someplace.com’,
 LocalPort => 80;

$c = $d−accept([$pkg])
Same as IO::Socket::accept but will return an HTTP::Daemon::ClientConn reference by default. It
will return undef if you have specified a timeout and no connection is made within that time.

$d−url
Returns a URL string that can be used to access the server root.
1236 Version 5.005_02 18−Oct−1998

HTTP::Daemon Perl Programmers Reference Guide HTTP::Daemon

h the
it if they

 by

od

 from
 (and
g live

ible for
e

m the
d

u read
lement

if you

by

 given

ould be

ate a

 does
.1 or
$d−product_tokens
Returns the name that this server will use to identify itself. This is the string that is sent wit
Server response header. The main reason to have this method is that subclasses can override
want to use another product name.

The HTTP::Daemon::ClientConn is also a IO::Socket::INET subclass. Instances of this class are returned
the accept() method of the HTTP::Daemon. The following additional methods are provided:

$c− get_request([$headers_only])
This method will read data from the client and turn it into a HTTP::Request object which is then
returned. It returns undef if reading of the request fails. If it fails, then the
HTTP::Daemon::ClientConn object ($c) should be discarded, and you should not call this meth
again. The $c− reason method might give you some information on why $c− get_request returned
undef .

The $c− get_request method support HTTP/1.1 request content bodies, including chunked transfer
encoding with footer and self delimiting multipart/* content types.

The $c− get_request method will normally not return until the whole request has been received
the client. This might not be what you want if the request is an upload of a multi−mega−byte file
with chunked transfer encoding HTTP can even support infinite request messages − uploadin
audio for instance). If you pass a TRUE value as the $headers_only argument, then
$c− get_request will return immediately after parsing the request headers and you are respons
reading the rest of the request content (and if you are going to call $c− get_request again on the sam
connection you better read the correct number of bytes).

$c− read_buffer([$new_value])
Bytes read by $c− get_request, but not used are placed in the read buffer. The next time
$c− get_request is called it will consume the bytes in this buffer before reading more data fro
network connection itself. The read buffer is invalid after $c− get_request has returned an undefine
value.

If you handle the reading of the request content yourself you need to empty this buffer before yo
more and you need to place unconsumed bytes here. You also need this buffer if you imp
services like 101 Switching Protocols.

This method always return the old buffer content and can optionally update the buffer content
pass it an argument.

$c− reason
When $c− get_request returns undef you can obtain a short string describing why it happened
calling $c− reason.

$c− proto_ge($proto)
Returns TRUE if the client announced a protocol with version number greater or equal to the
argument. The $proto argument can be a string like "HTTP/1.1" or just "1.1".

$c− antique_client
Returns TRUE if the client speaks the HTTP/0.9 protocol. No status code and no headers sh
returned to such a client. This should be the same as !$c− proto_ge("HTTP/1.0").

$c− force_last_request
Make sure that $c− get_request will not try to read more requests off this connection. If you gener
response that is not self delimiting, then you should signal this fact by calling this method.

This attribute is turned on automatically if the client announce protocol HTTP/1.0 or worse and
not include a "Connection: Keep−Alive" header. It is also turned on automatically when HTTP/1
better clients send the "Connection: close" request header.
18−Oct−1998 Version 5.005_02 1237

HTTP::Daemon Perl Programmers Reference Guide HTTP::Daemon

ssumed

e try
tent for

ce.
s the

ient is

e
tly"

d.

ry

) or a

.
$c− send_status_line([$code, [$mess, [$proto]]])
Sends the status line back to the client. If $code is omitted 200 is assumed. If $mess is omitted,
then a message corresponding to $code is inserted. If $proto is missing the content of the
$HTTP::Daemon::PROTO variable is used.

$c− send_crlf
Send the CRLF sequence to the client.

$c− send_basic_header([$code, [$mess, [$proto]]])
Sends the status line and the "Date:" and "Server:" headers back to the client. This header is a
to be continued and does not end with an empty CRLF line.

$c− send_response([$res])
Takes a HTTP::Response object as parameter and write it back to the client as the response. W
hard to make sure that the response is self delimiting so that the connection can stay persis
further request/response exchanges.

The content attribute of the HTTP::Response object can be a normal string or a subroutine referen
If it is a subroutine, then whatever this callback routine returns will be written back to the client a
response content. The routine will be called until it return an undefined or empty value. If the cl
HTTP/1.1 aware then we will use the chunked transfer encoding for the response.

$c− send_redirect($loc, [$code, [$entity_body]])
Sends a redirect response back to the client. The location ($loc) can be an absolute or a relativ
URL. The $code must be one the redirect status codes, and it defaults to "301 Moved Permanen

$c− send_error([$code, [$error_message]])
Send an error response back to the client. If the $code is missing a "Bad Request" error is reporte
The $error_message is a string that is incorporated in the body of the HTML entity body.

$c− send_file_response($filename)
Send back a response with the specified $filename as content. If the file happen to be a directo
we will try to generate an HTML index of it.

$c− send_file($fd);
Copies the file back to the client. The file can be a string (which will be interpreted as a filename
reference to an IO::Handle or glob.

$c− daemon
Return a reference to the corresponding HTTP::Daemon object.

SEE ALSO
RFC 2068

IO::Socket, Apache

COPYRIGHT
Copyright 1996−1998, Gisle Aas

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
1238 Version 5.005_02 18−Oct−1998

HTTP::Status Perl Programmers Reference Guide HTTP::Status

erl.
espond to
NAME
HTTP::Status − HTTP Status code processing

SYNOPSIS
 use HTTP::Status;

 if ($rc != RC_OK) {
 print status_message($rc), "\n";
 }

 if (is_success($rc)) { ... }
 if (is_error($rc)) { ... }
 if (is_redirect($rc)) { ... }

DESCRIPTION
HTTP::Status is a library of routines for defining and classification of HTTP status codes for libwww−p
Status codes are used to encode the overall outcome of a HTTP response message. Codes corr
those defined in draft−ietf−http−v11−spec−rev−03 (an update to RFC 2068).

CONSTANTS
The following constant functions can be used as mnemonic status code names:

 RC_CONTINUE (100)
 RC_SWITCHING_PROTOCOLS (101)

 RC_OK (200)
 RC_CREATED (201)
 RC_ACCEPTED (202)
 RC_NON_AUTHORITATIVE_INFORMATION (203)
 RC_NO_CONTENT (204)
 RC_RESET_CONTENT (205)
 RC_PARTIAL_CONTENT (206)

 RC_MULTIPLE_CHOICES (300)
 RC_MOVED_PERMANENTLY (301)
 RC_FOUND (302)
 RC_SEE_OTHER (303)
 RC_NOT_MODIFIED (304)
 RC_USE_PROXY (305)
 RC_TEMPORARY_REDIRECT (307)

 RC_BAD_REQUEST (400)
 RC_UNAUTHORIZED (401)
 RC_PAYMENT_REQUIRED (402)
 RC_FORBIDDEN (403)
 RC_NOT_FOUND (404)
 RC_METHOD_NOT_ALLOWED (405)
 RC_NOT_ACCEPTABLE (406)
 RC_PROXY_AUTHENTICATION_REQUIRED (407)
 RC_REQUEST_TIMEOUT (408)
 RC_CONFLICT (409)
 RC_GONE (410)
 RC_LENGTH_REQUIRED (411)
 RC_PRECONDITION_FAILED (412)
 RC_REQUEST_ENTITY_TOO_LARGE (413)
 RC_REQUEST_URI_TOO_LARGE (414)
 RC_UNSUPPORTED_MEDIA_TYPE (415)
 RC_REQUEST_RANGE_NOT_SATISFIABLE (416)
18−Oct−1998 Version 5.005_02 1239

HTTP::Status Perl Programmers Reference Guide HTTP::Status

tring

s a

ther

r a

s in

ases

ported
 RC_EXPECTATION_FAILED (417)

 RC_INTERNAL_SERVER_ERROR (500)
 RC_NOT_IMPLEMENTED (501)
 RC_BAD_GATEWAY (502)
 RC_SERVICE_UNAVAILABLE (503)
 RC_GATEWAY_TIMEOUT (504)
 RC_HTTP_VERSION_NOT_SUPPORTED (505)

FUNCTIONS
The following additional functions are provided. Most of them are exported by default.

status_message($code)
The status_message() function will translate status codes to human readable strings. The s
is the same as found in the constant names above. If the $code is unknown, then undef is returned.

is_info($code)
Return TRUE if $code is an Informational status code. This class of status code indicate
provisional response which can‘t have any content.

is_success($code)
Return TRUE if $code is a Successful status code.

is_redirect($code)
Return TRUE if $code is a Redirection status code. This class of status code indicates that fur
action needs to be taken by the user agent in order to fulfill the request.

is_error($code)
Return TRUE if $code is an Error status code. The function return TRUE for both client error o
server error status codes.

is_client_error($code)
Return TRUE if $code is an Client Error status code. This class of status code is intended for case
which the client seems to have erred.

This function is not exported by default.

is_server_error($code)
Return TRUE if $code is an Server Error status code. This class of status codes is intended for c
in which the server is aware that it has erred or is incapable of performing the request.

This function is not exported by default.

BUGS
Wished @EXPORT_OK had been used instead of @EXPORT in the beginning. Now too much is ex
by default.
1240 Version 5.005_02 18−Oct−1998

HTTP::Message Perl Programmers Reference Guide HTTP::Message

it only

hould

ntent

t to
 of the
NAME
HTTP::Message − Class encapsulating HTTP messages

SYNOPSIS
 package HTTP::Request; # or HTTP::Response
 require HTTP::Message;
 @ISA=qw(HTTP::Message);

DESCRIPTION
A HTTP::Message object contains some headers and a content (body). The class is abstract, i.e.
used as a base class for HTTP::Request and HTTP::Response and should never instantiated as itself.

The following methods are available:

$mess = new HTTP::Message;
This is the object constructor. It should only be called internally by this library. External code s
construct HTTP::Request or HTTP::Response objects.

$mess−clone()
Returns a copy of the object.

$mess−protocol([$proto])
Sets the HTTP protocol used for the message. The protocol() is a string like "HTTP/1.0" or
"HTTP/1.1".

$mess−content([$content])
The content() method sets the content if an argument is given. If no argument is given the co
is not touched. In either case the previous content is returned.

$mess−add_content($data)
The add_content() methods appends more data to the end of the previous content.

$mess−content_ref
The content_ref() method will return a reference to content string. It can be more efficien
access the content this way if the content is huge, and it can be used for direct manipulation
content, for instance:

 ${$res−>content_ref} =~ s/\bfoo\b/bar/g;

$mess−headers;
Return the embedded HTTP::Headers object.

$mess−headers_as_string([$endl])
Call the HTTP::Headers− as_string() method for the headers in the message.

All unknown HTTP::Message methods are delegated to the HTTP::Headers object that is part of every
message. This allows convenient access to these methods. Refer to HTTP::Headers for details of these
methods:

 $mess−>header($field => $val);
 $mess−>scan(\&doit);
 $mess−>push_header($field => $val);
 $mess−>remove_header($field);

 $mess−>date;
 $mess−>expires;
 $mess−>if_modified_since;
 $mess−>if_unmodified_since;
 $mess−>last_modified;
18−Oct−1998 Version 5.005_02 1241

HTTP::Message Perl Programmers Reference Guide HTTP::Message

.
 $mess−>content_type;
 $mess−>content_encoding;
 $mess−>content_length;
 $mess−>content_language
 $mess−>title;
 $mess−>user_agent;
 $mess−>server;
 $mess−>from;
 $mess−>referer;
 $mess−>www_authenticate;
 $mess−>authorization;
 $mess−>proxy_authorization;
 $mess−>authorization_basic;
 $mess−>proxy_authorization_basic;

COPYRIGHT
Copyright 1995−1997 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
1242 Version 5.005_02 18−Oct−1998

HTTP::Cookies Perl Programmers Reference Guide HTTP::Cookies

retrieve
er to

/.

the
sed to

his
ther
NAME
HTTP::Cookies − Cookie storage and management

SYNOPSIS
 use HTTP::Cookies;
 $cookie_jar = HTTP::Cookies−>new;

 $cookie_jar−>add_cookie_header($request);
 $cookie_jar−>extract_cookies($response);

DESCRIPTION
Cookies are a general mechanism which server side connections can use to both store and
information on the client side of the connection. For more information about cookies referr
<URL:http://www.netscape.com/newsref/std/cookie_spec.html and <URL:http://www.cookiecentral.com
This module also implements the new style cookies as described in draft−ietf−http−state−man−mec−08.txt.
The two variants of cookies is supposed to be able to coexist happily.

Instances of the class HTTP::Cookies are able to store a collection of Set−Cookie2: and
Set−Cookie:−headers and is able to use this information to initialize Cookie−headers in HTTP::Request
objects. The state of the HTTP::Cookies can be saved and restored from files.

METHODS
The following methods are provided:

$cookie_jar = HTTP::Cookies−new;
The constructor. Takes hash style parameters. The following parameters are recognized:

 file: name of the file to restore and save cookies to
 autosave: should we save during destruction (bool)
 ignore_discard: save even cookies that are requested to be discarded (bool)

Future parameters might include (not yet implemented):

 max_cookies 300
 max_cookies_per_domain 20
 max_cookie_size 4096

 no_cookies list of domain names that we never return cookies to

$cookie_jar− add_cookie_header($request);
The add_cookie_header() method will set the appropriate Cookie:−header for the
HTTP::Request object given as argument. The $request must have a valid url() attribute before
this method is called.

$cookie_jar− extract_cookies($response);
The extract_cookies() method will look for Set−Cookie: and Set−Cookie2:−headers in
HTTP::Response object passed as argument. If some of these headers are found they are u
update the state of the $cookie_jar.

$cookie_jar− set_cookie($version, $key, $val, $path, $domain, $port, $path_spec,
$secure, $maxage, $discard, \%rest)
The set_cookie() method updates the state of the $cookie_jar. The $key, $val,
$domain, $port and $path arguments are strings. The $path_spec, $secure, $discard
arguments are boolean values. The $maxage value is a number indicating number of seconds that t
cookie will live. A value <= 0 will delete this cookie. The %rest are a place for various o
attributes like "Comment" and "CommentURL".
18−Oct−1998 Version 5.005_02 1243

HTTP::Cookies Perl Programmers Reference Guide HTTP::Cookies

d
ring
 to

 LWP

okies
n the

of
eturn

ies by

 in the
$cookie_jar− save([$file]);
Calling this method file save the state of the $cookie_jar to a file. The state can then be restore
later using the load() method. If a filename is not specified we will use the name specified du
construction. If the attribute ignore_discared is set, then we will even save cookies that are marked
be discarded.

The default is to save a sequence of "Set−Cookie3" lines. The "Set−Cookie3" is a proprietary
format, not known to be compatible with any other browser. The HTTP::Cookies::Netscape sub−class
can be used to save in a format compatible with Netscape.

$cookie_jar− load([$file]);
This method will read the cookies from the file and add them to the $cookie_jar. The file must
be in the format written by the save() method.

$cookie_jar− revert;
Will revert to the state of last save.

$cookie_jar− clear([$domain, [$path, [$key]]]);
Invoking this method without arguments will empty the whole $cookie_jar. If given a single
argument only cookies belonging to that domain will be removed. If given two arguments, co
belonging to the specified path within that domain is removed. If given three arguments, the
cookie with the specified key, path and domain is removed.

$cookie_jar− scan(\&callback);
The argument is a subroutine that will be invoked for each cookie stored within the $cookie_jar.
The subroutine will be invoked with the following arguments:

 0 version
 1 key
 2 val
 3 path
 4 domain
 5 port
 6 path_spec
 7 secure
 8 expires
 9 discard
 10 hash

$cookie_jar− as_string([$skip_discard]);
The as_string() method will return the state of the $cookie_jar represented as a sequence
"Set−Cookie3" header lines separated by "\n". If given a argument that is TRUE, it will not r
lines for cookies with the Discard attribute.

SUB CLASSES
We also provide a subclass called HTTP::Cookies::Netscape which make cookie loading and saving
compatible with Netscape cookie files. You should be able to have LWP share Netscape‘s cook
constructing your $cookie_jar like this:

 $cookie_jar = HTTP::Cookies::Netscape−>new(
 File => "$ENV{HOME}/.netscape/cookies",
 AutoSave => 1,
);

Please note that the Netscape cookie file format is not able to store all the information available
Set−Cookie2 headers, so you will probably loose some information if you save using this format.
1244 Version 5.005_02 18−Oct−1998

HTTP::Cookies Perl Programmers Reference Guide HTTP::Cookies

.
COPYRIGHT
Copyright 1997, Gisle Aas

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1245

HTTP::Headers Perl Programmers Reference Guide HTTP::Headers

as

e easier
for ‘−’

l

ed

s; the
s called
y HTTP

ended
NAME
HTTP::Headers − Class encapsulating HTTP Message headers

SYNOPSIS
 require HTTP::Headers;
 $h = new HTTP::Headers;

DESCRIPTION
The HTTP::Headers class encapsulates HTTP−style message headers. The headers consist of
attribute−value pairs, which may be repeated, and which are printed in a particular order.

Instances of this class are usually created as member variables of the HTTP::Request and
HTTP::Response classes, internal to the library.

The following methods are available:

$h = new HTTP::Headers
Constructs a new HTTP::Headers object. You might pass some initial attribute−value pairs
parameters to the constructor. E.g.:

 $h = new HTTP::Headers
 Date => ’Thu, 03 Feb 1994 00:00:00 GMT’,
 Content_Type => ’text/html; version=3.2’,
 Content_Base => ’http://www.sn.no/’;

$h−header($field [= $value],...)
Get or set the value of a header. The header field name is not case sensitive. To make the lif
for perl users who wants to avoid quoting before the = operator, you can use ‘_’ as a synonym
in header names (this behaviour can be suppressed by setting
$HTTP::Headers::TRANSLATE_UNDERSCORE to a FALSE value).

The header() method accepts multiple ($field = $value) pairs, so you can update severa
fields with a single invocation.

The optional $value argument may be a scalar or a reference to a list of scalars. If the $value
argument is undefined or not given, then the header is not modified.

The old value of the last of the $field values is returned. Multi−valued fields will be concatenat
with "," as separator in scalar context.

 $header−>header(MIME_Version => ’1.0’,
 User_Agent => ’My−Web−Client/0.01’);

 $header−>header(Accept => "text/html, text/plain, image/*");
 $header−>header(Accept => [qw(text/html text/plain image/*)]);
 @accepts = $header−>header(’Accept’);

$h−scan(\&doit)
Apply a subroutine to each header in turn. The callback routine is called with two parameter
name of the field and a single value. If the header has more than one value, then the routine i
once for each value. The field name passed to the callback routine has case as suggested b
Spec, and the headers will be visited in the recommended "Good Practice" order.

$h−as_string([$endl])
Return the header fields as a formatted MIME header. Since it internally uses the scan() method to
build the string, the result will use case as suggested by HTTP Spec, and it will follow recomm
"Good Practice" of ordering the header fieds. Long header values are not folded.

The optional parameter specifies the line ending sequence to use. The default is "\n" . Embedded
"\n" characters in the header will be substitued with this line ending sequence.
1246 Version 5.005_02 18−Oct−1998

HTTP::Headers Perl Programmers Reference Guide HTTP::Headers

e field
ay be a

s. These
 pass an

70) and

odified

ff and

s value
$h−push_header($field, $val)
Add a new field value of the specified header. The header field name is not case sensitive. Th
need not already have a value. Previous values for the same field are retained. The argument m
scalar or a reference to a list of scalars.

 $header−>push_header(Accept => ’image/jpeg’);

$h− remove_header($field,...)
This function removes the headers with the specified names.

$h−clone
Returns a copy of this HTTP::Headers object.

CONVENIENCE METHODS
The most frequently used headers can also be accessed through the following convenience method
methods can both be used to read and to set the value of a header. The header value is set if you
argument to the method. The old header value is always returned.

Methods that deal with dates/times always convert their value to system time (seconds since Jan 1, 19
they also expect this kind of value when the header value is set.

$h−date
This header represents the date and time at which the message was originated. E.g.:

 $h−>date(time); # set current date

$h−expires
This header gives the date and time after which the entity should be considered stale.

$h− if_modified_since
$h− if_unmodified_since

This header is used to make a request conditional. If the requested resource has (not) been m
since the time specified in this field, then the server will return a "304 Not Modified" response
instead of the document itself.

$h− last_modified
This header indicates the date and time at which the resource was last modified. E.g.:

 # check if document is more than 1 hour old
 if ($h−>last_modified < time − 60*60) {

...
 }

$h−content_type
The Content−Type header field indicates the media type of the message content. E.g.:

 $h−>content_type(’text/html’);

The value returned will be converted to lower case, and potential parameters will be chopped o
returned as a separate value if in an array context. This makes it safe to do the following:

 if ($h−>content_type eq ’text/html’) {
 # we enter this place even if the real header value happens to
 # be ’TEXT/HTML; version=3.0’
 ...
 }

$h−content_encoding
The Content−Encoding header field is used as a modifier to the media type. When present, it
indicates what additional encoding mechanism has been applied to the resource.
18−Oct−1998 Version 5.005_02 1247

HTTP::Headers Perl Programmers Reference Guide HTTP::Headers

or more

the

iginating

server

uesting

ss was

ist of a
RI.

 these

heme".
it will
$h−content_length
A decimal number indicating the size in bytes of the message content.

$h−content_language
The natural language(s) of the intended audience for the message content. The value is one
language tags as defined by RFC 1766. Eg. "no" for Norwegian and "en−US" for US−English.

$h− title
The title of the document. In libwww−perl this header will be initialized automatically from
<TITLE...</TITLE element of HTML documents. This header is no longer part of the HTTP
standard.

$h−user_agent
This header field is used in request messages and contains information about the user agent or
the request. E.g.:

 $h−>user_agent(’Mozilla/1.2’);

$h−server
The server header field contains information about the software being used by the originating
program handling the request.

$h− from
This header should contain an Internet e−mail address for the human user who controls the req
user agent. The address should be machine−usable, as defined by RFC822. E.g.:

 $h−>from(’Gisle Aas <aas@sn.no>’);

$h− referer
Used to specify the address (URI) of the document from which the requested resouce addre
obtained.

$h−www_authenticate
This header must be included as part of a "401 Unauthorized" response. The field value cons
challenge that indicates the authentication scheme and parameters applicable to the requested U

$h−proxy_authenticate
This header must be included in a "407 Proxy Authentication Required" response.

$h−authorization
$h−proxy_authorization

A user agent that wishes to authenticate itself with a server or a proxy, may do so by including
headers.

$h−authorization_basic
This method is used to get or set an authorization header that use the "Basic Authentication Sc
In array context it will return two values; the user name and the password. In scalar context
return "uname:password" as a single string value.

When used to set the header value, it expects two arguments. E.g.:

 $h−>authorization_basic($uname, $password);

The method will croak if the $uname contains a colon ‘:’.

$h−proxy_authorization_basic
Same as authorization_basic() but will set the "Proxy−Authorization" header instead.
1248 Version 5.005_02 18−Oct−1998

HTTP::Headers Perl Programmers Reference Guide HTTP::Headers

.
COPYRIGHT
Copyright 1995−1998 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1249

HTTP::Request::Common Perl Programmers Reference Guide HTTP::Request::Common

ns are
equests.

the

ptional

of the

onal
irs

 a
NAME
HTTP::Request::Common − Construct common HTTP::Request objects

SYNOPSIS
 use HTTP::Request::Common;
 $ua = LWP::UserAgent−>new;
 $ua−>request(GET ’http://www.sn.no/’);
 $ua−>request(POST ’http://somewhere/foo’, [foo => bar, bar => foo]);

DESCRIPTION
This module provide functions that return newly created HTTP::Request objects. These functio
usually more convenient to use than the standard HTTP::Request constructor for these common r
The following functions are provided.

GET $url, Header = Value,...
The GET() function returns a HTTP::Request object initialized with the GET method and
specified URL. Without additional arguments it is exactly equivalent to the following call

 HTTP::Request−>new(GET => $url)

but is less clutter. It also reads better when used together with the LWP::UserAgent− request()
method:

 my $ua = new LWP::UserAgent;
 my $res = $ua−>request(GET ’http://www.sn.no’)
 if ($res−>is_success) { ...

You can also initialize the header values in the request by specifying some key/value pairs as o
arguments. For instance:

 $ua−>request(GET ’http://www.sn.no’,
 If_Match => ’foo’,

 From => ’gisle@aas.no’,
);

A header key called ‘Content’ is special and when seen the value will initialize the content part
request instead of setting a header.

HEAD $url, [Header = Value,...]
Like GET() but the method in the request is HEAD.

PUT $url, [Header = Value,...]
Like GET() but the method in the request is PUT.

POST $url, [$form_ref], [Header = Value,...]
This works mostly like GET() with POST as method, but this function also takes a second opti
array or hash reference parameter ($form_ref). This argument can be used to pass key/value pa
for the form content. By default we will initialize a request using the
application/x−www−form−urlencoded content type. This means that you can emulate
HTML <form POSTing like this:

 POST ’http://www.perl.org/survey.cgi’,
 [name => ’Gisle Aas’,
 email => ’gisle@aas.no’,
 gender => ’M’,
 born => ’1964’,
 perc => ’3%’,
];
1250 Version 5.005_02 18−Oct−1998

HTTP::Request::Common Perl Programmers Reference Guide HTTP::Request::Common

e of

nt

f your
This will create a HTTP::Request object that looks like this:

 POST http://www.perl.org/survey.cgi
 Content−Length: 66
 Content−Type: application/x−www−form−urlencoded

 name=Gisle%20Aas&email=gisle%40aas.no&gender=M&born=1964&perc=3%25

The POST method also supports the multipart/form−data content used for Form−based File
Upload as specified in RFC 1867. You trigger this content format by specifying a content typ
‘form−data’ as one of the request headers. If one of the values in the $form_ref is an array
reference, then it is treated as a file part specification with the following interpretation:

 [$file, $filename, Header => Value...]

The first value in the array ($file) is the name of a file to open. This file will be read an its conte
placed in the request. The routine will croak if the file can‘t be opened. Use an undef as $file
value if you want to specify the content directly. The $filename is the filename to report in the
request. If this value is undefined, then the basename of the $file will be used. You can specify an
empty string as $filename if you don‘t want any filename in the request.

Sending my ~/.profile to the survey used as example above can be achieved by this:

 POST ’http://www.perl.org/survey.cgi’,
 Content_Type => ’form−data’,
 Content => [name => ’Gisle Aas’,
 email => ’gisle@aas.no’,
 gender => ’M’,
 born => ’1964’,
 init => ["$ENV{HOME}/.profile"],
]

This will create a HTTP::Request object that almost looks this (the boundary and the content o
~/.profile is likely to be different):

 POST http://www.perl.org/survey.cgi
 Content−Length: 388
 Content−Type: multipart/form−data; boundary="6G+f"

 −−6G+f
 Content−Disposition: form−data; name="name"

 Gisle Aas
 −−6G+f
 Content−Disposition: form−data; name="email"

 gisle@aas.no
 −−6G+f
 Content−Disposition: form−data; name="gender"

 M
 −−6G+f
 Content−Disposition: form−data; name="born"

 1964
 −−6G+f
 Content−Disposition: form−data; name="init"; filename=".profile"
 Content−Type: text/plain

 PATH=/local/perl/bin:$PATH
 export PATH
18−Oct−1998 Version 5.005_02 1251

HTTP::Request::Common Perl Programmers Reference Guide HTTP::Request::Common

et
ad the
ry big

u use

.
 −−6G+f−−

If you set the $DYNAMIC_FILE_UPLOAD variable (exportable) to some TRUE value, then you g
back a request object with a subroutine closure as the content attribute. This subroutine will re
content of any files on demand and return it in suitable chunks. This allow you to upload arbitra
files without using lots of memory. You can even upload infinite files like /dev/audio if you wish.
Another difference is that there will be no Content−Length header defined for the request if yo
this feature. Not all servers (or server applications) like this.

SEE ALSO
HTTP::Request, LWP::UserAgent

COPYRIGHT
Copyright 1997−1998, Gisle Aas

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
1252 Version 5.005_02 18−Oct−1998

HTTP::Request Perl Programmers Reference Guide HTTP::Request

eaders,
sts for

d

thod of

en the

ring is

es. It

.
NAME
HTTP::Request − Class encapsulating HTTP Requests

SYNOPSIS
 require HTTP::Request;
 $request = HTTP::Request−>new(GET => ’http://www.oslonett.no/’);

DESCRIPTION
HTTP::Request is a class encapsulating HTTP style requests, consisting of a request line, some h
and some (potentially empty) content. Note that the LWP library also uses this HTTP style reque
non−HTTP protocols.

Instances of this class are usually passed to the request() method of an LWP::UserAgent object:

 $ua = LWP::UserAgent−>new;
 $request = HTTP::Request−>new(GET => ’http://www.oslonett.no/’);
 $response = $ua−>request($request);

HTTP::Request is a subclass of HTTP::Message and therefore inherits its methods. The inherite
methods often used are header() , push_header() , remove_header() ,
headers_as_string() and content() . See HTTP::Message for details.

The following additional methods are available:

$r = HTTP::Request−new($method, $uri, [$header, [$content]])
Constructs a new HTTP::Request object describing a request on the object $uri using method
$method. The $uri argument can be either a string, or a reference to a URI object. The $header
argument should be a reference to an HTTP::Headers object.

$r− method([$val])
$r− uri([$val])

These methods provide public access to the member variables containing respectively the me
the request and the URI object of the request.

If an argument is given the member variable is given that as its new value. If no argument is giv
value is not touched. In either case the previous value is returned.

The url() method accept both a reference to a URI object and a string as its argument. If a st
given, then it should be parseable as an absolute URI.

$r− as_string()
Method returning a textual representation of the request. Mainly useful for debugging purpos
takes no arguments.

SEE ALSO
HTTP::Headers, HTTP::Message, HTTP::Request::Common

COPYRIGHT
Copyright 1995−1998 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1253

HTTP::Response Perl Programmers Reference Guide HTTP::Response

e line,
es also

d

See

s the

ctively

the same
and

s if the

me of
NAME
HTTP::Response − Class encapsulating HTTP Responses

SYNOPSIS
 require HTTP::Response;

DESCRIPTION
The HTTP::Response class encapsulate HTTP style responses. A response consist of a respons
some headers, and a (potential empty) content. Note that the LWP library will use HTTP style respons
for non−HTTP protocol schemes.

Instances of this class are usually created and returned by the request() method of an
LWP::UserAgent object:

 #...
 $response = $ua−>request($request)
 if ($response−>is_success) {
 print $response−>content;
 } else {
 print $response−>error_as_HTML;
 }

HTTP::Response is a subclass of HTTP::Message and therefore inherits its methods. The inherite
methods often used are header() , push_header() , remove_header() ,
headers_as_string() , and content() . The header convenience methods are also available.
HTTP::Message for details.

The following additional methods are available:

$r = HTTP::Response−new($rc, [$msg, [$header, [$content]]])
Constructs a new HTTP::Response object describing a response with response code $rc and
optional message $msg. The message is a short human readable single line string that explain
response code.

$r− code([$code])
$r− message([$message])
$r− request([$request])
$r− previous([$previousResponse])

These methods provide public access to the member variables. The first two containing respe
the response code and the message of the response.

The request attribute is a reference the request that gave this response. It does not have to be
request as passed to the $ua− request() method, because there might have been redirects
authorization retries in between.

The previous attribute is used to link together chains of responses. You get chains of response
first response is redirect or unauthorized.

$r− status_line
Returns the string "<code <message". If the message attribute is not set then the official na
<code (see HTTP::Status) is substituted.

$r− base
Returns the base URL for this response. The return value will be a reference to a URI object.

The base URL is obtained from one the following sources (in priority order):
1254 Version 5.005_02 18−Oct−1998

HTTP::Response Perl Programmers Reference Guide HTTP::Response

se:"

sed to

bedded
at this

ses. It

ethod

ent by

ween
ting the

n will

y the

.
1. Embedded in the document content, for instance <BASE HREF="..." in HTML documents.

2. A "Content−Base:" or a "Content−Location:" header in the response.

For backwards compatability with older HTTP implementations we will also look for the "Ba
header.

3. The URL used to request this response. This might not be the original URL that was pas
$ua− request() method, because we might have received some redirect responses first.

When the LWP protocol modules produce the HTTP::Response object, then any base URL em
in the document (step 1) will already have initialized the "Content−Base:" header. This means th
method only perform the last 2 steps (the content is not always available either).

$r− as_string
Method returning a textual representation of the response. Mainly useful for debugging purpo
takes no arguments.

$r− is_info
$r− is_success
$r− is_redirect
$r− is_error

These methods indicate if the response was informational, sucessful, a redirection, or an error.

$r− error_as_HTML()
Return a string containing a complete HTML document indicating what error occurred. This m
should only be called when $r− is_error is TRUE.

$r− current_age
This function will calculate the "current age" of the response as specified by
<draft−ietf−http−v11−spec−07 section 13.2.3. The age of a response is the time since it was s
the origin server. The returned value is a number representing the age in seconds.

$r− freshness_lifetime
This function will calculate the "freshness lifetime" of the response as specified by
<draft−ietf−http−v11−spec−07 section 13.2.4. The "freshness lifetime" is the length of time bet
the generation of a response and its expiration time. The returned value is a number represen
freshness lifetime in seconds.

If the response does not contain an "Expires" or a "Cache−Control" header, then this functio
apply some simple heuristic based on ‘Last−Modified’ to determine a suitable lifetime.

$r− is_fresh
Returns TRUE if the response is fresh, based on the values of freshness_lifetime() and
current_age() . If the response is not longer fresh, then it has to be refetched or revalidated b
origin server.

$r− fresh_until
Returns the time when this entiy is no longer fresh.

COPYRIGHT
Copyright 1995−1997 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
18−Oct−1998 Version 5.005_02 1255

HTTP::Negotiate Perl Programmers Reference Guide HTTP::Negotiate

ied in
rred
Accept*

ribed by

veral

ccept*"
rameter
EPT,

rted
ted by

d to the

on

known

riant is
NAME
choose − choose a variant of a document to serve (HTTP content negotiation)

SYNOPSIS
 use HTTP::Negotiate;

 # ID QS Content−Type Encoding Char−Set Lang Size
 $variants =
 [[’var1’, 1.000, ’text/html’, undef, ’iso−8859−1’, ’en’, 3000],
 [’var2’, 0.950, ’text/plain’, ’gzip’, ’us−ascii’, ’no’, 400],
 [’var3’, 0.3, ’image/gif’, undef, undef, undef, 43555],
];

 @prefered = choose($variants, $request_headers);
 $the_one = choose($variants);

DESCRIPTION
This module provide a complete implementation of the HTTP content negotiation algorithm specif
draft−ietf−http−v11−spec−00.ps chapter 12. Content negotiation allows for the selection of a prefe
content representation based upon attributes of the negotiable variants and the value of the various
header fields in the request.

The variants are ordered by preference by calling the function choose() .

The first parameter is a description of the variants that we can choose among. The variants are desc
a reference to an array. Each element in this array is an array with the values [$id, $qs,
$content_type, $content_encoding, $charset, $content_language,
$content_length]. The meaning of these values are described below. The $content_encoding
and $content_language can be either a single scalar value or an array reference if there are se
values.

The second optional parameter is a reference to the request headers. This is used to look for "A
headers. You can pass a reference to either a HTTP::Request or a HTTP::Headers object. If this pa
is missing, then the accept specification is initialized from the CGI environment variables HTTP_ACC
HTTP_ACCEPT_CHARSET, HTTP_ACCEPT_ENCODING and HTTP_ACCEPT_LANGUAGE.

In array context, choose() returns a list of variant identifier/calculated quality pairs. The values are so
by quality, highest quality first. If the calculated quality is the same for two variants, then they are sor
size (smallest first). E.g.:

 ([’var1’ => 1], [’var2’, 0.3], [’var3’ => 0]);

Note that also zero quality variants are included in the return list even if these should never be serve
client.

In scalar context, it returns the identifier of the variant with the highest score or undef if none have
non−zero quality.

If the $HTTP::Negotiate::DEBUG variable is set to TRUE, then a lot of noise is generated
STDOUT during evaluation of choose() .

VARIANTS
A variant is described by a list of the following values. If the attribute does not make sense or is un
for a variant, then use undef instead.

identifier
This is just some string that you use as a name for the variant. The identifier of the preferred va
returned by choose() .
1256 Version 5.005_02 18−Oct−1998

HTTP::Negotiate Perl Programmers Reference Guide HTTP::Negotiate

 what

rom the
 to the
r, that
tured
s value

t might

ding is
:

 should

 this in
, or
ings.
qs This is a number between 0.000 and 1.000 that describes the "source quality". This is
draft−ietf−http−v11−spec−00.ps says about this value:

Source quality is measured by the content provider as representing the amount of degradation f
original source. For example, a picture in JPEG form would have a lower qs when translated
XBM format, and much lower qs when translated to an ASCII−art representation. Note, howeve
this is a function of the source − an original piece of ASCII−art may degrade in quality if it is cap
in JPEG form. The qs values should be assigned to each variant by the content provider; if no q
has been assigned, the default is generally "qs=1".

content−type
This is the media type of the variant. The media type does not include a charset attribute, bu
contain other parameters. Examples are:

 text/html
 text/html;version=2.0
 text/plain
 image/gif
 image/jpg

content−encoding
This is one or more content encodings that has been applied to the variant. The content enco
generally used as a modifier to the content media type. The most common content encodings are

 gzip
 compress

content−charset
This is the character set used when the variant contains textual content. The charset value
generally be undef or one of these:

 us−ascii
 iso−8859−1 ... iso−8859−9
 iso−2022−jp
 iso−2022−jp−2
 iso−2022−kr
 unicode−1−1
 unicode−1−1−utf−7
 unicode−1−1−utf−8

content−language
This describes one or more languages that are used in the variant. Language is described like
draft−ietf−http−v11−spec−00.ps: A language is in this context a natural language spoken, written
otherwise conveyed by human beings for communication of information to other human be
Computer languages are explicitly excluded.

The language tags are the same as those defined by RFC−1766. Examples are:

 no Norwegian
 en International English
 en−US US English
 en−cockney

content−length
This is the number of bytes used to represent the content.
18−Oct−1998 Version 5.005_02 1257

HTTP::Negotiate Perl Programmers Reference Guide HTTP::Negotiate

cription

e to the
edia

for that
content.
pts all

ilable

er set is
hat any

coding
empty

ponse.
e user‘s

man

.
ACCEPT HEADERS
The following Accept* headers can be used for describing content preferences in a request (This des
is an edited extract from draft−ietf−http−v11−spec−00.ps):

Accept
This header can be used to indicate a list of media ranges which are acceptable as a repons
request. The "*" character is used to group media types into ranges, with "*/*" indicating all m
types and "type/*" indicating all subtypes of that type.

The parameter q is used to indicate the quality factor, which represents the user‘s preference
range of media types. The parameter mbx gives the maximum acceptable size of the response
The default values are: q=1 and mbx=infinity. If no Accept header is present, then the client acce
media types with q=1.

For example:

 Accept: audio/*;q=0.2;mbx=200000, audio/basic

would mean: "I prefer audio/basic (of any size), but send me any audio type if it is the best ava
after an 80% mark−down in quality and its size is less than 200000 bytes"

Accept−Charset
Used to indicate what character sets are acceptable for the response. The "us−ascii" charact
assumed to be acceptable for all user agents. If no Accept−Charset field is given, the default is t
charset is acceptable. Example:

 Accept−Charset: iso−8859−1, unicode−1−1

Accept−Encoding
Restricts the Content−Encoding values which are acceptable in the response. If no Accept−En
field is present, the server may assume that the client will accept any content encoding. An
Accept−Encoding means that no content encoding is acceptable. Example:

 Accept−Encoding: compress, gzip

Accept−Language
This field is similar to Accept, but restrict the set of natural languages that are preferred as a res
Each language may be given an associated quality value which represents an estimate of th
comprehension of that language. For example:

 Accept−Language: no, en−gb;q=0.8, de;q=0.55

would mean: "I prefer Norwegian, but will accept British English (with 80% comprehension) or Ger
(with 55% comprehension).

COPYRIGHT
Copyright 1996, Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself

AUTHOR
Gisle Aas <aas@sn.no
1258 Version 5.005_02 18−Oct−1998

HTTP::Date Perl Programmers Reference Guide HTTP::Date

 are

ction

ngth
f this

llowing

nd the

ne to
100")
NAME
HTTP::Date − date conversion routines

SYNOPSIS
 use HTTP::Date;

 $string = time2str($time); # Format as GMT ASCII time
 $time = str2time($string); # convert ASCII date to machine time

DESCRIPTION
This module provides two functions that deal with the HTTP date format. The following functions
provided:

time2str([$time])
The time2str() function converts a machine time (seconds since epoch) to a string. If the fun
is called without an argument, it will use the current time.

The string returned is in the format defined by the HTTP/1.0 specification. This is a fixed le
subset of the format defined by RFC 1123, represented in Universal Time (GMT). An example o
format is:

 Thu, 03 Feb 1994 17:09:00 GMT

str2time($str [, $zone])
The str2time() function converts a string to machine time. It returns undef if the format is
unrecognized, or the year is not between 1970 and 2038. The function is able to parse the fo
formats:

 "Wed, 09 Feb 1994 22:23:32 GMT" −− HTTP format
 "Thu Feb 3 17:03:55 GMT 1994" −− ctime(3) format
 "Thu Feb 3 00:00:00 1994", −− ANSI C asctime() format
 "Tuesday, 08−Feb−94 14:15:29 GMT" −− old rfc850 HTTP format
 "Tuesday, 08−Feb−1994 14:15:29 GMT" −− broken rfc850 HTTP format

 "03/Feb/1994:17:03:55 −0700" −− common logfile format
 "09 Feb 1994 22:23:32 GMT" −− HTTP format (no weekday)
 "08−Feb−94 14:15:29 GMT" −− rfc850 format (no weekday)
 "08−Feb−1994 14:15:29 GMT" −− broken rfc850 format (no weekday)

 "1994−02−03 14:15:29 −0100" −− ISO 8601 format
 "1994−02−03 14:15:29" −− zone is optional
 "1994−02−03" −− only date
 "1994−02−03T14:15:29" −− Use T as separator
 "19940203T141529Z" −− ISO 8601 compact format
 "19940203" −− only date

 "08−Feb−94" −− old rfc850 HTTP format (no weekday, no time)
 "08−Feb−1994" −− broken rfc850 HTTP format (no weekday, no time)
 "09 Feb 1994" −− proposed new HTTP format (no weekday, no time)
 "03/Feb/1994" −− common logfile format (no time, no offset)

 "Feb 3 1994" −− Unix ’ls −l’ format
 "Feb 3 17:03" −− Unix ’ls −l’ format

 "11−15−96 03:52PM" −− Windows ’dir’ format

The parser ignores leading and trailing whitespace. It also allow the seconds to be missing a
month to be numerical in most formats.

The str2time() function takes an optional second argument that specifies the default time zo
use when converting the date. This zone specification should be numerical (like "−0800" or "+0
18−Oct−1998 Version 5.005_02 1259

HTTP::Date Perl Programmers Reference Guide HTTP::Date

meter
e zone

ot use

 name

.
or "GMT". This parameter is ignored if the zone is specified in the date string itself. It this para
is missing, and the date string format does not contain any zone specification then the local tim
is assumed.

If the year is missing, then we assume that the date is the first matching date before current time.

BUGS
Non−numerical time zones (like MET, PST) are all treated like GMT. Do not use them. HTTP does n
them.

The str2time() function has been told how to parse far too many formats. This makes the module
misleading. To be sure it is really misleading you can also import the time2iso() and time2isoz()
functions. They work like time2str() but produce ISO−8601 formated strings (YYYY−MM−DD
hh:mm:ss).

COPYRIGHT
Copyright 1995−1997, Gisle Aas

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself
1260 Version 5.005_02 18−Oct−1998

Bundle::LWP Perl Programmers Reference Guide Bundle::LWP
NAME
Bundle::LWP − A bundle to install all libwww−perl related modules

SYNOPSIS
 perl −MCPAN −e ’install Bundle::LWP’

CONTENTS
URI 0.10 − There are URIs everywhere

Net::FTP 2.00 − If you want ftp://−support

MIME::Base64 − Used in authentication headers

MD5 − Needed to do Digest authentication

HTML::HeadParser − To get the correct $res− base

LWP − The reason why you need the modules above

DESCRIPTION
This bundle defines all reqreq modules for libwww−perl.

AUTHOR
Gisle Aas <aas@sn.no
18−Oct−1998 Version 5.005_02 1261

WWW::RobotRules Perl Programmers Reference Guide WWW::RobotRules

in

access

 expire

ct of

 lines of

This is
NAME
WWW::RobotsRules − Parse robots.txt files

SYNOPSIS
 require WWW::RobotRules;
 my $robotsrules = new WWW::RobotRules ’MOMspider/1.0’;

 use LWP::Simple qw(get);

 $url = "http://some.place/robots.txt";
 my $robots_txt = get $url;
 $robotsrules−>parse($url, $robots_txt);

 $url = "http://some.other.place/robots.txt";
 my $robots_txt = get $url;
 $robotsrules−>parse($url, $robots_txt);

 # Now we are able to check if a URL is valid for those servers that
 # we have obtained and parsed "robots.txt" files for.
 if($robotsrules−>allowed($url)) {
 $c = get $url;
 ...
 }

DESCRIPTION
This module parses a robots.txt file as specified in "A Standard for Robot Exclusion", described
<http://info.webcrawler.com/mak/projects/robots/norobots.html Webmasters can use the robots.txt file to
disallow conforming robots access to parts of their WWW server.

The parsed file is kept in the WWW::RobotRules object, and this object provide methods to check if
to a given URL is prohibited. The same WWW::RobotRules object can parse multiple robots.txt files.

The following methods are provided:

$rules = new WWW::RobotRules ‘MOMspider/1.0’
This is the constructor for WWW::RobotRules objects. The first argument given to new() is the
name of the robot.

$rules− parse($url, $content, $fresh_until)
The parse() method takes as arguments the URL that was used to retrieve the /robots.txt file, and
the contents of the file.

$rules− allowed($url)
Returns TRUE if this robot is allowed to retrieve this URL.

$rules− agent([$name])
Get/set the agent name. NOTE: Changing the agent name will clear the robots.txt rules and
times out of the cache.

ROBOTS.TXT
The format and semantics of the "/robots.txt" file are as follows (this is an edited abstra
<http://info.webcrawler.com/mak/projects/robots/norobots.html):

The file consists of one or more records separated by one or more blank lines. Each record contains
the form

 <field−name>: <value>

The field name is case insensitive. Text after the ‘#’ character on a line is ignored during parsing.
used for comments. The following <field−names can be used:
1262 Version 5.005_02 18−Oct−1998

WWW::RobotRules Perl Programmers Reference Guide WWW::RobotRules

e than
robot.
default

artial

with
User−Agent
The value of this field is the name of the robot the record is describing access policy for. If mor
one User−Agent field is present the record describes an identical access policy for more than one
At least one field needs to be present per record. If the value is ‘*‘, the record describes the
access policy for any robot that has not not matched any of the other records.

Disallow
The value of this field specifies a partial URL that is not to be visited. This can be a full path, or a p
path; any URL that starts with this value will not be retrieved

ROBOTS.TXT EXAMPLES
The following example "/robots.txt" file specifies that no robots should visit any URL starting
"/cyberworld/map/" or "/tmp/":

 User−agent: *
 Disallow: /cyberworld/map/ # This is an infinite virtual URL space
 Disallow: /tmp/ # these will soon disappear

This example "/robots.txt" file specifies that no robots should visit any URL starting with
"/cyberworld/map/", except the robot called "cybermapper":

 User−agent: *
 Disallow: /cyberworld/map/ # This is an infinite virtual URL space

 # Cybermapper knows where to go.
 User−agent: cybermapper
 Disallow:

This example indicates that no robots should visit this site further:

 # go away
 User−agent: *
 Disallow: /

SEE ALSO
LWP::RobotUA, WWW::RobotRules::AnyDBM_File
18−Oct−1998 Version 5.005_02 1263

WWW::RobotRules::AnyDBM_FilePerl Programmers Reference GuideWWW::RobotRules::AnyDBM_File

ent

e. If
from the
NAME
WWW::RobotRules::AnyDBM_File − Persistent RobotRules

SYNOPSIS
 require WWW::RobotRules::AnyDBM_File;
 require LWP::RobotUA;

 # Create a robot useragent that uses a diskcaching RobotRules
 my $rules = new WWW::RobotRules::AnyDBM_File ’my−robot/1.0’, ’cachefile’;
 my $ua = new WWW::RobotUA ’my−robot/1.0’, ’me@foo.com’, $rules;

 # Then just use $ua as usual
 $res = $ua−>request($req);

DESCRIPTION
This is a subclass of WWW::RobotRules that uses the AnyDBM_File package to implement persist
diskcaching of robots.txt and host visit information.

The constructor (the new() method) takes an extra argument specifying the name of the DBM file to us
the DBM file already exists, then you can specify undef as agent name as the name can be obtained
DBM database.

SEE ALSO
WWW::RobotRules, LWP::RobotUA

AUTHORS
Hakan Ardo <hakan@munin.ub2.lu.se, Gisle Aas <aas@sn.no
1264 Version 5.005_02 18−Oct−1998

File::Listing Perl Programmers Reference Guide File::Listing

 ftp

o an

alue is

os’.
ld be

n’ or a
d,
ult is

s a

rr).
NAME
parse_dir − parse directory listing

SYNOPSIS
 use File::Listing;
 for (parse_dir(‘ls −l‘)) {
 ($name, $type, $size, $mtime, $mode) = @$_;
 next if $type ne ’f’; # plain file
 #...
 }

 # directory listing can also be read from a file
 open(LISTING, "zcat ls−lR.gz|");
 $dir = parse_dir(*LISTING, ’+0000’);

DESCRIPTION
The parse_dir() routine can be used to parse directory listings. Currently it only understand Unix ‘ls
−l’ and ‘ls −lR’ format. It should eventually be able to most things you might get back from a
server file listing (LIST command), i.e. VMS listings, NT listings, DOS listings,...

The first parameter to parse_dir() is the directory listing to parse. It can be a scalar, a reference t
array of directory lines or a glob representing a filehandle to read the directory listing from.

The second parameter is the time zone to use when parsing time stamps in the listing. If this v
undefined, then the local time zone is assumed.

The third parameter is the type of listing to assume. The values will be strings like ‘unix‘, ‘vms‘, ‘d
Currently only ‘unix’ is implemented and this is also the default value. Ideally, the listing type shou
determined automatically.

The fourth parameter specify how unparseable lines should be treated. Values can be ‘ignore‘, ‘war
code reference. Warn means that the perl warn() function will be called. If a code reference is passe
then this routine will be called and the return value from it will be incorporated in the listing. The defa
‘ignore’.

Only the first parameter is mandatory. The parse_dir() prototype is ($;$$$).

The return value from parse_dir() is a list of directory entries. In scalar context the return value i
reference to the list. The directory entries are represented by an array consisting of [$filename,
$filetype, $filesize, $filetime, $filemode]. The $filetype value is one of the letters
‘f‘, ‘d‘, ‘l’ or ‘?’. The $filetime value is converted to seconds since Jan 1, 1970. The $filemode is a
bitmask like the mode returned by stat() .

CREDITS
Based on lsparse.pl (from Lee McLoughlin‘s ftp mirror package) and Net::FTP‘s parse_dir (Graham Ba
18−Oct−1998 Version 5.005_02 1265

LWP Perl Programmers Reference Guide LWP

rface
allow
tain

ved from
 these

ently

dural

with

tocol

t that

 with a
version,
body
success

First a

ervice is
NAME
LWP − Library for WWW access in Perl

SYNOPSIS
 use LWP;
 print "This is libwww−perl−$LWP::VERSION\n";

DESCRIPTION
Libwww−perl is a collection of Perl modules which provides a simple and consistent programming inte
(API) to the World−Wide Web. The main focus of the library is to provide classes and functions that
you to write WWW clients, thus libwww−perl said to be a WWW client library. The library also con
modules that are of more general use.

Most modules in this library are object oriented. The user agent, requests sent and responses recei
the WWW server are all represented by objects. This makes a simple and powerful interface to
services. The interface should be easy to extend and customize for your needs.

The main features of the library are:

 Contains various reusable components (modules) that can be used separately or together.

 Provides an object oriented model of HTTP−style communication. Within this framework we curr
support access to http, https, gopher, ftp, news, file, and mailto resources.

 The library be used through the full object oriented interface or through a very simple proce
interface.

 Support the basic and digest authorization schemes.

 Transparent redirect handling.

 Supports access through proxy servers.

 A parser for robots.txt files and a framework for constructing robots.

 The library can cooperate with Tk. A simple Tk−based GUI browser called ‘tkweb’ is distributed
the Tk extension for perl.

 An implementation of the HTTP content negotiation algorithm that can be used both in pro
modules and in server scripts (like CGI scripts).

 It can deal with HTTP cookies.

 A simple command line client application called lwp−request .

HTTP STYLE COMMUNICATION
The libwww−perl library is based on HTTP style communication. This section try to describe wha
means.

Let us start with this quote from the HTTP specification document
<URL:http://www.w3.org/pub/WWW/Protocols/:

 The HTTP protocol is based on a request/response paradigm. A client establishes a connection
server and sends a request to the server in the form of a request method, URI, and protocol
followed by a MIME−like message containing request modifiers, client information, and possible
content. The server responds with a status line, including the message‘s protocol version and a
or error code, followed by a MIME−like message containing server information, entity
meta−information, and possible body content.

What this means to libwww−perl is that communication always take place through these steps:
request object is created and configured. This object is then passed to a server and we get a response object
in return that we can examine. A request is always independent of any previous requests, i.e. the s
stateless. The same simple model is used for any kind of service we want to access.
1266 Version 5.005_02 18−Oct−1998

LWP Perl Programmers Reference Guide LWP

ontains
 engine,
e query
ains our
that the

e
it the

s. The

ontent.

se
ly used

ight be

 a

at
ack a
ith an

etwork.
For example, if we want to fetch a document from a remote file server, then we send it a request that c
a name for that document and the response will contain the document itself. If we access a search
then the content of the request will contain the query parameters and the response will contain th
result. If we want to send a mail message to somebody then we send a request object which cont
message to the mail server and the response object will contain an acknowledgment that tells us
message has been accepted and will be forwarded to the recipient(s).

It is as simple as that!

The Request Object
The request object has the class name HTTP::Request in libwww−perl. The fact that the class name us
HTTP:: as a name prefix only implies that we use the HTTP model of communication. It does not lim
kind of services we can try to pass this request to. For instance, we will send HTTP::Request s both to ftp
and gopher servers, as well as to the local file system.

The main attributes of the request objects are:

 The method is a short string that tells what kind of request this is. The most used methods are GET,
PUT, POST and HEAD .

 The url is a string denoting the protocol, server and the name of the "document" we want to acces
url might also encode various other parameters.

 The headers contain additional information about the request and can also used to describe the c
The headers is a set of keyword/value pairs.

 The content is an arbitrary amount of data.

The Response Object
The response object has the class name HTTP::Response in libwww−perl. The main attributes of objects
of this class are:

 The code is a numerical value that encode the overall outcome of the request.

 The message is a short (human readable) string that corresponds to the code.

 The headers contain additional information about the response and they also describe the content.

 The content is an arbitrary amount of data.

Since we don‘t want to handle all possible code values directly in our programs, the libwww−perl respon
object have methods that can be used to query what kind of response this is. The most common
response classification methods are:

is_success()
The request was was successfully received, understood or accepted.

is_error()
The request failed. The server or the resource might not be available, access to the resource m
denied or other things might have failed for some reason.

The User Agent
Let us assume that we have created a request object. What do we actually do with it in order to receive
response?

The answer is that you pass it on to a user agent object and this object will take care of all the things th
need to be done (low−level communication and error handling). The user agent will give you b
response object. The user agent represents your application on the network and it provides you w
interface that can accept requests and will return responses.

You should think about the user agent as an interface layer between your application code and the n
Through this interface you are able to access the various servers on the network.
18−Oct−1998 Version 5.005_02 1267

LWP Perl Programmers Reference Guide LWP

by this
)

rk and

ibrary

.

ication.

n of

er.

 certain

et this
ed

e:

or each

that are

t

The libwww−perl class name for the user agent is LWP::UserAgent . Every libwww−perl application that
wants to communicate should create at least one object of this kind. The main method provided
object is request() . This method takes an HTTP::Request object as argument and will (eventually
return a HTTP::Response object.

The user agent has many other attributes that lets you configure how it will interact with the netwo
with your application code.

 The timeout specify how much time we give remote servers in creating responses before the l
disconnect and creates an internal timeout response.

 The agent specify the name that your application should use when it presents itself on the network

 The from attribute can be set to the e−mail address of the person responsible for running the appl
 If this is set, then the address will be sent to the servers with every request.

 The parse_head specify whether we should initialize response headers from the <head sectio
HTML documents.

 The proxy and no_proxy specify if and when communication should go through a proxy serv
<URL:http://www.w3.org/pub/WWW/Proxies/

 The credentials provide a way to set up user names and passwords that is needed to access
services.

Many applications would want even more control over how they interact with the network and they g
by specializing the LWP::UserAgent by sub−classing. The library provide a specialization call
LWP::RobotUA that is used by robot applications.

An Example
This example shows how the user agent, a request and a response are represented in actual perl cod

 # Create a user agent object
 use LWP::UserAgent;
 $ua = new LWP::UserAgent;
 $ua−>agent("AgentName/0.1 " . $ua−>agent);

 # Create a request
 my $req = new HTTP::Request POST => ’http://www.perl.com/cgi−bin/BugGlimpse’;
 $req−>content_type(’application/x−www−form−urlencoded’);
 $req−>content(’match=www&errors=0’);

 # Pass request to the user agent and get a response back
 my $res = $ua−>request($req);

 # Check the outcome of the response
 if ($res−>is_success) {
 print $res−>content;
 } else {
 print "Bad luck this time\n";
 }

The $ua is created once when the application starts up. New request objects are normally created f
request sent.

NETWORK SUPPORT
This section goes through the various protocol schemes and describe the HTTP style methods
supported and the headers that might have any effect.

For all requests, a "User−Agent" header is added and initialized from the $ua− agent value before the reques
is handed to the network layer. In the same way, a "From" header is initialized from the $ua− from value.
1268 Version 5.005_02 18−Oct−1998

LWP Perl Programmers Reference Guide LWP

 when
e server
 by the

servers
eally

 is sent

al.

ORM

 are

rary to

veloped
 library
r" to

 on the
rver and
der is

ting

This is

s return
zation

ontent

andard
is).

 See
For all responses, the library will add a header called "Client−Date". This header will encode the time
the response was received by your application. This format and semantics of the header is just like th
created "Date" header. You can also encounter other "Client−XXX" headers. They are all generated
library internally and not something really passed on from the servers.

HTTP Requests
HTTP request are really just handed off to an HTTP server and it will decide what happens. Few
implement methods beside the usual "GET", "HEAD", "POST" and "PUT" but CGI−scripts can r
implement any method they like.

If the server is not available then the library will generate an internal error response.

The library automatically adds a "Host" and a "Content−Length" header to the HTTP request before it
over the network.

For GET request you might want to add the "If−Modified−Since" header to make the request condition

For POST request you should add the "Content−Type" header. When you try to emulate HTML <F
handling you should usually let the value of the "Content−Type" header be
"application/x−www−form−urlencoded". See lwpcook for examples of this.

The libwww−perl HTTP implementation currently support the HTTP/1.0 protocol. HTTP/0.9 servers
also handled correctly.

The library allows you to access proxy server through HTTP. This means that you can set up the lib
forward all types of request through the HTTP protocol module. See LWP::UserAgent for documentation of
this.

HTTPS Requests
HTTPS requests are HTTP requests over an encrypted network connection using the SSL protocol de
by Netscape. Everything about HTTP requests above also hold for HTTPS requests. In addition the
will add the headers "Client−SSL−Cipher", "Client−SSL−Cert−Subject" and "Client−SSL−Cert−Issue
the response. These headers denote the encryption method used and the name of the server owner.

The request can contain the header "If−SSL−Cert−Subject" in order to make the request conditional
content of the server certificate. If the certificate subject does not match, no request is sent to the se
an internally generated error response is returned. The value of the "If−SSL−Cert−Subject" hea
interpreted as a Perl regular expression.

FTP Requests
The library currently support GET, HEAD and PUT requests. GET will retrieve a file or a directory lis
from an FTP server. PUT will store a file on a ftp server.

You can specify a ftp account for servers that want this in addition user name and password.
specified by passing an "Account" header in the request.

User name/password can be specified using basic authorization or be encoded in the URL. Bad login
an UNAUTHORIZED response with "WWW−Authenticate: Basic" and can be treated as basic authori
for HTTP.

The library support ftp ASCII transfer mode by specifying the "type=a" parameter in the URL.

Directory listings are by default returned unprocessed (as returned from the ftp server) with the c
media type reported to be "text/ftp−dir−listing". The File::Listing module provide functionality for
parsing of these directory listing.

The ftp module is also able to convert directory listings to HTML and this can be requested via the st
HTTP content negotiation mechanisms (add an "Accept: text/html" header in the request if you want th

The normal file retrievals, the "Content−Type" is guessed based on the file name suffix.
LWP::MediaTypes.
18−Oct−1998 Version 5.005_02 1269

LWP Perl Programmers Reference Guide LWP

 will

 news
ssible

o post

gnored.

 request

er is
to

 and

 passed
The "If−Modified−Since" request header works for servers that implement the MDTM command. It
probably not work for directory listings though.

Example:

 $req = HTTP::Request−>new(GET => ’ftp://me:passwd@ftp.some.where.com/’);
 $req−>header(Accept => "text/html, */*;q=0.1");

News Requests
Access to the USENET News system is implemented through the NNTP protocol. The name of the
server is obtained from the NNTP_SERVER environment variable and defaults to "news". It is not po
to specify the hostname of the NNTP server in the news:−URLs.

The library support GET and HEAD to retrieve news articles through the NNTP protocol. You can als
articles to newsgroups by using (surprise!) the POST method.

GET on newsgroups is not implemented yet.

Examples:

 $req = HTTP::Request−>new(GET => ’news:abc1234@a.sn.no’);

 $req = HTTP::Request−>new(POST => ’news:comp.lang.perl.test’);
 $req−>header(Subject => ’This is a test’,
 From => ’me@some.where.org’);
 $req−>content(<<EOT);
 This is the content of the message that we are sending to
 the world.
 EOT

Gopher Request
The library supports the GET and HEAD method for gopher request. All request header values are i
HEAD cheats and will return a response without even talking to server.

Gopher menus are always converted to HTML.

The response "Content−Type" is generated from the document type encoded (as the first letter) in the
URL path itself.

Example:

 $req = HTTP::Request−>new(GET => ’gopher://gopher.sn.no/’);

File Request
The library supports GET and HEAD methods for file requests. The "If−Modified−Since" head
supported. All other headers are ignored. The host component of the file URL must be empty or set
"localhost". Any other host value will be treated as an error.

Directories are always converted to an HTML document. For normal files, the "Content−Type"
"Content−Encoding" in the response are guessed based on the file suffix.

Example:

 $req = HTTP::Request−>new(GET => ’file:/etc/passwd’);

Mailto Request
You can send (aka "POST") mail messages using the library. All headers specified for the request are
on to the mail system. The "To" header is initialized from the mail address in the URL.

Example:

 $req = HTTP::Request−>new(POST => ’mailto:libwww−perl−request@ics.uci.edu’);
 $req−>header(Subject => "subscribe");
 $req−>content("Please subscribe me to the libwww−perl mailing list!\n");
1270 Version 5.005_02 18−Oct−1998

LWP Perl Programmers Reference Guide LWP

s class

 look

 file.

ained

Oscar
Marc
 Wall;

ham
OVERVIEW OF CLASSES AND PACKAGES
This table should give you a quick overview of the classes provided by the library. Indentation show
inheritance.

 LWP::MemberMixin −− Access to member variables of Perl5 classes
 LWP::UserAgent −− WWW user agent class
 LWP::RobotUA −− When developing a robot applications
 LWP::Protocol −− Interface to various protocol schemes
 LWP::Protocol::http −− http:// access
 LWP::Protocol::file −− file:// access
 LWP::Protocol::ftp −− ftp:// access
 ...

 LWP::Authen::Basic −− Handle 401 and 407 responses
 LWP::Authen::Digest

 HTTP::Headers −− MIME/RFC822 style header (used by HTTP::Message)
 HTTP::Message −− HTTP style message
 HTTP::Request −− HTTP request
 HTTP::Response −− HTTP response
 HTTP::Daemon −− A HTTP server class

 WWW::RobotRules −− Parse robots.txt files
 WWW::RobotRules::AnyDBM_File −− Persistent RobotRules

The following modules provide various functions and definitions.

 LWP −− This file. Library version number and documentation.
 LWP::MediaTypes −− MIME types configuration (text/html etc.)
 LWP::Debug −− Debug logging module
 LWP::Simple −− Simplified procedural interface for common functions
 HTTP::Status −− HTTP status code (200 OK etc)
 HTTP::Date −− Date parsing module for HTTP date formats
 HTTP::Negotiate −− HTTP content negotiation calculation
 File::Listing −− Parse directory listings

MORE DOCUMENTATION
All modules contain detailed information on the interfaces they provide. The lwpcook manpage is the
libwww−perl cookbook that contain examples of typical usage of the library. You might want to take a
at how the scripts lwp−request , lwp−rget and lwp−mirror are implemented.

BUGS
The library can not handle multiple simultaneous requests yet. Also, check out what‘s left in the TODO

ACKNOWLEDGEMENTS
This package owes a lot in motivation, design, and code, to the libwww−perl library for Perl 4, maint
by Roy Fielding <fielding@ics.uci.edu.

That package used work from Alberto Accomazzi, James Casey, Brooks Cutter, Martijn Koster,
Nierstrasz, Mel Melchner, Gertjan van Oosten, Jared Rhine, Jack Shirazi, Gene Spafford,
VanHeyningen, Steven E. Brenner, Marion Hakanson, Waldemar Kebsch, Tony Sanders, and Larry
see the libwww−perl−0.40 library for details.

The primary architect for this Perl 5 library is Martijn Koster and Gisle Aas, with lots of help from Gra
Barr, Tim Bunce, Andreas Koenig, Jared Rhine, and Jack Shirazi.
18−Oct−1998 Version 5.005_02 1271

LWP Perl Programmers Reference Guide LWP

.
COPYRIGHT
 Copyright 1995−1998, Gisle Aas
 Copyright 1995, Martijn Koster

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself

AVAILABILITY
The latest version of this library is likely to be available from:

 http://www.sn.no/libwww−perl/

The best place to discuss this code is on the <libwww−perl@ics.uci.edu mailing list.
1272 Version 5.005_02 18−Oct−1998

Win32::ChangeNotify Perl Programmers Reference Guide Win32::ChangeNotify

e Perl

d by

ecome
NAME
Win32::ChangeNotify − Monitor events related to files and directories

SYNOPSIS
require Win32::ChangeNotify;

$notify = Win32::ChangeNotify−>new($Path,$WatchSubTree,$Events);
$notify−>wait or warn "Something failed: $!\n";
There has been a change.

DESCRIPTION
This module allows the user to use a Win32 change notification event object from Perl. This allows th
program to monitor events relating to files and directory trees.

The wait method and wait_all & wait_any functions are inherited from the "Win32::IPC" module.

Methods

$notify = Win32::ChangeNotify−new($path, $subtree, $filter)
Constructor for a new ChangeNotification object. $path is the directory to monitor. If $subtree
is true, then all directories under $path will be monitored. $filter indicates what events should
trigger a notification. It should be a string containing any of the following flags (separate
whitespace and/or |).

 ATTRIBUTES Any attribute change
 DIR_NAME Any directory name change
 FILE_NAME Any file name change (creating/deleting/renaming)
 LAST_WRITE Any change to a file’s last write time
 SECURITY Any security descriptor change
 SIZE Any change in a file’s size

($filter can also be an integer composed from the FILE_NOTIFY_CHANGE_* constants.)

$notify− close
Shut down monitoring. You could just undef $notify instead (but close works even if there are
other copies of the object). This happens automatically when your program exits.

$notify− reset
Resets the ChangeNotification object after a change has been detected. The object will b
signalled again after the next change. (It is OK to call this immediately after new, but it is not
required.)

$notify− wait
See "Win32::IPC". Remember to call reset afterwards if you want to continue monitoring.

Deprecated Functions and Methods
Win32::ChangeNotify still supports the ActiveWare syntax, but its use is deprecated.

FindFirst($Obj,$PathName,$WatchSubTree,$Filter)
Use

 $Obj = Win32::ChangeNotify−>new($PathName,$WatchSubTree,$Filter)

instead.

$obj− FindNext()
Use $obj−>reset instead.
18−Oct−1998 Version 5.005_02 1273

Win32::ChangeNotify Perl Programmers Reference Guide Win32::ChangeNotify
$obj− Close()
Use $obj−>close instead.

AUTHOR
Christopher J. Madsen <ac608@yfn.ysu.edu>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
1274 Version 5.005_02 18−Oct−1998

Win32::Event Perl Programmers Reference Guide Win32::Event

 is
lt

ll
NAME
Win32::Event − Use Win32 event objects from Perl

SYNOPSIS
use Win32::Event;

$event = Win32::Event−>new($manual,$initial,$name);
$event−>wait();

DESCRIPTION
This module allows access to the Win32 event objects. The wait method and wait_all & wait_any
functions are inherited from the "Win32::IPC" module.

Methods

$event = Win32::Event−new([$manual, [$initial, [$name]]])
Constructor for a new event object. If $manual is true, you must manually reset the event after it
signalled (the default is false). If $initial is true, the initial state of the object is signalled (defau
false). If $name is omitted, creates an unnamed event object.

If $name signifies an existing event object, then $manual and $initial are ignored and the object
is opened.

$event = Win32::Event−open($name)
Constructor for opening an existing event object.

$event− pulse
Signal the $event and then immediately reset it. If $event is a manual−reset event, releases a
threads currently blocking on it. If it‘s an auto−reset event, releases just one thread.

If no threads are waiting, just resets the event.

$event− reset
Reset the $event to nonsignalled.

$event− set
Set the $event to signalled.

$event− wait([$timeout])
Wait for $event to be signalled. See "Win32::IPC".

AUTHOR
Christopher J. Madsen <ac608@yfn.ysu.edu>
18−Oct−1998 Version 5.005_02 1275

Win32::File Perl Programmers Reference Guide Win32::File

orted

−ed

f the
NAME
Win32::File − manage file attributes in perl

SYNOPSIS
use Win32::File;

DESCRIPTION
This module offers the retrieval and setting of file attributes.

Functions

NOTE
All of the functions return FALSE (0) if they fail, unless otherwise noted. The function names are exp
into the caller‘s namespace by request.

GetAttributes(filename, returnedAttributes)
Gets the attributes of a file or directory. returnedAttributes will be set to the OR
combination of the filename attributes.

SetAttributes(filename, newAttributes)
Sets the attributes of a file or directory. newAttributes must be an OR−ed combination o
attributes.

Constants
The following constants are exported by default.

ARCHIVE
COMPRESSED
DIRECTORY
HIDDEN
NORMAL
OFFLINE
READONLY
SYSTEM
TEMPORARY
1276 Version 5.005_02 18−Oct−1998

Win32::FileSecurity Perl Programmers Reference Guide Win32::FileSecurity

 use
om File
NAME
Win32::FileSecurity − manage FileSecurity Discretionary Access Control Lists in perl

SYNOPSIS
use Win32::FileSecurity;

DESCRIPTION
This module offers control over the administration of system FileSecurity DACLs. You may want to
Get and EnumerateRights to get an idea of what mask values correspond to what rights as viewed fr
Manager.

CONSTANTS
 DELETE, READ_CONTROL, WRITE_DAC, WRITE_OWNER,
 SYNCHRONIZE, STANDARD_RIGHTS_REQUIRED,
 STANDARD_RIGHTS_READ, STANDARD_RIGHTS_WRITE,
 STANDARD_RIGHTS_EXECUTE, STANDARD_RIGHTS_ALL,
 SPECIFIC_RIGHTS_ALL, ACCESS_SYSTEM_SECURITY,
 MAXIMUM_ALLOWED, GENERIC_READ, GENERIC_WRITE,
 GENERIC_EXECUTE, GENERIC_ALL, F, FULL, R, READ,
 C, CHANGE

FUNCTIONS

NOTE:
All of the functions return FALSE (0) if they fail, unless otherwise noted. Errors returned via $! containing
both Win32 GetLastError() and a text message indicating Win32 function that failed.

constant($name, $set)
Stores the value of named constant $name into $set. Same as $set =
Win32::FileSecurity::NAME_OF_CONSTANT(); .

Get($filename, \%permisshash)
Gets the DACLs of a file or directory.

Set($filename, \%permisshash)
Sets the DACL for a file or directory.

EnumerateRights($mask, \@rightslist)
Turns the bitmask in $mask into a list of strings in @rightslist.

MakeMask(qw(DELETE READ_CONTROL))
Takes a list of strings representing constants and returns a bitmasked integer value.

%permisshash
Entries take the form $permisshash{USERNAME} = $mask ;

EXAMPLE1
 # Gets the rights for all files listed on the command line.
 use Win32::FileSecurity qw(Get EnumerateRights);

 foreach(@ARGV) {
next unless −e $_ ;
if (Get($_, \%hash)) {
 while(($name, $mask) = each %hash) {

print "$name:\n\t";
EnumerateRights($mask, \@happy) ;
print join("\n\t", @happy), "\n";

 }
18−Oct−1998 Version 5.005_02 1277

Win32::FileSecurity Perl Programmers Reference Guide Win32::FileSecurity

 # for di
}
else {
 print("Error #", int($!), ": $!") ;
}

 }

EXAMPLE2
 # Gets existing DACL and modifies Administrator rights
 use Win32::FileSecurity qw(MakeMask Get Set);

 # These masks show up as Full Control in File Manager
 $file = MakeMask(qw(FULL));

 $dir = MakeMask(qw(
 FULL
GENERIC_ALL

));

 foreach(@ARGV) {
s/\\$//;
next unless −e;
Get($_, \%hash) ;
$hash{Administrator} = (−d) ? $dir : $file ;
Set($_, \%hash) ;

 }

COMMON MASKS FROM CACLS AND WINFILE

READ
MakeMask(qw(FULL)); # for files
MakeMask(qw(READ GENERIC_READ GENERIC_EXECUTE)); # for directories

CHANGE
MakeMask(qw(CHANGE)); # for files
MakeMask(qw(CHANGE GENERIC_WRITE GENERIC_READ GENERIC_EXECUTE));

ADD & READ
MakeMask(qw(ADD GENERIC_READ GENERIC_EXECUTE)); # for directories only!

FULL
MakeMask(qw(FULL)); # for files
MakeMask(qw(FULL GENERIC_ALL)); # for directories

RESOURCES
From Microsoft: check_sd

http://premium.microsoft.com/download/msdn/samples/2760.exe

(thanks to Guert Schimmel at Sybase for turning me on to this one)

VERSION
1.03 ALPHA 97−12−14

REVISION NOTES

1.03 ALPHA 1998.01.11
Imported diffs from 0.67 (parent) version

1.02 ALPHA 1997.12.14
Pod fixes, @EXPORT list additions <gsar@umich.edu
1278 Version 5.005_02 18−Oct−1998

Win32::FileSecurity Perl Programmers Reference Guide Win32::FileSecurity

cess

by
Fix unitialized vars on unknown ACLs <jmk@exc.bybyte.de

1.01 ALPHA 1997.04.25
CORE Win32 version imported from 0.66 <gsar@umich.edu

0.67 ALPHA 1997.07.07
Kludged bug in mapping bits to separate ACE‘s. Notably, this screwed up CHANGE ac
by leaving out a delete bit in the INHERIT_ONLY_ACE | OBJECT_INHERIT_ACE
Access Control Entry.

May need to rethink...

0.66 ALPHA 1997.03.13
Fixed bug in memory allocation check

0.65 ALPHA 1997.02.25
Tested with 5.003 build 303

Added ISA exporter, and @EXPORT_OK

Added F, FULL, R, READ, C, CHANGE as composite pre−built mask names.

Added server\ to keys returned in hash from Get

Made constants and MakeMask case insensitive (I don‘t know why I did that)

Fixed mask comparison in ListDacl and Enumerate Rights from simple & mask to exact bit
match ! ((x & y) ^ x) makes sure all bits in x are set in y

Fixed some "wild" pointers

0.60 ALPHA 1996.07.31
Now suitable for file and directory permissions

Included ListDacl.exe in bundle for debugging

Added "intuitive" inheritance for directories, basically functions like FM triggered
presence of GENERIC_ rights this may need to change

see EXAMPLE2

Changed from AddAccessAllowedAce to AddAce for control over inheritance

0.51 ALPHA 1996.07.20
Fixed memory allocation bug

0.50 ALPHA 1996.07.29
Base functionality

Using AddAccessAllowedAce

Suitable for file permissions

KNOWN ISSUES / BUGS

1 May not work on remote drives.

2 Errors croak, don‘t return via $! as documented.
18−Oct−1998 Version 5.005_02 1279

Install Perl Programmers Reference Guide Install

e

−do−it
ries to
from"

 install

the
than

ker

nt is a

onding
ctory.
NAME
ExtUtils::Install − install files from here to there

SYNOPSIS
use ExtUtils::Install;

install($hashref,$verbose,$nonono);

uninstall($packlistfile,$verbose,$nonono);

pm_to_blib($hashref);

DESCRIPTION
Both install() and uninstall() are specific to the way ExtUtils::MakeMaker handles th
installation and deinstallation of perl modules. They are not designed as general purpose tools.

install() takes three arguments. A reference to a hash, a verbose switch and a don‘t−really
switch. The hash ref contains a mapping of directories: each key/value pair is a combination of directo
be copied. Key is a directory to copy from, value is a directory to copy to. The whole tree below the "
directory will be copied preserving timestamps and permissions.

There are two keys with a special meaning in the hash: "read" and "write". After the copying is done,
will write the list of target files to the file named by $hashref−>{write}. If there is another file named
by $hashref−>{read}, the contents of this file will be merged into the written file. The read and
written file may be identical, but on AFS it is quite likely, people are installing to a different directory
the one where the files later appear.

install_default() takes one or less arguments. If no arguments are specified, it takes $ARGV[0] as
if it was specified as an argument. The argument is the value of MakeMaker‘s FULLEXT key, like
Tk/Canvas. This function calls install() with the same arguments as the defaults the MakeMa
would use.

The argumement−less form is convenient for install scripts like

 perl −MExtUtils::Install −e install_default Tk/Canvas

Assuming this command is executed in a directory with populated blib directory, it will proceed as if the
blib was build by MakeMaker on this machine. This is useful for binary distributions.

uninstall() takes as first argument a file containing filenames to be unlinked. The second argume
verbose switch, the third is a no−don‘t−really−do−it−now switch.

pm_to_blib() takes a hashref as the first argument and copies all keys of the hash to the corresp
values efficiently. Filenames with the extension pm are autosplit. Second argument is the autosplit dire
1280 Version 5.005_02 18−Oct−1998

Win32::IPC Perl Programmers Reference Guide Win32::IPC

urself.

f

NAME
Win32::IPC − Base class for Win32 synchronization objects

SYNOPSIS
 use Win32::Event 1.00 qw(wait_any);
 #Create objects.

 wait_any(@ListOfObjects,$timeout);

DESCRIPTION
This module is loaded by the other Win32 synchronization modules. You shouldn‘t need to load it yo
It supplies the wait functions to those modules.

The synchronization modules are "Win32::ChangeNotify", "Win32::Event", "Win32::Mutex", &
"Win32::Semaphore".

Methods
Win32::IPC supplies one method to all synchronization objects.

$obj− wait([$timeout])
Waits for $obj to become signalled. $timeout is the maximum time to wait (in milliseconds). I
$timeout is omitted, waits forever. If $timeout is 0, returns immediately.

Returns:

 +1 The object is signalled
 −1 The object is an abandoned mutex
 0 Timed out
 undef An error occurred

Functions

wait_any(@objects, [$timeout])
Waits for at least one of the @objects to become signalled. $timeout is the maximum time to wait
(in milliseconds). If $timeout is omitted, waits forever. If $timeout is 0, returns immediately.

The return value indicates which object ended the wait:

 +N $object[N−1] is signalled
 −N $object[N−1] is an abandoned mutex
 0 Timed out
 undef An error occurred

If more than one object became signalled, the one with the lowest index is used.

wait_all(@objects, [$timeout])
This is the same as wait_any , but it waits for all the @objects to become signalled. The return
value indicates the last object to become signalled, and is negative if at least one of the @objects is
an abandoned mutex.

Deprecated Functions and Methods
Win32::IPC still supports the ActiveWare syntax, but its use is deprecated.

INFINITE
Constant value for an infinite timeout. Omit the $timeout argument instead.

WaitForMultipleObjects(\@objects, $wait_all, $timeout)
Warning: WaitForMultipleObjects erases @objects ! Use wait_all or wait_any
instead.
18−Oct−1998 Version 5.005_02 1281

Win32::IPC Perl Programmers Reference Guide Win32::IPC
$obj− Wait($timeout)
Similar to not $obj−>wait($timeout).

AUTHOR
Christopher J. Madsen <ac608@yfn.ysu.edu>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
1282 Version 5.005_02 18−Oct−1998

Win32::Mutex Perl Programmers Reference Guide Win32::Mutex

ex
NAME
Win32::Mutex − Use Win32 mutex objects from Perl

SYNOPSIS
require Win32::Mutex;

$mutex = Win32::Mutex−>new($initial,$name);
$mutex−>wait;

DESCRIPTION
This module allows access to the Win32 mutex objects. The wait method and wait_all & wait_any
functions are inherited from the "Win32::IPC" module.

Methods

$mutex = Win32::Mutex−new([$initial, [$name]])
Constructor for a new mutex object. If $initial is true, requests immediate ownership of the mut
(default false). If $name is omitted, creates an unnamed mutex object.

If $name signifies an existing mutex object, then $initial is ignored and the object is opened.

$mutex = Win32::Mutex−open($name)
Constructor for opening an existing mutex object.

$mutex− release
Release ownership of a $mutex. You should have obtained ownership of the mutex through new or
one of the wait functions. Returns true if successful.

$mutex− wait([$timeout])
Wait for ownership of $mutex. See "Win32::IPC".

Deprecated Functions and Methods
Win32::Mutex still supports the ActiveWare syntax, but its use is deprecated.

Create($MutObj,$Initial,$Name)
Use $MutObj = Win32::Mutex−>new($Initial,$Name) instead.

Open($MutObj,$Name)
Use $MutObj = Win32::Mutex−>open($Name) instead.

$MutObj− Release()
Use $MutObj−>release instead.

AUTHOR
Christopher J. Madsen <ac608@yfn.ysu.edu>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
18−Oct−1998 Version 5.005_02 1283

Win32::NetAdmin Perl Programmers Reference Guide Win32::NetAdmin

ver.

 flags,

er.

er.

he full
NAME
Win32::NetAdmin − manage network groups and users in perl

SYNOPSIS
use Win32::NetAdmin;

DESCRIPTION
This module offers control over the administration of groups and users over a network.

FUNCTIONS

NOTE
All of the functions return FALSE (0) if they fail, unless otherwise noted. server is optional for all the
calls below. If not given the local machine is assumed.

GetDomainController(server, domain, returnedName)
Returns the name of the domain controller for server.

GetAnyDomainController(server, domain, returnedName)
Returns the name of any domain controller for a domain that is directly trusted by the ser

UserCreate(server, userName, password, passwordAge, privilege, homeDir, comment, flags,
scriptPath) Creates a user on server with password, passwordAge, privilege, homeDir, comment,
and scriptPath.

UserDelete(server, user)
Deletes a user from server.

UserGetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment,
flags, scriptPath)
Gets password, passwordAge, privilege, homeDir, comment, flags, and scriptPath for us

UserSetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment, flags,
scriptPath) Sets password, passwordAge, privilege, homeDir, comment, flags, and scriptPath for us

UserChangePassword(domainname, username, oldpassword, newpassword)
Changes a users password. Can be run under any account.

UsersExist(server, userName)
Checks if a user exists.

GetUsers(server, filter, userRef)
Fills userRef with user names if it is an array reference and with the user names and t
names if it is a hash reference.

GroupCreate(server, group, comment)
Creates a group.

GroupDelete(server, group)
Deletes a group.

GroupGetAttributes(server, groupName, comment)
Gets the comment.

GroupSetAttributes(server, groupName, comment)
Sets the comment.

GroupAddUsers(server, groupName, users)
Adds a user to a group.
1284 Version 5.005_02 18−Oct−1998

Win32::NetAdmin Perl Programmers Reference Guide Win32::NetAdmin

ence.

r, alias

 seen in
.

e, it is
hes is
GroupDeleteUsers(server, groupName, users)
Deletes a users from a group.

GroupIsMember(server, groupName, user)
Returns TRUE if user is a member of groupName.

GroupGetMembers(server, groupName, userArrayRef)
Fills userArrayRef with the members of groupName.

LocalGroupCreate(server, group, comment)
Creates a local group.

LocalGroupDelete(server, group)
Deletes a local group.

LocalGroupGetAttributes(server, groupName, comment)
Gets the comment.

LocalGroupSetAttributes(server, groupName, comment)
Sets the comment.

LocalGroupIsMember(server, groupName, user)
Returns TRUE if user is a member of groupName.

LocalGroupGetMembers(server, groupName, userArrayRef)
Fills userArrayRef with the members of groupName.

LocalGroupGetMembersWithDomain(server, groupName, userRef)
This function is similar LocalGroupGetMembers but accepts an array or a hash refer
Unlike LocalGroupGetMembers it returns each user name as DOMAIN\USERNAME. If a hash
reference is given, the function returns to each user or group name the type (group, use
etc.). The possible types are as follows:

 $SidTypeUser = 1;
 $SidTypeGroup = 2;
 $SidTypeDomain = 3;
 $SidTypeAlias = 4;
 $SidTypeWellKnownGroup = 5;
 $SidTypeDeletedAccount = 6;
 $SidTypeInvalid = 7;
 $SidTypeUnknown = 8;

LocalGroupAddUsers(server, groupName, users)
Adds a user to a group.

LocalGroupDeleteUsers(server, groupName, users)
Deletes a users from a group.

GetServers(server, domain, flags, serverRef)
Gets an array of server names or an hash with the server names and the comments as
the Network Neighborhood or the server manager. For flags, see SV_TYPE_* constants

GetTransports(server, transportRef)
Enumerates the network transports of a computer. If transportRef is an array referenc
filled with the transport names. If transportRef is a hash reference then a hash of has
filled with the data for the transports.
18−Oct−1998 Version 5.005_02 1285

Win32::NetAdmin Perl Programmers Reference Guide Win32::NetAdmin

a hash
 logon

cified
istrator

racter
LoggedOnUsers(server, userRef)
Gets an array or hash with the users logged on at the specified computer. If userRef is
reference, the value is a semikolon separated string of username, logon domain and
server.

GetAliasFromRID(server, RID, returnedName)
GetUserGroupFromRID(server, RID, returnedName)

Retrieves the name of an alias (i.e local group) or a user group for a RID from the spe
server. These functions can be used for example to get the account name for the admin
account if it is renamed or localized.

Possible values for RID:

 DOMAIN_ALIAS_RID_ACCOUNT_OPS
 DOMAIN_ALIAS_RID_ADMINS
 DOMAIN_ALIAS_RID_BACKUP_OPS
 DOMAIN_ALIAS_RID_GUESTS
 DOMAIN_ALIAS_RID_POWER_USERS
 DOMAIN_ALIAS_RID_PRINT_OPS
 DOMAIN_ALIAS_RID_REPLICATOR
 DOMAIN_ALIAS_RID_SYSTEM_OPS
 DOMAIN_ALIAS_RID_USERS
 DOMAIN_GROUP_RID_ADMINS
 DOMAIN_GROUP_RID_GUESTS
 DOMAIN_GROUP_RID_USERS
 DOMAIN_USER_RID_ADMIN
 DOMAIN_USER_RID_GUEST

GetServerDisks(server, arrayRef)
Returns an array with the disk drives of the specified server. The array contains two−cha
strings (drive letter followed by a colon).
1286 Version 5.005_02 18−Oct−1998

Win32::NetResource Perl Programmers Reference Guide Win32::NetResource

over a

 by hash

m

NAME
Win32::NetResource − manage network resources in perl

SYNOPSIS
 use Win32::NetResource;

 $ShareInfo = {
 ’path’ => "C:\\MyShareDir",
 ’netname’ => "MyShare",
 ’remark’ => "It is good to share",
 ’passwd’ => "",
 ’current−users’ =>0,
 ’permissions’ => 0,
 ’maxusers’ => −1,
 ’type’ => 0,
 };

 Win32::NetResource::NetShareAdd($ShareInfo,$parm)
 or die "unable to add share";

DESCRIPTION
This module offers control over the network resources of Win32.Disks, printers etc can be shared
network.

DATA TYPES
There are two main data types required to control network resources. In Perl these are represented
types.

%NETRESOURCE
 KEY VALUE

 ’Scope’ => Scope of an Enumeration
 RESOURCE_CONNECTED,
 RESOURCE_GLOBALNET,
 RESOURCE_REMEMBERED.

 ’Type’ => The type of resource to Enum
 RESOURCETYPE_ANY All resources
 RESOURCETYPE_DISK Disk resources
 RESOURCETYPE_PRINT Print resources

 ’DisplayType’ => The way the resource should be displayed.
 RESOURCEDISPLAYTYPE_DOMAIN
 The object should be displayed as a domain.
 RESOURCEDISPLAYTYPE_GENERIC
 The method used to display the object does not
 RESOURCEDISPLAYTYPE_SERVER
 The object should be displayed as a server.
 RESOURCEDISPLAYTYPE_SHARE
 The object should be displayed as a sharepoint.

 ’Usage’ => Specifies the Resources usage:
 RESOURCEUSAGE_CONNECTABLE
 RESOURCEUSAGE_CONTAINER.

 ’LocalName’ => Name of the local device the resource is
 connected to.

 ’RemoteName’ => The network name of the resource.
18−Oct−1998 Version 5.005_02 1287

Win32::NetResource Perl Programmers Reference Guide Win32::NetResource
 ’Comment’ => A string comment.

 ’Provider’ => Name of the provider of the resource.

%SHARE_INFO
This hash represents the SHARE_INFO_502 struct.

 KEY VALUE
 ’netname’ => Name of the share.
 ’type’ => type of share.
 ’remark’ => A string comment.
 ’permissions’ => Permissions value
 ’maxusers’ => the max # of users.
 ’current−users’ => the current # of users.
 ’path’ => The path of the share.
 ’passwd’ => A password if one is req’d

FUNCTIONS

NOTE
All of the functions return FALSE (0) if they fail.

GetSharedResources(\@Resources,dwType)
Creates a list in @Resources of %NETRESOURCE hash references.

AddConnection(\%NETRESOURCE,$Password,$UserName,$Connection)
Makes a connection to a network resource specified by %NETRESOURCE

CancelConnection($Name,$Connection,$Force)
Cancels a connection to a network resource connected to local device
$name.$Connection is either 1 − persistent connection or 0, non−persistent.

WNetGetLastError($ErrorCode,$Description,$Name)
Gets the Extended Network Error.

GetError($ErrorCode)
Gets the last Error for a Win32::NetResource call.

GetUNCName($UNCName, $LocalPath);
Returns the UNC name of the disk share connected to $LocalPath in $UNCName.

NOTE
$servername is optional for all the calls below. (if not given the local machine is assumed.)

NetShareAdd(\%SHARE,$parm_err,$servername = NULL)
Add a share for sharing.

NetShareCheck($device,$type,$servername = NULL)
Check if a share is available for connection.

NetShareDel($netname, $servername = NULL)
Remove a share from a machines list of shares.

NetShareGetInfo($netname, \%SHARE,$servername=NULL)
Get the %SHARE_INFO information about the share $netname on the server $servername.

NetShareSetInfo($netname,\%SHARE,$parm_err,$servername=NULL)
Set the information for share $netname.
1288 Version 5.005_02 18−Oct−1998

Win32::NetResource Perl Programmers Reference Guide Win32::NetResource

up the
AUTHOR
Jesse Dougherty for Hip Communications. Gurusamy Sarathy <gsar@umich.edu had to clean
horrendous code and the bugs.
18−Oct−1998 Version 5.005_02 1289

Win32::OLE::Const Perl Programmers Reference Guide Win32::OLE::Const

. The
ly the
es.

 users

e type
n

s the

If the
ched.
ored

ed.

If no

g this

onstant

queried
 to be
NAME
Win32::OLE::Const − Extract constant definitions from TypeLib

SYNOPSIS
 use Win32::OLE::Const ’Microsoft Excel’;
 printf "xlMarkerStyleDot = %d\n", xlMarkerStyleDot;

 my $wd = Win32::OLE::Const−>Load("Microsoft Word 8\\.0 Object Library");
 foreach my $key (keys %$wd) {
 printf "$key = %s\n", $wd−>{$key};
 }

DESCRIPTION
This modules makes all constants from a registered OLE type library available to the Perl program
constant definitions can be imported as functions, providing compile time name checking. Alternative
constants can be returned in a hash reference which avoids defining lots of functions of unknown nam

Functions/Methods

use Win32::OLE::Const
The use statement can be used to directly import the constant names and values into the
namespace.

 use Win32::OLE::Const (TYPELIB,MAJOR,MINOR,LANGUAGE);

The TYPELIB argument specifies a regular expression for searching through the registry for th
library. Note that this argument is implicitly prefixed with ^ to speed up matches in the most commo
cases. Use a typelib name like ".*Excel" to match anywhere within the description. TYPELIB i
only required argument.

The MAJOR and MINOR arguments specify the requested version of the type specification.
MAJOR argument is used then only typelibs with exactly this major version number will be mat
The MINOR argument however specifies the minimum acceptable minor version. MINOR is ign
if MAJOR is undefined.

If the LANGUAGE argument is used then only typelibs with exactly this language id will be match

The module will select the typelib with the highest version number satisfying the request.
language id is specified then a the default language (0) will be preferred over the others.

Note that only constants with valid Perl variable names will be exported, i.e. names matchin
regexp: /^[a−zA−Z_][a−zA−Z0−9_]*$/.

Win32::OLE::Const−Load
The Win32::OLE::Const−Load method returns a reference to a hash of constant definitions.

 my $const = Win32::OLE::Const−>Load(TYPELIB,MAJOR,MINOR,LANGUAGE);

The parameters are the same as for the use case.

This method is generally preferrable when the typelib uses a non−english language and the c
names contain locale specific characters not allowed in Perl variable names.

Another advantage is that all available constants can now be enumerated.

The load method also accepts an OLE object as a parameter. In this case the OLE object is
about its containing type library and no registry search is done at all. Interestingly this seems
slower.
1290 Version 5.005_02 18−Oct−1998

Win32::OLE::Const Perl Programmers Reference Guide Win32::OLE::Const

alue of
EXAMPLES
The first example imports all Excel constants names into the main namespace and prints the v
xlMarkerStyleDot (−4118).

 use Win32::OLE::Const (’Microsoft Excel 8.0 Object Library’);
 print "xlMarkerStyleDot = %d\n", xlMarkerStyleDot;

The second example returns all Word constants in a hash ref.

 use Win32::OLE::Const;
 my $wd = Win32::OLE::Const−>Load("Microsoft Word 8.0 Object Library");
 foreach my $key (keys %$wd) {
 printf "$key = %s\n", $wd−>{$key};
 }
 printf "wdGreen = %s\n", $wd−>{wdGreen};

The last example uses an OLE object to specify the type library:

 use Win32::OLE;
 use Win32::OLE::Const;
 my $Excel = Win32::OLE−>new(’Excel.Application’, ’Quit’);
 my $xl = Win32::OLE::Const−>Load($Excel);

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
18−Oct−1998 Version 5.005_02 1291

Win32::OLE::Enum Perl Programmers Reference Guide Win32::OLE::Enum

object

cel

t

n (if

 most

same set
thods

gh
NAME
Win32::OLE::Enum − OLE Automation Collection Objects

SYNOPSIS
 my $Sheets = $Excel−>Workbooks(1)−>Worksheets;
 my $Enum = Win32::OLE::Enum−>new($Sheets);
 my @Sheets = $Enum−>All;

 while (defined(my $Sheet = $Enum−>Next)) { ... }

DESCRIPTION
This module provides an interface to OLE collection objects from Perl. It defines an enumerator
closely mirroring the functionality of the IEnumVARIANT interface.

Please note that the Reset() method is not available in all implementations of OLE collections (like Ex
7). In that case the Enum object is good only for a single walk through of the collection.

Functions/Methods

Win32::OLE::Enum−new($object)
Creates an enumerator for $object, which must be a valid OLE collection object. Note tha
correctly implemented collection objects must support the Count and Item methods, so
creating an enumerator is not always necessary.

$Enum−All()
Returns a list of all objects in the collection. You have to call $Enum−Reset() before the
enumerator can be used again. The previous position in the collection is lost.

This method can also be called as a class method:

my @list = Win32::OLE::Enum−>All($Collection);

$Enum−Clone()
Returns a clone of the enumerator maintaining the current position within the collectio
possible). Note that the Clone method is often not implemented. Use $Enum−Clone() in an
eval block to avoid dying if you are not sure that Clone is supported.

$Enum−Next([$count])
Returns the next element of the collection. In a list context the optional $count argument
specifies the number of objects to be returned. In a scalar context only the last of at
$count retrieved objects is returned. The default for $count is 1.

$Enum−Reset()
Resets the enumeration sequence to the beginning. There is no guarantee that the exact
of objects will be enumerated again (e.g. when enumerating files in a directory). The me
return value indicates the success of the operation. (Note that the Reset() method seems to be
unimplemented in some applications like Excel 7. Use it in an eval block to avoid dying.)

$Enum−Skip([$count])
Skip the next $count elements of the enumeration. The default for $count is 1. The functions
returns TRUE if at least $count elements could be skipped. It returns FALSE if not enou
elements were left.

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
1292 Version 5.005_02 18−Oct−1998

Win32::OLE::NLS Perl Programmers Reference Guide Win32::OLE::NLS

ed or

ce

ion of

ce

 user
lues
s.
NAME
Win32::OLE::NLS − OLE National Language Support

SYNOPSIS
missing

DESCRIPTION
This module provides access to the national language support features in the OLENLS.DLL.

Functions

CompareString(LCID,FLAGS,STR1,STR2)
Compare STR1 and STR2 in the LCID locale. FLAGS indicate the character traits to be us
ignored when comparing the two strings.

NORM_IGNORECASE Ignore case
NORM_IGNOREKANATYPE Ignore hiragana/katakana character differen
NORM_IGNORENONSPACE Ignore accents, diacritics, and vowel marks
NORM_IGNORESYMBOLS Ignore symbols
NORM_IGNOREWIDTH Ignore character width

Possible return values are:

Function failed
1 STR1 is less than STR2
2 STR1 is equal to STR2
3 STR1 is greater than STR2

Note that you can subtract 2 from the return code to get values comparable to the cmp operator.

LCMapString(LCID,FLAGS,STR)
LCMapString translates STR using LCID dependent translation. Flags contains a combinat
the following options:

LCMAP_LOWERCASE Lowercase
LCMAP_UPPERCASE Uppercase
LCMAP_HALFWIDTH Narrow characters
LCMAP_FULLWIDTH Wide characters
LCMAP_HIRAGANA Hiragana
LCMAP_KATAKANA Katakana
LCMAP_SORTKEY Character sort key

The following normalization options can be combined with LCMAP_SORTKEY:

NORM_IGNORECASE Ignore case
NORM_IGNOREKANATYPE Ignore hiragana/katakana character differen
NORM_IGNORENONSPACE Ignore accents, diacritics, and vowel marks
NORM_IGNORESYMBOLS Ignore symbols
NORM_IGNOREWIDTH Ignore character width

The return value is the translated string.

GetLocaleInfo(LCID,LCTYPE)
Retrieve locale setting LCTYPE from the locale specified by LCID. Use
LOCALE_NOUSEROVERRIDE | LCTYPE to always query the locale database. Otherwise
changes to win.ini through the windows control panel take precedence when retrieving va
for the system default locale. See the documentation below for a list of valid LCTYPE value

The return value is the contents of the requested locale setting.
18−Oct−1998 Version 5.005_02 1293

Win32::OLE::NLS Perl Programmers Reference Guide Win32::OLE::NLS

YPE

 from
GetStringType(LCID,TYPE,STR)
Retrieve type information from locale LCID about each character in STR. The requested T
can be one of the following 3 levels:

CT_CTYPE1 ANSI C and POSIX type information
CT_CTYPE2 Text layout type information
CT_CTYPE3 Text processing type information

The return value is a list of values, each of wich is a bitwise OR of the applicable type bits
the corresponding table below:

@ct = GetStringInfo(LOCALE_SYSTEM_DEFAULT, CT_CTYPE1, "String");

ANSI C and POSIX character type information:

C1_UPPER Uppercase
C1_LOWER Lowercase
C1_DIGIT Decimal digits
C1_SPACE Space characters
C1_PUNCT Punctuation
C1_CNTRL Control characters
C1_BLANK Blank characters
C1_XDIGIT Hexadecimal digits
C1_ALPHA Any letter

Text layout type information:

C2_LEFTTORIGHT Left to right
C2_RIGHTTOLEFT Right to left
C2_EUROPENUMBER European number, European digit
C2_EUROPESEPARATOR European numeric separator
C2_EUROPETERMINATOR European numeric terminator
C2_ARABICNUMBER Arabic number
C2_COMMONSEPARATOR Common numeric separator
C2_BLOCKSEPARATOR Block separator
C2_SEGMENTSEPARATOR Segment separator
C2_WHITESPACE White space
C2_OTHERNEUTRAL Other neutrals
C2_NOTAPPLICABLE No implicit direction (e.g. ctrl codes)

Text precessing type information:

C3_NONSPACING Nonspacing mark
C3_DIACRITIC Diacritic nonspacing mark
C3_VOWELMARK Vowel nonspacing mark
C3_SYMBOL Symbol
C3_KATAKANA Katakana character
C3_HIRAGANA Hiragana character
C3_HALFWIDTH Narrow character
C3_FULLWIDTH Wide character
C3_IDEOGRAPH Ideograph
C3_ALPHA Any letter
C3_NOTAPPLICABLE Not applicable

GetSystemDefaultLangID()
Returns the system default language identifier.
1294 Version 5.005_02 18−Oct−1998

Win32::OLE::NLS Perl Programmers Reference Guide Win32::OLE::NLS

 ISO

GetSystemDefaultLCID()
Returns the system default locale identifier.

GetUserDefaultLangID()
Returns the user default language identifier.

GetUserDefaultLCID()
Returns the user default locale identifier.

MAKELANGID(LANG,SUBLANG)
Creates a lnguage identifier from a primary language and a sublanguage.

PRIMARYLANGID(LANGID)
Retrieves the primary language from a language identifier.

SUBLANGID(LANGID)
Retrieves the sublanguage from a language identifier.

MAKELCID(LANGID)
Creates a locale identifies from a language identifier.

LANGIDFROMLCID(LCID)
Retrieves a language identifier from a locale identifier.

Locale Types

LOCALE_ILANGUAGE
The language identifier (in hex).

LOCALE_SLANGUAGE
The localized name of the language.

LOCALE_SENGLANGUAGE
The ISO Standard 639 English name of the language.

LOCALE_SABBREVLANGNAME
The three−letter abbreviated name of the language. The first two letters are from the
Standard 639 language name abbreviation. The third letter indicates the sublanguage type.

LOCALE_SNATIVELANGNAME
The native name of the language.

LOCALE_ICOUNTRY
The country code, which is based on international phone codes.

LOCALE_SCOUNTRY
The localized name of the country.

LOCALE_SENGCOUNTRY
The English name of the country.

LOCALE_SABBREVCTRYNAME
The ISO Standard 3166 abbreviated name of the country.

LOCALE_SNATIVECTRYNAME
The native name of the country.

LOCALE_IDEFAULTLANGUAGE
Language identifier for the principal language spoken in this locale.
18−Oct−1998 Version 5.005_02 1295

Win32::OLE::NLS Perl Programmers Reference Guide Win32::OLE::NLS

lus a

each
peated.

ros; 1

r the
om the
LOCALE_IDEFAULTCOUNTRY
Country code for the principal country in this locale.

LOCALE_IDEFAULTANSICODEPAGE
The ANSI code page associated with this locale. Format: 4 Unicode decimal digits p
Unicode null terminator.

XXX This should be translated by GetLocaleInfo. XXX

LOCALE_IDEFAULTCODEPAGE
The OEM code page associated with the country.

LOCALE_SLIST
Characters used to separate list items (often a comma).

LOCALE_IMEASURE
Default measurement system:

metric system (S.I.)
1 U.S. system

LOCALE_SDECIMAL
Characters used for the decimal separator (often a dot).

LOCALE_STHOUSAND
Characters used as the separator between groups of digits left of the decimal.

LOCALE_SGROUPING
Sizes for each group of digits to the left of the decimal. An explicit size is required for
group. Sizes are separated by semicolons. If the last value is 0, the preceding value is re
To group thousands, specify 3;0.

LOCALE_IDIGITS
The number of fractional digits.

LOCALE_ILZERO
Whether to use leading zeros in decimal fields. A setting of 0 means use no leading ze
means use leading zeros.

LOCALE_SNATIVEDIGITS
The ten characters that are the native equivalent of the ASCII 0−9.

LOCALE_INEGNUMBER
Negative number mode.

0 (1.1)
1 −1.1
2 −1.1
3 1.1
4 1.1

LOCALE_SCURRENCY
The string used as the local monetary symbol.

LOCALE_SINTLSYMBOL
Three characters of the International monetary symbol specified in ISO 4217, Codes fo
Representation of Currencies and Funds, followed by the character separating this string fr
amount.
1296 Version 5.005_02 18−Oct−1998

Win32::OLE::NLS Perl Programmers Reference Guide Win32::OLE::NLS

d for
alue is

valid
PE
LOCALE_SMONDECIMALSEP
Characters used for the monetary decimal separators.

LOCALE_SMONTHOUSANDSEP
Characters used as monetary separator between groups of digits left of the decimal.

LOCALE_SMONGROUPING
Sizes for each group of monetary digits to the left of the decimal. An explicit size is neede
each group. Sizes are separated by semicolons. If the last value is 0, the preceding v
repeated. To group thousands, specify 3;0.

LOCALE_ICURRDIGITS
Number of fractional digits for the local monetary format.

LOCALE_IINTLCURRDIGITS
Number of fractional digits for the international monetary format.

LOCALE_ICURRENCY
Positive currency mode.

Prefix, no separation.
1 Suffix, no separation.
2 Prefix, 1−character separation.
3 Suffix, 1−character separation.

LOCALE_INEGCURR
Negative currency mode.

($1.1)
1 −$1.1
2 $−1.1
3 $1.1−
4 $(1.1$)
5 −1.1$
6 1.1−$
7 1.1$−
8 −1.1 $ (space before $)
9 −$ 1.1 (space after $)
10 1.1 $− (space before $)

LOCALE_ICALENDARTYPE
The type of calendar currently in use.

1 Gregorian (as in U.S.)
2 Gregorian (always English strings)
3 Era: Year of the Emperor (Japan)
4 Era: Year of the Republic of China
5 Tangun Era (Korea)

LOCALE_IOPTIONALCALENDAR
The additional calendar types available for this LCID. Can be a null−separated list of all
optional calendars. Value is 0 for "None available" or any of the LOCALE_ICALENDARTY
settings.

XXX null separated list should be translated by GetLocaleInfo XXX

LOCALE_SDATE
Characters used for the date separator.
18−Oct−1998 Version 5.005_02 1297

Win32::OLE::NLS Perl Programmers Reference Guide Win32::OLE::NLS

s.
LOCALE_STIME
Characters used for the time separator.

LOCALE_STIMEFORMAT
Time−formatting string.

LOCALE_SSHORTDATE
Short Date_Time formatting strings for this locale.

LOCALE_SLONGDATE
Long Date_Time formatting strings for this locale.

LOCALE_IDATE
Short Date format−ordering specifier.

Month − Day − Year
1 Day − Month − Year
2 Year − Month − Day

LOCALE_ILDATE
Long Date format ordering specifier. Value can be any of the valid LOCALE_IDATE setting

LOCALE_ITIME
Time format specifier.

AM/PM 12−hour format.
1 24−hour format.

LOCALE_ITIMEMARKPOSN
Whether the time marker string (AM|PM) precedes or follows the time string.

0 Suffix (9:15 AM).
1 Prefix (AM 9:15).

LOCALE_ICENTURY
Whether to use full 4−digit century.

Two digit.
1 Full century.

LOCALE_ITLZERO
Whether to use leading zeros in time fields.

No leading zeros.
1 Leading zeros for hours.

LOCALE_IDAYLZERO
Whether to use leading zeros in day fields. Values as for LOCALE_ITLZERO.

LOCALE_IMONLZERO
Whether to use leading zeros in month fields. Values as for LOCALE_ITLZERO.

LOCALE_S1159
String for the AM designator.

LOCALE_S2359
String for the PM designator.

LOCALE_IFIRSTWEEKOFYEAR
Specifies which week of the year is considered first.
1298 Version 5.005_02 18−Oct−1998

Win32::OLE::NLS Perl Programmers Reference Guide Win32::OLE::NLS

 "6"
Week containing 1/1 is the first week of the year.
1 First full week following 1/1is the first week of the year.
2 First week with at least 4 days is the first week of the year

LOCALE_IFIRSTDAYOFWEEK
Specifies the day considered first in the week. Value "0" means SDAYNAME1 and value
means SDAYNAME7.

LOCALE_SDAYNAME1 .. LOCALE_SDAYNAME7
Long name for Monday .. Sunday.

LOCALE_SABBREVDAYNAME1 .. LOCALE_SABBREVDAYNAME7
Abbreviated name for Monday .. Sunday.

LOCALE_SMONTHNAME1 .. LOCALE_SMONTHNAME12
Long name for January .. December.

LOCALE_SMONTHNAME13
Native name for 13th month, if it exists.

LOCALE_SABBREVMONTHNAME1 .. LOCALE_SABBREVMONTHNAME12
Abbreviated name for January .. December.

LOCALE_SABBREVMONTHNAME13
Native abbreviated name for 13th month, if it exists.

LOCALE_SPOSITIVESIGN
String value for the positive sign.

LOCALE_SNEGATIVESIGN
String value for the negative sign.

LOCALE_IPOSSIGNPOSN
Formatting index for positive values.

0 Parentheses surround the amount and the monetary symbol.
1 The sign string precedes the amount and the monetary symbol.
2 The sign string precedes the amount and the monetary symbol.
3 The sign string precedes the amount and the monetary symbol.
4 The sign string precedes the amount and the monetary symbol.

LOCALE_INEGSIGNPOSN
Formatting index for negative values. Values as for LOCALE_IPOSSIGNPOSN.

LOCALE_IPOSSYMPRECEDES
If the monetary symbol precedes, 1. If it succeeds a positive amount, 0.

LOCALE_IPOSSEPBYSPACE
If the monetary symbol is separated by a space from a positive amount, 1. Otherwise, 0.

LOCALE_INEGSYMPRECEDES
If the monetary symbol precedes, 1. If it succeeds a negative amount, 0.

LOCALE_INEGSEPBYSPACE
If the monetary symbol is separated by a space from a negative amount, 1. Otherwise, 0.

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
18−Oct−1998 Version 5.005_02 1299

Win32::OLE Perl Programmers Reference Guide Win32::OLE

 like
tions

m OLE

h
 if the
ment

aining
rogram

ties
rosoft
thods

ersions
h as the

ith the
n

etimes

can be

f the

ject is
d by
NAME
Win32::OLE − OLE Automation extensions

SYNOPSIS
 $ex = Win32::OLE−>new(’Excel.Application’) or die "oops\n";
 $ex−>Amethod("arg")−>Bmethod−>{’Property’} = "foo";
 $ex−>Cmethod(undef,undef,$Arg3);
 $ex−>Dmethod($RequiredArg1, {NamedArg1 => $Value1, NamedArg2 => $Value2});

 $wd = Win32::OLE−>GetObject("D:\\Data\\Message.doc");
 $xl = Win32::OLE−>GetActiveObject("Excel.Application");

DESCRIPTION
This module provides an interface to OLE Automation from Perl. OLE Automation brings VisualBasic
scripting capabilities and offers powerful extensibility and the ability to control many Win32 applica
from Perl scripts.

The Win32::OLE module uses the IDispatch interface exclusively. It is not possible to access a custo
interface. OLE events and OCX‘s are currently not supported.

Methods

Win32::OLE−new(PROGID [, DESTRUCTOR])
OLE Automation objects are created using the new() method, the second argument to whic
must be the OLE program id or class id of the application to create. Return value is undef
attempt to create an OLE connection failed for some reason. The optional third argu
specifies a DESTROY−like method. This can be either a CODE reference or a string cont
an OLE method name. It can be used to cleanly terminate OLE objects in case the Perl p
dies in the middle of OLE activity.

The object returned by the new() method can be used to invoke methods or retrieve proper
in the same fashion as described in the documentation for the particular OLE class (eg. Mic
Excel documentation describes the object hierarchy along with the properties and me
exposed for OLE access).

Optional parameters on method calls can be omitted by using undef as a placeholder. A better
way is to use named arguments, as the order of optional parameters may change in later v
of the OLE server application. Named parameters can be specified in a reference to a has
last parameter to a method call.

Properties can be retrieved or set using hash syntax, while methods can be invoked w
usual perl method call syntax. The keys and each functions can be used to enumerate a
object‘s properties. Beware that a property is not always writable or even readable (som
raising exceptions when read while being undefined).

If a method or property returns an embedded OLE object, method and property access
chained as shown in the examples below.

Win32::OLE−GetActiveObject(CLASS)
The GetActiveObject class method returns an OLE reference to a running instance o
specified OLE automation server. It returns undef if the server is not currently active. It will
croak if the class is not even registered.

Win32::OLE−GetObject(MONIKER)
The GetObject class method returns an OLE reference to the specified object. The ob
specified by a pathname optionally followed by additional item subcomponent separate
exclamation marks ‘!’.
1300 Version 5.005_02 18−Oct−1998

Win32::OLE Perl Programmers Reference Guide Win32::OLE

r the

LE
ample

e for
oesn‘t
etween
thod
rted to

ally
e
It can
t been
n

e the
s the

n also

ects

rted

ible to
e last
Win32::OLE−Initialize(COINIT)
The Initialize class method can be used to specify an alternative apartment model fo
Perl thread. It must be called before the first object is created. Valid values for COINIT are:

 Win32::OLE::COINIT_APARTMENTTHREADED − single threaded
 Win32::OLE::COINIT_MULTITHREADED − the default
 Win32::OLE::COINIT_OLEINITIALIZE − single threaded, additional OLE stuf

COINIT_OLEINITIALIZE is sometimes needed when an OLE object uses additional O
compound document technologies not available from the normal COM subsystem (for ex
MAPI.Session seems to require it). Both COINIT_OLEINITIALIZE and
COINIT_APARTMENTTHREADED create a hidden top level window and a message queu
the Perl process. This may create problems with other application, because Perl normally d
process its message queue. This means programs using synchronous communication b
applications (such as DDE initiation), may hang until Perl makes another OLE me
call/property access or terminates. This applies to InstallShield setups and many things sta
shell associations. Please try to utilize the Win32::OLE−>SpinMessageLoop and
Win32::OLE−>Uninitialize methods if you can not use the default
COINIT_MULTITHREADED model.

OBJECT−Invoke(METHOD,ARGS)
The Invoke object method is an alternate way to invoke OLE methods. It is norm
equivalent to $OBJECT−METHOD(@ARGS). This function must be used if the METHOD nam
contains characters not valid in a Perl variable name (like foreign language characters).
also be used to invoke the default method of an object even if the default method has no
given a name in the type library. In this case use <undef or ‘’ as the method name. To invoke a
OLE objects native Invoke method (if such a thing exists), please use:

$Object−>Invoke(’Invoke’, @Args);

Win32::OLE− LastError()
The LastError class method returns the last recorded OLE error. This is a dual value lik
$! variable: in a numeric context it returns the error number and in a string context it return
error message.

The last OLE error is automatically reset by a successful OLE call. The numeric value ca
explicitly be set by a call (which will discard the string value):

Win32::OLE−>LastError(0);

Win32::OLE−QueryObjectType(OBJECT)
The QueryObjectType class method returns a list of the type library name and the obj
class name. In a scalar context it returns the class name only. It returns undef when the type
information is not available.

OBJECT−SetProperty(NAME,ARGS,VALUE)
The SetProperty method allows to modify properties with arguments, which is not suppo
by the hash syntax. The hash form

$Object−>{Property} = $Value;

is equivalent to

$Object−>SetProperty(’Property’, $Value);

Arguments must be specified between the property name and the new value. It is not poss
use "named argument" syntax with this function because the new value must be th
argument to SetProperty .

This method hides any native OLE object method called SetProperty . The native method
18−Oct−1998 Version 5.005_02 1301

Win32::OLE Perl Programmers Reference Guide Win32::OLE

 them to
g the

den
ome
t

e name

ith the
. So

n
. The

t. The
s the
will still be available through the Invoke method:

$Object−>Invoke(’SetProperty’, @Args);

Win32::OLE−SpinMessageLoop
This class method retrieves all pending messages from the message queue and dispatches
their respective window procedures. Calling this method is only necessary when not usin
COINIT_MULTITHREADED model. All OLE method calls and property accesses
automatically process the message queue.

Win32::OLE−Uninitialize
The Uninitialize class method uninitializes the OLE subsystem. It also destroys the hid
top level window created by OLE for single threaded apartments. All OLE objects will bec
invalid after this call! It is possible to call the Initialize class method again with a differen
apartment model after shutting down OLE with Uninitialize .

Whenever Perl does not find a method name in the Win32::OLE package it is automatically used as th
of an OLE method and this method call is dispatched to the OLE server.

There is one special hack built into the module: If a method or property name could not be resolved w
OLE object, then the default method of the object is called with the method name as its first parameter

my $Sheet = $Worksheets−>Table1;
or

my $Sheet = $Worksheets− {Table1};

is resolved as

my $Sheet = $Worksheet−>Item(’Table1’);

provided that the $Worksheets object doesnot have a Table1 method or property. This hack has bee
introduced to call the default method of collections which did not name the method in their type library
recommended way to call the "unnamed" default method is:

my $Sheet = $Worksheets−>Invoke(’’, ’Table1’);

This special hack is disabled under use strict ‘subs‘; .

Functions
The following functions are not exported by default.

in(COLLECTION)
If COLLECTION is an OLE collection object then in $COLLECTION returns a list of all
members of the collection. This is a shortcut for Win32::OLE::Enum− All($COLLECTION).
It is most commonly used in a foreach loop:

foreach my $value (in $collection) {
 # do something with $value here
}

valof(OBJECT)
Normal assignment of Perl OLE objects creates just another reference to the OLE objec
valof function explictly dereferences the object (through the default method) and return
value of the object.

my $RefOf = $Object;
my $ValOf = valof $Object;

 $Object−>{Value} = $NewValue;

Now $ValOf still contains the old value wheras $RefOf would resolve to the $NewValue
because it is still a reference to $Object.
1302 Version 5.005_02 18−Oct−1998

Win32::OLE Perl Programmers Reference Guide Win32::OLE

.

t. It

re used
h the

it‘s

gs and
efault
 Both

 Valid

h the
The valof function can also be used to convert Win32::OLE::Variant objects to Perl values

with(OBJECT, PROPERTYNAME = VALUE, ...)
This function provides a concise way to set the values of multiple properties of an objec
iterates over its arguments doing $OBJECT−{PROPERTYNAME} = $VALUE on each trailing
pair.

Overloading
The Win32::OLE objects can be overloaded to automatically convert to their values whenever they a
in a bool, numeric or string context. This is not enabled by default. You have to request it throug
OVERLOAD pseudoexport:

use Win32::OLE qw(in valof with OVERLOAD);

You can still get the original string representation of an object (Win32::OLE=0xDEADBEEF), e.g. for
debugging, by using the overload::StrVal method:

print overload::StrVal($object), "\n";

Please note that OVERLOAD is a global setting. If any module enables Win32::OLE overloading then
active everywhere.

Class Variables

$Win32::OLE::CP
This variable is used to determine the codepage used by all translations between Perl strin
Unicode strings used by the OLE interface. The default value is CP_ACP, which is the d
ANSI codepage. It can also be set to CP_OEMCP which is the default OEM codepage.
constants are not exported by default.

$Win32::OLE::LCID
This variable controls the locale idnetifier used for all OLE calls. It is set to
LOCALE_NEUTRAL by default. Please check the Win32::OLE::NLS module for other locale
related information.

$Win32::OLE::Warn
This variable determines the behavior of the Win32::OLE module when an error happens.
values are:

Ignore error, return undef
1 Carp::carp if $^W is set (−w option)
2 always Carp::carp
3 Carp::croak

The error number and message (without Carp line/module info) are available throug
Win32::OLE− LastError class method.

EXAMPLES
Here is a simple Microsoft Excel application.

use Win32::OLE;

use existing instance if Excel is already running
eval {$ex = Win32::OLE−>GetActiveObject(’Excel.Application’)};
die "Excel not installed" if $@;
unless (defined $ex) {
 $ex = Win32::OLE−>new(’Excel.Application’, sub {$_[0]−>Quit;})

 or die "Oops, cannot start Excel";
}

open an existing workbook
18−Oct−1998 Version 5.005_02 1303

Win32::OLE Perl Programmers Reference Guide Win32::OLE

tdown
s after

that all

 the

ithout
bject
$book = $ex−>Workbooks−>Open(’test.xls’);

write to a particular cell
$sheet = $book−>Worksheets(1);
$sheet−>Cells(1,1)−>{Value} = "foo";

 # write a 2 rows by 3 columns range
 $sheet−>Range("A8:C9")−>{Value} = [[undef, ’Xyzzy’, ’Plugh’],
 [42, ’Perl’, 3.1415]];

 # print "XyzzyPerl"
 $array = $sheet−>Range("A8:B9")−>{Value};
 print $array[0][1] . $array[1][1];

save and exit
$book−>Save;
undef $book;
undef $ex;

Please note the destructor specified on the Win32::OLE−new method. It ensures that Excel will shu
properly even if the Perl program dies. Otherwise there could be a process leak if your application die
having opened an OLE instance of Excel. It is the responsibility of the module user to make sure
OLE objects are cleaned up properly!

Here is an example of using Variant data types.

use Win32::OLE;
$ex = Win32::OLE−>new(’Excel.Application’, \&OleQuit) or die "oops\n";
$ex−>{Visible} = 1;
$ex−>Workbooks−>Add;
$ovR8 = Variant(VT_R8, "3 is a good number");
$ex−>Range("A1")−>{Value} = $ovR8;
$ex−>Range("A2")−>{Value} = Variant(VT_DATE, ’Jan 1,1970’);

sub OleQuit {
 my $self = shift;
 $self−>Quit;
}

The above will put value "3" in cell A1 rather than the string "3 is a good number". Cell A2 will contain
date.

Similarly, to invoke a method with some binary data, you can do the following:

$obj−>Method(Variant(VT_UI1, "foo\000b\001a\002r"));

Here is a wrapper class that basically delegates everything but new() and DESTROY(). The wrapper class
shown here is another way to properly shut down connections if your application is liable to die w
proper cleanup. Your own wrappers will probably do something more specific to the particular OLE o
you may be dealing with, like overriding the methods that you may wish to enhance with your own.

package Excel;
use Win32::OLE;

sub new {
 my $s = {};
 if ($s−>{Ex} = Win32::OLE−>new(’Excel.Application’)) {

return bless $s, shift;
 }
 return undef;
}
1304 Version 5.005_02 18−Oct−1998

Win32::OLE Perl Programmers Reference Guide Win32::OLE

 in case
ptional

spect to

u
 object.
sub DESTROY {
 my $s = shift;
 if (exists $s−>{Ex}) {

print "# closing connection\n";
$s−>{Ex}−>Quit;
return undef;

 }
}

sub AUTOLOAD {
 my $s = shift;
 $AUTOLOAD =~ s/^.*:://;
 $s−>{Ex}−>$AUTOLOAD(@_);
}

1;

The above module can be used just like Win32::OLE, except that it takes care of closing connections
of abnormal exits. Note that the effect of this specific example can be easier accomplished using the o
destructor argument of Win32::OLE::new:

my $Excel = Win32::OLE−>new(’Excel.Application’, sub {$_[0]−>Quit;});

Note that the delegation shown in the earlier example is not the same as true subclassing with re
further inheritance of method calls in your specialized object. See perlobj, perltoot and perlbot for details.
True subclassing (available by setting @ISA) is also feasible, as the following example demonstrates:

Add error reporting to Win32::OLE

package Win32::OLE::Strict;
use Carp;
use Win32::OLE;

use strict qw(vars);
use vars qw($AUTOLOAD @ISA);
@ISA = qw(Win32::OLE);

sub AUTOLOAD {
 my $obj = shift;
 $AUTOLOAD =~ s/^.*:://;
 my $meth = $AUTOLOAD;
 $AUTOLOAD = "SUPER::" . $AUTOLOAD;
 my $retval = $obj−>$AUTOLOAD(@_);
 unless (defined($retval) || $AUTOLOAD eq ’DESTROY’) {

my $err = Win32::OLE::LastError();
croak(sprintf("$meth returned OLE error 0x%08x",$err))
 if $err;

 }
 return $retval;
}

1;

This package inherits the constructor new() from the Win32::OLE package. It is important to note that yo
cannot later rebless a Win32::OLE object as some information about the package is cached by the
Always invoke the new() constructor through the right package!

Here‘s how the above class will be used:
18−Oct−1998 Version 5.005_02 1305

Win32::OLE Perl Programmers Reference Guide Win32::OLE

s for
dard

install

not

object.

ssible

rns a
r the

pport

ames
locale
Visual
tring
ndows

jects;

xpro
 use
thod
use Win32::OLE::Strict;
my $Excel = Win32::OLE::Strict−>new(’Excel.Application’, ’Quit’);
my $Books = $Excel−>Workbooks;
$Books−>UnknownMethod(42);

In the sample above the call to UnknownMethod will be caught with

UnknownMethod returned OLE error 0x80020009 at test.pl line 5

because the Workbooks object inherits the class Win32::OLE::Strict from the $Excel object.

NOTES

Hints for Microsoft Office automation

Documentation
The object model for the Office applications is defined in the Visual Basic reference guide
the various applications. These are typically not installed by default during the stan
installation. They can be added later by rerunning the setup program with the custom
option.

Class, Method and Property names
The names have been changed between different versions of Office. For example
Application was a method in Office 95 and is a property in Office97. Therefore it will
show up in the list of property names keys %$object when querying an Office 95 object.

The class names are not always identical to the method/property names producing the
E.g. the Workbook method returns an object of type Workbook in Office 95 and _Workbook
in Office 97.

Moniker (GetObject support)
Office applications seem to implement file monikers only. For example it seems to be impo
to retrieve a specific worksheet object through GetObject("File.XLS!Sheet") .
Furthermore, in Excel 95 the moniker starts a Worksheet object and in Excel 97 it retu
Workbook object. You can use either the Win32::OLE::QueryObjectType class method o
$object− {Version} property to write portable code.

Enumeration of collection objects
Enumerations seem to be incompletely implemented. Office 95 application don‘t seem to su
neither the Reset() nor the Clone() methods. The Clone() method is still unimplemented
in Office 97. A single walk through the collection similar to Visual Basics for each construct
does work however.

Localization
Starting with Office 97 Microsoft has changed the localized class, method and property n
back into English. Note that string, date and currency arguments are still subject to
specific interpretation. Perl uses the system default locale for all OLE transaction whereas
Basic uses a type library specific locale. A Visual Basic script would use "R1C1" in s
arguments to specify relative references. A Perl script running on a German language Wi
would have to use "Z1S1". Set the $Win32::OLE::LCID class variable to an English locale
to write portable scripts. This variable should not be changed after creating the OLE ob
some methods seem to randomly fail if the locale is changed on the fly.

SaveAs method in Word 97 doesn‘t work
This is an known bug in Word 97. Search the MS knowledge base for Word / Fo
incompatibility. That problem applies to the Perl OLE interface as well. A workaround is to
the WordBasic compatibility object. It doesn‘t support all the options of the native me
though.
1306 Version 5.005_02 18−Oct−1998

Win32::OLE Perl Programmers Reference Guide Win32::OLE

 these
ulated

es

ecated,

nts.

. The

thods

 in the

liability

named
 $Word−>WordBasic−>FileSaveAs($file);

The problem seems to be fixed by applying the Office 97 Service Release 1.

Randomly failing method calls
It seems like modifying objects that are not selected/activated is sometimes fragile. Most of
problems go away if the chart/sheet/document is selected or activated before being manip
(just like an interactive user would automatically do it).

Incompatibilities
There are some incompatibilities with the version distributed by Activeware (as of build 306).

1 The package name has changed from "OLE" to "Win32::OLE".

2 All functions of the form "Win32::OLEFoo" are now "Win32::OLE::Foo", though the old nam
are temporarily accomodated. Win32::OLECreateObject() was changed to
Win32::OLE::CreateObject() , and is now called Win32::OLE::new() bowing to
established convention for naming constructors. The old names should be considered depr
and will be removed in the next version.

3 Package "OLE::Variant" is now "Win32::OLE::Variant".

4 The Variant function is new, and is exported by default. So are all the VT_XXX type consta

5 The support for collection objects has been moved into the package Win32::OLE::Enum
keys %$object method is now used to enumerate the properties of the object.

Bugs and Limitations

1 To invoke a native OLE method with the same name as one of the Win32::OLE me
(Dispatch , Invoke , SetProperty , DESTROY, etc.), you have to use the Invoke method:

$Object−>Invoke(’Dispatch’, @AdditionalArgs);

The same is true for names exported by the Exporter or the Dynaloader modules, e.g.: export ,
export_to_level , import , _push_tags , export_tags , export_ok_tags ,
export_fail , require_version , dl_load_flags , croak , bootstrap ,
dl_findfile , dl_expandspec , dl_find_symbol_anywhere , dl_load_file ,
dl_find_symbol , dl_undef_symbols , dl_install_xsub and dl_error .

2 The class global variables $Win32::OLE::WARN and $Win32::OLE::LCID must
currently be accessed directly. An API to manipulate these settings will be made available
future.

SEE ALSO
The documentation for Win32::OLE::Const, Win32::OLE::Enum, Win32::OLE::NLS and
Win32::OLE::Variant contains additional information about OLE support for Perl on Win32.

AUTHORS
Originally put together by the kind people at Hip and Activeware.

Gurusamy Sarathy <gsar@umich.edu subsequently fixed several major bugs, memory leaks, and re
problems, along with some redesign of the code.

Jan Dubois <jan.dubois@ibm.net pitched in with yet more massive redesign, added support for
parameters, and other significant enhancements.

COPYRIGHT
 (c) 1995 Microsoft Corporation. All rights reserved.

Developed by ActiveWare Internet Corp., http://www.ActiveWare.com

 Other modifications Copyright (c) 1997, 1998 by Gurusamy Sarathy
18−Oct−1998 Version 5.005_02 1307

Win32::OLE Perl Programmers Reference Guide Win32::OLE
 <gsar@umich.edu> and Jan Dubois <jan.dubois@ibm.net>

 You may distribute under the terms of either the GNU General Public
 License or the Artistic License, as specified in the README file.

VERSION
Version 0.10 9 September 1998
1308 Version 5.005_02 18−Oct−1998

Win32::OLE::Variant Perl Programmers Reference Guide Win32::OLE::Variant

. This
 by the

given
V or

 the
point

tself,

ass.
n a

f
n a

n is
ted.

refore
NAME
Win32::OLE::Variant − Create and modify OLE VARIANT variables

SYNOPSIS
use Win32::OLE::Variant;
my $var = Variant(VT_DATE, ’Jan 1,1970’);
$OleObject−>{value} = $var;
$OleObject−>Method($var);

DESCRIPTION
The IDispatch interface used by the Perl OLE module uses a universal argument type called VARIANT
is basically an object containing a data type and the actual data value. The data type is specified
VT_xxx constants.

Methods

new(TYPE, DATA)
This method returns a Win32::OLE::Variant object of the specified type that contains the
data. The Win32::OLE::Variant object can be used to specify data types other than IV, N
PV (which are supported transparently). See Variants below for details.

As(TYPE)
As converts the VARIANT to the new type before converting to a Perl value. This take
current LCID setting into account. For example a string might contain a ‘,’ as the decimal
character. Using $variant−As(VT_R8) will correctly return the floating point value.

The underlying variant object is NOT changed by this method.

ChangeType(TYPE)
This method changes the type of the contained VARIANT in place. It returns the object i
not the converted value.

LastError()
The LastError method returns the last recorded OLE error in the Win32::OLE::Variant cl
This is dual value like the $! variable: in a numeric context it returns the error number and i
string context it returns the error message.

The method corresponds to the Win32::OLE− LastError method for Win32::OLE objects.

Type() The Type method returns the type of the contained VARIANT.

Unicode()
The Unicode method returns a Unicode::String object. This contains the BSTR value o
the variant in network byte order. If the variant is not currently in VT_BSTR format the
VT_BSTR copy will be produced first.

Value() The Value method returns the value of the VARIANT as a Perl value. The conversio
performed in the same manner as all return values of Win32::OLE method calls are conver

Functions

Variant(TYPE, DATA)
This is just a function alias of the Win32::OLE::Variant− new() method. This function is
exported by default.

Overloading
The Win32::OLE::Variant package has overloaded the conversion to string an number formats. The
variant objects can be used in arithmetic and string operations without applying the Value method first.
18−Oct−1998 Version 5.005_02 1309

Win32::OLE::Variant Perl Programmers Reference Guide Win32::OLE::Variant

the

al perl

ass in

t the

, which
Class Variables
This module supports the $CP, $LCID and $Warn class variables. They have the same meaning as
variables in Win32::OLE of the same name.

Constants
These constants are exported by default:

VT_EMPTY
VT_NULL
VT_I2
VT_I4
VT_R4
VT_R8
VT_CY
VT_DATE
VT_BSTR
VT_DISPATCH
VT_ERROR
VT_BOOL
VT_VARIANT
VT_UNKNOWN
VT_UI1
VT_BYREF

Variants
A Variant is a data type that is used to pass data between OLE connections.

The default behavior is to convert each perl scalar variable into an OLE Variant according to the intern
representation. The following type correspondence holds:

 C type Perl type OLE type
 −−−−−− −−−−−−−−− −−−−−−−−
 int IV VT_I4
 double NV VT_R8
 char * PV VT_BSTR
 void * ref to AV VT_ARRAY
 ? undef VT_ERROR
 ? Win32::OLE object VT_DISPATCH

Note that VT_BSTR is a wide character or Unicode string. This presents a problem if you want to p
binary data as a parameter as 0x00 is inserted between all the bytes in your data. The Variant() method
provides a solution to this. With Variants the script writer can specify the OLE variant type tha
parameter should be converted to. Currently supported types are:

 VT_UI1 unsigned char
 VT_I2 signed int (2 bytes)
 VT_I4 signed int (4 bytes)
 VT_R4 float (4 bytes)
 VT_R8 float (8 bytes)
 VT_DATE OLE Date
 VT_BSTR OLE String
 VT_CY OLE Currency
 VT_BOOL OLE Boolean

When VT_DATE and VT_CY objects are created, the input parameter is treated as a Perl string type
is then converted to VT_BSTR, and finally to VT_DATE of VT_CY using the VariantChangeType()
OLE API function. See Win32::OLE/EXAMPLES for how these types can be used.
1310 Version 5.005_02 18−Oct−1998

Win32::OLE::Variant Perl Programmers Reference Guide Win32::OLE::Variant

thod call.
 the

 In

ject by
Variants by reference
Some OLE servers expect parameters passed by reference so that they can be changed in the me
This allows methods to easily return multiple values. There is preliminary support for this in
Win32::OLE::Variant module:

my $x = Variant(VT_I4|VT_BYREF, 0);
my $y = Variant(VT_I4|VT_BYREF, 0);
$Corel−>GetSize($x, $y);
print "Size is $x by $y\n";

After the GetSize method call $x and $y will be set to the respective sizes. They will still be variants.
the print statement the overloading converts them to string representation automatically.

This currently works for integer, number and BSTR variants. It can also be used to pass an OLE ob
reference:

my $Results = $App−>CreateResultsObject;
$Object−>Method(Variant(VT_DISPATCH|VT_BYREF, $Results));

Don‘t try VT_BYREF with VT_ARRAY variants (yet).

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
18−Oct−1998 Version 5.005_02 1311

Win32::PerfLib Perl Programmers Reference Guide Win32::PerfLib

n the

e hash

in the
NAME
Win32::PerfLib − accessing the Windows NT Performance Counter

SYNOPSIS
 use Win32::PerfLib;
 my $server = "";
 Win32::PerfLib::GetCounterNames($server, \%counter);
 %r_counter = map { $counter{$_} => $_ } keys %counter;
 # retrieve the id for process object
 $process_obj = $r_counter{Process};
 # retrieve the id for the process ID counter
 $process_id = $r_counter{’ID Process’};

 # create connection to $server
 $perflib = new Win32::PerfLib($server);
 $proc_ref = {};
 # get the performance data for the process object
 $perflib−>GetObjectList($process_obj, $proc_ref);
 $perflib−>Close();
 $instance_ref = $proc_ref−>{Objects}−>{$process_obj}−>{Instances};
 foreach $p (sort keys %{$instance_ref})
 {
 $counter_ref = $instance_ref−>{$p}−>{Counters};
 foreach $i (keys %{$counter_ref})
 {

 if($counter_ref−>{$i}−>{CounterNameTitleIndex} == $process_id)
 {
 printf("% 6d %s\n", $counter_ref−>{$i}−>{Counter},

 $instance_ref−>{$p}−>{Name}
);

 }
 }
 }

DESCRIPTION
This module allows to retrieve the performance counter of any computer (running Windows NT) i
network.

FUNCTIONS

NOTE
All of the functions return FALSE (0) if they fail, unless otherwise noted. If the $server argument is undef
the local machine is assumed.

Win32::PerfLib::GetCounterNames($server,$hashref)
Retrieves the counter names and their indices from the registry and stores them in th
reference

Win32::PerfLib::GetCounterHelp($server,$hashref)
Retrieves the counter help strings and their indices from the registry and stores them
hash reference

$perflib = Win32::PerfLib−new ($server)
Creates a connection to the performance counters of the given server
1312 Version 5.005_02 18−Oct−1998

Win32::PerfLib Perl Programmers Reference Guide Win32::PerfLib

sh
 in the

 has

nces’
ces or
$perflib− GetObjectList($objectid,$hashref)
retrieves the object and counter list of the given performance object.

$perflib− Close($hashref)
closes the connection to the performance counters

Win32::PerfLib::GetCounterType(countertype)
converts the counter type to readable string as referenced in calc.html so that it is easier to
find the appropriate formula to calculate the raw counter data.

Datastructures
The performance data is returned in the following data structure:

Level 1
 $hashref = {
 ’NumObjectTypes’ => VALUE
 ’Objects’ => HASHREF
 ’PerfFreq’ => VALUE
 ’PerfTime’ => VALUE
 ’PerfTime100nSec’ => VALUE
 ’SystemName’ => STRING
 ’SystemTime’ => VALUE
 }

Level 2 The hash reference $hashref− {Objects} has the returned object ID(s) as keys and a ha
reference to the object counter data as value. Even there is only one object requested
call to GetObjectList there may be more than one object in the result.

 $hashref−>{Objects} = {
 <object1> => HASHREF
 <object2> => HASHREF
 ...
 }

Level 3 Each returned object ID has object−specific performance information. If an object
instances like the process object there is also a reference to the instance information.

 $hashref−>{Objects}−>{<object1>} = {
 ’DetailLevel’ => VALUE
 ’Instances’ => HASHREF
 ’Counters’ => HASHREF
 ’NumCounters’ => VALUE
 ’NumInstances’ => VALUE
 ’ObjectHelpTitleIndex’ => VALUE
 ’ObjectNameTitleIndex’ => VALUE
 ’PerfFreq’ => VALUE
 ’PerfTime’ => VALUE
 }

Level 4 If there are instance information for the object available they are stored in the ‘Insta
hashref. If the object has no instances there is an ‘Counters’ key instead. The instan
counters are numbered.

 $hashref−>{Objects}−>{<object1>}−>{Instances} = {
 <1> => HASHREF
 <2> => HASHREF
 ...
 <n> => HASHREF
18−Oct−1998 Version 5.005_02 1313

Win32::PerfLib Perl Programmers Reference Guide Win32::PerfLib
 }
 or
 $hashref−>{Objects}−>{<object1>}−>{Counters} = {
 <1> => HASHREF
 <2> => HASHREF
 ...
 <n> => HASHREF
 }

Level 5
 $hashref−>{Objects}−>{<object1>}−>{Instances}−>{<1>} = {
 Counters => HASHREF
 Name => STRING
 ParentObjectInstance => VALUE
 ParentObjectTitleIndex => VALUE
 }
 or
 $hashref−>{Objects}−>{<object1>}−>{Counters}−>{<1>} = {
 Counter => VALUE
 CounterHelpTitleIndex => VALUE
 CounterNameTitleIndex => VALUE
 CounterSize => VALUE
 CounterType => VALUE
 DefaultScale => VALUE
 DetailLevel => VALUE
 Display => STRING
 }

Level 6
 $hashref−>{Objects}−>{<object1>}−>{Instances}−>{<1>}−>{Counters} = {
 <1> => HASHREF
 <2> => HASHREF
 ...
 <n> => HASHREF
 }

Level 7
 $hashref−>{Objects}−>{<object1>}−>{Instances}−>{<1>}−>{Counters}−>{<1>} =
 Counter => VALUE
 CounterHelpTitleIndex => VALUE
 CounterNameTitleIndex => VALUE
 CounterSize => VALUE
 CounterType => VALUE
 DefaultScale => VALUE
 DetailLevel => VALUE
 Display => STRING
 }

Depending on the CounterType there are calculations to do (see calc.html).

AUTHOR
Jutta M. Klebe, jmk@bybyte.de

SEE ALSO
perl(1).
1314 Version 5.005_02 18−Oct−1998

Win32::Process Perl Programmers Reference Guide Win32::Process

rs that
NAME
Win32::Process − Create and manipulate processes.

SYNOPSIS
use Win32::Process;
use Win32;

sub ErrorReport{
print Win32::FormatMessage(Win32::GetLastError());

}

Win32::Process::Create($ProcessObj,
"D:\\winnt35\\system32\\notepad.exe",
"notepad temp.txt",
0,
NORMAL_PRIORITY_CLASS,
".")|| die ErrorReport();

$ProcessObj−>Suspend();
$ProcessObj−>Resume();
$ProcessObj−>Wait(INFINITE);

DESCRIPTION
This module allows for control of processes in Perl.

METHODS

Win32::Process::Create($obj,$appname,$cmdline,$iflags,$cflags,$curdir)
Creates a new process.

 Args:

$obj container for process object
$appname full path name of executable module
$cmdline command line args
$iflags flag: inherit calling processes handles or not
$cflags flags for creation (see exported vars below)
$curdir working dir of new process

$ProcessObj− Suspend()
Suspend the process associated with the $ProcessObj.

$ProcessObj− Resume()
Resume a suspended process.

$ProcessObj− Kill($ExitCode)
Kill the associated process, have it die with exit code $ExitCode.

$ProcessObj− GetPriorityClass($class)
Get the priority class of the process.

$ProcessObj− SetPriorityClass($class)
Set the priority class of the process (see exported values below for options).

$ProcessObj− GetProcessAffinitymask($processAffinityMask, $systemAffinitymask)
Get the process affinity mask. This is a bitvector in which each bit represents the processo
a process is allowed to run on.
18−Oct−1998 Version 5.005_02 1315

Win32::Process Perl Programmers Reference Guide Win32::Process
$ProcessObj− SetProcessAffinitymask($processAffinityMask)
Set the process affinity mask. Only available on Windows NT.

$ProcessObj− GetExitCode($ExitCode)
Retrieve the exitcode of the process.

$ProcessObj− Wait($Timeout)
Wait for the process to die. forever = INFINITE
1316 Version 5.005_02 18−Oct−1998

Win32::Semaphore Perl Programmers Reference Guide Win32::Semaphore

 true if
NAME
Win32::Semaphore − Use Win32 semaphore objects from Perl

SYNOPSIS
require Win32::Semaphore;

$sem = Win32::Semaphore−>new($initial,$maximum,$name);
$sem−>wait;

DESCRIPTION
This module allows access to Win32 semaphore objects. The wait method and wait_all & wait_any
functions are inherited from the "Win32::IPC" module.

Methods

$semaphore = Win32::Semaphore−new($initial, $maximum, [$name])
Constructor for a new semaphore object. $initial is the initial count, and $maximum is the
maximum count for the semaphore. If $name is omitted, creates an unnamed semaphore object.

If $name signifies an existing semaphore object, then $initial and $maximum are ignored and the
object is opened.

$semaphore = Win32::Semaphore−open($name)
Constructor for opening an existing semaphore object.

$semaphore− release([$increment, [$previous]])
Increment the count of $semaphore by $increment (default 1). If $increment plus the
semaphore‘s current count is more than its maximum count, the count is not changed. Returns
the increment is successful.

The semaphore‘s count (before incrementing) is stored in the second argument (if any).

It is not necessary to wait on a semaphore before calling release , but you‘d better know what you‘re
doing.

$semaphore− wait([$timeout])
Wait for $semaphore‘s count to be nonzero, then decrement it by 1. See "Win32::IPC".

Deprecated Functions and Methods
Win32::Semaphore still supports the ActiveWare syntax, but its use is deprecated.

Win32::Semaphore::Create($SemObject,$Initial,$Max,$Name)
Use $SemObject = Win32::Semaphore−>new($Initial,$Max,$Name) instead.

Win32::Semaphore::Open($SemObject, $Name)
Use $SemObject = Win32::Semaphore−>open($Name) instead.

$SemObj−Release($Count,$LastVal)
Use $SemObj−>release($Count,$LastVal) instead.

AUTHOR
Christopher J. Madsen <ac608@yfn.ysu.edu>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
18−Oct−1998 Version 5.005_02 1317

Win32::Service Perl Programmers Reference Guide Win32::Service

g, the

ref is
.
NAME
Win32::Service − manage system services in perl

SYNOPSIS
use Win32::Service;

DESCRIPTION
This module offers control over the administration of system services.

FUNCTIONS

NOTE:
All of the functions return FALSE (0) if they fail, unless otherwise noted. If hostName is an empty strin
local machine is assumed.

StartService(hostName, serviceName)
Start the service serviceName on machine hostName.

StopService(hostName, serviceName)
Stop the service serviceName on the machine hostName.

GetStatus(hostName, serviceName, status)
Get the status of a service.

PauseService(hostName, serviceName)
ResumeService(hostName, serviceName)
GetServices(hostName, hashref)

Enumerates both active and inactive Win32 services at the specified host. The hash
populated with the descriptive service names as keys and the short names as the values
1318 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

 via
ash that

from

rl that
rations
eters

se root
 a few
spect of
NAME
Win32::TieRegistry − Powerful and easy ways to manipulate a registry [on Win32 for now].

SYNOPSIS
 use Win32::TieRegistry 0.20 (UseOptionName=>UseOptionValue[,...]);

 $Registry−>SomeMethodCall(arg1,...);

 $subKey= $Registry−>{"Key\\SubKey\\"};
 $valueData= $Registry−>{"Key\\SubKey\\\\ValueName"};
 $Registry−>{"Key\\SubKey\\"}= { "NewSubKey" => {...} };
 $Registry−>{"Key\\SubKey\\\\ValueName"}= "NewValueData";
 $Registry−>{"\\ValueName"}= [pack("fmt",$data), REG_DATATYPE];

EXAMPLES
 use Win32::TieRegistry(Delimiter=>"#", ArrayValues=>0);
 $pound= $Registry−>Delimiter("/");
 $diskKey= $Registry−>{"LMachine/System/Disk/"}
 or die "Can’t read LMachine/System/Disk key: $^E\n";
 $data= $key−>{"/Information"}
 or die "Can’t read LMachine/System/Disk//Information value: $^E\n";
 $remoteKey= $Registry−>{"//ServerA/LMachine/System/"}
 or die "Can’t read //ServerA/LMachine/System/ key: $^E\n";
 $remoteData= $remoteKey−>{"Disk//Information"}
 or die "Can’t read ServerA’s System/Disk//Information value: $^E\n";
 foreach $entry (keys(%$diskKey)) {
 ...
 }
 foreach $subKey ($diskKey−>SubKeyNames) {
 ...
 }
 $diskKey−>AllowSave(1);
 $diskKey−>RegSaveKey("C:/TEMP/DiskReg", []);

DESCRIPTION
The Win32::TieRegistry module lets you manipulate the Registry via objects [as in "object oriented"] or
tied hashes. But you will probably mostly use a combination reference, that is, a reference to a tied h
has also been made an object so that you can mix both access methods [as shown above].

If you did not get this module as part of libwin32, you might want to get a recent version of libwin32
CPAN which should include this module and the Win32API::Registry module that it uses.

Skip to the SUMMARY section if you just want to dive in and start using the Registry from Perl.

Accessing and manipulating the registry is extremely simple using Win32::TieRegistry. A single, simple
expression can return you almost any bit of information stored in the Registry. Win32::TieRegistry also gives
you full access to the "raw" underlying API calls so that you can do anything with the Registry in Pe
you could do in C. But the "simple" interface has been carefully designed to handle almost all ope
itself without imposing arbitrary limits while providing sensible defaults so you can list only the param
you care about.

But first, an overview of the Registry itself.

The Registry
The Registry is a forest: a collection of several tree structures. The root of each tree is a key. The
keys are identified by predefined constants whose names start with "HKEY_". Although all keys have
attributes associated with each [a class, a time stamp, and security information], the most important a
keys is that each can contain subkeys and can contain values.
18−Oct−1998 Version 5.005_02 1319

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

aracter
 [and

 is a
sed to

re:

th that

in a

he list,

g or as
ell a
umeric

subkey

‘s

for each

 later.
Each subkey has a name: a string which cannot be blank and cannot contain the delimiter ch
[backslash: ‘\\’] nor nul [‘\0’]. Each subkey is also a key and so can contain subkeys and values
has a class, time stamp, and security information].

Each value has a name: a string which be blank and contain the delimiter character [backslash: ‘\\’] and
any character except for null, ‘\0’ . Each value also has data associated with it. Each value‘s data
contiguous chunk of bytes, which is exactly what a Perl string value is so Perl strings will usually be u
represent value data.

Each value also has a data type which says how to interpret the value data. The primary data types a

REG_SZ
A null−terminated string.

REG_EXPAND_SZ
A null−terminated string which contains substrings consisting of a percent sign [‘%’], an environment
variable name, then a percent sign, that should be replaced with the value associate wi
environment variable. The system does not automatically do this substitution.

REG_BINARY
Some arbitrary binary value. You can think of these as being "packed" into a string.

If your system has the SetDualVar module installed, the DualBinVals() option wasn‘t turned off,
and you fetch a REG_BINARY value of 4 bytes or fewer, then you can use the returned value
numeric context to get at the "unpacked" numeric value. See GetValue() for more information.

REG_MULTI_SZ
Several null−terminated strings concatenated together with an extra trailing ‘\0’ at the end of the list.
 Note that the list can include empty strings so use the value‘s length to determine the end of t
not the first occurrence of ‘\0\0’ . It is best to set the SplitMultis() option so
Win32::TieRegistry will split these values into an array of strings for you.

REG_DWORD
A long [4−byte] integer value. These values are expected either packed into a 4−character strin
a hex string of 4 characters [but not as a numeric value, unfortunately, as there is no sure way to t
numeric value from a packed 4−byte string that just happens to be a string containing a valid n
value].

How such values are returned depends on the DualBinVals() and DWordsToHex() options. See
GetValue() for details.

In the underlying Registry calls, most places which take a subkey name also allow you to pass in a
"path" — a string of several subkey names separated by the delimiter character, backslash [‘\\’]. For
example, doing RegOpenKeyEx(HKEY_LOCAL_MACHINE,"SYSTEM\\DISK",...) is much like
opening the "SYSTEM" subkey of HKEY_LOCAL_MACHINE, then opening its "DISK" subkey, then closing
the "SYSTEM" subkey.

All of the Win32::TieRegistry features allow you to use your own delimiter in place of the system
delimiter, [‘\\’]. In most of our examples we will use a forward slash [‘/’] as our delimiter as it is easier
to read and less error prone to use when writing Perl code since you have to type two backslashes
backslash you want in a string. Note that this is true even when using single quotes —
‘\\HostName\LMachine\’ is an invalid string and must be written as
‘\\\\HostName\\LMachine\\’ .

You can also connect to the registry of other computers on your network. This will be discussed more

Although the Registry does not have a single root key, the Win32::TieRegistry module creates a virtual root
key for you which has all of the HKEY_* keys as subkeys.
1320 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

 An

iscussed

 of each

rt−hand
es are

uration
he

tion

r is
[usually

e most

but the
Tied Hashes Documentation
Before you can use a tied hash, you must create one. One way to do that is via:

 use Win32::TieRegistry (TiedHash => ’%RegHash’);

which exports a %RegHash variable into your package and ties it to the virtual root key of the Registry.
alternate method is:

 my %RegHash;
 use Win32::TieRegistry (TiedHash => \%RegHash);

There are also several ways you can tie a hash variable to any other key of the Registry, which are d
later.

Note that you will most likely use $Registry instead of using a tied hash. $Registry is a reference to a
hash that has been tied to the virtual root of your computer‘s Registry [as if, $Registry= \%RegHash].
So you would use $Registry−>{Key} rather than $RegHash{Key} and use keys %{$Registry}
rather than keys %RegHash , for example.

For each hash which has been tied to a Registry key, the Perl keys function will return a list containing the
name of each of the key‘s subkeys with a delimiter character appended to it and containing the name
of the key‘s values with a delimiter prepended to it. For example:

 keys(%{ $Registry−>{"HKEY_CLASSES_ROOT\\batfile\\"} })

might yield the following list value:

 ("DefaultIcon\\", # The subkey named "DefaultIcon"
 "shell\\", # The subkey named "shell"
 "shellex\\", # The subkey named "shellex"
 "\\", # The default value [named ""]
 "\\EditFlags") # The value named "EditFlags"

For the virtual root key, short−hand subkey names are used as shown below. You can use the sho
name, the regular HKEY_* name, or any numeric value to access these keys, but the short−hand nam
all that will be returned by the keys function.

"Classes" for HKEY_CLASSES_ROOT
Contains mappings between file name extensions and the uses for such files along with config
information for COM [MicroSoft‘s Common Object Model] objects. Usually a link to t
"SOFTWARE\\Classes" subkey of the HKEY_LOCAL_MACHINE key.

"CUser" for HKEY_CURRENT_USER
Contains information specific to the currently logged−in user. Mostly software configura
information. Usually a link to a subkey of the HKEY_USERS key.

"LMachine" for HKEY_LOCAL_MACHINE
Contains all manner of information about the computer.

"Users" for HKEY_USERS
Contains one subkey, ".DEFAULT" , which gets copied to a new subkey whenever a new use
added. Also contains a subkey for each user of the system, though only those for active users
only one] are loaded at any given time.

"PerfData" for HKEY_PERFORMANCE_DATA
Used to access data about system performance. Access via this key is "special" and all but th
carefully constructed calls will fail, usually with ERROR_INSUFFICIENT_BUFFER. For example,
you can‘t enumerate key names without also enumerating values which require huge buffers
exact buffer size required cannot be determined beforehand because RegQueryInfoKey() fails
with ERROR_INSUFFICIENT_BUFFER for HKEY_PERFORMANCE_DATA no matter how it is
18−Oct−1998 Version 5.005_02 1321

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

ject to

rly in
resh rate

f

 which
blesses

a for
 value

 where

ame or
ules that

These
ecially

uld be

stry],

ed by
 by a

hen a
at hash

 by a

name.
 more
called. So it is currently not very useful to tie a hash to this key. You can use it to create an ob
use for making carefully constructed calls to the underlying Reg*() routines.

"CConfig" for HKEY_CURRENT_CONFIG
Contains minimal information about the computer‘s current configuration that is required very ea
the boot process. For example, setting for the display adapter such as screen resolution and ref
are found in here.

"DynData" for HKEY_DYN_DATA
Dynamic data. We have found no documentation for this key.

A tied hash is much like a regular hash variable in Perl — you give it a key string inside braces, [{ and }],
and it gives you back a value [or lets you set a value]. For Win32::TieRegistry hashes, there are two types o
values that will be returned.

SubKeys
If you give it a string which represents a subkey, then it will give you back a reference to a hash
has been tied to that subkey. It can‘t return the hash itself, so it returns a reference to it. It also
that reference so that it is also an object so you can use it to call method functions.

Values
If you give it a string which is a value name, then it will give you back a string which is the dat
that value. Alternately, you can request that it give you both the data value string and the data
type [we discuss how to request this later]. In this case, it would return a reference to an array
the value data string is element [0] and the value data type is element [1] .

The key string which you use in the tied hash must be interpreted to determine whether it is a value n
a key name or a path that combines several of these or even other things. There are two simple r
make this interpretation easy and unambiguous:

 Put a delimiter after each key name.
 Put a delimiter in front of each value name.

Exactly how the key string will be intepreted is governed by the following cases, in the order listed.
cases are designed to "do what you mean". Most of the time you won‘t have to think about them, esp
if you follow the two simple rules above. After the list of cases we give several examples which sho
clear enough so feel free to skip to them unless you are worried about the details.

Remote machines
If the hash is tied to the virtual root of the registry [or the virtual root of a remote machine‘s regi
then we treat hash key strings which start with the delimiter character specially.

If the hash key string starts with two delimiters in a row, then those should be immediately follow
the name of a remote machine whose registry we wish to connect to. That can be followed
delimiter and more subkey names, etc. If the machine name is not following by anything, t
virtual root for the remote machine‘s registry is created, a hash is tied to it, and a reference to th
it is returned.

Hash key string starts with the delimiter
If the hash is tied to a virtual root key, then the leading delimiter is ignored. It should be followed
valid Registry root key name [either a short−hand name like "LMachine" , an HKEY_* value, or a
numeric value]. This alternate notation is allowed in order to be more consistant with the Open()
method function.

For all other Registry keys, the leading delimiter indicates that the rest of the string is a value
The leading delimiter is stripped and the rest of the string [which can be empty and can contain
delimiters] is used as a value name with no further parsing.
1322 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

d
rned,
 direct
t only if

d one
l with
ys one

ashes

n the
ames
 name

names

 as a
s and is

here is
 string
g as a
 tied to

 value
.

 to tied
Exact match with direct subkey name followed by delimiter
If you have already called the Perl keys function on the tied hash [or have already calle
MemberNames on the object] and the hash key string exactly matches one of the strings retu
then no further parsing is done. In other words, if the key string exactly matches the name of a
subkey with a delimiter appended, then a reference to a hash tied to that subkey is returned [bu
keys or MemberNames has already been called for that tied hash].

This is only important if you have selected a delimiter other than the system default delimiter an
of the subkey names contains the delimiter you have chosen. This rule allows you to dea
subkeys which contain your chosen delimiter in their name as long as you only traverse subke
level at a time and always enumerate the list of members before doing so.

The main advantage of this is that Perl code which recursively traverses a hash will work on h
tied to Registry keys even if a non−default delimiter has been selected.

Hash key string contains two delimiters in a row
If the hash key string contains two [or more] delimiters in a row, then the string is split betwee
first pair of delimiters. The first part is interpreted as a subkey name or a path of subkey n
separated by delimiters and with a trailing delimiter. The second part is interpreted as a value
with one leading delimiter [any extra delimiters are considered part of the value name].

Hash key string ends with a delimiter
If the key string ends with a delimiter, then it is treated as a subkey name or path of subkey
separated by delimiters.

Hash key string contains a delimiter
If the key string contains a delimiter, then it is split after the last delimiter. The first part is treated
subkey name or path of subkey names separated by delimiters. The second part is ambiguou
treated as outlined in the next item.

Hash key string contains no delimiters
If the hash key string contains no delimiters, then it is ambiguous.

If you are reading from the hash [fetching], then we first use the key string as a value name. If t
a value with a matching name in the Registry key which the hash is tied to, then the value data
[and possibly the value data type] is returned. Otherwise, we retry by using the hash key strin
subkey name. If there is a subkey with a matching name, then we return a reference to a hash
that subkey. Otherwise we return undef .

If you are writing to the hash [storing], then we use the key string as a subkey name only if the
you are storing is a reference to a hash value. Otherwise we use the key string as a value name

=head3 Examples

Here are some examples showing different ways of accessing Registry information using references
hashes:

Canonical value fetch
 $tip18= $Registry−>{"HKEY_LOCAL_MACHINE\\Software\\Microsoft\\"
 . ’Windows\\CurrentVersion\\Explorer\\Tips\\\\18’};

Should return the text of important tip number 18. Note that two backslashes, "\\" , are required to
get a single backslash into a Perl double−quoted or single−qouted string. Note that "\\" is appended
to each key name ["HKEY_LOCAL_MACHINE" through "Tips"] and "\\" is prepended to the
value name, "18" .

Changing your delimiter
 $Registry−>Delimiter("/");
 $tip18= $Registry−>{"HKEY_LOCAL_MACHINE/Software/Microsoft/"
18−Oct−1998 Version 5.005_02 1323

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

sume

 those

nce this
istry are
eful.

,
cuting

 in our

y not

long

 The
 . ’Windows/CurrentVersion/Explorer/Tips//18’};

This usually makes things easier to read when working in Perl. All remaining examples will as
the delimiter has been changed as above.

Using intermediate keys
 $ms= $Registry−>{"LMachine/Software/Microsoft/"};
 $tips= $ms−>{"Windows/CurrentVersion/Explorer/Tips/"};
 $tip18= $winlogon−>{"/18"};

Same as above but opens more keys into the Registry which lets you efficiently re−access
intermediate keys. This is slightly less efficient if you never reuse those intermediate keys.

Chaining in a single statement
 $tip18= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}−>{"/18"};

Like above, this creates intermediate key objects then uses them to access other data. O
statement finishes, the intermediate key objects are destroyed. Several handles into the Reg
opened and closed by this statement so it is less efficient but there are times when this will be us

Even less efficient example of chaining
 $tip18= $Registry−>{"LMachine/Software/Microsoft"}−>
 {"Windows/CurrentVersion/Explorer/Tips"}−>{"/18"};

Because we left off the trailing delimiters, Win32::TieRegistry doesn‘t know whether final names
"Microsoft" and "Tips" , are subkey names or value names. So this statement ends up exe
the same code as the next one.

What the above really does
 $tip18= $Registry−>{"LMachine/Software/"}−>{"Microsoft"}−>
 {"Windows/CurrentVersion/Explorer/"}−>{"Tips"}−>{"/18"};

With more chains to go through, more temporary objects are created and later destroyed than
first chaining example. Also, when "Microsoft" is looked up, Win32::TieRegistry first tries to
open it as a value and fails then tries it as a subkey. The same is true for when it looks up "Tips" .

Getting all of the tips
 $tips= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}
 or die "Can’t find the Windows tips: $^E\n";
 foreach(keys %$tips) {
 print "$_: ", $tips−>{$_}, "\n";
 }

First notice that we actually check for failure for the first time. Note that your version of Perl ma
set $^E properly [see the BUGS section]. We are assuming that the "Tips" key contains no subkeys.
 Otherwise the print statement would show something like
"Win32::TieRegistry=HASH(0xc03ebc)" for each subkey.

The output from the above code will start something like:

 /0: If you don’t know how to do something,[...]

=head3 Deleting items

You can use the Perl delete function to delete a value from a Registry key or to delete a subkey as
that subkey contains no subkeys of its own. See More Examples, below, for more information.

=head3 Storing items

You can use the Perl assignment operator [=] to create new keys, create new values, or replace values.
1324 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

xample,

 the

that
ation

at is,
values you store should be in the same format as the values you would fetch from a tied hash. For e
you can use a single assignment statement to copy an entire Registry tree. The following statement:

 $Registry−>{"LMachine/Software/Classes/Tie_Registry/"}=
 $Registry−>{"LMachine/Software/Classes/batfile/"};

creates a "Tie_Registry" subkey under the "Software\\Classes" subkey of the
HKEY_LOCAL_MACHINE key. Then it populates it with copies of all of the subkeys and values in
"batfile" subkey and all of its subkeys. Note that you need to have called
$Registry−>ArrayValues(1) for the proper value data type information to be copied. Note also
this release of Win32::TieRegistry does not copy key attributes such as class name and security inform
[this is planned for a future release].

The following statement creates a whole subtree in the Registry:

 $Registry−>{"LMachine/Software/FooCorp/"}= {
 "FooWriter/" => {
 "/Version" => "4.032",
 "Startup/" => {
 "/Title" => "Foo Writer Deluxe][",
 "/WindowSize" => [pack("LL",$wid,$ht), REG_BINARY],
 "/TaskBarIcon" => ["0x0001", REG_DWORD],
 },
 "Compatibility/" => {
 "/AutoConvert" => "Always",
 "/Default Palette" => "Windows Colors",
 },
 },
 "/License", => "0123−9C8EF1−09−FC",
 };

Note that all but the last Registry key used on the left−hand side of the assignment [th
"LMachine/Software/" but not "FooCorp/"] must already exist for this statement to succeed.

By using the leading a trailing delimiters on each subkey name and value name, Win32::TieRegistry will tell
you if you try to assign subkey information to a value or visa−versa.

=head3 More examples

Adding a new tip
 $tips= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}
 or die "Can’t find the Windows tips: $^E\n";
 $tips{’/186’}= "Be very careful when making changes to the Registry!";

Deleting our new tip
 $tips= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}
 or die "Can’t find the Windows tips: $^E\n";
 $tip186= delete $tips{’/186’};

Note that Perl‘s delete function returns the value that was deleted.

Adding a new tip differently
 $Registry−>{"LMachine/Software/Microsoft/" .
 "Windows/CurrentVersion/Explorer/Tips//186"}=
 "Be very careful when making changes to the Registry!";
18−Oct−1998 Version 5.005_02 1325

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

ces.
he next
ple only

key is
and/or

n be
e old

nt is

to

ement
Deleting differently
 $tip186= delete $Registry−>{"LMachine/Software/Microsoft/Windows/" .
 "CurrentVersion/Explorer/Tips//186"};

Note that this only deletes the tail of what we looked up, the "186" value, not any of the keys listed.

Deleting a key
WARNING: The following code will delete all information about the current user‘s tip preferen
Actually executing this command would probably cause the user to see the Welcome screen t
time they log in and may cause more serious problems. This statement is shown as an exam
and should not be used when experimenting.

 $tips= delete $Registry−>{"CUser/Software/Microsoft/Windows/" .
 "CurrentVersion/Explorer/Tips/"};

This deletes the "Tips" key and the values it contains. The delete function will return a reference
to a hash [not a tied hash] containing the value names and value data that were deleted.

The information to be returned is copied from the Registry into a regular Perl hash before the
deleted. If the key has many subkeys, this copying could take a significant amount of memory
processor time. So you can disable this process by calling the FastDelete member function:

 $prevSetting= $regKey−>FastDelete(1);

which will cause all subsequent delete operations via $regKey to simply return a true value if they
succeed. This optimization is automatically done if you use delete in a void context.

Technical notes on deleting
If you use delete to delete a Registry key or value and use the return value, then
Win32::TieRegistry usually looks up the current contents of that key or value so they ca
returned if the deletion is successful. If the deletion succeeds but the attempt to lookup th
contents failed, then the return value of delete will be $^E from the failed part of the operation.

Undeleting a key
 $Registry−>{"LMachine/Software/Microsoft/Windows/" .
 "CurrentVersion/Explorer/Tips/"}= $tips;

This adds back what we just deleted. Note that this version of Win32::TieRegistry will use defaults for
the key attributes [such as class name and security] and will not restore the previous attributes.

Not deleting a key
WARNING: Actually executing the following code could cause serious problems. This stateme
shown as an example only and should not be used when experimenting.

 $res= delete $Registry−>{"CUser/Software/Microsoft/Windows/"}
 defined($res) || die "Can’t delete URL key: $^E\n";

Since the "Windows" key should contain subkeys, that delete statement should make no changes
the Registry, return undef , and set $^E to "Access is denied" [but see the BUGS section about
$^E].

Not deleting again
 $tips= $Registry−>{"CUser/Software/Microsoft/Windows/" .
 "CurrentVersion/Explorer/Tips/"};
 delete $tips;

The Perl delete function requires that its argument be an expression that ends in a hash el
lookup [or hash slice], which is not the case here. The delete function doesn‘t know which hash
$tips came from and so can‘t delete it.
1326 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

a tied

y to be

e

 the
 is not

it has
s
as
ys
h

or

o

ot of

s the
Objects Documentation
The following member functions are defined for use on Win32::TieRegistry objects:

new The new method creates a new Win32::TieRegistry object. new is mostly a synonym for Open() so
see Open() below for information on what arguments to pass in. Examples:

 $machKey= new Win32::TieRegistry "LMachine"
 or die "Can’t access HKEY_LOCAL_MACHINE key: $^E\n";
 $userKey= Win32::TieRegistry−>new("CUser")
 or die "Can’t access HKEY_CURRENT_USER key: $^E\n";

Note that calling new via a reference to a tied hash returns a simple object, not a reference to
hash.

Open
$subKey= $key− Open($sSubKey, $rhOptions)

The Open method opens a Registry key and returns a new Win32::TieRegistry object associated with
that Registry key. If Open is called via a reference to a tied hash, then Open returns another reference
to a tied hash. Otherwise Open returns a simple object and you should then use TiedRef to get a
reference to a tied hash.

$sSubKey is a string specifying a subkey to be opened. Alternately $sSubKey can be a reference to
an array value containing the list of increasingly deep subkeys specifying the path to the subke
opened.

$rhOptions is an optional reference to a hash containing extra options. The Open method supports
two options, "Delimiter" and "Access" , and $rhOptions should have only have zero or mor
of these strings as keys. See the "Examples" section below for more information.

The "Delimiter" option specifies what string [usually a single character] will be used as
delimiter to be appended to subkey names and prepended to value names. If this option
specified, the new key [$subKey] inherits the delimiter of the old key [$key].

The "Access" option specifies what level of access to the Registry key you wish to have once
been opened. If this option is not specified, the new key [$subKey] is opened with the same acces
level used when the old key [$key] was opened. The virtual root of the Registry pretends it w
opened with access KEY_READ|KEY_WRITE so this is the default access when opening ke
directory via $Registry. If you don‘t plan on modifying a key, you should open it wit
KEY_READ access as you may not have KEY_WRITE access to it or some of its subkeys.

If the "Access" option value is a string that starts with "KEY_" , then it should match of the
predefined access levels [probably "KEY_READ", "KEY_WRITE" , or "KEY_ALL_ACCESS"]
exported by the Win32API::Registry module. Otherwise, a numeric value is expected. F
maximum flexibility, include use Win32API::Registry qw(:KEY_); , for example, near the
top of your script so you can specify more complicated access levels such as
KEY_READ|KEY_WRITE.

If $sSubKey does not begin with the delimiter [or $sSubKey is an array reference], then the path t
the subkey to be opened will be relative to the path of the original key [$key]. If $sSubKey begins
with a single delimiter, then the path to the subkey to be opened will be relative to the virtual ro
the Registry on whichever machine the original key resides. If $sSubKey begins with two
consectutive delimiters, then those must be followed by a machine name which cause
Connect() method function to be called.

Examples:

 $machKey= $Registry−>Open("LMachine", {Access=>KEY_READ,Delimiter=>"/"})
 or die "Can’t open HKEY_LOCAL_MACHINE key: $^E\n";
 $swKey= $machKey−>Open("Software");
 $logonKey= $swKey−>Open("Microsoft/Windows NT/CurrentVersion/Winlogon/");
18−Oct−1998 Version 5.005_02 1327

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

, then

ash [or
], then

name

he key

ngle

t

t used
 $NTversKey= $swKey−>Open(["Microsoft","Windows NT","CurrentVersion"]);
 $versKey= $swKey−>Open(qw(Microsoft Windows CurrentVersion));

 $remoteKey= $Registry−>Open("//HostA/LMachine/System/", {Delimiter=>"/"})
 or die "Can’t connect to HostA or can’t open subkey: $^E\n";

Clone
$copy= $key− Clone

Creates a new object that is associated with the same Registry key as the invoking object.

Connect
$remoteKey= $Registry− Connect($sMachineName, $sKeyPath, $rhOptions)

The Connect method connects to the Registry of a remote machine, and opens a key within it
returns a new Win32::TieRegistry object associated with that remote Registry key. If Connect was
called using a reference to a tied hash, then the return value will also be a reference to a tied h
undef]. Otherwise, if you wish to use the returned object as a tied hash [not just as an object
use the TiedRef method function after Connect .

$sMachineName is the name of the remote machine. You don‘t have to preceed the machine
with two delimiter characters.

$sKeyPath is a string specifying the remote key to be opened. Alternately $sKeyPath can be a
reference to an array value containing the list of increasingly deep keys specifying the path to t
to be opened.

$rhOptions is an optional reference to a hash containing extra options. The Connect method
supports two options, "Delimiter" and "Access" . See the Open method documentation for
more information on these options.

$sKeyPath is already relative to the virtual root of the Registry of the remote machine. A si
leading delimiter on sKeyPath will be ignored and is not required.

$sKeyPath can be empty in which case Connect will return an object representing the virtual roo
key of the remote Registry. Each subsequent use of Open on this virtual root key will call the system
RegConnectRegistry function.

The Connect method can be called via any Win32::TieRegistry object, not just $Registry.
Attributes such as the desired level of access and the delimiter will be inherited from the objec
but the $sKeyPath will always be relative to the virtual root of the remote machine‘s registry.

Examples:

 $remMachKey= $Registry−>Connect("HostA", "LMachine", {Delimiter−>"/"})
 or die "Can’t connect to HostA’s HKEY_LOCAL_MACHINE key: $^E\n";

 $remVersKey= $remMachKey−>Connect("www.microsoft.com",
 "LMachine/Software/Microsoft/Inetsrv/CurrentVersion/",
 { Access−>KEY_READ, Delimiter−>"/" })
 or die "Can’t check what version of IIS Microsoft is running: $^E\n";

 $remVersKey= $remMachKey−>Connect("www",
 qw(LMachine Software Microsoft Inetsrv CurrentVersion))
 or die "Can’t check what version of IIS we are running: $^E\n";

ObjectRef
$object_ref= $obj_or_hash_ref− ObjectRef

For a simple object, just returns itself [$obj == $obj−ObjectRef].

For a reference to a tied hash [if it is also an object], ObjectRef returns the simple object that the
hash is tied to.
1328 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

m the

rtain

a

to an

th a

meric

yte

ings

atter
This is primarilly useful when debugging since typing x $Registry will try to display your entire
registry contents to your screen. But the debugger command x $Registry−ObjectRef will just
dump the implementation details of the underlying object to your screen.

Flush($bFlush)
Flushes all cached information about the Registry key so that future uses will get fresh data fro
Registry.

If the optional $bFlush is specified and a true value, then RegFlushKey() will be called, which is
almost never necessary.

GetValue
$ValueData= $key− GetValue($sValueName)
($ValueData,$ValueType)= $key− GetValue($sValueName)

Gets a Registry value‘s data and data type.

$ValueData is usually just a Perl string that contains the value data [packed into it]. For ce
types of data, however, $ValueData may be processed as described below.

$ValueType is the REG_* constant describing the type of value data stored in $ValueData. If
the DualTypes() option is on, then $ValueType will be a dual value. That is, when used in
numeric context, $ValueType will give the numeric value of a REG_* constant. However, when
used in a non−numeric context, $ValueType will return the name of the REG_* constant, for
example "REG_SZ" [note the quotes]. So both of the following can be true at the same time:

 $ValueType == REG_SZ
and
 $ValueType eq "REG_SZ"

REG_SZ and REG_EXPAND_SZ
If the FixSzNulls() option is on, then the trailing ‘\0’ will be stripped [unless there isn‘t
one] before values of type REG_SZ and REG_EXPAND_SZ are returned. Note that
SetValue() will add a trailing ‘\0’ under similar circumstances.

REG_MULTI_SZ
If the SplitMultis() option is on, then values of this type are returned as a reference
array containing the strings. For example, a value that, with SplitMultis() off, would be
returned as:

 "Value1\000Value2\000\000"

would be returned, with SplitMultis() on, as:

 ["Value1", "Value2"]

REG_DWORD
If the DualBinVals() option is on, then the value is returned as a scalar containing bo
string and a number [much like the $! variable — see the SetDualVar() module for more
information] where the number part is the "unpacked" value. Use the returned value in a nu
context to access this part of the value. For example:

 $num= 0 + $Registry−>{"CUser/Console//ColorTable01"};

If the DWordsToHex() option is off, the string part of the returned value is a packed, 4−b
string [use unpack("L",$value) to get the numeric value.

If DWordsToHex() is on, the string part of the returned value is a 10−character hex str
[with leading "0x"]. You can use hex($value) to get the numeric value.

Note that SetValue() will properly understand each of these returned value formats no m
how DualBinVals() is set.
18−Oct−1998 Version 5.005_02 1329

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

 do

rn the

 do

rn the

d in the

s are

rn the

 names

is
termine
limiter.

rn the

ing.
ValueNames
@names= $key− ValueNames

Returns the list of value names stored directly in a Registry key. Note that the names returnednot
have a delimiter prepended to them like with MemberNames() and tied hashes.

Once you request this information, it is cached in the object and future requests will always retu
same list unless Flush() has been called.

SubKeyNames
@key_names= $key− SubKeyNames

Returns the list of subkey names stored directly in a Registry key. Note that the names returnednot
have a delimiter appended to them like with MemberNames() and tied hashes.

Once you request this information, it is cached in the object and future requests will always retu
same list unless Flush() has been called.

SubKeyClasses
@classes= $key− SubKeyClasses

Returns the list of classes for subkeys stored directly in a Registry key. The classes are returne
same order as the subkey names returned by SubKeyNames() .

SubKeyTimes
@times= $key− SubKeyTimes

Returns the list of last−modified times for subkeys stored directly in a Registry key. The time
returned in the same order as the subkey names returned by SubKeyNames() . Each time is a
FILETIME structure packed into a Perl string.

Once you request this information, it is cached in the object and future requests will always retu
same list unless Flush() has been called.

MemberNames
@members= $key− MemberNames

Returns the list of subkey names and value names stored directly in a Registry key. Subkey
have a delimiter appended to the end and value names have a delimiter prepended to the front.

Note that a value name could end in a delimiter [or could be "" so that the member name returned
just a delimiter] so the presence or absence of the leading delimiter is what should be used to de
whether a particular name is for a subkey or a value, not the presence or absence of a trailing de

Once you request this information, it is cached in the object and future requests will always retu
same list unless Flush() has been called.

Information
%info= $key− Information
@items= $key− Information(@itemNames);

Returns the following information about a Registry key:

LastWrite
A FILETIME structure indicating when the key was last modified and packed into a Perl str

CntSubKeys
The number of subkeys stored directly in this key.

CntValues
The number of values stored directly in this key.
1330 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

y.

in this

 for the

rmation

subkey
s passed

ect

 then
e

SecurityLen
The length [in bytes] of the largest[?] SECURITY_DESCRIPTOR associated with the Registry
key.

MaxValDataLen
The length [in bytes] of the longest value data associated with a value stored in this key.

MaxSubKeyLen
The length [in chars] of the longest subkey name associated with a subkey stored in this ke

MaxSubClassLen
The length [in chars] of the longest class name associated with a subkey stored directly
key.

MaxValNameLen
The length [in chars] of the longest value name associated with a value stored in this key.

With no arguments, returns a hash [not a reference to a hash] where the keys are the names
items given above and the values are the information describe above. For example:

 %info= ("CntValues" => 25, # Key contains 25 values.
 "MaxValNameLen" => 20, # One of which has a 20−char name.
 "MaxValDataLen" => 42, # One of which has a 42−byte value.
 "CntSubKeys" => 1, # Key has 1 immediate subkey.
 "MaxSubKeyLen" => 13, # One of which has a 12−char name.
 "MaxSubClassLen" => 0, # All of which have class names of "".
 "SecurityLen" => 232, # One SECURITY_DESCRIPTOR is 232 bytes.
 "LastWrite" => "\x90mZ\cX{\xA3\xBD\cA\c@\cA"

 # Key was last modifed 1998/06/01 16:29:32 GMT
);

With arguments, each one must be the name of a item given above. The return value is the info
associated with the listed names. In other words:

 return $key−>Information(@names);

returns the same list as:

 %info= $key−>Information;
 return @info{@names};

Delimiter
$oldDelim= $key− Delimiter
$oldDelim= $key− Delimiter($newDelim)

Gets and possibly changes the delimiter used for this object. The delimiter is appended to
names and prepended to value names in many return values. It is also used when parsing key
to tied hashes.

The delimiter defaults to backslash (‘\\’) but is inherited from the object used to create a new obj
and can be specified by an option when a new object is created.

Handle
$handle= $key− Handle

Returns the raw HKEY handle for the associated Registry key as an integer value. This value can
be used to Reg*() calls from Win32API::Registry . However, it is usually easier to just call th
Win32API::Registry calls directly via:

 $key−>RegNotifyChangeKeyValue(...);

For the virtual root of the local or a remote Registry, Handle() return "NONE".
18−Oct−1998 Version 5.005_02 1331

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

at if it
ase

en this

 object

ame as
aining

 array
Path
$path= $key− Path

Returns a string describing the path of key names to this Registry key. The string is built so th
were passed to $Registry−Open() , it would reopen the same Registry key [except in the rare c
where one of the key names contains $key−Delimiter].

Machine
$computerName= $key− Machine

Returns the name of the computer [or "machine"] on which this Registry key resides. Returns "" for
local Registry keys.

Access
Returns the numeric value of the bit mask used to specify the types of access requested wh
Registry key was opened. Can be compared to KEY_* values.

OS_Delimiter
Returns the delimiter used by the operating system‘s RegOpenKeyEx() call. For Win32, this is
always backslash ("\\").

Roots
Returns the mapping from root key names like "LMachine" to their associated HKEY_* constants.
Primarily for internal use and subject to change.

Tie
$key− Tie(\%hash);

Ties the referenced hash to that Registry key. Pretty much the same as

 tie %hash, ref($key), $key;

Since ref($key) is the class [package] to tie the hash to and TIEHASH() just returns its argument,
$key, [without calling new()] when it sees that it is already a blessed object.

TiedRef
$TiedHashRef= $hash_or_obj_ref− TiedRef

For a simple object, returns a reference to a hash tied to the object. Used to promote a simple
into a combined object and hash ref.

If already a reference to a tied hash [that is also an object], it just returns itself [$ref ==
$ref−TiedRef].

Mostly used internally.

ArrayValues
$oldBool= $key− ArrayValues
$oldBool= $key− ArrayValues($newBool)

Gets the current setting of the ArrayValues option and possibly turns it on or off.

When off, Registry values fetched via a tied hash are returned as just a value scalar [the s
GetValue() in a scalar context]. When on, they are returned as a reference to an array cont
the value data as the [0] element and the data type as the [1] element.

TieValues
$oldBool= TieValues
$oldBool= TieValues($newBool)

Gets the current setting of the TieValues option and possibly turns it on or off.

Turning this option on is not yet supported in this release of Win32::TieRegistry . In a future
release, turning this option on will cause Registry values returned from a tied hash to be a tied
that you can use to modify the value in the Registry.
1332 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

rns a
h is just
sh, not

n if

See

ue of a

 of
is the
FastDelete
$oldBool= $key− FastDelete
$oldBool= $key− FastDelete($newBool)

Gets the current setting of the FastDelete option and possibly turns it on or off.

When on, successfully deleting a Registry key [via a tied hash] simply returns 1.

When off, successfully deleting a Registry key [via a tied hash and not in a void context] retu
reference to a hash that contains the values present in the key when it was deleted. This has
like that returned when referencing the key before it was deleted except that it is an ordinary ha
one tied to the Win32::TieRegistry package.

Note that deleting either a Registry key or value via a tied hash in a void context prevents any overhead
in trying to build an appropriate return value.

Note that deleting a Registry value via a tied hash [not in a void context] returns the value data eve
<FastDelete is on.

SplitMultis
$oldBool= $key− SplitMultis
$oldBool= $key− SplitMultis($newBool)

Gets the current setting of the SplitMultis option and possibly turns it on or off.

If on, Registry values of type REG_MULTI_SZ are returned as a reference to an array of strings.
GetValue() for more information.

DWordsToHex
$oldBool= $key− DWordsToHex
$oldBool= $key− DWordsToHex($newBool)

Gets the current setting of the DWordsToHex option and possibly turns it on or off.

If on, Registry values of type REG_DWORD are returned as a hex string with leading "0x" and longer
than 4 characters. See GetValue() for more information.

FixSzNulls
$oldBool= $key− FixSzNulls
$oldBool= $key− FixSzNulls($newBool)

Gets the current setting of the FixSzNulls option and possibly turns it on or off.

If on, Registry values of type REG_SZ and REG_EXPAND_SZ have trailing ‘\0’ s added before they
are set and stripped before they are returned. See GetValue() and SetValue() for more
information.

DualTypes
$oldBool= $key− DualTypes
$oldBool= $key− DualTypes($newBool)

Gets the current setting of the DualTypes option and possibly turns it on or off.

If on, data types are returned as a combined numeric/string value holding both the numeric val
REG_* constant and the string value of the constant‘s name. See GetValue() for more information.

DualBinVals
$oldBool= $key− DualBinVals
$oldBool= $key− DualBinVals($newBool)

Gets the current setting of the DualBinVals option and possibly turns it on or off.

If on, Registry value data of type REG_BINARY and no more than 4 bytes long and Registry values
type REG_DWORD are returned as a combined numeric/string value where the numeric value
"unpacked" binary value as returned by:
18−Oct−1998 Version 5.005_02 1333

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

ported

llowing

f

hex reverse unpack("h*", $valData)

on a "little−endian" computer. [Would be hex unpack("H*",$valData) on a "big−endian"
computer if this module is ever ported to one.]

See GetValue() for more information.

GetOptions
@oldOpts= $key− GetOptions(@optionNames)

Returns the current setting of any of the following options:

 Delimiter FixSzNulls DWordsToHex
 ArrayValues SplitMultis DualBinVals
 TieValues FastDelete DualTypes

SetOptions
@oldOpts= $key− SetOptions(optNames=$optValue,...)

Changes the current setting of any of the following options, returning the previous setting(s):

 Delimiter FixSzNulls DWordsToHex AllowLoad
 ArrayValues SplitMultis DualBinVals AllowSave
 TieValues FastDelete DualTypes

For AllowLoad and AllowSave , instead of the previous setting, SetOptions returns whether or
not the change was successful.

In a scalar context, returns only the last item. The last option can also be specified as "ref" or "r"
[which doesn‘t need to be followed by a value] to allow chaining:

 $key−>SetOptions(AllowSave=>1,"ref")−>RegSaveKey(...)

SetValue
$okay= $key− SetValue($ValueName, $ValueData);
$okay= $key− SetValue($ValueName, $ValueData, $ValueType);

Adds or replaces a Registry value. Returns a true value if successfully, false otherwise.

$ValueName is the name of the value to add or replace and should not have a delimiter prepended to
it. Case is ignored.

$ValueType is assumed to be REG_SZ if it is omitted. Otherwise, it should be one the REG_*
constants.

$ValueData is the data to be stored in the value, probably packed into a Perl string. Other sup
formats for value data are listed below for each posible $ValueType.

REG_SZ or REG_EXPAND_SZ
The only special processing for these values is the addition of the required trailing ‘\0’ if it is
missing. This can be turned off by disabling the FixSzNulls option.

REG_MULTI_SZ
These values can also be specified as a reference to a list of strings. For example, the fo
two lines are equivalent:

 $key−>SetValue("Val1\000Value2\000LastVal\000\000", REG_MULTI_SZ);
vs.
 $key− SetValue(["Val1","Value2","LastVal"], REG_MULTI_SZ);

Note that if the required two trailing nulls ("\000\000") are missing, then this release o
SetValue() will not add them.
1334 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

t. In

ill treat

d value

 be a

 passed
s are

ts

bit mask

ting

e

d not
under
REG_DWORD
These values can also be specified as a hex value with the leading "0x" included and totaling
more than 4 bytes. These will be packed into a 4−byte string via:

 $data= pack("L", hex($data));

REG_BINARY
This value type is listed just to emphasize that no alternate format is supported for i
particular, you should not pass in a numeric value for this type of data. SetValue() cannot
distinguish such from a packed string that just happens to match a numeric value and so w
it as a packed string.

An alternate calling format:

 $okay= $key−>SetValue($ValueName, [$ValueData, $ValueType]);

[two arguments, the second of which is a reference to an array containing the value data an
type] is supported to ease using tied hashes with SetValue() .

CreateKey
$newKey= $key− CreateKey($subKey);
$newKey= $key− CreateKey($subKey, { Option=OptVal,... });

Creates a Registry key or just updates attributes of one. Calls RegCreateKeyEx() then, if it
succeeded, creates an object associated with the [possibly new] subkey.

$subKey is the name of a subkey [or a path to one] to be created or updated. It can also
reference to an array containing a list of subkey names.

The second argument, if it exists, should be a reference to a hash specifying options either to be
to RegCreateKeyEx() or to be used when creating the associated object. The following item
the supported keys for this options hash:

Delimiter
Specifies the delimiter to be used to parse $subKey and to be used in the new object. Defaul
to $key−Delimiter .

Access
Specifies the types of access requested when the subkey is opened. Should be a numeric
that combines one or more KEY_* constant values.

Class
The name to assign as the class of the new or updated subkey. Defaults to "" as we have never
seen a use for this information.

Disposition
Lets you specify a reference to a scalar where, upon success, either REG_CREATED_NEW_KEY
or REG_OPENED_EXISTING_KEY depending on whether a new key was created or an exis
key was opened.

Security
Lets you specify a SECURITY_ATTRIBUTES structure packed into a Perl string. Se
Win32API::Registry::RegCreateKeyEx() for more information.

Volatile
If true, specifies that the new key should be volatile, that is, stored only in memory an
backed by a hive file [and not saved if the computer is rebooted]. This option is ignored
Windows 95. Specifying Volatile=1 is the same as specifying
Options=REG_OPTION_VOLATILE .
18−Oct−1998 Version 5.005_02 1335

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

a

keys.

miters].

ubkey
of

 when

d

ch

cify the

s

Backup
If true, specifies that the new key should be opened for backup/restore access. The Access
option is ignored. If the calling process has enabled "SeBackupPrivilege" , then the
subkey is opened with KEY_READ access as the "LocalSystem" user which should have
access to all subkeys. If the calling process has enabled "SeRestorePrivilege" , then the
subkey is opened with KEY_WRITE access as the "LocalSystem" user which should have
access to all subkeys.

This option is ignored under Windows 95. Specifying Backup=1 is the same as specifying
Options=REG_OPTION_BACKUP_RESTORE.

Options
Lets you specify options to the RegOpenKeyEx() call. The value for this option should be
numeric value combining zero or more of the REG_OPTION_* bit masks. You may with to
used the Volatile and/or Backup options instead of this one.

StoreKey
$newKey= $key− StoreKey($subKey, \%Contents);

Primarily for internal use.

Used to create or update a Registry key and any number of subkeys or values under it or its sub

$subKey is the name of a subkey to be created [or a path of subkey names separated by deli
If that subkey already exists, then it is updated.

\%Contents is a reference to a hash containing pairs of value names with value data and/or s
names with hash references similar to \%Contents . Each of these cause a value or subkey
$subKey to be created or updated.

If $Contents{""} exists and is a reference to a hash, then it used as the options argument
CreateKey() is called for $subKey. This allows you to specify ...

 if(defined($$data{""}) && "HASH" eq ref($$data{""})) {
$self= $this−>CreateKey($subKey, delete $$data{""});

Load
$newKey= $key− Load($file)
$newKey= $key− Load($file, $newSubKey)
$newKey= $key− Load($file, $newSubKey, { Option=OptVal... })
$newKey= $key− Load($file, { Option=OptVal... })

Loads a hive file into a Registry. That is, creates a new subkey and associates a hive file with it.

$file is a hive file, that is a file created by calling RegSaveKey() . The $file path is interpreted
relative to %SystemRoot%/System32/config on the machine where $key resides.

$newSubKey is the name to be given to the new subkey. If $newSubKey is specified, then $key
must be HKEY_LOCAL_MACHINE or HKEY_USERS of the local computer or a remote computer an
$newSubKey should not contain any occurrences of either the delimiter or the OS delimiter.

If $newSubKey is not specified, then it is as if $key was $Registry−{LMachine} and
$newSubKey is "PerlTie:999" where "999" is actually a sequence number incremented ea
time this process calls Load() .

You can specify as the last argument a reference to a hash containing options. You can spe
same options that you can specify to Open() . See Open() for more information on those. In
addition, you can specify the option "NewSubKey" . The value of this option is interpretted exactly a
if it was specified as the $newSubKey parameter and overrides the $newSubKey if one was
specified.
1336 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

l

viously

l

viously

ctions
UnLoad
$okay= $key− UnLoad

Unloads a hive that was loaded via Load() . Cannot unload other hives. $key must be the return
from a previous call to Load() . $key is closed and then the hive is unloaded.

AllowSave
$okay= AllowSave($bool)

Enables or disables the "ReBackupPrivilege" privilege for the current process. You wil
probably have to enable this privilege before you can use RegSaveKey() .

The return value indicates whether the operation succeeded, not whether the privilege was pre
enabled.

AllowLoad
$okay= AllowLoad($bool)

Enables or disables the "ReRestorePrivilege" privilege for the current process. You wil
probably have to enable this privilege before you can use RegLoadKey() , RegUnLoadKey() ,
RegReplaceKey() , or RegRestoreKey and thus Load() and UnLoad() .

The return value indicates whether the operation succeeded, not whether the privilege was pre
enabled.

SUMMARY
Most things can be done most easily via tied hashes. Skip down to the the Tied Hashes Summary to get
started quickly.

Objects Summary
Here are quick examples that document the most common functionality of all of the method fun
[except for a few almost useless ones].

 # Just another way of saying Open():
 $key= new Win32::TieRegistry "LMachine\\Software\\",
 { Access=>KEY_READ|KEY_WRITE, Delimiter=>"\\" };

 # Open a Registry key:
 $subKey= $key−>Open("SubKey/SubSubKey/",
 { Access=>KEY_ALL_ACCESS, Delimiter=>"/" });

 # Connect to a remote Registry key:
 $remKey= $Registry−>Connect("MachineName", "LMachine/",
 { Access=>KEY_READ, Delimiter=>"/" });

 # Get value data:
 $valueString= $key−>GetValue("ValueName");
 ($valueString, $valueType)= $key−>GetValue("ValueName");

 # Get list of value names:
 @valueNames= $key−>ValueNames;

 # Get list of subkey names:
 @subKeyNames= $key−>SubKeyNames;

 # Get combined list of value names (with leading delimiters)
 # and subkey names (with trailing delimiters):
 @memberNames= $key−>MemberNames;

 # Get all information about a key:
 %keyInfo= $key−>Information;
 # keys(%keyInfo)= qw(Class LastWrite SecurityLen
 # CntSubKeys MaxSubKeyLen MaxSubClassLen
18−Oct−1998 Version 5.005_02 1337

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

 for
e

 # CntValues MaxValNameLen MaxValDataLen);

 # Get selected information about a key:
 ($class, $cntSubKeys)= $key−>Information("Class", "CntSubKeys");

 # Get and/or set delimiter:
 $delim= $key−>Delimiter;
 $oldDelim= $key−>Delimiter($newDelim);

 # Get "path" for an open key:
 $path= $key−>Path;
 # For example, "/CUser/Control Panel/Mouse/"
 # or "//HostName/LMachine/System/DISK/".

 # Get name of machine where key is from:
 $mach= $key−>Machine;
 # Will usually be "" indicating key is on local machine.

 # Control different options (see main documentation for descriptions):
 $oldBool= $key−>ArrayValues($newBool);
 $oldBool= $key−>FastDelete($newBool);
 $oldBool= $key−>FixSzNulls($newBool);
 $oldBool= $key−>SplitMultis($newBool);
 $oldBool= $key−>DWordsToHex($newBool);
 $oldBool= $key−>DualBinVals($newBool);
 $oldBool= $key−>DualTypes($newBool);
 @oldBools= $key−>SetOptions(ArrayValues=>1, FastDelete=>1, FixSzNulls=>0,
 Delimiter=>"/", AllowLoad=>1, AllowSave=>1);
 @oldBools= $key−>GetOptions(ArrayValues, FastDelete, FixSzNulls);

 # Add or set a value:
 $key−>SetValue("ValueName", $valueDataString);
 $key−>SetValue("ValueName", pack($format,$valueData), "REG_BINARY");

 # Add or set a key:
 $key−>CreateKey("SubKeyName");
 $key−>CreateKey("SubKeyName",
 { Access=>"KEY_ALL_ACCESS", Class=>"ClassName",
 Delimiter=>"/", Volatile=>1, Backup=>1 });

 # Load an off−line Registry hive file into the on−line Registry:
 $newKey= $Registry−>Load("C:/Path/To/Hive/FileName");
 $newKey= $key−>Load("C:/Path/To/Hive/FileName", "NewSubKeyName",

 { Access=>KEY_READ });
 # Unload a Registry hive file loaded via the Load() method:
 $newKey−>UnLoad;

 # (Dis)Allow yourself to load Registry hive files:
 $success= $Registry−>AllowLoad($bool);

 # (Dis)Allow yourself to save a Registry key to a hive file:
 $success= $Registry−>AllowSave($bool);

 # Save a Registry key to a new hive file:
 $key−>RegSaveKey("C:/Path/To/Hive/FileName", []);

=head3 Other Useful Methods

See Win32API::Registry for more information on these methods. These methods are provided
coding convenience and are identical to the Win32API::Registry functions except that these don‘t tak
a handle to a Registry key, instead getting the handle from the invoking object [$key].
1338 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

 end of
 $key−>RegGetKeySecurity($iSecInfo, $sSecDesc, $lenSecDesc);
 $key−>RegLoadKey($sSubKeyName, $sPathToFile);
 $key−>RegNotifyChangeKeyValue(
 $bWatchSubtree, $iNotifyFilter, $hEvent, $bAsync);
 $key−>RegQueryMultipleValues(
 $structValueEnts, $cntValueEnts, $Buffer, $lenBuffer);
 $key−>RegReplaceKey($sSubKeyName, $sPathToNewFile, $sPathToBackupFile);
 $key−>RegRestoreKey($sPathToFile, $iFlags);
 $key−>RegSetKeySecurity($iSecInfo, $sSecDesc);
 $key−>RegUnLoadKey($sSubKeyName);

Tied Hashes Summary
For fast learners, this may be the only section you need to read. Always append one delimiter to the
each Registry key name and prepend one delimiter to the front of each Registry value name.

=head3 Opening keys

 use Win32::TieRegistry (Delimiter=>"/", ArrayValues=>1);
 $Registry−>Delimiter("/"); # Set delimiter to "/".
 $swKey= $Registry−>{"LMachine/Software/"};
 $winKey= $swKey−>{"Microsoft/Windows/CurrentVersion/"};
 $userKey= $Registry−>
 {"CUser/Software/Microsoft/Windows/CurrentVersion/"};
 $remoteKey= $Registry−>{"//HostName/LMachine/"};

=head3 Reading values

 $progDir= $winKey−>{"/ProgramFilesDir"}; # "C:\\Program Files"
 $tip21= $winKey−>{"Explorer/Tips//21"}; # Text of tip #21.

 $winKey−>ArrayValues(1);
 ($devPath, $type)= $winKey−>{"/DevicePath"};
 # $devPath eq "%SystemRoot%\\inf"
 # $type eq "REG_EXPAND_SZ" [if you have SetDualVar.pm installed]
 # $type == REG_EXPAND_SZ [if you did "use Win32API::Registry qw(REG_)"]

=head3 Setting values

 $winKey−>{"Setup//SourcePath"}= "\\\\SwServer\\SwShare\\Windows";
 # Simple. Assumes data type of REG_SZ.

 $winKey−>{"Setup//Installation Sources"}=
 ["D:\x00\\\\SwServer\\SwShare\\Windows\0\0", "REG_MULTI_SZ"];
 # "\x00" and "\0" used to mark ends of each string and end of list.

 $winKey−>{"Setup//Installation Sources"}=
 [["D:","\\\\SwServer\\SwShare\\Windows"], "REG_MULTI_SZ"];
 # Alternate method that is easier to read.

 $userKey−>{"Explorer/Tips//DisplayInitialTipWindow"}=
 [pack("L",0), "REG_DWORD"];
 $userKey−>{"Explorer/Tips//Next"}= [pack("S",3), "REG_BINARY"];
 $userKey−>{"Explorer/Tips//Show"}= [pack("L",0), "REG_BINARY"];

=head3 Adding keys

 $swKey−>{"FooCorp/"}= {
 "FooWriter/" => {
 "/Version" => "4.032",
 "Startup/" => {
 "/Title" => "Foo Writer Deluxe][",
18−Oct−1998 Version 5.005_02 1339

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

r
erl,

rsion
on.

 root keys
ays
atching
y name
 "/WindowSize" => [pack("LL",$wid,$ht), REG_BINARY],
 "/TaskBarIcon" => ["0x0001", REG_DWORD],
 },
 "Compatibility/" => {
 "/AutoConvert" => "Always",
 "/Default Palette" => "Windows Colors",
 },
 },
 "/License", => "0123−9C8EF1−09−FC",
 };

=head3 Listing all subkeys and values

 @members= keys(%{$swKey});
 @subKeys= grep(m#^/#, keys(%{$swKey−>{"Classes/batfile/"}}));
 # @subKeys= ("/", "/EditFlags");
 @valueNames= grep(! m#^/#, keys(%{$swKey−>{"Classes/batfile/"}}));
 # @valueNames= ("DefaultIcon/", "shell/", "shellex/");

=head3 Deleting values or keys with no subkeys

 $oldValue= delete $userKey−>{"Explorer/Tips//Next"};

 $oldValues= delete $userKey−>{"Explorer/Tips/"};
 # $oldValues will be reference to hash containing deleted keys values.

=head3 Closing keys

 undef $swKey; # Explicit way to close a key.
 $winKey= "Anything else"; # Implicitly closes a key.
 exit 0; # Implicitly closes all keys.

Tie::Registry
This module was originally called Tie::Registry . Changing code that used Tie::Registry over to
Win32::TieRegistry is trivial as the module name should only be mentioned once, in the use line.
However, finding all of the places that used Tie::Registry may not be completely trivial so we have
included Tie/Registry.pm which you can install to provide backward compatibility.

AUTHOR
Tye McQueen, tye@metronet.com, see http://www.metronet.com/~tye/.

SEE ALSO
Win32API::Registry − Provides access to Reg*() , HKEY_*, KEY_*, REG_* [required].

Win32::WinError − Defines ERROR_* values [optional].

SetDualVar − For returning REG_* values as combined string/integer [optional].

BUGS
Because Win32::TieRegistry requires Win32API::Registry which uses the standard Perl tools fo
building extensions, MakeMaker, and these are not supported with the ActiveWare versions of P
Win32::TieRegistry cannot be used with the ActiveWare versions of Perl. Sorry. The ActiveWare ve
and standard version of Perl are merging so you may want to switch to the standard version of Perl so

Because Perl hashes are case sensitive, certain lookups are also case sensistive. In particular, the
("Classes", "CUser", "LMachine", "Users", "PerfData", "CConfig", "DynData", and HKEY_*) must alw
be entered without changing between upper and lower case letters. Also, the special rule for m
subkey names that contain the user−selected delimiter only works if case is matched. All other ke
and value name lookups should be case insensitive because the underlying Reg*() calls ignore case.

Perl5.004_02 has bugs that make Win32::TieRegistry fail in strange and subtle ways.
1340 Version 5.005_02 18−Oct−1998

Win32::TieRegistry Perl Programmers Reference Guide Win32::TieRegistry

d use
Information about each key is cached when using a tied hash. A future release shoul
RegNotifyChangeKeyValue() to prevent this cache from becoming out−of−date.

There is no test suite.
18−Oct−1998 Version 5.005_02 1341

DBI Perl Programmers Reference Guide DBI

latest

the DBI
rs you

d it by
NAME
DBI − Database independent interface for Perl

SYNOPSIS
 use DBI;

 @driver_names = DBI−>available_drivers;
 @data_sources = DBI−>data_sources($driver_name);

 $dbh = DBI−>connect($data_source, $username, $auth);
 $dbh = DBI−>connect($data_source, $username, $auth, \%attr);

 $rc = $dbh−>disconnect;

 $rv = $dbh−>do($statement);
 $rv = $dbh−>do($statement, \%attr);
 $rv = $dbh−>do($statement, \%attr, @bind_values);

 @row_ary = $dbh−>selectrow_array($statement);
 $ary_ref = $dbh−>selectall_arrayref($statement);

 $sth = $dbh−>prepare($statement);
 $sth = $dbh−>prepare_cached($statement);

 $rv = $sth−>bind_param($p_num, $bind_value);
 $rv = $sth−>bind_param($p_num, $bind_value, $bind_type);
 $rv = $sth−>bind_param($p_num, $bind_value, \%attr);

 $rv = $sth−>execute;
 $rv = $sth−>execute(@bind_values);

 $rc = $sth−>bind_col($col_num, \$col_variable);
 $rc = $sth−>bind_columns(\%attr, @list_of_refs_to_vars_to_bind);

 @row_ary = $sth−>fetchrow_array;
 $ary_ref = $sth−>fetchrow_arrayref;
 $hash_ref = $sth−>fetchrow_hashref;

 $rc = $sth−>finish;

 $rv = $sth−>rows;

 $rc = $dbh−>commit;
 $rc = $dbh−>rollback;

 $sql = $dbh−>quote($string);

 $rc = $h−>err;
 $str = $h−>errstr;
 $rv = $h−>state;

NOTE
This is the DBI specification that corresponds to the DBI version 1.02 ($Date: 1998/09/03 21:56:42 $).

The DBI specification is currently evolving quite quickly so it is important to check that you have the
copy. The RECENT CHANGES section below has a summary of user−visible changes and the Changes file
supplied with the DBI holds more detailed change information.

Note also that whenever the DBI changes the drivers take some time to catch up. Recent versions of
have added many new features (marked *NEW* in the text) that may not yet be supported by the drive
use. Talk to the authors of those drivers if you need the features.

Please also read the DBI FAQ which is installed as a DBI::FAQ module so you can use perldoc to rea
1342 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

ned it

t_fbav
tError

n

,

he DBI
pendant

ation
andard

ith

ables

ctual
g and

ons of
ors of

.
executing the perldoc DBI::FAQ command.

RECENT CHANGES
A brief summary of significant user−visible changes in recent versions (if a recent version isn‘t mentio
simply means that there were no significant user−visible changes in that version).

DBI 1.00 − 14th August 1998
Added $dbh− table_info.

DBI 0.96 − 10th August 1998
Added $sth− {PRECISION} and $sth− {SCALE}. Added DBD::Shell and dbish interactive DBI
shell. Any database attribs can be set via DBI−connect(,,, \%attr). Added _get_fbav and _se
methods for Perl driver developers. DBI trace now shows appends " at yourfile.pl line nnn". Prin
and RaiseError now prepend driver and method name. Added $dbh− {Name}. Added
$dbh− quote($value, $data_type). Added DBD::Proxy and DBI::ProxyServer (from Joche
Wiedmann). Added $dbh− selectall_arrayref and $dbh− selectrow_array methods. Added
$dbh− table_info. Added $dbh− type_info and $dbh− type_info_all. Added $h− trace_msg($msg) to
write to trace log. Added @bool = DBI::looks_like_number(@ary).

DBI 0.92 − 4th February 1998
Added $dbh− prepare_cached() caching variant of $dbh− prepare. Added new attributes: Active
Kids, ActiveKids, CachedKids. Added support for general−purpose ‘private_’ attributes.

DESCRIPTION
The Perl DBI is a database access Application Programming Interface (API) for the Perl Language. T
defines a set of functions, variables and conventions that provide a consistent database interface inde
of the actual database being used.

It is important to remember that the DBI is just an interface. A thin layer of ‘glue’ between an applic
and one or more Database Drivers. It is the drivers which do the real work. The DBI provides a st
interface and framework for the drivers to operate within.

This document is a work−in−progress. Although it is incomplete it should be useful in getting started w
the DBI.

Architecture of a DBI Application
 |<− Scope of DBI −>|
 .−. .−−−−−−−−−−−−−−. .−−−−−−−−−−−−−.
 .−−−−−−−. | |−−−| XYZ Driver |−−−| XYZ Engine |
 | Perl | |S| ‘−−−−−−−−−−−−−−’ ‘−−−−−−−−−−−−−’
 | script| |A| |w| .−−−−−−−−−−−−−−. .−−−−−−−−−−−−−.
 | using |−−|P|−−|i|−−−|Oracle Driver |−−−|Oracle Engine|
 | DBI | |I| |t| ‘−−−−−−−−−−−−−−’ ‘−−−−−−−−−−−−−’
 | API | |c|...
 |methods| |h|... Other drivers
 ‘−−−−−−−’ | |...
 ‘−’

The API is the Application Perl−script (or Programming) Interface. The call interface and vari
provided by DBI to perl scripts. The API is implemented by the DBI Perl extension.

The ‘Switch’ is the code that ‘dispatches’ the DBI method calls to the appropriate Driver for a
execution. The Switch is also responsible for the dynamic loading of Drivers, error checking/handlin
other duties. The DBI and Switch are generally synonymous.

The Drivers implement support for a given type of Engine (database). Drivers contain implementati
the DBI methods written using the private interface functions of the corresponding Engine. Only auth
sophisticated/multi−database applications or generic library functions need be concerned with Drivers
18−Oct−1998 Version 5.005_02 1343

DBI Perl Programmers Reference Guide DBI

eleted.

rbitrary
he same

. Time

ithout

tched in

orName

t they

ext stored
base or
 to the
our then

names
by the
Notation and Conventions
 DBI static ’top−level’ class name
 $dbh Database handle object
 $sth Statement handle object
 $drh Driver handle object (rarely seen or used in applications)
 $h Any of the $??h handle types above
 $rc General Return Code (boolean: true=ok, false=error)
 $rv General Return Value (typically an integer)
 @ary List of values returned from the database, typically a row of data
 $rows Number of rows processed (if available, else −1)
 $fh A filehandle
 undef NULL values are represented by undefined values in perl

Note that Perl will automatically destroy database and statement objects if all references to them are d

Handle object attributes are shown as:

 $h−>{attribute_name} (type)

where type indicates the type of the value of the attribute (if it‘s not a simple scalar):

 \$ reference to a scalar: $h−>{attr} or $a = ${$h−>{attr}}
 \@ reference to a list: $h−>{attr}−>[0] or @a = @{$h−>{attr}}
 \% reference to a hash: $h−>{attr}−>{a} or %a = %{$h−>{attr}}

General Interface Rules & Caveats
The DBI does not have a concept of a ‘current session’. Every session has a handle object (i.e., a$dbh)
returned from the connect method and that handle object is used to invoke database related methods.

Most data is returned to the perl script as strings (null values are returned as undef). This allows a
precision numeric data to be handled without loss of accuracy. Be aware that perl may not preserve t
accuracy when the string is used as a number.

Dates and times are returned as character strings in the native format of the corresponding Engine
Zone effects are Engine/Driver dependent.

Perl supports binary data in perl strings and the DBI will pass binary data to and from the Driver w
change. It is up to the Driver implementors to decide how they wish to handle such binary data.

Multiple SQL statements may not be combined in a single statement handle, e.g., a single $sth.

Non−sequential record reads are not supported in this version of the DBI. E.g., records can only be fe
the order that the database returned them and once fetched they are forgotten.

Positioned updates and deletes are not directly supported by the DBI. See the description of the Curs
attribute for an alternative.

Individual Driver implementors are free to provide any private functions and/or handle attributes tha
feel are useful. Private driver functions can be invoked using the DBI func method. Private driver attributes
are accessed just like standard attributes.

Character sets: Most databases which understand character sets have a default global charset and t
in the database is, or should be, stored in that charset (if it‘s not then that‘s the fault of either the data
the application that inserted the data). When text is fetched it should be (automatically) converted
charset of the client (presumably based on the locale). If a driver needs to set a flag to get that behavi
it should do so. It should not require the application to do that.

Naming Conventions and Name Space
The DBI package and all packages below it (DBI::*) are reserved for use by the DBI. Package
beginning with DBD:: are reserved for use by DBI database drivers. All environment variables used
DBI or DBD‘s begin with ‘DBI_’ or ‘DBD_’.
1344 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

of DBI
and its

efining
viation

ntified

 contain
fore the
 of data

own as
The letter case used for attribute names is significant and plays an important part in the portability
scripts. The case of the attribute name is used to signify who defined the meaning of that name
values.

 Case of name Has a meaning defined by
 −−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−
 UPPER_CASE Standards, e.g., X/Open, SQL92 etc (portable)
 MixedCase DBI API (portable), underscores are not used.
 lower_case Driver or Engine specific (non−portable)

It is of the utmost importance that Driver developers only use lowercase attribute names when d
private attributes. Private attribute names must be prefixed with the driver name or suitable abbre
(e.g., ora_ for Oracle, ing_ for Ingres etc).

Driver Specific Prefix Registry:

 ora_ DBD::Oracle
 ing_ DBD::Ingres
 odbc_ DBD::ODBC
 syb_ DBD::Sybase
 db2_ DBD::DB2
 ix_ DBD::Informix
 csv_ DBD::CSV
 file_ DBD::TextFile
 xbase_ DBD::XBase
 solid_ DBD::Solid
 proxy_ DBD::Proxy

Data Query Methods
The DBI allows an application to ‘prepare’ a statement for later execution. A prepared statement is ide
by a statement handle object, e.g., $sth.

Typical method call sequence for a select statement:

 connect,
 prepare,
 execute, fetch, fetch, ... finish,
 execute, fetch, fetch, ... finish,
 execute, fetch, fetch, ... finish.

Typical method call sequence for a non−select statement:

 connect,
 prepare,
 execute,
 execute,
 execute.

Placeholders and Bind Values
Some drivers support Placeholders and Bind Values. These drivers allow a database statement to
placeholders, sometimes called parameter markers, that indicate values that will be supplied later, be
prepared statement is executed. For example, an application might use the following to insert a row
into the SALES table:

 insert into sales (product_code, qty, price) values (?, ?, ?)

or the following, to select the description for a product:

 select description from products where product_code = ?

The ? characters are the placeholders. The association of actual values with placeholders is kn
18−Oct−1998 Version 5.005_02 1345

DBI Perl Programmers Reference Guide DBI

tes
e that

 the

er
 select

inserted
atement
ach time
 many

 SQL
g.

teract

dant. In
 that
ent to the
binding and the values are referred to as bind values.

When using placeholders with the SQL LIKE qualifier you must remember that the placeholder substitu
for the whole string. So you should use "... LIKE ? ..." and include any wildcard characters in the valu
you bind to the placeholder.

Null Values

Undefined values or undef can be used to indicate null values. However, care must be taken in
particular case of trying to use null values to qualify a select statement. Consider:

 select description from products where product_code = ?

Binding an undef (NULL) to the placeholder will not select rows which have a NULL product_code! Ref
to the SQL manual for your database engine or any SQL book for the reasons for this. To explicitly
NULLs you have to say "where product_code is NULL" and to make that general you have to say:

 ... where product_code = ? or (? is null and product_code is null)

and bind the same value to both placeholders.

Performance

Without using placeholders, the insert statement above would have to contain the literal values to be
and it would have to be re−prepared and re−executed for each row. With placeholders, the insert st
only needs to be prepared once. The bind values for each row can be given to the execute method e
it‘s called. By avoiding the need to re−prepare the statement for each row the application typically
times faster! Here‘s an example:

 my $sth = $dbh−>prepare(q{
 insert into sales (product_code, qty, price) values (?, ?, ?)
 }) || die $dbh−>errstr;
 while (<>) {
 chop;
 my ($product_code, $qty, $price) = split /,/;
 $sth−>execute($product_code, $qty, $price) || die $dbh−>errstr;
 }
 $dbh−>commit || die $dbh−>errstr;

See /execute and /bind_param for more details.

The q{...} style quoting used in this example avoids clashing with quotes that may be used in the
statement. Use the double−quote like qq{...} operator if you want to interpolate variables into the strin
See Quote and Quote−like Operators in perlop for more details.

See /bind_column for a related method used to associate perl variables with the output columns of a select
statement.

SQL − A Query Language
Most DBI drivers require applications to use a dialect of SQL (the Structured Query Language) to in
with the database engine. These links may provide some useful information about SQL:

 http://www.jcc.com/sql_stnd.html
 http://w3.one.net/~jhoffman/sqltut.htm
 http://skpc10.rdg.ac.uk/misc/sqltut.htm
 http://epoch.CS.Berkeley.EDU:8000/sequoia/dba/montage/FAQ/SQL_TOC.html
 http://www.bf.rmit.edu.au/Oracle/sql.html

The DBI itself does not mandate or require any particular language to be used. It is language indepen
ODBC terms the DBI is in ‘pass−thru’ mode (individual drivers might not be). The only requirement is
queries and other statements must be expressed as a single string of letters passed as the first argum
/prepare method.
1346 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

se handle

via the

ff

e
fix is
 dies.

ntax
tring.
x they
ed that

e
f the
is only

r’
nly

e
ername
 being
urce is
THE DBI CLASS

DBI Class Methods

connect
 $dbh = DBI−>connect($data_source, $username, $password) || die $DBI::errstr;
 $dbh = DBI−>connect($data_source, $username, $password, \%attr) || ...

Establishes a database connection (session) to the requested data_source. Returns a databa
object if the connect succeeds. If the connect fails (see below) it returns undef and sets $DBI::err
and $DBI::errstr (it does not set $! or $? etc).

Multiple simultaneous connections to multiple databases through multiple drivers can be made
DBI. Simply make one connect call for each and keep a copy of each returned database handle.

The $data_source value should begin with ‘dbi:driver_name:’. That prefix will be stripped o
and the driver_name part is used to specify the driver (letter case is significant).

As a convenience, if the $data_source field is undefined or empty the DBI will substitute the valu
of the environment variable DBI_DSN. If the driver_name part is empty (i.e., data_source pre
‘dbi::’) the environment variable DBI_DRIVER is used. If that variable is not set then the connect

Examples of $data_source values:

 dbi:DriverName:database_name
 dbi:DriverName:database_name@hostname:port
 dbi:DriverName:database=database_name;host=hostname;port=port

There is no standard for the text following the driver name. Each driver is free to use whatever sy
it wants. The only requirement the DBI makes is that all the information is supplied in a single s
You must consult the documentation for the drivers you are using for a description of the synta
require. (Where a driver author needs to define a syntax for the data_source it is recommend
they follow the ODBC style, the last example above.)

If the environment variable DBI_AUTOPROXY is defined (and the driver in $data_source is not
‘Proxy’) then the connect request will automatically be changed to:

 dbi:Proxy:$ENV{DBI_AUTOPROXY};dsn=$data_source

and passed to the DBD::Proxy module. DBI_AUTOPROXY would typically be
"hostname=...;port=...". See DBD::Proxy for more details.

If $username or $password are undefined (rather than empty) then the DBI will substitute th
values of the DBI_USER and DBI_PASS environment variables respectively. The use o
environment for these values is not recommended for security reasons. The mechanism
intended to simplify testing.

DBI−connect automatically installs the driver if it has not been installed yet. Driver installation always
returns a valid driver handle or it dies with an error message which includes the string ‘install_drive
and the underlying problem. So, DBI−connect will die on a driver installation failure and will o
return undef on a connect failure, for which $DBI::errstr will hold the error.

The $data_source argument (with the ‘dbi:...:’ prefix removed) and the $username and
$password arguments are then passed to the driver for processing. The DBI does not definany
interpretation for the contents of these fields. The driver is free to interpret the data_source, us
and password fields in any way and supply whatever defaults are appropriate for the engine
accessed (Oracle, for example, uses the ORACLE_SID and TWO_TASK env vars if no data_so
specified).

The AutoCommit and PrintError attributes for each connection default to default to on (see
/AutoCommit and /PrintError for more information).
18−Oct−1998 Version 5.005_02 1347

DBI Perl Programmers Reference Guide DBI

or and

ltiple

s is
our long

ourth

,

f

s in
me in

aded if
ble

 thus,

 trace

lues.
e

The \%attr parameter can be used to alter the default settings of the PrintError, RaiseErr
AutoCommit attributes. For example:

 $dbh = DBI−>connect($data_source, $user, $pass, {
PrintError => 0,
AutoCommit => 0

 });

These are currently the only defined uses for the DBI−connect \%attr.

Portable applications should not assume that a single driver will be able to support mu
simultaneous sessions.

Where possible each session ($dbh) is independent from the transactions in other sessions. Thi
useful where you need to hold cursors open across transactions, e.g., use one session for y
lifespan cursors (typically read−only) and another for your short update transactions.

For compatibility with old DBI scripts the driver can be specified by passing its name as the f
argument to connect (instead of \%attr):

 $dbh = DBI−>connect($data_source, $user, $pass, $driver);

In this ‘old−style’ form of connect the $data_source should not start with ‘dbi:driver_name:’ and
even if it does, the embedded driver_name will be ignored. The $dbh− {AutoCommit} attribute is
undefined. The $dbh− {PrintError} attribute is off. And the old DBI_DBNAME env var is checked i
DBI_DSN is not defined. This ‘old−style’ connect will be withdrawn in a future version.

available_drivers
 @ary = DBI−>available_drivers;
 @ary = DBI−>available_drivers($quiet);

Returns a list of all available drivers by searching for DBD::* modules through the directorie
@INC. By default a warning will be given if some drivers are hidden by others of the same na
earlier directories. Passing a true value for $quiet will inhibit the warning.

data_sources
 @ary = DBI−>data_sources($driver);
 @ary = DBI−>data_sources($driver, \%attr);

Returns a list of all data sources (databases) available via the named driver. The driver will be lo
not already. If $driver is empty or undef then the value of the DBI_DRIVER environment varia
will be used.

Data sources will be returned in a form suitable for passing to the /connect method, i.e., they will
include the "dbi:$driver:" prefix.

Note that many drivers have no way of knowing what data sources might be available for it and
typically, return an empty or incomplete list.

trace
 DBI−>trace($trace_level)
 DBI−>trace($trace_level, $trace_file)

DBI trace information can be enabled for all handles using this DBI class method. To enable
information for a specific handle use the similar $h− trace method described elsewhere.

Use $trace_level 2 to see detailed call trace information including parameters and return va
The trace output is detailed and typically very useful. Much of the trace output is formatted using th
/neat function.

Use $trace_level 0 to disable the trace.
1348 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

I for

 with

oes not

tation.

ecause

ing in
If $trace_filename is specified then the file is opened in append mode and all trace output
(including that from other handles) is redirected to that file.

See also the $h− trace() method and /DEBUGGING for information about the DBI_TRACE
environment variable.

DBI Utility Functions

neat
 $str = DBI::neat($value, $maxlen);

Return a string containing a neat (and tidy) representation of the supplied value.

Strings will be quoted (but internal quotes will not be escaped). Values known to be numeric will be
unquoted. Undefined (NULL) values will be shown as undef (without quotes). Unprintable
characters will be replaced by dot (.).

For result strings longer than $maxlen the result string will be truncated to $maxlen−4 and ...’
will be appended. If $maxlen is 0 or undef it defaults to $DBI::neat_maxlen which, in turn,
defaults to 400.

This function is designed to format values for human consumption. It is used internally by the DB
/trace output. It should typically not be used for formating values for database use (see also /quote).

neat_list
 $str = DBI::neat_list(\@listref, $maxlen, $field_sep);

Calls DBI::neat on each element of the list and returns a string containing the results joined
$field_sep. $field_sep defaults to ", " .

looks_like_number
 @bool = DBI::looks_like_number(@array);

Returns true for each element that looks like a number. Returns false for each element that d
look like a number. Returns undef for each element that is undefined or empty.

DBI Dynamic Attributes
These attributes are always associated with the last handle used.

Where an attribute is equivalent to a method call, then refer to the method call for all related documen

Warning: these attributes are provided as a convenience but they do have limitations. Specifically, b
they are associated with the last handle used, they should only be used immediately after calling the method
which ‘sets’ them. They have a ‘short lifespan’. There may also be problems with the multi−thread
5.005.

If in any doubt, use the corresponding method call.

$DBI::err
Equivalent to $h−err.

$DBI::errstr
Equivalent to $h−errstr.

$DBI::state
Equivalent to $h−state.

$DBI::rows
Equivalent to $h− rows.
18−Oct−1998 Version 5.005_02 1349

DBI Perl Programmers Reference Guide DBI

uccess
urn

le) by

lues.

e

nted by

rrently
. See

ted
 the new

 not affect

ibutes
METHODS COMMON TO ALL HANDLES

err
 $rv = $h−>err;

Returns the native database engine error code from the last driver function called.

errstr
 $str = $h−>errstr;

Returns the native database engine error message from the last driver function called.

state
 $str = $h−>state;

Returns an error code in the standard SQLSTATE five character format. Note that the specific s
code 00000 is translated to (false). If the driver does not support SQLSTATE then state will ret
S1000 (General Error) for all errors.

trace
 $h−>trace($trace_level);
 $h−>trace($trace_level, $trace_filename);

DBI trace information can be enabled for a specific handle (and any future children of that hand
setting the trace level using the trace method.

Use $trace_level 2 to see detailed call trace information including parameters and return va
The trace output is detailed and typically very useful.

Use $trace_level 0 to disable the trace.

If $trace_filename is specified then the file is opened in append mode and all trace output
(including that from other handles) is redirected to that file.

See also the DBI− trace() method and /DEBUGGING for information about the DBI_TRACE
environment variable.

trace_msg
 $h−>trace_msg($message_text);

Writes $message_text to trace file if trace is enabled for $h or for the DBI as a whole. Can also b
called as DBI−trace_msg($msg). See /trace.

func
 $h−>func(@func_arguments, $func_name);

The func method can be used to call private non−standard and non−portable methods impleme
the driver. Note that the function name is given as the last argument.

This method is not directly related to calling stored procedures. Calling stored procedures is cu
not defined by the DBI. Some drivers, such as DBD::Oracle, support it in non−portable ways
driver documentation for more details.

ATTRIBUTES COMMON TO ALL HANDLES
These attributes are common to all types of DBI handles.

Some attributes are inherited by child handles. That is, the value of an inherited attribute in a newly crea
statement handle is the same as the value in the parent database handle. Changes to attributes in
statement handle do not affect the parent database handle and changes to the database handle do
existing statement handles, only future ones.

Attempting to set or get the value of an unknown attribute is fatal, except for private driver specific attr
(which all have names starting with a lowercase letter).
1350 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

layers,

tive is
nnected

t

d from
andles

d by the
h) of

 driver

(which
ifically
child
le, this

urning
 cause

r more

s in the
ause
Example:

 $h−>{AttributeName} = ...; # set/write
 ... = $h−>{AttributeName}; # get/read

Warn (boolean, inherited)
Enables useful warnings for certain bad practices. Enabled by default. Some emulation
especially those for perl4 interfaces, disable warnings.

Active (boolean, read−only)
True if the handle object is ‘active’. This is rarely used in applications. The exact meaning of ac
somewhat vague at the moment. For a database handle it typically means that the handle is co
to a database ($dbh− disconnect should set Active off). For a statement handle it typically means that
the handle is a select that may have more data to fetch ($dbh− finish or fetching all the data should se
Active off).

Kids (integer, read−only)
For a driver handle, Kids is the number of currently existing database handles that were create
that driver handle. For a database handle, Kids is the number of currently existing statement h
that were created from that database handle.

ActiveKids (integer, read−only)
Like Kids (above), but only counting those that are Active (as above).

CachedKids (hash ref)
For a database handle, returns a reference to the cache (hash) of statement handles create
/prepare_cached method. For a driver handle, it would return a reference to the cache (has
statement handles created by the (not yet implemented) connect_cached method.

CompatMode (boolean, inherited)
Used by emulation layers (such as Oraperl) to enable compatible behaviour in the underlying
(e.g., DBD::Oracle) for this handle. Not normally set by application code.

InactiveDestroy (boolean)
This attribute can be used to disable the database related effect of DESTROY‘ing a handle
would normally close a prepared statement or disconnect from the database etc). It is spec
designed for use in UNIX applications which ‘fork’ child processes. Either the parent or the
process, but not both, should set InactiveDestroy on all their handles. For a database hand
attribute does not disable an explicit call to the disconnect method, only the implicit call from
DESTROY.

PrintError (boolean, inherited)
This attribute can be used to force errors to generate warnings (using warn) in addition to ret
error codes in the normal way. When set on, any method which results in an error occuring will
the DBI to effectively do a warn("$class $method failed $DBI::errstr") where $class is
the driver class and $method is the name of the method which failed. E.g.,

 DBD::Oracle::db prepare failed: ... error text here ...

By default DBI−connect sets PrintError on (except for old−style connect usage, see connect fo
details).

If desired, the warnings can be caught and processed using a $SIG{__WARN__} handler or modules
like CGI::ErrorWrap.

RaiseError (boolean, inherited)
This attribute can be used to force errors to raise exceptions rather than simply return error code
normal way. It defaults to off. When set on, any method which results in an error occuring will c
the DBI to effectively do a croak("$class $method failed $DBI::errstr") where $class is
18−Oct−1998 Version 5.005_02 1351

DBI Perl Programmers Reference Guide DBI

andler

 the

ck is
e

ility

ailing

aviour
haviour

 return

ich

fields

 long

cated

 fail.
ch as a

you
the driver class and $method is the name of the method which failed. E.g.,

 DBD::Oracle::db prepare failed: ... error text here ...

If PrintError is also on then the PrintError is done before the RaiseError unless no __DIE__ h
has been defined, in which case PrintError is skipped since the croak will print the message.

If you want to temporarily turn RaiseError off (inside a library function that may fail for example),
recommended way is like this:

 {
 local $h−>{RaiseError} = 0 if $h−>{RaiseError};
 ...
 }

The original value will automatically and reliably be restored by perl regardless of how the blo
exited. The ... if $h−{RaiseError} is optional but makes the code slightly faster in th
common case.

Sadly this doesn‘t work for perl versions upto and including 5.004_04. For backwards compatib
could just use eval { ... } instead.

ChopBlanks (boolean, inherited)
This attribute can be used to control the trimming of trailing space characters from fixed width
character (CHAR) fields. No other field types are affected, even where field values have tr
spaces.

The default is false (it is possible that that may change). Applications that need specific beh
should set the attribute as needed. Emulation interfaces should set the attribute to match the be
of the interface they are emulating.

Drivers are not required to support this attribute but any driver which does not must arrange to
undef as the attribute value.

LongReadLen (unsigned integer, inherited)
This attribute may be used to control the maximum length of ‘long’ (‘blob‘, ‘memo’ etc.) fields wh
the driver will read from the database automatically when it fetches each row of data.

A value of 0 means don‘t automatically fetch any long data (fetch should return undef for long
when LongReadLen is 0).

The default is typically 0 (zero) bytes but may vary between drivers. Most applications fetching
fields will set this value to slightly larger than the longest long field value which will be fetched.

Changing the value of LongReadLen for a statement handle after it‘s been prepare() ‘d will
typically have no effect so it‘s usual to set LongReadLen on the $dbh before calling prepare.

The LongReadLen attribute only relates to fetching/reading long values it is not involved in
inserting/updating them.

See /LongTruncOk about truncation behaviour.

LongTruncOk (boolean, inherited)
This attribute may be used to control the effect of fetching a long field value which has been trun
(typically because it‘s longer than the value of the LongReadLen attribute).

By default LongTruncOk is false and fetching a truncated long value will cause the fetch to
(Applications should always take care to check for errors after a fetch loop in case an error, su
divide by zero or long field truncation, caused the fetch to terminate prematurely.)

If a fetch fails due to a long field truncation when LongTruncOk is false, many drivers will allow
to continue fetching further rows.
1352 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

 DBI
It is
ng
 (e.g.,

pare is

pare is

tement

repares
ition
.)

e the
y

uld

 any
ss−thru
nality of
e extra

nd of a
See also /LongReadLen.

private_*
The DBI provides a way to store extra information in a DBI handle as ‘private’ attributes. The
will allow you to store and retreive any attribute which has a name starting with ‘private_’.
strongly recommended that you use just one private attribute (e.g., use a hash ref) and give it a lo
and unambiguous name that includes the module or application that the attribute relates to
‘private_YourModule_thingy’).

DBI DATABASE HANDLE OBJECTS

Database Handle Methods

selectrow_array
 @row_ary = $dbh−>selectrow_array($statement);
 @row_ary = $dbh−>selectrow_array($statement, \%attr);
 @row_ary = $dbh−>selectrow_array($statement, \%attr, @bind_values);

This utility method combines /prepare, /execute and /fetchrow_array into a single call. The
$statement parameter can be a previously prepared statement handle in which case the pre
skipped.

In any method fails, and /RaiseError is not set, selectrow_array will return an empty list.

selectall_arrayref
 $ary_ref = $dbh−>selectall_arrayref($statement);
 $ary_ref = $dbh−>selectall_arrayref($statement, \%attr);
 $ary_ref = $dbh−>selectall_arrayref($statement, \%attr, @bind_values);

This utility method combines /prepare, /execute and /fetchall_arrayref into a single call. The
$statement parameter can be a previously prepared statement handle in which case the pre
skipped.

In any method fails, and /RaiseError is not set, selectall_arrayref will return undef.

prepare
 $sth = $dbh−>prepare($statement) || die $dbh−>errstr;
 $sth = $dbh−>prepare($statement, \%attr) || die $dbh−>errstr;

Prepare a single statement for execution by the database engine and return a reference to a sta
handle object which can be used to get attributes of the statement and invoke the /execute method.

Note that prepare should never execute a statement, even if it is not a select statement, it only p
it for execution. (Having said that, some drivers, notably Oracle, will execute data defin
statements such as create/drop table when they are prepared. In practice this is rarely a problem

Drivers for engines which don‘t have the concept of preparing a statement will typically just stor
statement in the returned handle and process it when $sth− execute is called. Such drivers are likel
to be unable to give much useful information about the statement, such as
$sth− {NUM_OF_FIELDS}, until after $sth− execute has been called. Portable applications sho
take this into account.

In general DBI drivers do not parse the contents of the statement (other than simply counting
/Placeholders). The statement is passed directly to the database engine (sometimes known as pa
mode). This has advantages and disadvantages. On the plus side, you can access all the functio
the engine being used. On the downside, you‘re limited if using a simple engine and need to tak
care if attempting to write applications to be portable between engines.

Some command−line SQL tools use statement terminators, like a semicolon, to indicate the e
statement. Such terminators should not be used with the DBI.
18−Oct−1998 Version 5.005_02 1353

DBI Perl Programmers Reference Guide DBI

ith the

be used

or not

 in
uld not

ed

in the
o

supports

ommit
prepare_cached
 $sth = $dbh−>prepare_cached($statement) || die $dbh−>errstr;
 $sth = $dbh−>prepare_cached($statement, \%attr) || die $dbh−>errstr;

Like /prepare except that the statement handled returned will be stored in a hash associated w
$dbh. If another call is made to prepare_cached with the same parameter values then the
corresponding cached $sth will be returned (and the database server will not be contacted).

This cacheing can be useful in some applications but it can also cause problems and should
with care. Currently a warning will be generated if the cached $sth being returned is active (/finish
has not been called on it).

The cache can be accessed (and cleared) via the /CachedKids attribute.

do
 $rc = $dbh−>do($statement) || die $dbh−>errstr;
 $rc = $dbh−>do($statement, \%attr) || die $dbh−>errstr;
 $rv = $dbh−>do($statement, \%attr, @bind_values) || ...

Prepare and execute a statement. Returns the number of rows affected (−1 if not known
available) or undef on error.

This method is typically most useful for non−select statements which either cannot be prepared
advance (due to a limitation in the driver) or which do not need to be executed repeatedly. It sho
be used for select statements.

The default do method is logically similar to:

 sub do {
 my($dbh, $statement, $attr, @bind_values) = @_;
 my $sth = $dbh−>prepare($statement) or return undef;
 $sth−>execute(@bind_values) or return undef;
 my $rows = $sth−>rows;
 ($rows == 0) ? "0E0" : $rows;
 }

Example:

 my $rows_deleted = $dbh−>do(q{
 delete from table
 where status = ’DONE’
 }) || die $dbh−>errstr;

Using placeholders and @bind_values with the do method can be useful because it avoids the ne
to correctly quote any variables in the $statement.

The q{...} style quoting used in this example avoids clashing with quotes that may be used
SQL statement. Use the double−quote like qq{...} operator if you want to interpolate variables int
the string. See Quote and Quote−like Operators in perlop for more details.

commit
 $rc = $dbh−>commit || die $dbh−>errstr;

Commit (make permanent) the most recent series of database changes if the database
transactions.

If the database supports transactions and AutoCommit is on then the commit should issue a "c
ineffective with AutoCommit" warning.

See also /Transactions.
1354 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

upports

ollback

ogram.

s (such
ch as
or

 there
plicitly
e
iting.

rning.
method

d the

idual

le for

ws that

y also

e

 if
rollback
 $rc = $dbh−>rollback || die $dbh−>errstr;

Roll−back (undo) the most recent series of uncommitted database changes if the database s
transactions.

If the database supports transactions and AutoCommit is on then the rollback should issue a "r
ineffective with AutoCommit" warning.

See also /Transactions.

disconnect
 $rc = $dbh−>disconnect || warn $dbh−>errstr;

Disconnects the database from the database handle. Typically only used before exiting the pr
The handle is of little use after disconnecting.

The transaction behaviour of the disconnect method is, sadly, undefined. Some database system
as Oracle and Ingres) will automatically commit any outstanding changes, but others (su
Informix) will rollback any outstanding changes. Applications should explicitly call commit
rollback before calling disconnect.

The database is automatically disconnected (by the DESTROY method) if still connected when
are no longer any references to the handle. The DESTROY method for each driver should ex
call rollback to undo any uncommitted changes. This is vital behaviour to ensure that incomplet
transactions don‘t get committed simply because Perl calls DESTROY on every object before ex

If you disconnect from a database while you still have active statement handles you will get a wa
The statement handles should either be cleared (destroyed) before disconnecting or the finish
called on each one.

ping
 $rc = $dbh−>ping;

Attempts to determine, in a reasonably efficient way, if the database server is still running an
connection to it is still working.

The default implementation currently always returns true without actually doing anything. Indiv
drivers should implement this function in the most suitable manner for their database engine.

Very few applications would have any use for this method. See the specialist Apache::DBI modu
one example usage.

table_info *NEW*
Warning: This method is experimental and may change or disappear.

 $sth = $dbh−>table_info;

Returns an active statement handle that can be used to fetch information about tables and vie
exist in the database.

The handle has at least the following fields in the order show below. Other fields, after these, ma
be present.

TABLE_QUALIFIER : Table qualifier identifier. NULL (undef) if not applicable to data sourc
(usually the case). Empty if not applicable to the table.

TABLE_OWNER : Table owner identifier. NULL (undef) if not applicable to data source. Empty
not applicable to the table.

TABLE_NAME : Table name.

TABLE_TYPE : One of the following: "TABLE", "VIEW", "SYSTEM TABLE", "GLOBAL
18−Oct−1998 Version 5.005_02 1355

DBI Perl Programmers Reference Guide DBI

table

 select
y the
system

table

 by the

ces to
he fields
TEMPORARY", "LOCAL TEMPORARY", "ALIAS", "SYNONYM" or a data source specific type
identifier.

REMARKS : A description of the table. May be NULL (undef).

Note that table_info might not return records for all tables. Applications can use any valid
regardless of whether it‘s returned by table_info. See also /tables.

tables *NEW*
Warning: This method is experimental and may change or disappear.

 @names = $dbh−>tables;

Returns a list of table and view names. This list should include all tables which can be used in a
statement without further qualification. That typically means all the tables and views owned b
current user and all those accessible via public synonyms/aliases (excluding non−metadata
tables and views).

Note that table_info might not return records for all tables. Applications can use any valid
regardless of whether it‘s returned by tables. See also /table_info.

type_info_all *NEW*
Warning: This method is experimental and may change or disappear.

 $type_info_all = $dbh−>type_info_all;

Returns a reference to an array which holds information about each data type variant supported
database and driver.

The first item is a reference to a hash of Name = Index pairs. The following items are referen
arrays, one per supported data type variant. The leading hash defines the names and order of t
within the following list of arrays. For example:

 $type_info_all = [
 { TYPE_NAME => 0,

DATA_TYPE => 1,
PRECISION => 2,
LITERAL_PREFIX => 3,
LITERAL_SUFFIX => 4,
CREATE_PARAMS => 5,
NULLABLE => 6,
CASE_SENSITIVE => 7,
SEARCHABLE => 8,
UNSIGNED_ATTRIBUTE=> 9,
MONEY => 10,
AUTO_INCREMENT => 11,
LOCAL_TYPE_NAME => 12,
MINIMUM_SCALE => 13,
MAXIMUM_SCALE => 14,

 },
 [’VARCHAR’, SQL_VARCHAR,

undef, "’","’", undef,0, 1,1,0,0,0,undef,1,255
],
 [’INTEGER’, SQL_INTEGER,

undef, "", "", undef,0, 0,1,0,0,0,undef,0, 0
],
];

Note that more than one row may have the same value in the DATA_TYPE field.
1356 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

o

nts

I (see

his is

lues

ata

uld
for

re this
This method is not normally used directly. The /type_info method provides a more useful interface t
the data.

The meaning of the fields is described in the documentation for the /type_info method.

type_info *NEW*
Warning: This method is experimental and may change or disappear.

 @type_info = $dbh−>type_info($data_type);

Returns a list of hash references holding information about one or more variants of $data_type (or
a type reasonably compatible with it).

If $data_type is SQL_ALL_TYPES then the list will contain hashes for all data type varia
supported by the database and driver.

The keys of the hash follow the same letter case conventions as the rest of the DB
/Naming Conventions and Name Space). The following items should exist:

TYPE_NAME (string)
Data type name for use in CREATE TABLE statements etc.

DATA_TYPE (integer)
SQL data type number.

PRECISION (integer)
The maximum precision of the data type. NULL (undef) is returned for data types where t
not applicable.

LITERAL_PREFIX (string)
Characters used to prefix a literal. Typically "‘" for characters, possibly "0x" for binary va
passed as hex. NULL (undef) is returned for data types where this is not applicable.

LITERAL_SUFFIX (string)
Characters used to suffix a literal. Typically "‘" for characters. NULL (undef) is returned for d
types where this is not applicable.

CREATE_PARAMS (string)
Parameters for a data type definition. For example, CREATE_PARAMS for a DECIMAL wo
be "precision,scale". For a VARCHAR it would be "max length". NULL (undef) is returned
data types where this is not applicable.

NULLABLE (integer)
Indicates whether the data type accepts a NULL value: 0 = no, 1 = yes, 2 = unknown.

CASE_SENSITIVE (boolean)
Indicates whether the data type is case sensitive in collations and comparisons.

SEARCHABLE (integer)
Indicates how the data type can be used in a WHERE clause:

 0 − cannot be used in a WHERE clause
 1 − only with a LIKE predicate
 2 − all comparison operators except LIKE
 3 − can be used in a WHERE clause with any comparison operator

UNSIGNED_ATTRIBUTE (boolean)
Indicates whether the data type is unsigned. NULL (undef) is returned for data types whe
is not applicable.
18−Oct−1998 Version 5.005_02 1357

DBI Perl Programmers Reference Guide DBI

 types

types

ned

ALE

ALE

on

 the
d to

 any

es.

ibutes

hanges
 the

I by
MONEY (boolean)
Indicates whether the data type is a money data type. NULL (undef) is returned for data
where this is not applicable.

AUTO_INCREMENT (boolean)
Indicates whether the data type is autoincrementing. NULL (undef) is returned for data
where this is not applicable.

LOCAL_TYPE_NAME (string)
Localised version of the TYPE_NAME for use in dialogue with users. NULL (undef) is retur
if a localised name is not available (in which case TYPE_NAME should be used).

MINIMUM_SCALE (integer)
The minimum scale of the data type. If a data type has a fixed scale then MAXIMUM_SC
holds the same value. NULL (undef) is returned for data types where this is not applicable.

MAXIMUM_SCALE (integer)
The maximum scale of the data type. If a data type has a fixed scale then MINIMUM_SC
holds the same value. NULL (undef) is returned for data types where this is not applicable.

quote
 $sql = $dbh−>quote($value);
 $sql = $dbh−>quote($value, $data_type);

Quote a string literal for use in an SQL statement by escaping any special characters (such as quotati
marks) contained within the string and adding the required type of outer quotation marks.

 $sql = sprintf "select foo from bar where baz = %s",
 $dbh−>quote("Don’t\n");

For most database types quote would return ‘Don‘’t’ (including the outer quotation marks).

An undefined $value value will be returned as NULL (without quotation marks).

If $data_type is supplied it is used to determine the required quoting behaviour by using
information returned by /type_info. As a special case, the standard numeric types are optimise
return $value without calling type_info.

Quote may not be able to deal with all possible input (such as binary data) and is not related in
way with escaping or quoting shell meta−characters.

Database Handle Attributes
This section describes attributes specific to database handles.

Changes to these database handle attributes do not affect any other existing or future database handl

Attempting to set or get the value of an unknown attribute is fatal, except for private driver specific attr
(which all have names starting with a lowercase letter).

Example:

 $h−>{AutoCommit} = ...; # set/write
 ... = $h−>{AutoCommit}; # get/read

AutoCommit (boolean)
If true then database changes cannot be rolled−back (undone). If false then database c
automatically occur within a ‘transaction’ which must either be committed or rolled−back using
commit or rollback methods.

Drivers should always default to AutoCommit mode. (An unfortunate choice forced on the DB
ODBC and JDBC conventions.)
1358 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

ure of

 issue

action

are

mit
llback
 been

t each
back
ill
k failed.

 always

rom

me:"

 use
gnored
Attempting to set AutoCommit to an unsupported value is a fatal error. This is an important feat
the DBI. Applications which need full transaction behaviour can set $dbh− {AutoCommit}=0 (or via
connect) without having to check the value was assigned okay.

For the purposes of this description we can divide databases into three categories:

 Database which don’t support transactions at all.
 Database in which a transaction is always active.
 Database in which a transaction must be explicitly started (’BEGIN WORK’).

* Database which don‘t support transactions at all

For these databases attempting to turn AutoCommit off is a fatal error. Commit and rollback both
warnings about being ineffective while AutoCommit is in effect.

* Database in which a transaction is always active

These are typically mainstream commercial relational databases with ‘ANSI standard’ trans
behaviour.

If AutoCommit is off then changes to the database won‘t have any lasting effect unless /commit is
called (but see also /disconnect). If /rollback is called then any changes since the last commit
undone.

If AutoCommit is on then the effect is the same as if the DBI were to have called com
automatically after every successful database operation. In other words, calling commit or ro
explicitly while AutoCommit is on would be ineffective because the changes would have already
commited.

Changing AutoCommit from off to on should issue a /commit in most drivers.

Changing AutoCommit from on to off should have no immediate effect.

For databases which don‘t support a specific auto−commit mode, the driver has to commi
statement automatically using an explicit COMMIT after it completes successfully (and roll it
using an explicit ROLLBACK if it fails). The error information reported to the application w
correspond to the statement which was executed, unless it succeeded and the commit or rollbac

* Database in which a transaction must be explicitly started

For these database the intention is to have them act like databases in which a transaction is
active (as described above).

To do this the DBI driver will automatically begin a transaction when AutoCommit is turned off (f
the default on state) and will automatically begin another transaction after a /commit or /rollback.

In this way, the application does not have to treat these databases as a special case.

Name (string)
Holds the ‘name’ of the database. Usually (and recommended to be) the same as the
"dbi:DriverName:..." string used to connect to the database but with the leading "dbi:DriverNa
removed.

RowCacheSize (integer) *NEW*
A hint to the driver indicating the size of local row cache the application would like the driver to
for future select statements. If a row cache is not implemented then setting RowCacheSize is i
and getting the value returns undef.

Some RowCacheSize values have special meaning:

 0 − Automatically determine a reasonable cache size for each select
 1 − Disable the local row cache
 >1 − Cache this many rows
18−Oct−1998 Version 5.005_02 1359

DBI Perl Programmers Reference Guide DBI

m size
 needs

string.

nt the
:

‘t work

lly the

tr hash

which

ound as
 <0 − Cache as many rows fit into this much memory for each select.

Note that large cache sizes may require very large amount of memory (cached rows * maximu
of row) and that a large cache will cause a longer delay for the first fetch and when the cache
refilling.

See also /RowsInCache statement handle attribute.

DBI STATEMENT HANDLE OBJECTS

Statement Handle Methods

bind_param
 $rc = $sth−>bind_param($p_num, $bind_value) || die $sth−>errstr;
 $rv = $sth−>bind_param($p_num, $bind_value, \%attr) || ...
 $rv = $sth−>bind_param($p_num, $bind_value, $bind_type) || ...

The bind_param method can be used to bind (assign/associate) a value with a placeholder embedded in
the prepared statement. Placeholders are indicated with question mark character (?). For example:

 $dbh−>{RaiseError} = 1; # save having to check each method call
 $sth = $dbh−>prepare("select name, age from people where name like ?");
 $sth−>bind_param(1, "John%"); # placeholders are numbered from 1
 $sth−>execute;
 DBI::dump_results($sth);

Note that the ? is not enclosed in quotation marks even when the placeholder represents a
Some drivers also allow :1 , :2 etc and :name style placeholders in addition to ? but their use is not
portable.

Some drivers do not support placeholders.

With most drivers placeholders can‘t be used for any element of a statement that would preve
database server validating the statement and creating a query execution plan for it. For example

 "select name, age from ?" # wrong
 "select name, ? from people" # wrong

Also, placeholders can only represent single scalar values, so this statement, for example, won
as expected for more than one value:

 "select name, age from people where name in (?)" # wrong

The \%attr parameter can be used to specify the data type the placeholder should have. Typica
driver is only interested in knowing if the placeholder should be bound as a number or a string.

 $sth−>bind_param(1, $value, { TYPE => SQL_INTEGER });

As a short−cut for this common case, the data type can be passed directly inplace of the at
reference. This example is equivalent to the one above:

 $sth−>bind_param(1, $value, SQL_INTEGER);

The TYPE cannot be changed after the first bind_param call (but it can be left unspecified, in
case it defaults to the previous value).

Perl only has string and number scalar data types. All database types that aren‘t numbers are b
strings and must be in a format the database will understand.

Undefined values or undef are be used to indicate null values.

bind_param_inout
 $rc = $sth−>bind_param_inout($p_num, \$bind_value, $max_len) || die $sth−>errs
 $rv = $sth−>bind_param_inout($p_num, \$bind_value, $max_len, \%attr) || ...
 $rv = $sth−>bind_param_inout($p_num, \$bind_value, $max_len, $bind_type) || ...
1360 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

so is

turned if
affected
 most

were
 is
n then

thods

a true

types
inout)

 are no
f. This

 use

ray
 empty

e to
 are no
This method acts like /bind_param but also enables values to be output from (updated by) the
statement. (The statement is typically a call to a stored procedure.). The $bind_value must be
passed as a reference to the actual value to be used.

The additional $max_len parameter specifies the amount of memory to allocate to $bind_value
for the new value. Truncation behaviour, if the value is longer than $max_len, is currently
undefined.

It is expected that few drivers will support this method. The only driver currently known to do
DBD::Oracle. It should not be used for database independent applications.

execute
 $rv = $sth−>execute || die $sth−>errstr;
 $rv = $sth−>execute(@bind_values) || die $sth−>errstr;

Perform whatever processing is necessary to execute the prepared statement. An undef is re
an error occurs, a successful execute always returns true regardless of the number of rows
(even if it‘s zero, see below). It is always important to check the return status of execute (and
other DBI methods) for errors.

For a non−select statement, execute returns the number of rows affected (if known). If no rows
affected then execute returns "0E0" which Perl will treat as 0 but will regard as true. Note that itnot
an error for no rows to be affected by a statement. If the number of rows affected is not know
execute returns −1.

For select statements execute simply ‘starts’ the query within the Engine. Use one of the fetch me
to retreive the data after calling execute. The execute method does not return the number of rows that
will be returned by the query (because most Engines can‘t tell in advance), it simply returns
value.

If any arguments are given then execute will effectively call /bind_param for each value before
executing the statement. Values bound in this way are usually treated as SQL_VARCHAR
unless the driver can determine the correct type (which is rare) or bind_param (or bind_param_
has already been used to specify the type.

fetchrow_arrayref
 $ary_ref = $sth−>fetchrow_arrayref;
 $ary_ref = $sth−>fetch; # alias

Fetches the next row of data and returns a reference to an array holding the field values. If there
more rows or an error occurs fetchrow_arrayref returns undef. Null values are returned as unde
is the fastest way to fetch data, particularly if used with $sth− bind_columns.

Note that currently the same array ref will be returned for each fetch so don‘t store the ref and then
it after a later fetch.

fetchrow_array
 @ary = $sth−>fetchrow_array;

An alternative to fetchrow_arrayref . Fetches the next row of data and returns it as an ar
holding the field values. If there are no more rows or an error occurs fetchrow_array returns an
list. Null values are returned as undef.

fetchrow_hashref
 $hash_ref = $sth−>fetchrow_hashref;

An alternative to fetchrow_arrayref . Fetches the next row of data and returns it as a referenc
a hash containing field name and field value pairs. Null values are returned as undef. If there
more rows or an error occurs fetchrow_hashref returns undef.

The keys of the hash are the same names returned by $sth− {NAME}. If more than one field has the
18−Oct−1998 Version 5.005_02 1361

DBI Perl Programmers Reference Guide DBI

nt
nd some
BI.

nt as
ortant.
 don‘t

ared
 per row.
occurs

ns by

f.
e. The

f hash

d again
 up

d the
ting the
 can be
r don‘t
same name there will only be one entry in the returned hash for those fields.

Note that using fetchrow_hashref is currently not portable between databases because differe
databases return fields names with different letter cases (some all uppercase, some all lower, a
return the letter case used to create the table). This will be addressed in a future version of the D

Because of the extra work fetchrow_hashref and perl have to perform it is not as efficie
fetchrow_arrayref or fetchrow_array and is not recommended where performance is very imp
Currently a new hash reference is returned for each row. This is likely to change in the future so
rely on it.

fetchall_arrayref
 $tbl_ary_ref = $sth−>fetchall_arrayref;
 $tbl_ary_ref = $sth−>fetchall_arrayref($slice_array_ref);
 $tbl_ary_ref = $sth−>fetchall_arrayref($slice_hash_ref);

The fetchall_arrayref method can be used to fetch all the data to be returned from a prep
and executed statement handle. It returns a reference to an array which contains one reference
If there are no rows to return, fetchall_arrayref returns a reference to an empty array. If an error
fetchall_arrayref returns the data fetched thus far (you should check $sth− err afterwards or use
/RaiseError.

When passed an array reference, fetchall_arrayref uses /fetchrow_arrayref to fetch each row as an
array ref. If the parameter array is not empty then it is used as a slice to select individual colum
index number.

With no parameters, fetchall_arrayref acts as if passed an empty array ref.

When passed a hash reference, fetchall_arrayref uses /fetchrow_hashref to fetch each row as a hash re
If the parameter hash is not empty then it is used as a slice to select individual columns by nam
names should be lower case regardless of the letter case in $sth− {NAME}. The values of the hash
should be set to 1.

For example, to fetch just the first column of every row you can use:

 $tbl_ary_ref = $sth−>fetchall_arrayref([0]);

To fetch the second to last and last column of every row you can use:

 $tbl_ary_ref = $sth−>fetchall_arrayref([−2,−1]);

To fetch only the fields called foo and bar of every row you can use:

 $tbl_ary_ref = $sth−>fetchall_arrayref({ foo=>1, bar=>1 });

The first two examples return a ref to an array of array refs. The last returns a ref to an array o
refs.

finish
 $rc = $sth−>finish;

Indicates that no more data will be fetched from this statement handle before it is either execute
or destroyed. It is rarely needed but can sometimes be helpful in order to allow the server to free
resources currently being held (such as sort buffers).

Consider a query like

 SELECT foo FROM table WHERE bar=? ORDER BY foo

where you want to select just the first (smallest) foo value from a large table. When execute
database server will have to use temporary buffer space to store the sorted rows. If, after execu
handle and selecting one row, the handle won‘t be re−executed for some time, the finish method
used to tell the server that the buffer space can be freed. (It does nothing if the server or drive
support it.)
1362 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

m a

o with
eed to

 or not

ept by

select

d from
tch and
 below

aking
eturns,

ore

er of
Calling finish resets the /Active attribute for the statement. When all the data has been fetched fro
select statement the driver should call finish automatically for you.

The finish method does not affect the transaction status of the session. It has nothing to d
transactions. It‘s mostly an internal ‘housekeeping’ method that is rarely needed. There‘s no n
call finish if you‘re about to destroy or re−execute the statement handle. See also /disconnect and the
/Active attribute.

rows
 $rv = $sth−>rows;

Returns the number of rows affected by the last database altering command, or −1 if not known
available.

Generally you can only rely on a row count after a do or non−select execute (for some specific
operations like update and delete) or after fetching all the rows of a select statement.

For select statements it is generally not possible to know how many rows will be returned exc
fetching them all. Some drivers will return the number of rows the application has fetched so far but
others may return −1 until all rows have been fetched. So use of the rows method with
statements is not recommended.

bind_col
 $rc = $sth−>bind_col($column_number, \$var_to_bind);
 $rc = $sth−>bind_col($column_number, \$var_to_bind, \%attr);

Binds an output column (field) of a select statement to a perl variable. Whenever a row is fetche
the database the corresponding perl variable is automatically updated. There is no need to fe
assign the values manually. This makes using bound variables very efficient. See bind_columns
for an example. Note that column numbers count up from 1.

The binding is performed at a very low level using perl aliasing so there is no extra copying t
place. So long as the driver uses the correct internal DBI call to get the array the fetch function r
it will automatically support column binding.

For maximum portability between drivers, bind_col should be called after execute.

The /bind_param method performs a similar function for input variables. See also for m
information.

bind_columns
 $rc = $sth−>bind_columns(\%attr, @list_of_refs_to_vars_to_bind);

Calls bind_col for each column of the select statement. bind_columns will croak if the numb
references does not match the number of fields.

For maximum portability between drivers, bind_columns should be called after execute.

For example:

 $dbh−>{RaiseError} = 1; # do this, or check every call for errors
 $sth = $dbh−>prepare(q{ select region, sales from sales_by_region });
 $sth−>execute;
 my ($region, $sales);

 # Bind perl variables to columns:
 $rv = $sth−>bind_columns(undef, \$region, \$sales);
 # you can also use perl’s \(...) syntax (see perlref docs):
 # $sth−>bind_columns(undef, \($region, $sales));

 # Column binding is the most efficient way to fetch data
 while ($sth−>fetch) {
18−Oct−1998 Version 5.005_02 1363

DBI Perl Programmers Reference Guide DBI

d for

.

les.

ibutes

after

have

s but

pe of

ich, in
hould
e. That

 type

alue
meric
dering
 print "$region: $sales\n";
 }

dump_results
 $rows = $sth−>dump_results($maxlen, $lsep, $fsep, $fh);

Fetches all the rows from $sth, calls DBI::neat_list for each row and prints the results to $fh
(defaults to STDOUT) separated by $lsep (default "\n"). $fsep defaults to ", " and $maxlen
defaults to 35.

This method is designed as a handy utility for prototyping and testing queries. Since it uses /neat_list
which uses /neat which formats and edits the string for reading by humans, it‘s not recomende
data transfer applications.

Statement Handle Attributes
This section describes attributes specific to statement handles. Most of these attributes are read−only

Changes to these statement handle attributes do not affect any other existing or future statement hand

Attempting to set or get the value of an unknown attribute is fatal, except for private driver specific attr
(which all have names starting with a lowercase letter).

Example:

 ... = $h−>{NUM_OF_FIELDS}; # get/read

Note that some drivers cannot provide valid values for some or all of these attributes until
$sth− execute has been called.

NUM_OF_FIELDS (integer, read−only)
Number of fields (columns) the prepared statement will return. Non−select statements will
NUM_OF_FIELDS == 0.

NUM_OF_PARAMS (integer, read−only)
The number of parameters (placeholders) in the prepared statement. See SUBSTITUTION
VARIABLES below for more details.

NAME (array−ref, read−only)
Returns a reference to an array of field names for each column. The names may contain space
should not be truncated or have any trailing space.

 print "First column name: $sth−>{NAME}−>[0]\n";

TYPE (array−ref, read−only) *NEW*
Returns a reference to an array of integer values for each column. The value indicates the data ty
the corresponding column.

The values used correspond to the international standards (ANSI X3.135 and ISO/IEC 9075) wh
general terms means ODBC. Driver specific types which don‘t exactly match standard types s
generally return the same values as an ODBC driver supplied by the makers of the databas
might include private type numbers the vendor has officially registered. See:

 ftp://jerry.ece.umassd.edu/isowg3/dbl/SQL_Registry

Where there‘s no vendor supplied ODBC driver to be compatible with the DBI driver can use
numbers in the range now officially reserved for use by the DBI: −9999 to −9000.

All possible values for TYPE should have at least one entry in the output of the /type_info_all method.

PRECISION (array−ref, read−only) *NEW*
Returns a reference to an array of integer values for each column. For nonnumeric columns the v
generally refers to either the maximum length or the defined length of the column. For nu
columns the value refers to the maximum number of digits used by the data type (without consi
1364 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

 the
t + the

ate

1 =

 or the

ber of

 database
ivisible,

se of

 this

lue of
a sign character or decimal point). Note that for floating point types (REAL, FLOAT, DOUBLE)
‘display size’ can be up to 7 characters greater than the precision (for the sign + decimal poin
letter E + a sign + 2 or 3 digits).

SCALE (array−ref, read−only) *NEW*
Returns a reference to an array of integer values for each column. NULL (undef) values indic
columns where scale is not applicable.

NULLABLE (array−ref, read−only)
Returns a reference to an array indicating the possibility of each column returning a null: 0 = no,
yes, 2 = unknown.

 print "First column may return NULL\n" if $sth−>{NULLABLE}−>[0];

CursorName (string, read−only)
Returns the name of the cursor associated with the statement handle if available. If not available
database driver does not support the "where current of ..." SQL syntax then it returns
undef.

Statement (string, read−only) *NEW*
Returns the statement string passed to the /prepare method.

RowsInCache (integer, read−only) *NEW*
If the driver supports a local row cache for select statements then this attribute holds the num
un−fetched rows in the cache. If the driver doesn‘t, then it returns undef.

See also the /RowCacheSize database handle attribute.

FURTHER INFORMATION

Transactions
Transactions are a fundamental part of any robust database system. They protect against errors and
corruption by ensuring that sets of related changes to the database take place in atomic (ind
all−or−nothing) units.

This section applies to databases which support transactions and where AutoCommit is off. See
/AutoCommit for details of using AutoCommit with various types of database.

The recommended way to implement robust transactions in Perl applications is to make u
eval { ... } (which is very fast, unlike eval "...").

 eval {
 foo(...) # do lots of work here
 bar(...) # including inserts
 baz(...) # and updates
 };
 if ($@) {
 $dbh−>rollback;
 # add other application on−error−clean−up code here
 }
 else {
 $dbh−>commit;
 }

The code in foo() , or any other code executed from within the curly braces, can be implemented in
way:

 $h−>method(@args) || die $h−>errstr

or the $h− {RaiseError} attribute can be set on. With RaiseError set the DBI will automatically croak() if
any DBI method call on that handle (or a child handle) fails, so you don‘t have to test the return va
18−Oct−1998 Version 5.005_02 1365

DBI Perl Programmers Reference Guide DBI

long
 values

now in
 types)

ce
ve

 on the
ee

o avoid
each method call. See /RaiseError for more details.

A major advantage of the eval approach is that the transaction will be properly rolled back if any code in the
inner application croaks or dies for any reason. The major advantage of using the $h− {RaiseError} attribute
is that all DBI calls will be checked automatically. Both techniques are strongly recommended.

Handling BLOB / LONG / Memo Fields
Many databases support ‘blob’ (binary large objects), ‘long’ or similar datatypes for holding very
strings or large amounts of binary data in a single field. Some databases support variable length long
over 2,000,000,000 bytes in length.

Since values of that size can‘t usually be held in memory and because databases can‘t usually k
advance the length of the longest long that will be returned from a select statement (unlike other data
some special handling is required.

In this situation the value of the $h− {LongReadLen} attribute is used to determine how much buffer spa
to allocate when fetching such fields. The $h− {LongTruncOk} attribute is used to determine how to beha
if a fetched value can‘t fit into the buffer.

When trying to insert long or binary values placeholders should be used since there are often limits
maximum size of an (insert) statement and the /quote method generally can‘t cope with binary data. S
/Placeholders and Bind Values.

Simple Examples
Here‘s a complete example program to select and fetch some data:

 my $dbh = DBI−>connect("dbi:DriverName:db_name", $user, $password)
 || die "Can’t connect to $data_source: $DBI::errstr";

 my $sth = $dbh−>prepare(q{
 SELECT name, phone
 FROM mytelbook
 }) || die "Can’t prepare statement: $DBI::errstr";

 my $rc = $sth−>execute
 || die "Can’t execute statement: $DBI::errstr";

 print "Query will return $sth−>{NUM_OF_FIELDS} fields.\n\n";
 print "Field names: @{ $sth−>{NAME} }\n";

 while (($name, $phone) = $sth−>fetchrow_array) {
 print "$name: $phone\n";
 }
 # check for problems which may have terminated the fetch early
 die $sth−>errstr if $sth−>err;

 $dbh−>disconnect;

Here‘s a complete example program to insert some data from a file: (this example uses RaiseError t
needing to check each call)

 my $dbh = DBI−>connect("dbi:DriverName:db_name", $user, $password, {
 RaiseError => 1, AutoCommit => 0
 });

 my $sth = $dbh−>prepare(q{
 INSERT INTO table (name, phone) VALUES (?, ?)
 });

 open FH, "<phone.csv" or die "Unable to open phone.csv: $!";
 while (<FH>) {
 chop;
1366 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

e SQL
g.

 these

4 but is

r types

e

default
andle,

 cancel

ACE

will be

onnect
 my ($name, $phone) = split /,/;
 $sth−>execute($name, $phone);
 }
 close FH;

 $dbh−>commit;
 $dbh−>disconnect;

Converting fetched NULLs (undefined values) to empty strings:

 while($row = $sth−>fetchrow_arrayref) {
 # this is a fast and simple way to deal with nulls:
 foreach (@$row) { $_ = ’’ unless defined }
 print "@$row\n";
 }

The q{...} style quoting used in these example avoids clashing with quotes that may be used in th
statement. Use the double−quote like qq{...} operator if you want to interpolate variables into the strin
See Quote and Quote−like Operators in perlop for more details.

Threads and Thread Safety
Perl versions 5.004_50 and later support threads on many platforms. The DBI should build on
platforms but currently has made no attempt to be thread safe.

Signal Handling and Canceling Operations
The first thing to say is that signal handling in Perl is currently not safe. There is always a small risk of Perl
crashing and/or core dumping when, or after, handling a signal. (The risk was reduced with 5.004_0
still present.)

The two most common uses of signals in relation to the DBI are for canceling operations when the use
Ctrl−C (interrupt), and for implementing a timeout using alarm() and $SIG{ALRM}.

To assist in implementing these operations the DBI provides a cancel method for statement handles. Th
cancel method should abort the current operation and is designed to be called from a signal handler.

However, it must be stressed that: a) few drivers implement this at the moment (the DBI provides a
method that just returns undef), b) even if implemented there is still a possibility that the statement h
and possibly the parent database handle, will not be usable afterwards.

If cancel returns true then it is implemented and has successfully invoked the database engine‘s own
function. If it returns false then cancel failed (undef if not implemented).

DEBUGGING
In addition to the /trace method you can enable the same trace information by setting the DBI_TR
environment variable before starting perl.

On unix−like systems using a bourne−like shell you can do this easily for a single command:

 DBI_TRACE=2 perl your_test_script.pl

If DBI_TRACE is set to a non−numeric value then it is assumed to be a file name and the trace level
set to 2 with all trace output will be appended to that file.

See also the /trace method.

WARNING AND ERROR MESSAGES
(This section needs more words about causes and remedies.)

Fatal Errors

Can‘t call method "prepare" without a package or object reference
The $dbh handle you‘re using to call prepare is probably undefined because the preceeding c
failed. You should always check the return status of DBI methods, or use the /RaiseError attribute.
18−Oct−1998 Version 5.005_02 1367

DBI Perl Programmers Reference Guide DBI

repare

elated
Can‘t call method "execute" without a package or object reference
The $sth handle you‘re using to call execute is probably undefined because the preceeding p
failed. You should always check the return status of DBI methods, or use the /RaiseError attribute.

Database handle destroyed without explicit disconnect
DBI/DBD internal version mismatch
DBD driver has not implemented the AutoCommit attribute
Can‘t [sg]et %s−{%s}: unrecognised attribute
panic: DBI active kids (%d) kids (%d)
panic: DBI active kids (%d) < 0 or kids (%d)

Warnings

DBI Handle cleared whilst still holding %d cached kids!
DBI Handle cleared whilst still active!
DBI Handle has uncleared implementors data
DBI Handle has %d uncleared child handles

SEE ALSO

Database Documentation
SQL Language Reference Manual.

Books and Journals
 Programming Perl 2nd Ed. by Larry Wall, Tom Christiansen & Randal Schwartz.
 Learning Perl by Randal Schwartz.

 Dr Dobb’s Journal, November 1996.
 The Perl Journal, April 1997.

Manual Pages
perl(1), perlmod(1), perlbook(1)

Mailing List
The dbi−users mailing list is the primary means of communication among uses of the DBI and its r
modules. Subscribe and unsubscribe via:

 http://www.fugue.com/dbi

Mailing list archives are held at:

 http://www.rosat.mpe−garching.mpg.de/mailing−lists/PerlDB−Interest/
 http://www.xray.mpe.mpg.de/mailing−lists/#dbi
 http://outside.organic.com/mail−archives/dbi−users/
 http://www.coe.missouri.edu/~faq/lists/dbi.html

Assorted Related WWW Links
The DBI ‘Home Page’ (not maintained by me):

 http://www.arcana.co.uk/technologia/perl/DBI

Other related links:

 http://www−ccs.cs.umass.edu/db.html
 http://www.odmg.org/odmg93/updates_dbarry.html
 http://www.jcc.com/sql_stnd.html
 ftp://alpha.gnu.ai.mit.edu/gnu/gnusql−0.7b3.tar.gz
 http://www.dbmsmag.com

Data Warehouse Links
1368 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

d it by

erl by

se, as

 DBI
i, Kurt
avid
Georg
rtz, and

e Perl

 set an
ithout
 http://www.datamining.org
 http://www.olapcouncil.org
 http://www.idwa.org
 http://www.knowledgecenters.org/dwcenter.asp
 http://pwp.starnetinc.com/larryg/
 http://www.data−warehouse.

FAQ
Please also read the DBI FAQ which is installed as a DBI::FAQ module so you can use perldoc to rea
executing the perldoc DBI::FAQ command.

AUTHORS
DBI by Tim Bunce. This pod text by Tim Bunce, J. Douglas Dunlop, Jonathan Leffler and others. P
Larry Wall and the perl5−porters.

COPYRIGHT
The DBI module is Copyright (c) 1995,1996,1997 Tim Bunce. England. All rights reserved.

You may distribute under the terms of either the GNU General Public License or the Artistic Licen
specified in the Perl README file.

ACKNOWLEDGEMENTS
I would like to acknowledge the valuable contributions of the many people I have worked with on the
project, especially in the early years (1992−1994). In no particular order: Kevin Stock, Buzz Moschett
Andersen, Ted Lemon, William Hails, Garth Kennedy, Michael Peppler, Neil S. Briscoe, Jeff Urlwin, D
J. Hughes, Jeff Stander, Forrest D Whitcher, Larry Wall, Jeff Fried, Roy Johnson, Paul Hudson,
Rehfeld, Steve Sizemore, Ron Pool, Jon Meek, Tom Christiansen, Steve Baumgarten, Randal Schwa
a whole lot more.

SUPPORT / WARRANTY
The DBI is free software. IT COMES WITHOUT WARRANTY OF ANY KIND.

Commercial support for Perl and the DBI, DBD::Oracle and Oraperl modules can be arranged via Th
Clinic. See http://www.perlclinic.com for more details.

OUTSTANDING ISSUES TO DO
data types (ISO type numbers and type name conversions)
error handling
data dictionary methods
test harness support methods
portability
blob_read
etc

FREQUENTLY ASKED QUESTIONS
See the DBI FAQ for a more comprehensive list of FAQs. Use the perldoc DBI::FAQ command to read
it.

How fast is the DBI?
To measure the speed of the DBI and DBD::Oracle code I modified DBD::Oracle such that you can
attribute which will cause the same row to be fetched from the row cache over and over again (w
involving Oracle code but exercising *all* the DBI and DBD::Oracle code in the code path for a fetch).

The results (on my lightly loaded old Sparc 10) fetching 50000 rows using:

1 while $csr−>fetch;

were:
one field: 5300 fetches per cpu second (approx)
18−Oct−1998 Version 5.005_02 1369

DBI Perl Programmers Reference Guide DBI

es per
ode:

g. The

rheads

int the
r your

‘m all

rs

ng’
 see if
e new
ten fields: 4000 fetches per cpu second (approx)

Obviously results will vary between platforms (newer faster platforms can reach around 50000 fetch
second) but it does give a feel for the maximum performance: fast. By way of comparison, using the c

1 while @row = $csr−>fetchrow_array;

(fetchrow_array is roughly the same as ora_fetch) gives:

one field: 3100 fetches per cpu second (approx)
ten fields: 1000 fetches per cpu second (approx)

Notice the slowdown and the more dramatic impact of extra fields. (The fields were all one char lon
impact would be even bigger for longer strings.)

Changing that slightly to represent actually _doing_ something in perl with the fetched data:

 while(@row = $csr−>fetchrow_array) {
 $hash{++$i} = [@row];
 }

gives: ten fields: 500 fetches per cpu second (approx)

That simple addition has *halved* the performance.

I therefore conclude that DBI and DBD::Oracle overheads are small compared with Perl language ove
(and probably database overheads).

So, if you think the DBI or your driver is slow, try replacing your fetch loop with just:

1 while $csr−>fetch;

and time that. If that helps then point the finger at your own code. If that doesn‘t help much then po
finger at the database, the platform, the network etc. But think carefully before pointing it at the DBI o
driver.

(Having said all that, if anyone can show me how to make the DBI or drivers even more efficient, I
ears.)

Why doesn‘t my CGI script work right?
Read the information in the references below. Please do not post CGI related questions to the dbi−use
mailing list (or to me).

 http://www.perl.com/perl/faq/idiots−guide.html
 http://www3.pair.com/webthing/docs/cgi/faqs/cgifaq.shtml
 http://www.perl.com/perl/faq/perl−cgi−faq.html
 http://www−genome.wi.mit.edu/WWW/faqs/www−security−faq.html
 http://www.boutell.com/faq/
 http://www.perl.com/perl/faq/

General problems and good ideas:

 Use the CGI::ErrorWrap module.
 Remember that many env vars won’t be set for CGI scripts

How can I maintain a WWW connection to a database?
For information on the Apache httpd server and the mod_perl module see

 http://perl.apache.org/

A driver build fails because it can‘t find DBIXS.h
The installed location of the DBIXS.h file changed with 0.77 (it was being installed into the ‘wro
directory but that‘s where driver developers came to expect it to be). The first thing to do is check to
you have the latest version of your driver. Driver authors will be releasing new versions which use th
1370 Version 5.005_02 18−Oct−1998

DBI Perl Programmers Reference Guide DBI

hange

− on

ually

elated
location. If you have the latest then ask for a new release. You can edit the Makefile.PL file yourself. C
the part which reads "−I.../DBI" so it reads "−I.../auto/DBI" (where ... is a string of non−space
characters).

Has the DBI and DBD::Foo been ported to NT / Win32?
The latest version of the DBI and, at least, the DBD::Oracle module will build − without changes
NT/Win32 if your are using the standard Perl 5.004 and not the ActiveWare port.

Jeffrey Urlwin <jurlwin@access.digex.net (or <jurlwin@hq.caci.com) is helping me with the port (act
he‘s doing it and I‘m integrating the changes :−).

What about ODBC?
A DBD::ODBC module is available.

Does the DBI have a year 2000 problem?
No. The DBI has no knowledge or understanding of dates at all.

Individual drivers (DBD::*) may have some date handling code but are unlikely to have year 2000 r
problems within their code. However, your application code which uses the DBI and DBD drivers may have
year 2000 related problems if it has not been designed and written well.

See also the "Does Perl have a year 2000 problem?" section of the Perl FAQ:

 http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

KNOWN DRIVER MODULES

ODBC − DBD::ODBC
 Author: Tim Bunce
 Email: dbi−users@fugue.com

Oracle − DBD::Oracle
 Author: Tim Bunce
 Email: dbi−users@fugue.com

Ingres − DBD::Ingres
 Author: Henrik Tougaard
 Email: ht@datani.dk, dbi−users@fugue.com

mSQL − DBD::mSQL
DB2 − DBD::DB2
Empress − DBD::Empress
Informix − DBD::Informix

 Author: Jonathan Leffler
 Email: jleffler@informix.com, j.leffler@acm.org, dbi−users@fugue.com

Solid − DBD::Solid
 Author: Thomas Wenrich
 Email: wenrich@site58.ping.at, dbi−users@fugue.com

Postgres − DBD::Pg
 Author: Edmund Mergl
 Email: E.Mergl@bawue.de, dbi−users@fugue.com

Illustra − DBD::Illustra
 Author: Peter Haworth
 Email: pmh@edison.ioppublishing.com, dbi−users@fugue.com
18−Oct−1998 Version 5.005_02 1371

DBI Perl Programmers Reference Guide DBI

_perl.
is way

 applet
driver
to be

river
Fulcrum SearchServer − DBD::Fulcrum
 Author: Davide Migliavacca
 Email: davide.migliavacca@inferentia.it

OTHER RELATED WORK AND PERL MODULES

Apache::DBI by E.Mergl@bawue.de
To be used with the Apache daemon together with an embedded perl interpreter like mod
Establishes a database connection which remains open for the lifetime of the http daemon. Th
the CGI connect and disconnect for every database access becomes superfluous.

JDBC Server by Stuart ‘Zen’ Bishop <zen@bf.rmit.edu.au
The server is written in Perl. The client classes that talk to it are of course in Java. Thus, a Java
or application will be able to comunicate via the JDBC API with any database that has a DBI
installed. The URL used is in the form jdbc:dbi://host.domain.etc:999/Driver/DBName. It seems
very similar to some commercial products, such as jdbcKona.

Remote Proxy DBD support
 Carl Declerck <carl@miskatonic.inbe.net>
 Terry Greenlaw <z50816@mip.mar.lmco.com>

Carl is developing a generic proxy object module which could form the basis of a DBD::Proxy d
in the future. Terry is doing something similar.

SQL Parser
Hugo van der Sanden <hv@crypt.compulink.co.uk>
Stephen Zander <stephen.zander@mckesson.com>

Based on the O‘Reilly lex/yacc book examples and byacc.
1372 Version 5.005_02 18−Oct−1998

DBI::W32ODBC Perl Programmers Reference Guide DBI::W32ODBC

lease
NAME
DBI::W32ODBC − An experimental DBI emulation layer for Win32::ODBC

SYNOPSIS
 use DBI::W32ODBC;

 # apart from the line above everything is just the same as with
 # the real DBI when using a basic driver with few features.

 $dbh = DBI−>connect(...);

 $rc = $dbh−>do($statement);

 $sth = $dbh−>prepare($statement);

 $rc = $sth−>execute;

 @row_ary = $sth−>fetchrow;
 $row_ref = $sth−>fetch;

 $rc = $sth−>finish;

 $rv = $sth−>rows;

 $rc = $dbh−>disconnect;

 $sql = $dbh−>quote($string);

 $rv = $h−>err;
 $str = $h−>errstr;

DESCRIPTION
THIS IS A VERY EXPERIMENTAL PURE PERL DBI EMULATION LAYER FOR Win32::ODBC

It was developed for use with an Access database and the quote() method is very likely to need
reworking.

If you can improve this code I‘d be interested in hearing out it. If you are having trouble using it p
respect the fact that it‘s very experimental.
18−Oct−1998 Version 5.005_02 1373

DBI::Shell Perl Programmers Reference Guide DBI::Shell

 line

 Add
NAME
DBI::Shell − Interactive command shell for the DBI

SYNOPSIS
 perl −MDBI::Shell −e shell [<DBI data source> [<user> [<password>]]]

or

 dbish [<DBI data source> [<user> [<password>]]]

DESCRIPTION
The DBI::Shell module (and dbish command, if installed) provide a simple but effective command
interface for the Perl DBI module.

DBI::Shell is very new, very experimental and very subject to change. Your milage will vary. Interfaces will
change with each release.

TO DO
Proper docs − but not yet, too much is changing.

"/source file" command to read command file. Allow to nest via stack of command file handles.
command log facility to create batch files.

Commands:
load (query?) from file
save (query?) to file

Use Data::ShowTable if available.

Define DBI::Shell plug−in semantics.
Implement import/export as plug−in module

Clarify meaning of batch mode

Completion hooks

Set/Get DBI handle attributes

Portability

Emulate popular command shell modes (Oracle, Ingres etc)?

COMMANDS
Many commands − few documented, yet!

help
 /help

chistory
 /chistory (display history of all commands entered)
 /chistory | YourPager (display history with paging)

clear
 /clear (Clears the current command buffer)

commit
 /commit (commit changes to the database)

connect
 /connect (pick from available drivers and sources)
 /connect dbi:Oracle (pick source from based on driver)
 /connect dbi:YourDriver:YourSource i.e. dbi:Oracle:mysid
1374 Version 5.005_02 18−Oct−1998

DBI::Shell Perl Programmers Reference Guide DBI::Shell

uffer.

s with /
Use this option to change userid or password.

current
 /current (Display current statement in the buffer)

do
 /do (execute the current (non−select) statement)

dbish> create table foo (mykey integer)
dbish> /do

dbish> truncate table OldTable /do (Oracle truncate)

drivers
 /drivers (Display available DBI drivers)

edit
 /edit (Edit current statement in an external editor)

Editor is defined using the enviroment variable $VISUAL or $EDITOR or default is vi. Use /option
editor=new editor to change in the current session.

To read a file from the operating system invoke the editor (/edit) and read the file into the editor b

exit
 /exit (Exits the shell)

get
 /get (Retrieve a previous command to the current buffer)

go
 /go (Execute the current statement)

Run (execute) the statement in the current buffer. This is the default action if the statement end

dbish> select * from user_views/

dbish> select table_name from user_tables
dbish> where table_name like ’DSP%’
dbish> /

dbish> select table_name from all_tables/ | more

history
 /history (Display combined command and result history)
 /history | more

option
 /option [option1[=value]] [option2 ...]
 /option (Displays the current options)
 /option MyOption (Displays the value, if exists, of MyOption)
 /option MyOption=4 (defines and/or sets value for MyOption)

perl
 /perl (Evaluate the current statement as perl code)

quit
 /quit (Leaves shell. Same as exit)
18−Oct−1998 Version 5.005_02 1375

DBI::Shell Perl Programmers Reference Guide DBI::Shell

ally

cked it

dbish

m to
ipped
s bound

 are

se, as
redo
 /redo (Re−execute the previously executed statement)

rhistory
 /rhistory (Display result history)

rollback
 /rollback (rollback changes to the database)

For this to be useful, turn the autocommit off. /option autocommit=0

table_info
 /table_info (display all tables that exist in current database)
 /table_info | more (for paging)

trace
 /trace (set DBI trace level for current database)

Adjust the trace level for DBI 0 − 4. 0 off. 4 lots of information. Useful for determining what is re
happening in DBI. See DBI.

type_info
 /type_info (display data types supported by current server)

AUTHORS and ACKNOWLEDGEMENTS
The DBI::Shell has a long lineage.

It started life around 1994−1997 as the pmsql script written by Andreas König. Jochen Wiedmann pi
up and ran with it (adding much along the way) as dbimon, bundled with his DBD::mSQL driver modules. In
1998, around the time I wanted to bundle a shell with the DBI, Adam Marks was working on a
modeled after the Sybase sqsh utility.

Wanting to start from a cleaner slate than the feature−full but complex dbimon, I worked with Ada
create a fairly open modular and very configurable DBI::Shell module. Along the way Tom Lowery ch
in ideas and patches. As we go further along more useful code and concepts from Jochen‘s dbimon i
to find it‘s way back in.

COPYRIGHT
The DBI::Shell module is Copyright (c) 1998 Tim Bunce. England. All rights reserved. Portions
Copyright by Jochen Wiedmann, Adam Marks and Tom Lowery.

You may distribute under the terms of either the GNU General Public License or the Artistic Licen
specified in the Perl README file.
1376 Version 5.005_02 18−Oct−1998

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

−1"

ts and

o, if you
w the

e
ase all

.gif"

ard

sses
 driver
NAME
DBI::FAQ — The Frequently Asked Questions for the Perl5 Database Interface

=for html <HTML <HEAD <!— — <!— $Id: FAQ.pm,v 10.1 1998/08/14 20:21:36 timbo Exp $ — <!—
— <TITLEFrequently Asked Questions for DB/TITLE </HEAD <BODY BGCOLOR="#ffffff"
TEXT="#000000" LINK="#3a15ff" ALINK="#ff0000" VLINK="#ff282d" <CENTER <IMG
SRC="/img/hermlogo.gif" WIDTH=437 HEIGHT=115 ALT="[Hermetica]" </CENTER <HR <P
<CENTER <FONT SIZE="+2" DBI Frequently Asked Questions v.0.35 </FONT <BR <FONT SIZE="
<ILast updated: June 20th, 1997</I </FONT </CENTER <P

SYNOPSIS
 perldoc DBI::FAQ

VERSION
This document is currently at version 0.35, as of June 20th, 1997.

It is quite out of date and should not be relied upon as anything other than a set of assorted hints.

DESCRIPTION
This document serves to answer the most frequently asked questions on both the DBI Mailing Lis
personally to members of the DBI development team.

Basic Information & Information Sources

1.1 What is DBI, DBperl, Oraperl and *perl?
To quote Tim Bunce, the architect and author of DBI:

 ‘‘DBI is a database access Application Programming Interface (API)
 for the Perl Language. The DBI API Specification defines a set
 of functions, variables and conventions that provide a consistent
 database interface independant of the actual database being used.’’

In simple language, the DBI interface allows users to access multiple database types transparently. S
connecting to an Oracle, Informix, mSQL, Sybase or whatever database, you don‘t need to kno
underlying mechanics of the interface. The API defined by DBI will work on all these database types.

A similar benefit is gained by the ability to connect to two different databases of different vendor within th
one perl script, ie, I want to read data from an Oracle database and insert it back into an Informix datab
within one program. The DBI layer allows you to do this simply and powerfully.

=for html Here‘s a diagram that demonstrates the principle: <P <CENTER <IMG SRC="img/dbiarch
WIDTH=451 HEIGHT=321 ALT="[DBI Architecture]" </CENTER <P

DBperl is the old name for the interface specification. It‘s usually now used to denote perl4 modules on
database interfacing, such as, oraperl, isqlperl, ingperl and so on. These interfaces didn‘t have a stand
API and are generally not supported.

Here‘s a list of old DBperl‘s, their corresponding DBI counterparts and support information. Please note, the
author‘s listed here generally do not maintain the DBI module for the same database. These email addre
are unverified and should only be used for queries concerning the perl4 modules listed below. DBI
queries should be directed to the dbi−users mailing list.

 Perl4 Name Database Author DBI Driver
 −−−−−−−−−− −−−−−−−− −−−−−− −−−−−−−−−−
 Sybperl Sybase Michael Peppler DBD::Sybase
 <mpeppler@itf.ch>
 Oraperl Oracle 6 & 7 Kevin Stock DBD::Oracle
 <dbi−users@fugue.com>
 Ingperl Ingres Tim Bunce & DBD::Ingres
 Ted Lemon
18−Oct−1998 Version 5.005_02 1377

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

lation

t

ions of

e DBI

ithin

 code
 and
be read
 <dbi−users@fugue.com>
 Interperl Interbase Buzz Moschetti DBD::Interbase
 <buzz@bear.com>
 Uniperl Unify 5.0 Rick Wargo None
 <rickers@coe.drexel.edu>
 Pgperl Postgres Igor Metz DBD::Pg
 <metz@iam.unibe.ch>
 Btreeperl NDBM John Conover SDBM?
 <john@johncon.com>
 Ctreeperl C−Tree John Conover None
 <john@johncon.com>
 Cisamperl Informix C−ISAM Mathias Koerber None
 <mathias@unicorn.swi.com.sg>
 Duaperl X.500 Directory Eric Douglas None
 User Agent

However, some DBI modules have DBperl emulation layers, so, DBD::Oracle for example comes with an
Oraperl emulation layer, which allows you to run legacy oraperl scripts without modification. The emu
layer translates the oraperl API calls into the corresponding DBI calls.

Here‘s a table of emulation layer information:

 Module Emulation Layer Status
 −−−−−− −−−−−−−−−−−−−−− −−−−−−
 DBD::Oracle Oraperl Complete
 DBD::Ingres Ingperl Complete
 DBD::Informix Isqlperl Under development
 DBD::Sybase Sybperl Working? (Needs verification)
 DBD::mSQL Msqlperl Experimentally released with
 DBD::mSQL−0.61

The Msqlperl emulation is a special case. Msqlperl is a perl5 driver for mSQL databases, but does no
conform to the DBI Specification. It‘s use is being deprecated in favour of DBD::mSQL. Msqlperl may be
downloaded from CPAN via:

 http://www.perl.com/cgi−bin/cpan_mod?module=Msqlperl

1.2. Where can I get it from?
The Comprehensive Perl Archive Network resources should be used for retrieving up−to−date vers
the drivers. Local CPAN sites may be accessed via Tom Christiansen‘s splendid CPAN multiplexer program
located at:

 http://www.perl.com/CPAN/

For more specific version information and exact URLs of drivers, please see the DBI drivers list and th
module pages which can be found on:

 http://www.hermetica.com/technologia/perl/DBI

1.3. Where can I get more information?
There are a few information sources on DBI.

DBI Specification
The DBI specification is defined by the DBI documentation (supplied as POD documentation w
the DBI module).

POD Documentation
PODs are chunks of documentation usually embedded within perl programs that document the
‘‘ in place‘’, providing a useful resource for programmers and users of modules. POD for DBI
drivers is beginning to become more commonplace, and documentation for these modules can
1378 Version 5.005_02 18−Oct−1998

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

u

to the

k for

s of

g:

reader

 in an
e quite
 also
st DBI

was
ll

mbers
 the
with the following commands.

The DBI Specification
The POD for the DBI Specification can be read with the:

 perldoc DBI

command.

Frequently Asked Questions
This document, the Frequently Asked Questions is also available as POD documentation! Yo
can read this on your own system by typing:

 perldoc DBI::FAQ

This may be more convenient to persons not permanently, or conveniently, connected
Internet but the document may not be the latest version.

Oraperl
Users of the Oraperl emulation layer bundled with DBD::Oracle, may read up on how to
program with the Oraperl interface by typing:

 perldoc Oraperl

This will produce an updated copy of the original oraperl man page written by Kevin Stoc
perl4. The oraperl API is fully listed and described there.

DBD::mSQL
Users of the DBD::mSQL module may read about some of the private functions and quirk
that driver by typing:

 perldoc DBD::mSQL

POD in general
Information on writing POD, and on the philosophy of POD in general, can be read by typin

 perldoc perlpod

Users with the Tk module installed may be interested to learn there is a Tk−based POD
available called tkpod , which formats POD in a convenient and readable way.

Rambles, Tidbits and Observations
 http://www.hermetica.com/technologia/perl/DBI/tidbits

There are a series of occasional rambles from various people on the DBI mailing lists who,
attempt to clear up a simple point, end up drafting fairly comprehensive documents. These ar
often varying in quality, but do provide some insights into the workings of the interfaces. They
quite often use old−style code (especially around connect) so always compare with the late
Specification.

‘‘DBI — The perl5 Database Interface‘’
This is an article written by Alligator Descartes and Tim Bunce on the structure of DBI. It
published in issue 5 of ‘‘The Perl Journal‘’. It‘s extremely good. Go buy the magazine. In fact, buy a
of them! ‘‘The Perl Journal‘’s WWW site is:

 http://www.tpj.com

‘‘DBperl‘’
This article, published in the November 1996 edition of ‘‘Dr. Dobbs Journal‘’ concerned DBperl. The
author of this edition apparently did not bother to contact any of the DBI development team me
for verification of the information contained within his article. Several reviews of the article on
dbi−users mailing list were disparaging, to say the least. The fact the article was written about DBperl
18−Oct−1998 Version 5.005_02 1379

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

e for

d by

on (
es more
instead of DBI hints at the staleness of the information. However, we include the referenc
completeness’ sake.

‘‘The Perl5 Database Interface‘’
This item is a book due to be written by Alligator Descartes sometime and will be publishe
O‘Reilly and Associates.

Here is the putative table of contents for the book.

 * Introduction
 + Databases
 + CGI / WWW
 + perl
 * Basic Database Concepts
 + Types of Database
 o Flat File
 o AnyDBM
 o RDBMS
 + Using Which Database For What...
 * SQL
 + Why SQL?
 + Structuring Information In Databases
 + Retrieving Data From Databases
 + Manipulating Data and Data Structures
 * DBI Architecture
 * Programming with DBI
 + DBI Initialization
 + Handles
 o Driver Handles
 o Database Handles
 o Statement Handles
 + Connection and Disconnection
 + Handling Errors
 + Issuing Simple Queries
 + Executing Atomic Statements
 + Statement MetaData
 + More perl−ish Statements
 + Binding
 + Transaction Handling
 + Utility Methods
 + Handle Attributes and Dynamic Variables
 * DBI and ODBC
 * The Database Drivers
 + DBD::Oracle and oraperl
 + DBD::Informix and isqlperl
 + DBD::mSQL and Msqlperl
 * Case Studies
 + DBI and the WWW
 + Data Migration and Warehousing
 + Administration Software
 * Appendix: API Reference / Specification
 * Appendix: Resources

README files
The README files included with each driver occasionally contains some very useful informati
no, really!) that may be pertinent to the user. Please read them. It makes our worthless existenc
1380 Version 5.005_02 18−Oct−1998

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

 and

 in the

t will

ually

e DBI
. Low

 and

 have

own

ged
bearable. These can all be read from the main DBI WWW page at:

 http://www.hermetica.com/technologia/perl/DBI

Mailing Lists
There are three mailing lists for DBI run by Ted Lemon. These can all be subscribed to
unsubscribed from via the World Wide Web at the URL of:

 http://www.fugue.com/dbi

If you cannot successfully use the WWW form on the above page, please subscribe to the list
following manner:

 Email: ’dbi−XXX−request@fugue.com’ with a message body of
 ’subscribe’

Where ‘dbi−XXX’ is the name of the mailing list you are interested in. But note that your reques
be handled by a human and may take some time.

The lists that users may participate in are:

dbi−announce
This mailing list is for announcements only. Very low traffic. The announcements are us
posted on the main DBI WWW page.

dbi−dev
This mailing list is intended for the use of developers discussing ideas and concepts for th
interface, API and driver mechanics. Only any use for developers, or interested parties
traffic.

dbi−users
This mailing list is a general discussion list used for bug reporting, problem discussion
general enquiries. Medium traffic.

Mailing List Archives
US Mailing List Archives

 http://outside.organic.com/mail−archives/dbi−users/

Searchable hypermail archives of the three mailing lists, and some of the much older traffic
been set up for users to browse.

European Mailing List Archives
 http://www.rosat.mpe−garching.mpg.de/mailing−lists/PerlDB−Interest

As per the US archive above.

Compilation Problems

2.1. Compilation problems or "It fails the test!"
First off, consult the online information about the module, beit DBI itself, or a DBD, and see if it‘s a kn
compilation problem on your architecture. These documents can be found at:

 http://www.hermetica.com/technologia/perl/DBI

If it‘s a known problem, you‘ll probably have to wait till it gets fixed. If you‘re really needing it fixed, try
the following:

Attempt to fix it yourself
This technique is generally not recommended to the faint−hearted. If you do think you have mana
to fix it, then, send a patch file (context diff) to the author with an explanation of:
18−Oct−1998 Version 5.005_02 1381

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

s with.
 Some

ay not
e

 stuff

ean
eet

e

u send

d

e.

t

rd

I and
can be
 What the problem was, and test cases, if possible.

 What you needed to do to fix it. Please make sure you mention everything.

 Platform information, database version, perl version (perl −V), module version and DBI
version.

Email the author Do NOT whinge!
Please email the address listed in the WWW pages for whichever driver you are having problem
Do not directly email the author at a known address unless it corresponds with the one listed.
authors, including Tim Bunce, specifically do not want mail sent directly to them.

We tend to have real jobs to do, and we do read the mailing lists for problems. Besides, we m
have access to <insert your favourite brain−damaged platform here and couldn‘t be of any assistanc
anyway! Apologies for sounding harsh, but that‘s the way of it!

However, you might catch one of these creative genii at 3am when we‘re doing this sort of
anyway, and get a patch within 5 minutes. The atmosphere in the DBI circle is that we do appreciate
the users’ problems, since we work in similar environments.

If you are planning to email the author, please furnish as much information as possible, ie:

 ALL the information asked for in the README file for the problematic module. And we m
ALL of it. We don‘t put lines like that in documentation for the good of our health, or to m
obscure README file standards of length.

 If you have a core dump, try the Devel::CoreStack module for generating a stack trace from th
core dump. Send us that too. Devel::CoreStack can be found on CPAN at:

 http://www.perl.com/cgi−bin/cpan_mod?module=Devel::CoreStack

 Module versions, perl version, test cases, operating system versions and any other pertinent
information.

Remember, the more information you send us, the quicker we can track problems down. If yo
us no useful information, expect nothing back.

Email the dbi−users Mailing List
It‘s usually a fairly intelligent idea to cc the mailing list anyway with problems. The authors all rea
the lists, so you lose nothing by mailing there.

Platform and Driver Issues

3.1 What‘s the difference between ODBC and DBI?
Good question! To be filled in more detail! Meanwhile see the notes at the end of the DBI README fil

3.2 Is DBI supported under Windows 95 / NT platforms?
Finally, yes! Jeff Urlwin has been working diligently on building DBI and DBD::Oracle under these
platforms, and, with the advent of a stabler perl and a port of MakeMaker, the project has come on by grea
leaps and bounds.

Recent DBI and DBD::Oracle modules will build and work out−of−the−box on Win32 with the standa
perl 5.004 (or later) version of perl.

If you have to use the old non−standard ActiveWare perl port you can‘t use the standard DB
DBD::Oracle modules out−of−the−box. Details of the changes required and pre−patched versions
found at:

 http://www.hermetica.com/technologia/perl/DBI/win32
1382 Version 5.005_02 18−Oct−1998

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

nounced

s.

simple
 robust

f
ing and
te

taset,

illion
r

3.3 Can I access Microsoft Access or SQL−Server databases with DBI?
Yse. Use the ODBC driver (DBD::ODBC).

3.4 Is the a DBD for < insert favourite database here?
Is is listed on the DBI drivers page?

 http://www.hermetica.com/technologia/perl/DBI/DBD

If not, no. A complete absence of a given database driver from that page means that no−one has an
any intention to work on it.

A corollary of the above statement implies that if you see an announcement for a driver not on the above
page, there‘s a good chance it‘s not actually a DBI driver, and may not conform to the specification
Therefore, questions concerning problems with that code should not really be addressed to the DBI Mailing
Lists.

3.5 What‘s DBM? And why should I use DBI instead?
Extracted from ‘‘DBI − The Database Interface for Perl 5‘’:

 ‘‘UNIX was originally blessed with simple file−based ‘‘databases’’, namely
 the dbm system. dbm lets you store data in files, and retrieve
 that data quickly. However, it also has serious drawbacks.

 File Locking

 The dbm systems did not allow particularly robust file locking
 capabilities, nor any capability for correcting problems arising through
 simultaneous writes [to the database].

 Arbitrary Data Structures

 The dbm systems only allows a single fixed data structure:
 key−value pairs. That value could be a complex object, such as a
 [C] struct, but the key had to be unique. This was a large
 limitation on the usefulness of dbm systems.

 However, dbm systems still provide a useful function for users with
 simple datasets and limited resources, since they are fast, robust and
 extremely well−tested. Perl modules to access dbm systems have now
 been integrated into the core Perl distribution via the
 AnyDBM_File module.’’

To sum up, DBM is a perfectly satisfactory solution for essentially read−only databases, or small and
datasets with a single user. However, for more powerful and scaleable datasets, not to mention
transactional locking, users are recommended to use DBI.

3.6 When will mSQL−2 be supported?
As of DBD::mSQL−0.61, there has been support for mSQL−2. However, there is no real support for any o
the new methods added to the core mSQL library regarding index support yet. These are forthcom
will be accessible via func() methods private to DBD::mSQL. You can read more about these priva
methods in the DBD::mSQL POD that can be found by typing:

 perldoc DBD::mSQL

provided you have DBD::mSQL correctly installed.

3.7 What database do you recommend me using?
This is a particularly thorny area in which an objective answer is difficult to come by, since each da
proposed usage and system configuration differs from person to person.

From the current author‘s point of view, if the dataset is relatively small, being tables of less than 1 m
rows, and less than 1000 tables in a given database, then mSQL is a perfectly acceptable solution to you
18−Oct−1998 Version 5.005_02 1383

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

 More

 larger
re

tween
n be

es
tion will

orporate

andard

ality

gh the
ided

GI

which
t, if a
atabase

e
 child.
problem. This database is extremely cheap, is wonderfully robust and has excellent support.
information is available on the Hughes Technology WWW site at:

 http://www.hughes.com.au

If the dataset is larger than 1 million row tables or 1000 tables, or if you have either more money, or
machines, I would recommend the Oracle RDBMS. Oracle‘s WWW site is an excellent source of mo
information.

 http://www.oracle.com

Informix is another high−end RDBMS that is worth considering. There are several differences be
Oracle and Informix which are too complex for this document to detail. Information on Informix ca
found on their WWW site at:

 http://www.informix.com

In the case of WWW fronted applications, mSQL may be a better option due to slow connection tim
between a CGI script and the Oracle RDBMS and also the amount of resource each Oracle connec
consume. mSQL is lighter resource−wise and faster.

These views are not necessarily representative of anyone else‘s opinions, and do not reflect any c
sponsorship or views. They are provided as−is.

3.8 Is <insert feature here supported in DBI?
Given that we‘re making the assumption that the feature you have requested is a non−st
database−specific feature, then the answer will be no.

DBI reflects a generic API that will work for most databases, and has no database−specific function
defined.

However, driver authors may, if they so desire, include hooks to database−specific functionality throu
func() method defined in the DBI API. Script developers should note that use of functionality prov
via the func() methods is unlikely to be portable across databases.

Programming Questions

4.1 Is DBI any use for CGI programming?
In a word, yes! DBI is hugely useful for CGI programming! In fact, I would tentatively say that C
programming is one of two top uses for DBI.

DBI confers the ability to CGI programmers to power WWW−fronted databases to their users,
provides users with vast quantities of ordered data to play with. DBI also provides the possibility tha
site is receiving far too much traffic than their database server can cope with, they can upgrade the d
server behind the scenes with no alterations to the CGI scripts.

4.2 How do I get faster connection times with DBD::Oracle and CGI?
 Contributed by John D. Groenveld

The Apache httpd maintains a pool of httpd children to service client requests.

Using the Apache mod_perl module by Doug MacEachern, the perl interpreter is embedded with th
httpd children. The CGI, DBI, and your other favorite modules can be loaded at the startup of each
These modules will not be reloaded unless changed on disk.

For more information on Apache, see the Apache Project‘s WWW site:

 http://www.apache.org/

The mod_perl module can be downloaded from CPAN via:

 http://www.perl.com/cgi−bin/cpan_mod?module=Apache
1384 Version 5.005_02 18−Oct−1998

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

hese
ith each

mmand

‘s
 is

e

r,
mplies

ou use

 can use
4.3 How do I get persistent connections with DBI and CGI?
 Contributed by John D. Groenveld

Using Edmund Mergl‘s Apache::DBI module, database logins are stored in a hash with each of t
httpd child. If your application is based on a single database user, this connection can be started w
child. Currently, database connections cannot be shared between httpd children.

Apache::DBI can be downloaded from CPAN via:

 http://www.perl.com/cgi−bin/cpan_mod?module=Apache::DBI

4.4 ‘‘My perl script runs from the command line, but fails under the httpd !‘’ Why?
Basically, a good chance this is occurring is due to the fact that the user that you ran it from the co
line as has a correctly configured set of environment variables, in the case of DBD::Oracle, variables like
$ORACLE_HOME, $ORACLE_SID or TWO_TASK.

The httpd process usually runs under the user id of nobody , which implies there is no configured
environment. Any scripts attempting to execute in this situation will correctly fail.

To solve this problem, set the environment for your database in a BEGIN { } block at the top of your
script. This will generally solve the problem.

Similarly, you should check your httpd error logfile for any clues, as well as the very valuable ‘‘Idiot
Guide To Solving Perl / CGI Problems‘’ and ‘‘Perl CGI Programming FAQ‘’ for further information. It
unlikely the problem is DBI−related.

The ‘‘Idiot‘s Guide To Solving Perl / CGI Problems‘’ can be located at:

 http://www.perl.com/perl/faq/index.html

as can the ‘‘Perl CGI Programming FAQ‘’. Read BOTH these documents carefully! They will probably sav
you many hours of work.

4.5 How do I get the number of rows returned from a select statement?
Count them. Read the DBI docs for the rows method.

5.1 Can I do multi−threading with DBI?
As of the current date of this FAQ (see top of page), no. perl does not support multi−threading. Howeve
multi−threading is expected to become part of the perl core distribution as of version 5.005, which i
that DBI may support multi−threading fairly soon afterwards.

For some OCI example code for Oracle that has multi−threaded SELECT statements, see:

 http://www.hermetica.com/technologia/oracle/oci/orathreads.tar.gz

5.2 How do I handle BLOB data with DBI?
To be written.

5.3 How can I invoke stored procedures with DBI?
There is currently no standard way to call stored procedures with DBI. However, if the database lets y
SQL to call stored procedures then the DBI and DBD driver probably will to.

For example, assuming that you have created a stored procedure within an Oracle database, you
$dbh−do() to immediately execute the procedure:

 $dbh−>do("BEGIN someProcedure END;"); # Oracle specific

5.4 How can I get return values from stored procedures with DBI?
 Note: This is Oracle specific. Contributed by Jeff Urlwin

 $sth = $dbh−>prepare("BEGIN foo(:1, :2, :3); END;") # Oracle specific
 || die $sth−>errstr;
 $sth−>bind_param(1, $a) || die $sth−>errstr;
18−Oct−1998 Version 5.005_02 1385

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

. See

DBI. For
atabase
abases

as

,
ple, to

I. The
ference

rks.

. These
 $sth−>bind_param_inout(2, \$path, 2000) || die $sth−>errstr;
 $sth−>bind_param_inout(3, \$success, 2000) || die $sth−>errstr;
 $sth−>execute || die $sth−>errstr;

Note the error checking, it may seem like extra work but it‘ll probably save you hours in the long run
$sth− {RaiseError} and $sth− {printError} in the DBI docs for easier ways to get the same effect.

5.5 How can I create or drop a database with DBI?
Database creation and deletion are concepts that are too abstract to be adequately supported by
example, Oracle does not support the concept of dropping a database at all! Also, in Oracle, the d
server essentially is the database, whereas in mSQL, the server process runs happily without any dat
created in it. The problem is too disparate to attack easily.

Some drivers, therefore, support database creation and deletion through the private func() methods. You
should check the documentation for the drivers you are using to see if they support this mechanism.

5.6 How can I commit or rollback a statement with DBI?
To be written. See the commit or rollback methods in the DBI docs.

5.7 How are NULL values handled by DBI?
NULL values in DBI are specified to be treated as the value undef . NULLs can be inserted into databases
NULL, for example:

 $rv = $dbh−>do("INSERT INTO table VALUES(NULL)");

but when queried back, the NULLs should be tested against undef . This is standard across all drivers.

5.8 What are these func() methods all about?
The func() method is defined within DBI as being an entry point for database−specific functionalityeg,
the ability to create or drop databases. Invoking these driver−specific methods is simple, for exam
invoke a createDatabase method that has one argument, we would write:

 $rv = $dbh−>func(’argument’, ’createDatabase’);

Software developers should note that the func() methods are non−portable between databases.

Support and Training
The Perl5 Database Interface is FREE software. IT COMES WITHOUT WARRANTY OF ANY KIND. See
the DBI README and DBI documentation for more details.

However, some organizations are providing either technical support or training programs on DB
present author has no knowledge as to the quality of these services. The links are included for re
purposes only.

Commercial Support

The Perl Clinic
The Perl Clinic can arrange commercial support contracts for Perl, DBI, DBD::Oracle and Oraperl.
Support is provided by the company with whom Tim Bunce, author of DBI and DBD::Oracle, wo
For more information on their services, please see:

 http://www.perlclinic.com

for more details.

Training
No training programs are known at this time.

Other References
In this section, we present some miscellaneous WWW links that may be of some interest to DBI users
are not verified and may result in unknown sites or missing documents.
1386 Version 5.005_02 18−Oct−1998

DBI::FAQ Perl Programmers Reference Guide DBI::FAQ

 their
 perl

e this
es are
tices are
ng

ade to

NT
 http://www−ccs.cs.umass.edu/db.html
 http://www.odmg.org/odmg93/updates_dbarry.html
 http://www.jcc.com/sql_stnd.html

AUTHOR
Alligator Descartes <descarte@hermetica.com

COPYRIGHT
This document is Copyright (c)1994−1997 Alligator Descartes, with portions Copyright (c)1994−1997
original authors. This module is released under the ‘Artistic’ license which you can find in the
distribution.

This document is Copyright (c)1997 Alligator Descartes. All rights reserved. Permission to distribut
document, in full or in part, via email, Usenet, ftp archives or http is granted providing that no charg
involved, reasonable attempt is made to use the most current version and all credits and copyright no
retained (the AUTHOR and COPYRIGHT sections). Requests for other distribution rights, includi
incorporation into commercial products, such as books, magazine articles or CD−ROMs should be m
Alligator Descartes <descarte@hermetica.com.

=for html <!— Footer — <P <HR <CENTER <FONT SIZE="−1" <I <B© 1995−97
Hermetica</B<BR <A HREF="/descarte/index.html"Alligator Descartes − Hermetica</A </I </FO
</CENTER </BODY </HTML
18−Oct−1998 Version 5.005_02 1387

DBI::ProxyServer Perl Programmers Reference Guide DBI::ProxyServer

ws
y server
d as a

nnects
ysql,

s of this
ty of
o those.

,
t::Long

tical

gging

 to
n a

roxy
ork or

ther
NAME
DBI::ProxyServer − a server for the DBD::Proxy driver

SYNOPSIS
 use DBI::ProxyServer;
 DBI::ProxyServer::main(@ARGV);

DESCRIPTION
DBI::Proxy Server is a module for implementing a proxy for the DBI proxy driver, DBD::Proxy. It allo
access to databases over the network if the DBMS does not offer networked operations. But the prox
might be useful for you, even if you have a DBMS with integrated network functionality: It can be use
DBI proxy in a firewalled environment.

DBI::ProxyServer runs as a daemon on the machine with the DBMS or on the firewall. The client co
to the agent using the DBI driver DBD::Proxy, thus in the exactly same way than using DBD::m
DBD::mSQL or any other DBI driver.

The agent is implemented as a RPC::pServer application. Thus you have access to all the possibilitie
module, in particular encryption and a similar configuration file. DBI::ProxyServer adds the possibili
query restrictions: You can define a set of queries that a client may execute and restrict access t
(Requires a DBI driver that supports parameter binding.) See /CONFIGURATION FILE.

OPTIONS
When calling the DBI::ProxyServer::main() function, you supply an array of options. (@ARGV
the array of command line options is used, if you don‘t.) These options are parsed by the Getop
module. Available options include:

—configfile filename
The DBI::ProxyServer can use a configuration file for authorizing clients. The file is almost iden
to that of RPC::pServer, with the exception of some additional attributes. See
/CONFIGURATION FILE.

If you don‘t use a config file, then access control is completely disabled. Only use this for debu
purposes or something similar!

—debug
Turns on debugging mode. Debugging messages will usually be logged to syslog with facility daemon
unless you use the options —facility or —stderr , see below.

—facility
Sets the syslog facility, by default daemon.

—help
Tells the proxy server to print a help message and exit immediately.

—ip ip−number
Tells the DBI::ProxyServer, on which ip number he should bind. The default is, to bind
INADDR_ANY or any ip number of the local host. You might use this option, for example, o
firewall with two network interfaces. If your LAN has non public IP numbers and you bind the p
server to the inner network interface, then you will easily disable the access from the outer netw
the Internet.

—port port
This option tells the DBI::ProxyServer, on which port number he should bind. Unlike o
applications, DBI::ProxyServer has no builtin default, so using this option is required.
1388 Version 5.005_02 18−Oct−1998

DBI::ProxyServer Perl Programmers Reference Guide DBI::ProxyServer

hey can
trative
 do a

ately.

is

e

ns that

om

od
—pidfile filename
Tells the daemon, where to store its PID file. The default is /tmp/dbiproxy.pid. The PID file looks like
this:

 567
 IP number 127.0.0.1, port 3334
 dbiproxy −ip 127.0.0.1 −p 3334

The first line is the process number. The second line are IP number and port number, so that t
be used by local clients and the third line is the command line. These can be used in adminis
scripts, for example to first kill the DBI::ProxyServer and then restart it with the same options you

 kill ‘head −1 /tmp/dbiproxy.pid‘
 ‘tail −1 /tmp/dbiproxy.pid‘

—stderr
Forces printing of messages to stderr. The default is using the syslog.

—version
Forces the DBI::ProxyServer to print its version number and copyright message and exit immedi

CONFIGURATION FILE
The configuration file is just that of RPC::pServer with some additional attributes. Currently its own use
authorization and encryption.

Syntax
Empty lines and comment lines (starting with hashes, # charactes) are ignored. All other lines have th
syntax

 var value

White space at the beginning and the end of the line will be removed, so will white space between var and
val . On the other hand value may contain white space, for example

 description Free form text

would be valid with value = Free form text .

Accepting and refusing hosts
Semantically the configuration file is a collection of host definitions, each of them starting with

 accept|deny mask

where mask is a Perl regular expression matching host names or IP numbers (in particular this mea
you have to escape dots), accept tells the server to accept connections from mask and deny forces to
refuse connections from mask. The first match is used, thus the following will accept connections fr
192.168.1.* only

 accept 192\.168\.1\.
 deny .*

and the following will accept all connections except those from evil.guys.com:

 deny evil\.guys\.com
 accept .*

Default is to refuse connections, thus the deny .* in the first example is redundant, but of course go
style.
18−Oct−1998 Version 5.005_02 1389

DBI::ProxyServer Perl Programmers Reference Guide DBI::ProxyServer

8.1.*

ethods
ill

 of

 users

erent

y logged
d in the
st based
Host based encryption
You can force a client to use encryption. The following example will accept connections from 192.16
only, if they are encrypted with the DES algorithm and the key 0123456789abcdef :

 accept 192\.168\.1\.
 encryption DES
 key 0123456789abcdef
 encryptModule Crypt::DES

 deny .*

You are by no means bound to use DES. DBI::ProxyServer just expects a certain API, namely the m
new, keysize, blocksize, encrypt and decrypt. For example IDEA is another choice. The above example w
be mapped to this Perl source:

 $encryptModule = "Crypt::DES";
 $encryption = "DES";
 $key = "0123456789abcdef";

 eval "use $encryptModule;"
 . "$crypt = \$encryption−>new(pack(’H*’, \$key));";

encryptModule defaults to encryption, this is only needed because of the brain damaged design
Crypt::IDEA and Crypt::DES, where module name and class name differ.

User based authorization
The users attribute allows to restrict access to certain users. For example the following allows only the
joe and jack from host alpha and joe and mike from beta :

 accept alpha
 users joe jack

 accept beta
 users joe mike

User based encryption
Although host based encryption is fine, you might still wish to force different users to use diff
encryption secrets. Here‘s how it goes:

 accept alpha
 users joe jack
 jack encrypt="Crypt::DES,DES,fedcba9876543210"
 joe encrypt="Crypt::IDEA,IDEA,0123456789abcdef0123456789abcdef"

This would force jack to encrypt with DES and key fedcba9876543210 and joe with IDEA and
0123456789abcdef0123456789abcdef . The three fields of the encrypt entries correspond to the
encryptionModule, encryption and key attributes of the host based encryption.

You note the problem: Of course user based encryption can only be used when the user has alread
in. Thus we recommend to use both host based and user based encryption: The former will be use
authorization phase and the latter once the client has logged in. Without user based secrets the ho
secret (if any) will be used for the complete session.

Query restrictions
You have the possibility to restrict the queries a client may execute to a predefined set.

Suggest the following lines in the configuration file:

 accept alpha
 sqlRestrict 1
 insert1 INSERT INTO foo VALUES (?, ?)
1390 Version 5.005_02 18−Oct−1998

DBI::ProxyServer Perl Programmers Reference Guide DBI::ProxyServer

urse the
ing for

 terms
 insert2 INSERT INTO bla VALUES (?, ?, ?)

 accept beta
 sqlRestrict 0

This allows users connecting from beta to execute any SQL query, but users from alpha can only insert
values into the tables foo and bar. Clients select the query by just passing the query name (insert1 and
insert2 in the example above) as an SQL statement and binding parameters to the statement. Of co
client side must know how much parameters should be passed. Thus you should use the follow
inserting values into foo from the client:

 my $dbh;
 my $sth = $dbh−>prepare("insert1 (?, ?)");
 $sth−>execute(1, "foo");
 $sth−>execute(2, "bar");

AUTHOR
 Copyright (c) 1997 Jochen Wiedmann
 Am Eisteich 9
 72555 Metzingen
 Germany

 Email: joe@ispsoft.de
 Phone: +49 7123 14881

The DBI::ProxyServer module is free software; you can redistribute it and/or modify it under the same
as Perl itself. In particular permission is granted to Tim Bunce for distributing this as a part of the DBI.

SEE ALSO
dbiproxy(1), DBD::Proxy(3), DBI(3), RPC::pServer(3), RPC::pClient(3), Sys::Syslog(3), syslog(2)
18−Oct−1998 Version 5.005_02 1391

DBI::Format Perl Programmers Reference Guide DBI::Format

ss for

trucor

results

call the

simple
NAME
DBI::Format − A package for displaying result tables

SYNOPSIS
 # create a new result object
 $r = DBI::Format−>new(’var1’ => ’val1’, ...);

 # Prepare it for output by creating a header
 $r−>header($sth, $fh);

 # In a loop, display rows
 while ($ref = $sth−>fetchrow_arrayref()) {
 $r−>row($ref);
 }

 # Finally create a trailer
 $r−>trailer();

DESCRIPTION
THIS PACKAGE IS STILL VERY EXPERIMENTAL. THINGS WILL CHANGE.

This package is used for making the output of DBI::Shell configurable. The idea is to derive a subcla
any kind of output table you might create. Examples are

 a very simple output format as offered by DBI::neat_list() .
"AVAILABLE SUBCLASSES".

 a box format, as offered by the Data::ShowTable module.

 HTML format, as used in CGI binaries

 postscript, to be piped into lpr or something similar

In the future the package should also support interactive methods, for example tab completion.

These are the available methods:

new(@attr)
new(\%attr)

(Class method) This is the constructor. You‘d rather call a subclass constructor. The cons
is accepting either a list of key/value pairs or a hash ref.

header($sth, $fh)
(Instance method) This is called when a new result table should be created to display the
of the statement handle $sth . The (optional) argument $fh is an IO handle (or any object
supporting a print method), usually you use an IO::Wrap object for STDIN.

The method will query the $sth for its NAME, NUM_OF_FIELDS, TYPE, SCALE and
PRECISION attributes and typically print a header. In general you should not assume that $sth
is indeed a DBI statement handle and better treat it as a hash ref with the above attributes.

row($ref)
(Instance method) Prints the contents of the array ref $ref . Usually you obtain this array ref by
calling $sth−>fetchrow_arrayref() .

trailer (Instance method) Once you have passed all result rows to the result package, you should
trailer method. This method can, for example print the number of result rows.

AVAILABLE SUBCLASSES
First of all, you can use the DBI::Format package itself: It‘s not an abstract base class, but a very
default using DBI::neat_list() .
1392 Version 5.005_02 18−Oct−1998

DBI::Format Perl Programmers Reference Guide DBI::Format

ms as
Ascii boxes
This subclass is using the Box mode of the Data::ShowTable module internally. Data::ShowTable(3).

AUTHOR AND COPYRIGHT
This module is Copyright (c) 1997, 1998

 Jochen Wiedmann
 Am Eisteich 9
 72555 Metzingen
 Germany

 Email: joe@ispsoft.de
 Phone: +49 7123 14887

The DBD::Proxy module is free software; you can redistribute it and/or modify it under the same ter
Perl itself.

SEE ALSO
DBI::Shell(3), DBI(3), dbish(1)
18−Oct−1998 Version 5.005_02 1393

DBI::DBD Perl Programmers Reference Guide DBI::DBD

n DBD
 to it.

ly as

tabase
er are

ssible
t.

your

 are
 DBD
t is

,
ople in

driver
lable,
NAME
DBI::DBD − DBD Driver Writer‘s Guide (draft)

SYNOPSIS
 perldoc DBI::DBD

VERSION and VOLATILITY
$Revision: 10.2 $
$Date: 1998/09/02 13:43:45 $

This document is very much a minimal draft which will need to be revised frequently (and extensively).

The changes will occur both because the DBI specification is changing and hence the requirements o
drivers change, and because feedback from people reading this document will suggest improvements

Please read the DBI documentation first and fully, including the DBI FAQ.

This document is a patchwork of contributions from various authors. More contributions (preferab
patches) are welcome.

DESCRIPTION
This document is primarily intended to help people writing new database drivers for the Perl Da
Interface (Perl DBI). It may also help others interested in discovering why the internals of a DBD driv
written the way they are.

This is a guide. Few (if any) of the statements in it are completely authoritative under all po
circumstances. This means you will need to use judgement in applying the guidelines in this documen

REGISTERING A NEW DRIVER
Before writing a new driver, it is in your interests to find out whether there already is a driver for
database. If there is such a driver, it would be much easier to make use of it than to write your own.

[...More info TBS...]

Locating drivers
The primary web−site for locating Perl software is http://www.perl.com/CPAN. You should look under the
various modules listings for the software you are after. Two of the main pages you should look at are:

 http://www.perl.org/CPAN/modules/by−category/07_Database_Interfaces/DBI

 http://www.perl.org/CPAN/modules/by−category/07_Database_Interfaces/DBD

The primary web−site for locating DBI software and information is
http://www.hermetica.com/technologia/DBI.

DBI Mailing Lists
There are 2 main and one auxilliary mailing lists for people working with DBI. The primary lists
dbi−users@fugue.com for general users of DBI and DBD drivers, and dbi−dev@fugue.com mainly for
driver writers (don‘t join the dbi−dev list unless you have a good reason). The auxilliary lis
dbi−announce@fugue.com for announcing new releases of DBI or DBD drivers.

You can join these lists by accessing the web−site http://www.fugue.com/dbi. If you have not got web access
you may send a request to dbi−request@fugue.com, but this will be handled manually when the pe
charge find the time to deal with it. Use the web−site.

You should also consider monitoring the comp.lang.perl newsgroups.

Registering a new driver
Before going through any official registration process, you will need to establish that there is no
already in the works. You‘ll do that by asking the DBI mailing lists whether there is such a driver avai
or whether anybody is working on one.
1394 Version 5.005_02 18−Oct−1998

http://www.perl.com/CPAN
http://www.fugue.com/dbi

DBI::DBD Perl Programmers Reference Guide DBI::DBD

are of.
 other.
 is
t

re
m. At

 the

nd how
never
nsively
ys, use

d to
[...More info TBS...]

CREATING A NEW DRIVER USING PURE PERL
Writing a pure Perl driver is surprisingly simple. However, there are some problems one should be aw
The best option is of course picking up an existing driver and carefully modifying one method after the
As an example we take a look at the DBD::File driver, a driver for accessing plain files as tables, which
part of the DBD::CSV package. In what follows I assume the name Driver for your new package: The leas
thing we have to implement are the files Makefile.PL and Driver.pm .

Makefile.PL
You typically start with writing Makefile.PL , a Makefile generator. The contents of this file a
described in detail in the MakeMaker man pages, it‘s definitely a good idea if you start reading the
least you should know about the variables CONFIGURE, DEFINED, DIR, EXE_FILES, INC, LIBS,
LINKTYPE, NAME, OPTIMIZE, PL_FILES, VERSION, VERSION_FROM, clean, depend, realclean from
the ExtUtils::MakeMaker man page: These are used in almost any Makefile.PL. Additionally read
section on Overriding MakeMaker Methods and the descriptions of the distcheck, disttest and dist targets:
They will definitely be usefull for you.

Of special importance for DBI drivers is the postamble method from the ExtUtils::MM_Unix man page.
And for Emacs users I recommend the libscan method.

Now an example, I use the word Driver whereever you should insert your drivers name:

 # −*− perl −*−

 use DBI 0.94;
 use DBI::DBD;
 use ExtUtils::MakeMaker;

 ExtUtils::MakeMaker::WriteMakefile(
 ’NAME’ => ’DBD::File’,
 ’VERSION_FROM’ => ’File.pm’,
 ’INC’ => $DBI_INC_DIR,
 ’dist’ => { ’SUFFIX’ => ’.gz’,

 ’COMPRESS’ => ’gzip −9f’ },
 ’realclean’ => ’*.xsi’
);

 package MY;
 sub postamble { dbd_postamble(@_); }
 sub libscan {

my($self, $path) = @_;
($path =~ /\~$/) ? undef : $path;

 }

ExtUtils::MakeMaker(3). ExtUtils::MM_Unix(3).

README file
The README file should describe the pre−requisites for the build process, the actual build process, a
to report errors. Users will find ways of breaking the driver build and test process which you would
even dreamed to be possible in your nightmares. :−) Therefore, you need to write this document defe
and precisely. Also, it is in your interests to ensure that your tests work as widely as possible. As alwa
the README from one of the established drivers as a basis for your own.

[...More info TBS...]

MANIFEST
The MANIFEST will be used by the Makefile‘d dist target to build the distribution tar file that is uploade
CPAN.
18−Oct−1998 Version 5.005_02 1395

DBI::DBD Perl Programmers Reference Guide DBI::DBD

ge

 by

mon to

and that

nly one

ts its
Driver.pm
The Driver.pm file defines the Perl module DBD::Driver for your driver. It will define a packa
DBD::Driver along with some version information, some variable definitions, and a function driver()
which will have a more or less standard structure.

It will also define a package DBD::Driver::dr (with methods connect() , data_sources() and
disconnect_all()), and a package DBD::Driver::db (which will define a function prepare() etc),
and a package DBD::Driver::st with methods execute() , fetch() and the like.

The Driver.pm file will also contain the documentation specific to DBD::Driver in the format used
perldoc.

Now let‘s take a closer look at an excerpt of File.pm as an example. We ignore things that are com
any module (even non−DBI(D) modules) or really specific for the DBD::File package.

The header
 package DBD::File;

 $err = 0; # holds error code for DBI::err
 $errstr = ""; # holds error string for DBI::errstr
 $sqlstate = ""; # holds SQL state for DBI::state

These variables are used for storing error states and messages. However, it is crucial to underst
you must not modify them directly; instead use the event method, see below.

 $drh = undef; # holds driver handle once initialized

This is where the driver handle will be stored, once created. Note, that you may assume, there‘s o
handle for your driver.

The driver constructor
 sub driver {
 return $drh if $drh; # already created − return same one
 my($class, $attr) = @_;

 $class .= "::dr";

 # not a ’my’ since we use it above to prevent multiple drivers
 $drh = DBI::_new_drh($class, {
 ’Name’ => ’File’,
 ’Version’ => $VERSION,
 ’Err’ => \$DBD::File::err,
 ’Errstr’ => \$DBD::File::errstr,
 ’State’ => \$DBD::File::state,
 ’Attribution’ => ’DBD::File by Jochen Wiedmann’,
 });

 $drh;
 }

The driver method is the driver handle constructor. It‘s a reasonable example of how DBI implemen
handles. There are three kinds: driver handles (typically stored in $drh, from now on called drh),
database handles (from now on called dbh or $dbh) and statement handles, (from now on called sth
or $sth).

The prototype of DBI::_new_drh is

 $drh = DBI::_new_drh($class, $attr1, $attr2);

with the following arguments:
1396 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

rivate

he
ctors

ould
$class
is your drivers class, e.g., "DBD::File::dr", passed as first argument to the driver method.

$attr1
is a hash ref to attributes like Name, Version, Err, Errstr State and Attributrion. These are processed
and used by DBI, you better don‘t make any assumptions on them nor should you add p
attributes here.

$attr2
This is another (optional) hash ref with your private attributes. DBI will leave them alone.

The DBI::new_drh method and the driver method both return undef for failure (in which case you must
look at $DBI::err and $DBI::errstr, because you have no driver handle).

The database handle constructor
The next lines of code look as follows:

 package DBD::Driver::dr; # ====== DRIVER ======

 $DBD::Driver::dr::imp_data_size = 0;

The database handle constructor is a driver method, thus we have to change the namespace.

 sub connect {
 my($drh, $dbname, $user, $auth, $attr)= @_;

 # Some database specific verifications, default settings
 # and the like following here. This should only include
 # syntax checks or similar stuff where it’s legal to
 # ’die’ in case of errors.

 # create a ’blank’ dbh (call superclass constructor)
 my $dbh = DBI::_new_dbh($drh, {
 ’Name’ => $dbname,
 ’USER’ => $user,
 ’CURRENT_USER’ => $user,
 });

 # Process attributes from the DSN; we assume ODBC syntax
 # here, that is, the DSN looks like var1=val1;...;varN=valN

 my $var;
 foreach $var (split(/;/, $dbname)) {
 if ($var =~ /(.*?)=(,*)/) {

Not !!! $dbh−>{$var} = $val;
$dbh−>STORE($var, $val);

 }
 }
 $dbh;
 }

This is mostly the same as in the driver handle constructor above. The arguments are described in t
DBI man page. See DBI(3). The constructor is called, returning a database handle. The constru
prototype is

 $dbh = DBI::_new_dbh($drh, $attr1, $attr2);

with the same arguments as in the driver handle constructor, the exception being $class replaced by
$drh.

Note the use of the STORE method for setting the dbh attributes: Outside the driver sources you w
18−Oct−1998 Version 5.005_02 1397

DBI::DBD Perl Programmers Reference Guide DBI::DBD

cope of
 in his

)

 are

uld
instead do a

 $dbh−>{$var} = $val;

However, this won‘t work in all cases, because DBI handles for reasons that are far beyond the s
this document. (To be honest, I, Jochen Wiedmann, still don‘t understand all the things Tim does
XS sources. ;−)

Other driver handle methods
may follow here. In particular you should consider a data_sources method, and a (possibly empty
disconnect_all method. See DBI(3).

The statement handle constructor
There‘s nothing much new in the statement handle constructor.

 package DBD::Driver::db; # ====== DATABASE ======

 $DBD::Driver::db::imp_data_size = 0;

 sub prepare {
my($dbh, $statement, @attribs)= @_;

create a ’blank’ sth
my $sth = DBI::_new_sth($dbh, {
 ’Statement’ => $statement,
 });

Setup module specific data
$sth−>STORE(’driver_params’, []);
$sth−>STORE(’NUM_OF_PARAMS’, ($statement =~ tr/?//));

$sth;
 }

This is still the same: Check the arguments and call the super class constructor DBI::_new_sth. Note the
prefix driver_ in the attribute names: It is strongly recommended that your private attributes
lowercased and use such a prefix.

Note that we parse the statement here in order to setup the attribute NUM_OF_PARAMS. We could as
well do this in the execute method below, the DBI specs explicitly allow to defer this. However, one co
not call bind_param in that case.

Transaction handling
Pure Perl drivers will rarely support transactions. Thus you‘re commit and rollback methods will typically
be quite simple:

 sub commit {
 my($dbh) = @_;
 if ($dbh−>FETCH(’Warn’)) {
 warn("Commit ineffective while AutoCommit is on");
 }
 1;
 }

 sub rollback {
 my($dbh) = @_;
 if ($dbh−>FETCH(’Warn’)) {
 warn("Commit ineffective while AutoCommit is on");
 }
 0;
 }
1398 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

 a

r you,

re. We
The STORE and FETCH methods
These methods (that we have already used, see above) are called for you, whenever the user does

 $dbh−>{$attr} = $val;

or, respectively,

 $val = $dbh−>{$attr};

See perltie(1) for details on tied hash refs to understand why these methods are required.

It is a DBI specific thing, that your methods are rarely called: In fact DBI catches most attributes fo
in particular attributes like RaiseError or PrintError. All you have to do is handling your driver‘s private
methods. A good example might look like this:

 sub STORE {
 my($dbh, $attr, $val) = @_;
 if ($attr eq ’AutoCommit’) {
 # AutoCommit is the only standard attribute whe have to
 # consider.
 if (!$val) { die "Can’t disable AutoCommit"; }
 return 1;
 }
 if ($attr =~ /^driver_/) {
 # Handle only our private attributes here
 # Note that we could trigger arbitrary actions.
 $dbh−>{$attr} = $val; # Yes, we are allowed to do this,
 return 1; # but only for our private attributes
 }
 # Else pass up to DBI to handle
 $dbh−>DBD::_::db::STORE($attr, $val);
 }

 sub FETCH {
 my($dbh, $attr) = @_;
 if ($attr eq ’AutoCommit’) { return 1; }
 if ($attr =~ /^driver_/) {
 # Handle only our private attributes here
 # Note that we could trigger arbitrary actions.
 return $dbh−>{$attr}; # Yes, we are allowed to do this,
 # but only for our private attributes
 }
 # Else pass up to DBI to handle
 $dbh−>DBD::_::st::FETCH($attr);
 }

Other database handle methods
may follow here. In particular you should consider a (possibly empty) disconnect method, a quote method
(if DBI‘s default isn‘t good for you).

The execute method
This is perhaps the most difficult method because we have to consider parameter bindings he
present a simplified implementation by using the driver_params attribute from above:

 package DBD::Driver::st;

 $DBD::Driver::st::imp_data_size = 0;

 sub bind_param {
18−Oct−1998 Version 5.005_02 1399

DBI::DBD Perl Programmers Reference Guide DBI::DBD

ntial for

rt
 my($sth, $pNum, $val, $attr) = @_;
 my $params = $sth−>FETCH(’driver_params’);
 if (!$attr || ($attr != DBI::SQL_INTEGER &&

 $attr != DBI::SQL_DECIMAL &&
 ...)) {

my $dbh = $sth−>{Database};
$val = $dbh−>quote($sth);

 }
 $params−>[$pNum−1] = $val;
 1;
 }

 sub execute {
 my($sth, @bind_values) = @_;
 my $params = (@bind_values) ?

\@bind_values : $sth−>FETCH(’driver_params’);
 my $numParam = $sth−>FETCH(’NUM_OF_PARAMS’);
 my $statement = $sth−>{’Statement’};
 for (my $i = 0; $i < $numParam; $i++) {

$statement =~ s/?/$params−>[$i]/e;
 }
 # Do anything ... we assume that an array ref of rows is
 # created and store it:
 $sth−>{’driver_data’} = $data;
 $sth−>{’driver_rows’} = @$data;
 $sth−>STORE(’NUM_OF_FIELDS’) = $numFields;
 @$data || ’0E0’;
 }

Things you should note here: We setup the NUM_OF_FIELDS attribute here, because this is esse
bind_columns to work. And we use attribute $sth− {‘Statement‘} which we have created within prepare.
The attribute $sth− {‘Database‘}, which is nothing else than the dbh, was automatically created by DBI.

Finally note that we return the string ‘0E0’ instead of the number 0, so that

 if (!$sth−>execute()) { die $sth−>errstr }

works.

Fetching data
We need not implement the methods fetchrow_array, fetchall_arrayref, ... because these are already pa
of DBI. All we need is the method fetchrow_arrayref:

 sub fetchrow_arrayref {
 my($sth) = @_;
 my $data = $sth−>FETCH(’driver_data’);
 my $row = shift @$data;
 if (!$row) { return undef; }
 if ($sth−>FETCH(’ChopBlanks’)) {

map { $_ =~ s/\s+$//; } @$row;
 }
 $sth−>_set_fbav($row);
 }
 *fetch = \&fetchrow_arrayref;

 sub rows { my($sth) = @_; $sth−>FETCH(’driver_rows’); }

Note the use of the method _set_fbav: This is required so that bind_col and bind_columns work.
1400 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

cise to

s here
d

are
es do

’ when
 7, "The

ileges of

h it is

reatly
 the

so the
und a

ffers a

hese
Fixing the broken implementation for correct handling of quoted question marks is left as an exer
the reader. :−)

Statement attributes
The main difference between dbh and sth attributes is, that you should implement a lot of attribute
that are required by the DBI: For example NAME, NULLABLE, TYPE, ... Besides that the STORE an
FETCH methods are mainly the same as above for dbh‘s.

Other statement methods
Finally you should implement a (perhaps trivial) finish method and perhaps some other methods that
not part of the DBI specs, in particular make metadata available. Considering Tim‘s last articl
yourself a favour and follow the ODBC driver.

Tests
The test process should conform as closely as possibly to the Perl standard test harness.

In particular, most of the tests should be run in the t sub−directory, and should simply produce an ‘ok
run under ‘make test’. For details on how this is done, see the Camel book and the section in Chapter
Standard Perl Library" on Test::Harness.

The tests may need to adapt to the type of database which is being used for testing, and to the priv
the user testing the driver.

The DBD::Informix test code has to adapt in a number of places to the type of database to whic
connected as different Informix databases have different capabilities.

[...More info TBS...]

CREATING A NEW DRIVER USING C/XS
Creating a new C/XS driver from scratch will always be a daunting task. You can and should g
simplify your task by taking a good reference driver implementation and modifying that to match
database product for which you are writing a driver.

The de facto reference driver has been the one for DBD::Oracle, written by Tim Bunce who is al
author of the DBI package. The DBD::Oracle module is a good example of a driver implemented aro
C−level API.

Nowadays it it seems better to base on DBD::ODBC, another driver maintained by Tim, because it o
lot of metadata and seems to become the guideline for the future development.

The DBD::Informix driver is a good reference for a driver implemented using ‘embedded SQL’.

[...More info TBS...]

REQUIREMENTS ON A DRIVER
T.B.S.

CODE TO BE WRITTEN
A minimal driver will contain 7 files plus some tests. Assuming that your driver is called DBD::Driver, t
files are:

Driver.pm
Driver.xs
Driver.h
dbdimp.h
dbdimp.c
Makefile.PL
README
MANIFEST
18−Oct−1998 Version 5.005_02 1401

DBI::DBD Perl Programmers Reference Guide DBI::DBD

 subtile

already

) and
Driver.pm
The Driver.pm file is the same as for Pure Perl modules, see above. However, there are some
differences:

 The variables $DBD::File::dr|db|st::imp_data_size are not defined here, but in
the XS code, because they declare the size of certain C structures.

 Some methods are moved to the XS code, in particular prepare, execute, disconnect,
disconnect_all and the STORE and FETCH methods.

 Other methods are still part of Driver.pm , but have callbacks in the XS code.

Now let‘s take a closer look at an excerpt of Oracle.pm as an example. We ignore things that are
discussed for Pure Perl drivers or really Oracle specific.

The database handle constructor
 sub connect {

my($drh, $dbname, $user, $auth)= @_;

Some database specific verifications, default settings
and the like following here. This should only include
syntax checks or similar stuff where it’s legal to
’die’ in case of errors.

create a ’blank’ dbh (call superclass constructor)
my $dbh = DBI::_new_dbh($drh, {
 ’Name’ => $dbname,
 ’USER’ => $user, ’CURRENT_USER’ => $user,
 });

Call Oracle OCI orlon func in Oracle.xs file
and populate internal handle data.
DBD::Oracle::db::_login($dbh, $dbname, $user, $auth)
 or return undef;

$dbh;
 }

This is mostly the same as in the Pure Perl case, the exception being the use of the private _login callback:
This will really connect to the database. It is implemented in Driver.xst (you should not implement it
calls dbd_db_login from dbdimp.c. See below for details.

(XXX, Tim: No check for ‘undef’ befor calling _login? There‘s no check in Oracle.xs, either)

The statement handle constructor
There‘s nothing much new in the statement handle constructor. Like the connect method it has a C
callback:

 package DBD::Oracle::db; # ====== DATABASE ======
 use strict;

 sub prepare {
my($dbh, $statement, @attribs)= @_;

create a ’blank’ sth
my $sth = DBI::_new_sth($dbh, {
 ’Statement’ => $statement,
 });

Call Oracle OCI oparse func in Oracle.xs file.
(This will actually also call oopen for you.)
1402 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

ere
ll a

cond it

tically

trongly
. It was
 mysql

.)
and populate internal handle data.

DBD::Oracle::st::_prepare($sth, $statement, @attribs)
 or return undef;

$sth;
 }

Driver.xs
Driver.xs should look something like this:

 #include "Driver.h"

 DBISTATE_DECLARE;

 INCLUDE: Driver.xsi

 MODULE = DBD::Driver PACKAGE = DBD::Driver::db

 /* Non−standard dbh XS methods following here, if any. */
 /* Currently this includes things like _list_tables from */
 /* DBD::mSQL and DBD::mysql. */

 MODULE = DBD::Driver PACKAGE = DBD::Driver::st

 /* Non−standard sth XS methods following here, if any. */
 /* In particular this includes things like _list_fields from */
 /* DBD::mSQL and DBD::mysql for accessing metadata. */

Note especially the include of Driver.xsi here: DBI inserts stub functions for almost all private methods h
which will typically do much work for you. Wherever you really have to implement something, it will ca
private function in dbdimp.c: This is what you have to implement.

Driver.h
Driver.h should look like this:

 #define NEED_DBIXS_VERSION 9

 #include <DBIXS.h> /* installed by the DBI module */

 #include "dbdimp.h"

 #include <dbd_xsh.h> /* installed by the DBI module */

Implementation header dbdimp.h
This header file has two jobs: First it defines data structures for your private part of the handles. Se
defines macros that rename the generic names like dbd_db_login to database specific names like
ora_db_login. This avoids name clashes and enables use of different drivers when you work with a sta
linked perl.

People liked to just pick Oracle‘s dbdimp.c and use the same names, structures and types. I s
recommend against that: At first glance this saves time, but your implementation will be less readable
just a hell when I had to separate DBI specific parts, Oracle specific parts, mSQL specific parts and
specific parts in DBD::mysql‘s dbdimp.h and dbdimp.c. (DBD::mysql was a port of DBD::mSQL which was
based on DBD::Oracle.) This part of the driver is your exclusive part. Rewrite it from scratch, so it will be
clean and short, in other words: A better piece of code. (Of course have an eye at other people‘s work

 struct imp_drh_st {
 dbih_drc_t com; /* MUST be first element in structure */

 /* Insert your driver handle attributes here */
 };

 struct imp_dbh_st {
18−Oct−1998 Version 5.005_02 1403

DBI::DBD Perl Programmers Reference Guide DBI::DBD

ing

 the
tions

d
unced

e DBI

.

ng and
 dbih_dbc_t com; /* MUST be first element in structure */

 /* Insert your database handle attributes here */
 };

 struct imp_sth_st {
 dbih_stc_t com; /* MUST be first element in structure */

 /* Insert your statement handle attributes here */
 };

 /* Rename functions for avoiding name clashes; prototypes are */
 /* in dbd_xst.h */
 #define dbd_init ora_init
 #define dbd_db_login ora_db_login
 #define dbd_db_do ora_db_do
 ... many more here ...

This structures implement your private part of the handles. You have to use the name imp_dbh_dr|db|st and
the first field must be of type dbih_drc|dbc|stc_t. You should never access this fields directly, except of us
the DBIc_xxx macros below.

Implementation source dbdimp.c
This is the main implementation file. I will drop a short note on any function here that‘s used in
Driver.xsi template and thus has to be implemented. Of course you can add private or better static func
here.

Note that most people are still using Kernighan & Ritchie syntax here. I personally don‘t like this an
especially in this documentation it cannot be of harm, so let‘s use ANSI. Finally Tim Bunce has anno
interest in moving the DBI sources to ANSI as well.

Initialization
 #include "Driver.h"

 DBISTATE_DECLARE;

 void dbd_init(dbistate_t* dbistate) {
 DBIS = dbistate; /* Initialize the DBI macros */
 }

dbd_init will be called when your driver is first loaded. These statements are needed for use of th
macros. They will include your private header file dbdimp.h in turn.

do_error
The do_error method will be called to store error codes and messages in either handle:

 void do_error(SV* h, int rc, char* what) {

Note that h is a generic handle, may it be a driver handle, a database or a statement handle.

 D_imp_xxh(h);

This macro will declare and initialize a variable imp_xxh with a pointer to your private handle pointer
You may cast this to to imp_drh_t, imp_dbh_t or imp_sth_t.

 SV *errstr = DBIc_ERRSTR(imp_xxh);
 sv_setiv(DBIc_ERR(imp_xxh), (IV)rc); /* set err early */
 sv_setpv(errstr, what);
 DBIh_EVENT2(h, ERROR_event, DBIc_ERR(imp_xxh), errstr);

Note the use of the macros DBIc_ERRSTR and DBIc_ERR for accessing the handles error stri
error code.
1404 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

is as

nd you

 have

ted
The macro DBIh_EVENT2 will ensure that the attributes RaiseError and PrintError work: That‘s all
what you have to deal with them. :−)

 if (dbis−>debug >= 2)
 fprintf(DBILOGFP, "%s error %d recorded: %s\n",

 what, rc, SvPV(errstr,na));

That‘s the first time we see how debug/trace logging works within a DBI driver. Make use of th
often as you can!

dbd_db_login
 int dbd_db_login(SV* dbh, imp_dbh_t* imp_dbh, char* dbname,
 char* user, char* auth) {

This function will really connect to the database. The argument dbh is the database handle. imp_dbh is the
pointer to the handles private data, as is imp_xxx in do_error above. The arguments dsn, user and auth
correspond to the arguments of the driver handles connect method.

You will quite often use database specific attributes here, that are specified in the DSN. I recomme
parse the DSN within the connect method and pass them as handle attributes to dbd_db_login. Here‘s how
you fetch them, as an example we use hostname and port attributes:

 SV* imp_data = DBIc_IMP_DATA(dbh);
 HV* hv;
 SV** svp;
 char* hostname;
 char* port;

 if (!SvTRUE(imp_data) || !SvROK(imp_data) ||
SvTYPE(hv = (HV*) SvRV(imp_data)) != SVt_PVHV) {
croak("Implementation dependent data invalid: Not a hash ref.\n");

 }
 if ((svp = hv_fetch(hv, "hostname", strlen("hostname"), FALSE)) &&
 SvTRUE(*svp)) {

hostname = SvPV(*svp, na);
 } else {

hostname = "localhost";
 }
 if ((svp = hv_fetch(hv, "port", strlen("port"), FALSE)) &&
 SvTRUE(*svp)) {

port = SvPV(*svp, na); /* May be a service name */
 } else {
 port = DEFAULT_PORT;
 }

Now you should really connect to the database. If you are successfull (or even if you fail, but you
allocated some resources, you should use the following macros:

 DBIc_on(imp_dbh, DBIcf_ACTIVE);
 DBIc_on(imp_dbh, DBIcf_IMPSET);

The former tells DBI that the handle has to disconnect. The latter declares that the handle has alloca
resources and the private destructor (dbd_db_destroy, see below) has to be called.

The dbd_db_login method should return TRUE for success, FALSE otherwise.

dbd_db_commit
dbd_db_rollback

 int dbd_db_commit(SV* dbh, imp_dbh_t* imp_dbh);
 int dbd_db_rollback(SV* dbh, imp_dbh_t* imp_dbh);
18−Oct−1998 Version 5.005_02 1405

DBI::DBD Perl Programmers Reference Guide DBI::DBD

y

 code

d.

 DBI.

ng an
If
se he

en

private
for Perl
 do the
These are used for commit and rollback. They should return TRUE for success, FALSE for error.

The arguments dbh and imp_dbh are like above, I will omit describing them in what follows, as the
appear always.

dbd_db_disconnect
This is your private part of the disconnect method. Any dbh with the ACTIVE flag on must be
disconnected. (Note that you have to set it in dbd_db_connect above.)

 int dbd_db_disconnect(SV* dbh, imp_dbh_t* imp_dbh);

The database handle will return TRUE for success, FALSE otherwise. In any case it should do a

 DBIc_off(imp_dbh, DBIcf_ACTIVE);

before returning so DBI knows that dbd_db_disconnect was executed.

dbd_db_discon_all
 int dbd_discon_all (SV *drh, imp_drh_t *imp_drh) {

This function may be called at shutdown time. Currently it does just nothing, best is you just copy
from the Oracle driver. (XXX, Tim: Comments?)

You guess what the return codes are? (Hint: See the last functions above ... :−)

dbd_db_destroy
This is your private part of the database handle destructor. Any dbh with the IMPSET flag on must be
destroyed, so that you can safely free resources. (Note that you have to set it in dbd_db_connect above.)

 void dbd_db_destroy(SV* dbh, imp_dbh_t* imp_dbh) {
 if (DBIc_is(imp_dbh, DBIcf_ACTIVE)) /* Never hurts */
 dbd_db_disconnect(dbh, imp_dbh);
 DBIc_off(imp_dbh, DBIcf_IMPSET);
 }

Before returning the function must switch IMPSET to off, so DBI knows that the destructor was calle

dbd_db_STORE_attrib
This function handles

 $dbh−>{$key} = $value;

its prototype is

 int dbd_db_STORE_attrib(SV* dbh, imp_dbh_t* imp_dbh, SV* keysv,
 SV* valuesv);

You do not handle all attributes, in contrary you should not handle DBI attributes here: Leave this to
(There‘s one exception, AutoCommit, which you should care about.)

The return value is TRUE, if you have handled the attribute or FALSE otherwise. If you are handli
attribute and something fails, you should call do_error, so DBI can raise exceptions, if desired.
do_error returns, however, you have a problem: The user will never know about the error, becau
typically will not check $dbh−>errstr.

I cannot recommend a general way of going on, if do_error returns, but there are examples where ev
the DBI specification expects that you croak() . (See the AutoCommit method in DBI(3).)

If you have to store attributes, you should either use your private data structure imp_xxx or use the
imp_data. The former is easier for C values like integers or pointers, the latter has advantages
values like strings or more complex structures: Because its stored in a Perl hash ref, Perl itself will
resource tracking for you.
1406 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

mortal,

ay be

.

 it in
here,

ould not

ably do
dbd_db_FETCH_attrib
This is the counterpart of dbd_db_STORE_attrib, needed for

 $value = $dbh−>{$key};

Its prototype is:

 SV* dbd_db_FETCH_attrib(SV* dbh, imp_dbh_t* imp_dbh, SV* keysv) {

Unlike all previous methods this returns an SV with the value. Note that you have to execute sv_2
if you return a nonconstant value. (Constant values are &sv_undef, &sv_no and &sv_yes.)

Note, that DBI implements a caching algorithm for attribute values. If you think, that an attribute m
fetched, you store it in the dbh itself:

 if (cacheit) /* cache value for later DBI ’quick’ fetch? */
 hv_store((HV*)SvRV(dbh), key, kl, cachesv, 0);

dbd_st_prepare
This is the private part of the prepare method. Note that you must not really execute the statement here
You may, for example, preparse the statement or do similar things.

 int dbd_st_prepare(SV* sth, imp_sth_t* imp_sth, char* statement,
 SV* attribs);

A typical, simple possibility is just to store the statement in the imp_data hash ref and use
dbd_st_execute. If you can, you may already setup attributes like NUM_OF_FIELDS, NAME, ...
but DBI doesn‘t expect that. However, if you do, document it.

In any case you should set the IMPSET flag, as you did in dbd_db_connect above:

 DBIc_on(imp_sth, DBIcf_ACTIVE);

dbd_st_execute
This is where a statement will really be executed.

 int dbd_st_execute(SV* sth, imp_sth_t* imp_sth);

Note, that you must be aware, that a statement may be executed repeatedly. Even worse, you sh
expect, that finish will be called between two executions.

If your driver supports binding of parameters (he should!), but the database doesn‘t, you must prob
it here. This can be done as follows:

 char* statement = dbd_st_get_statement(sth, imp_sth);
 /* Its your drivers task to implement this function. It */
 /* must restore the statement passed to preparse. */
 /* See use of imp_data above for an example of how to do */
 /* this. */
 int numParam = DBIc_NUM_PARAMS(imp_sth);
 int i;

 for (i = 0; i < numParam; i++) {
 char* value = dbd_db_get_param(sth, imp_sth, i);
 /* Its your drivers task to implement dbd_db_get_param, */

 /* it must be setup as a counterpart of dbd_bind_ph. */
 /* Look for ’?’ and replace it with ’value’. Difficult */
 /* task, note that you may have question marks inside */
 /* quotes and the like ... :−(*/
 /* See DBD::mysql for an example. (Don’t look too deep into */
 /* the example, you will notice where I was lazy ...) */
 }
18−Oct−1998 Version 5.005_02 1407

DBI::DBD Perl Programmers Reference Guide DBI::DBD

ributes
 even
has,

r you.
 the first

How
set
The next thing is you really execute the statement. Note that you must prepare the att
NUM_OF_FIELDS, NAME, ... when the statement is successfully executed: They may be used
before a potential fetchrow. In particular you have to tell DBI the number of fields, that the statement
because it will be used by DBI internally. Thus the function will typically ends with:

 DBIc_NUM_FIELDS(imp_sth) = statementHasResult ? numFields : 0;
 DBIc_on(imp_sth, DBIcf_ACTIVE);

Note that setting ACTIVE to on will force calling the finish method. See dbd_st_preparse and
dbd_db_connect above for more explanations.

dbd_st_fetch
This function fetches a row of data. The row is stored in in an array, of SV‘s that DBI prepares fo
This has two advantages: It is fast (you even reuse the SV‘s, so they don‘t have to be created after
fetchrow) and it guarantees, that DBI handles bind_cols for you.

What you do is the following:

 AV* av = DBIS−>get_fbav(imp_sth);
 int numFields = DBIc_NUM_FIELDS(imp_sth); /* Correct, if NUM_FIELDS
 is constant for this statement. There are drivers where this is
 not the case! */
 int i;
 int chopBlanks = DBIc_is(imp_sth, DBIcf_ChopBlanks);

 for (i = 0; i < numFields; i++) {
 SV* sv = fetch_a_field(sth, imp_sth, i);
 if (chopBlanks) {
 /* Remove white space from beginning and end of sv */
 }
 sv_setsv(AvARRAY(av)[i], sv); /* Note: (re)use! */
 }
 return av;

NULL values must be returned as undef: use SvOK_off(sv);

The function returns the AV prepared by DBI for success or Nullav otherwise.

dbd_st_finish
This function is called if the user wishes to indicate that he won‘t fetch any more rows. (XXX, Tim:
about NUM_FIELDS and NAME after this point?) It will only be called by DBI, if the driver has
ACTIVE to on for the sth.

 int dbd_st_finish(SV* sth, imp_sth_t* imp_sth) {
 DBIc_ACTIVE_off(imp_sth);
 return 1;
 }

The function returns TRUE for success, FALSE otherwise.

dbd_st_destroy
This function is the private part of the statement handle destructor.

 void dbd_st_destroy(SV* sth, imp_sth_t* imp_sth);
 if (DBIc_is(imp_sth, DBIcf_ACTIVE)) /* Never hurts */

 dbd_st_finish(sth, imp_sth);
 DBIc_IMPSET_off(imp_sth); /* let DBI know we’ve done it */
 }
1408 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

tement

nd use

 that are

tation
rt

 do not

 should
dbd_st_STORE_attrib
dbd_st_FETCH_attrib

These functions correspond to dbd_db_STORE|FETCH attrib above, except that they are for sta
handles. See above.

 int dbd_st_STORE_attrib(SV* sth, imp_sth_t* imp_sth, SV* keysv,
 SV* valuesv);
 SV* dbd_st_FETCH_attrib(SV* sth, imp_sth_t* imp_sth, SV* keysv);

dbd_st_blob_read
I don‘t know the exact meaning of this function. (XXX, Tim.)

 int dbd_st_blob_read (SV *sth, imp_sth_t *imp_sth, int field,
 long offset, long len, SV *destrv,
 long destoffset);

dbd_bind_ph
This function is internally used by the bind_col method.

 int dbd_bind_ph (SV *sth, imp_sth_t *imp_sth, SV *param,
 SV *value, IV sql_type, SV *attribs,
 int is_inout, IV maxlen);

The param argument holds an IV with the parameter number. (1, 2, ...) The value argument is the
parameter value and sql_type is its type.

You should croak, when is_inout is TRUE and ignore maxlen.

In drivers of simple databases the function will, for example, store the value in a parameter array a
it later in dbd_st_execute. See the DBD::mysql driver for an example.

Makefile.PL
This is exactly as in the Pure Perl case. To be honest, the above Makefile.PL contains some things
superfluos for Pure Perl drivers. :−)

METHODS WHICH DO NOT NEED TO BE WRITTEN
The DBI code implements the majority of the methods which are accessed using the no
DBI− function(), the only exceptions being DBI− connect() and DBI− data_sources() which require suppo
from the driver.

DBI− available_drivers()
DBI− neat_list()
DBI− neat()
DBI− dump_results()
DBI− func()

The DBI code implements the following documented driver, database and statement functions which
need to be written by the DBD driver writer.

$dbh− do()
The default implementation of this function prepares, executes and destroys the statement. This
be replaced if there is a better way to implement this, such as EXECUTE IMMEDIATE.

$h−errstr()
$h−err()
$h−state()
$h− trace()

The DBD driver does not need to worry about this routine at all.
18−Oct−1998 Version 5.005_02 1409

DBI::DBD Perl Programmers Reference Guide DBI::DBD

 by the

t this

out

to be

trings,
ecutive

ion to

 the

in

 use by
$h− {ChopBlanks}
This attribute needs to be honured during fetch operations, but does not need to be handled
attribute handling code.

$h− {RaiseError}
The DBD driver does not need to worry about this attribute at all.

$h− {PrintError}
The DBD driver does not need to worry about this attribute at all.

$sth− bind_col()
Assuming the driver uses the DBIS−get_fbav() function (C drivers, see below), or the
$sth− _set_fbav($data) method (Perl drivers) the driver does not need to do anything abou
routine.

$sth− bind_columns()
Regardless of whether the driver uses DBIS−get_fbav(), the driver does not need to do anything ab
this routine as it simply iteratively calls $sth− bind_col().

The DBI code implements a default implementation of the following functions which do not need
written by the DBD driver writer unless the default implementation is incorrect for the Driver.

$dbh− quote()
This should only be written if the database does not accept the ANSI SQL standard for quoting s
with the string enclosed in single quotes and any embedded single quotes replaced by two cons
single quotes.

$dbh− ping()
This should only be written if there is a simple, efficient way to determine whether the connect
the database is still alive. Many drivers will accept the default, do−nothing implementation.

WRITING AN EMULATION LAYER FOR AN OLD PERL INTERFACE
Study Oraperl.pm (supplied with DBD::Oracle) and Ingperl.pm (supplied with DBD::Ingres) and
corresponding dbdimp.c files for ideas.

Setting emulation perl variables
For example, ingperl has a $sql_rowcount variable. Rather than try to manually update this
Ingperl.pm it can be done faster in C code. In dbd_init() :

 sql_rowcount = perl_get_sv("Ingperl::sql_rowcount", GV_ADDMULTI);

In the relevant places do:

 if (DBIc_COMPAT(imp_sth)) /* only do this for compatibility mode handles */
 sv_setiv(sql_rowcount, the_row_count);

OTHER MISCELLANEOUS INFORMATION
Many details still T.B.S.

The imp_xyz_t types
Any handle has a corresponding C structure filled with private data. Some of this data is reserved for
DBI (except for using the DBIc macros below), some is for you. See the description of the dbdimp.h file
above for examples. The most functions in dbdimp.c are passed both the handle xyz and a pointer to
imp_xyz . In rare cases, however, you may use the following macros:

D_imp_dbh(dbh)
Given a function argument dbh, declare a variable imp_dbh and initialize it with a pointer to the handles
private data. Note: This must be a part of the function header, because it declares a variable.
1410 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD

 It

lare a

at

linked
ement is

ARN,

se do not

 using

 be
suring

a.
eturned

in

s
 are
D_imp_sth(sth)
Likewise for statement handles.

D_imp_xxx(h)
Given any handle, declare a variable imp_xxx and initialize it with a pointer to the handles private data.
is safe, for example, to cast imp_xxx to imp_dbh_t* , if

 sv_derived_from(h, "DBI::db")

is TRUE.

D_imp_sth_from_dbh
Given a statement handle sth and its private data imp_sth (XXX, Tim: One of them sufficient?), dec
variable imp_dbh and initialize it with a pointer to the database handles private data.

Using DBIc_IMPSET_on
The driver code which initializes a handle should use DBIc_IMPSET_on() as soon as its state is such th
the cleanup code must be called. When this happens is determined by your driver code.

Failure to call this can lead to corruption of data structures. For example, DBD::Informix maintains a
list of database handles in the driver, and within each handle, a linked list of statements. Once a stat
added to the linked list, it is crucial that it is cleaned up (removed from the list). When
DBIc_IMPSET_on() was being called too late, it was able to cause all sorts of problems.

Using DBIc_is() , DBIc_on() and DBIc_off()
Once upon a long time ago, the only way of handling the attributes such as DBIcf_IMPSET, DBIcf_W
DBIcf_COMPAT etc was through macros such as:

 DBIc_IMPSET DBIc_IMPSET_on DBIc_IMPSET_off
 DBIc_WARN DBIc_WARN_on DBIc_WARN_off
 DBIc_COMPAT DBIc_COMPAT_on DBIc_COMPAT_off

Each of these took an imp_xyz pointer as an argument.

Since then, new attributes have been added such as ChopBlanks, RaiseError and PrintError, and the
have the full set of macros. The approved method for handling these is now the triplet of macros:

DBIc_is(imp, flag)
DBIc_has(imp, flag) an alias for DBIc_is
DBIc_on(imp, flag)
DBIc_off(imp, flag)

Consequently, the DBIc_IMPSET family of macros is now deprecated and new drivers should avoid
them, even though the older drivers will probably continue to do so for quite a while yet.

Using DBIS−get_fbav()
The $sth− bind_col() and $sth− bind_columns() documented in the DBI specification do not have to
implemented by the driver writer becuase DBI takes care of the details for you. However, the key to en
that bound columns work is to call the function DBIS−get_fbav() in the code which fetches a row of dat
This returns an AV, and each element of the AV contains the SV which should be set to contain the r
data.

The above is for C drivers only. The Perl equivalent is the $sth− _set_fbav($data) method, as described
the part on Pure Perl drivers.

SUBCLASSING DBI DRIVERS
This is definitely an open subject. It can be done, as demonstrated by the DBD::File driver, but it is not as
simple as one might think.

The main problem is that the dbh‘s and sth‘s that your connect and prepare methods return are not instance
of your DBD::Driver::db or DBD::Driver::st packages, they are not even derived from it. Instead they
18−Oct−1998 Version 5.005_02 1411

DBI::DBD Perl Programmers Reference Guide DBI::DBD

ment

iver

rivers

based
er
instances of the DBI::db or DBI::st classes or a derived subclass. Thus, if you write a method mymethod and
do a

 $dbh−>mymethod()

then the autoloader will search for that method in the package DBI::db. Of course you can instead to a

 $dbh−>func(’mymethod’)

and that will indeed work, even if mymethod is inherited, but not without additional work. Setting @ISA is
not sufficient.

Overwriting methods
The first problem is, that the connect method has no idea of subclasses. For example, you cannot imple
base class and subclass in the same file: The install_driver method wants to do a

 require DBD::Driver;

In particular, your subclass has to be a separate driver, from the view of DBI, and you cannot share dr
handles.

Of course that‘s not much of a problem. You should even be able to inherit the base classes connect method.
But you cannot simply overwrite the method, unless you do something like this, quoted from DBD::CSV:

 sub connect ($$;$$$) {
 my($drh, $dbname, $user, $auth, $attr) = @_;

 my $this = $drh−>DBD::File::dr::connect($dbname, $user, $auth, $attr);
 if (!exists($this−>{csv_tables})) {
 $this−>{csv_tables} = {};
 }

 $this;
 }

Note that we cannot do a

 $srh−>SUPER::connect($dbname, $user, $auth, $attr);

as we would usually do in a an OO environment, because $drh is an instance of DBI::dr . And note, that the
connect method of DBD::File is able to handle subclass attributes. See the description of Pure Perl d
above.

It is essential that you always call superclass method in the above manner. However, that should do.

Attribute handling
Fortunately the DBI specs allow a simple, but still performant way of handling attributes. The idea is
on the convention that any driver uses a prefix driver_ for its private methods. Thus it‘s always clear wheth
to pass attributes to the super class or not. For example, consider this STORE method from the DBD::CSV
class:

 sub STORE {
my($dbh, $attr, $val) = @_;
if ($attr !~ /^driver_/) {
 return $dbh−>DBD::File::db::STORE($attr, $val);
}
if ($attr eq ’driver_foo’) {
...

 }
1412 Version 5.005_02 18−Oct−1998

DBI::DBD Perl Programmers Reference Guide DBI::DBD
ACKNOWLEDGEMENTS
Tim Bunce − for writing DBI and managing the DBI specification and the DBD::Oracle driver.

AUTHORS
Jonathan Leffler <johnl@informix.com, Jochen Wiedmann <joe@ispsoft.de, and Tim Bunce.
18−Oct−1998 Version 5.005_02 1413

DBD::Proxy Perl Programmers Reference Guide DBD::Proxy

se not
s which

as the
sed in a

 remote
er. See

DBC
o a

ver on

 format
e
:
NAME
DBD::Proxy − A proxy driver for the DBI

SYNOPSIS
 use DBI;

 $dbh = DBI−>connect("dbi:Proxy:hostname=$host;port=$port;dsn=$db",
 $user, $passwd);

 # See the DBI module documentation for full details

DESCRIPTION
DBD::Proxy is a Perl module for connecting to a database via a remote DBI driver. This is of cour
needed for DBI drivers which already support connecting to a remote database, but there are engine
don‘t offer network connectivity. Another application is offering database access through a firewall,
driver offers query based restrictions. For example you can restrict queries to exactly those that are u
given CGI application.

CONNECTING TO THE DATABASE
Before connecting to a remote database, you must ensure, that a Proxy server is running on the
machine. There‘s no default port, so you have to ask your system administrator for the port numb
DBI::ProxyServer(3) for details.

Say, your Proxy server is running on machine "alpha", port 3334, and you‘d like to connect to an O
database called "mydb" as user "joe" with password "hello". When using DBD::ODBC directly, you‘d d

 $dbh = DBI−>connect("DBI:ODBC:mydb", "joe", "hello");

With DBD::Proxy this becomes

 $dsn = "DBI:Proxy:hostname=alpha;port=3334;dsn=DBI:ODBC:mydb";
 $dbh = DBI−>connect($dsn, "joe", "hello");

You see, this is mainly the same. The DBD::Proxy module will create a connection to the Proxy ser
"alpha" which in turn will connect to the ODBC database.

DBD::Proxy‘s DSN string has the format

 $dsn = "DBI:Proxy:key1=val1; ... ;keyN=valN;dsn=valDSN";

In other words, it is a collection of key/value pairs. The following keys are recognized:

hostname
port Hostname and port of the Proxy server; these keys must be present, no defaults. Example:

 hostname=alpha;port=3334

dsn The value of this attribute will be used as a dsn name by the Proxy server. Thus it must have the
DBI:driver:... , in particular it will contain colons. The dsn value may contain semicolons, henc
this key *must* be the last and it‘s value will be the complete remaining part of the dsn. Example

 dsn=DBI:ODBC:mydb

cipher
key
usercipher
userkey

By using these fields you can enable encryption. If you set, for example,

 cipher=$class:key=$key

then DBD::Proxy will create a new cipher object by executing
1414 Version 5.005_02 18−Oct−1998

DBD::Proxy Perl Programmers Reference Guide DBD::Proxy

yption
ge to
e
 is

ation

u. By

 have a

remote
iding

r in
u

ms as
 $cipherRef = $class−>new(pack("H*", $key));

and pass this object to the RPC::pClient module when creating a client. See RPC::pClient(3).
Example:

 cipher=IDEA:key=97cd2375efa329aceef2098babdc9721

The usercipher/userkey attributes allow you to use two phase encryption: The cipher/key encr
will be used in the login and authorisation phase. Once the client is authorised, he will chan
usercipher/userkey encryption. Thus the cipher/key pair is a host based secret, typically less secur
than the usercipher/userkey secret and readable by anyone. The usercipher/userkey secretyour
private secret.

Of course encryption requires an appropriately configured server. See
<DBD::ProxyServer(3)/CONFIGURATION FILE.

debug
Turn on debugging mode

proxy_cache_rows
The DBI supports only fetching one or all rows at a time. This is not appropriate for an applic
using DBD::Proxy, as one network packet per result column may slow down things drastically.

Thus the driver is usually fetching a certain number of rows via the network and caches it for yo
default the value 20 is used, but you can override it with the proxy_cache_rows attribute. This is a
database handle attribute, but it is inherited and overridable for the statement handles: Say, you
table with large blobs, then you might prefer something like this:

 $sth−>prepare("SELECT * FROM images");
 $sth−>{’proxy_cache_rows’} = 1; # Disable caching

proxy_no_finish
This attribute is another attempt to reduce network traffic: If the application is calling $sth− finish()
or destroys the statement handle, then the proxy tells the server to finish or destroy the
statement handle. Of course this slows down things quite a lot, but is prefectly well for avo
memory leaks with persistent connections.

However, if you set the proxy_no_finish attribute to a TRUE value, either in the database handle o
the statement handle, then the finish() or DESTROY() calls will be supressed. This is what yo
want, for example, in small and fast CGI applications.

AUTHOR AND COPYRIGHT
This module is Copyright (c) 1997, 1998

 Jochen Wiedmann
 Am Eisteich 9
 72555 Metzingen
 Germany

 Email: joe@ispsoft.de
 Phone: +49 7123 14887

The DBD::Proxy module is free software; you can redistribute it and/or modify it under the same ter
Perl itself. In particular permission is granted to Tim Bunce for distributing this as a part of the DBI.

SEE ALSO
DBI(3), RPC::pClient(3), Storable(3)
18−Oct−1998 Version 5.005_02 1415

DBD::Sybase Perl Programmers Reference Guide DBD::Sybase

es.

me
 library

eg

ng are

increase
 feature
NAME
DBD::Sybase − Sybase database driver for the DBI module

SYNOPSIS
 use DBI;

 $dbh = DBI−>connect("dbi:Sybase:", $user, $passwd);

 # See the DBI module documentation for full details

DESCRIPTION
DBD::Sybase is a Perl module which works with the DBI module to provide access to Sybase databas

Connecting to Sybase

The interfaces file
The DBD::Sybase module is built on top of the Sybase Open Client Client Library API. This library makes
use of the Sybase interfaces file (sql.ini on Win32 machines) to make a link between a logical server na
(e.g. SYBASE) and the physical machine / port number that the server is running on. The OpenClient
uses the environment variable SYBASE to find the location of the interfaces file, as well as other files that it
needs (such as locale files). The SYBASE environment is the path to the Sybase installation (
‘/usr/local/sybase’). If you need to set it in your scripts, then you must set it in a BEGIN{} block:

 BEGIN {
 $ENV{SYBASE} = ’/opt/sybase/11.0.2’;
 }

 $dbh = DBI−>connect(’dbi:Sybase’, $user, $passwd);

Specifying the server name
The server that DBD::Sybase connects to defaults to SYBASE, but can be specified in two ways.

You can set the DSQUERY environement variable:

 $ENV{DSQUERY} = "ENGINEERING";
 $dbh = DBI−>connect(’dbi:Sybase:’, $user, $passwd);

Or you can pass the server name in the first argument to connect() :

 $dbh = DBI−>connect("dbi:Sybase:server=ENGINEERING", $user, $passwd);

Specifying other connection specific parameters
It is sometimes necessary (or beneficial) to specify other connection properties. Currently the followi
supported:

charset
Specify the character set that the client uses.

 $dbh = DBI−>connect("dbi:Sybase:charset=iso_1",
 $user, $passwd);

language
Specify the language that the client uses.

 $dbh = DBI−>connect("dbi:Sybase:language=us_english",
 $user, $passwd);

packetSize
Specify the network packet size that the connection should use. Using a larger packet size can
performance for certain types of queries. See the Sybase documentation on how to enable this
on the server.
1416 Version 5.005_02 18−Oct−1998

DBD::Sybase Perl Programmers Reference Guide DBD::Sybase

. If

er it is

ntry with

nt. For

f rows.

 special
te is

,

 $dbh = DBI−>connect("dbi:Sybase:packetSize=8192",
 $user, $passwd);

interfaces
Specify the location of an alternate interfaces file:

 $dbh = DBI−>connect("dbi:Sybase:interfaces=/usr/local/sybase/interfaces",
 $user, $passwd);

loginTimeout
Specify the number of seconds that DBI− connect() will wait for a response from the Sybase server
the server fails to respond before the specified number of seconds the DBI− connect() call fails with a
timeout error. The default value is 60 seconds, which is usually enough, but on a busy serv
sometimes necessary to increase this value:

 $dbh = DBI−>connect("dbi:Sybase:loginTimeout=240", # wait up to 4 minutes
 $user, $passwd);

These different parameters (as well as the server name) can be strung together by separating each e
a semi−colon:

 $dbh = DBI−>connect("dbi:Sybase:server=ENGINEERING;packetSize=8192;language=us_en
$user, $pwd);

Handling Multiple Result Sets
Sybase‘s Transact SQL has the ability to return multiple result sets from a single SQL stateme
example the query:

 select b.title, b.author, s.amount
 from books b, sales s
 where s.authorID = b.authorID
 order by b.author, b.title
 compute sum(s.amount) by b.author

which lists sales by author and title and also computes the total sales by author returns two types o
The DBI spec doesn‘t really handle this situation, nor the more hairy

 exec my_proc @p1=’this’, @p2=’that’, @p3 out

where my_proc could return any number of result sets (ie it could perform an unknown number of select
statements.

I‘ve decided to handle this by returning an empty row at the end of each result set, and by setting a
Sybase attribute in $sth which you can check to see if there is more data to be fetched. The attribu
syb_more_results which you should check to see if you need to re−start the fetch() loop.

To make sure all results are fetched, the basic fetch loop can be written like this:

 do {
 while($d = $sth−>fetch) {
 ... do something with the data
 }
 } while($sth−>{syb_more_results});
 $sth−>finish;

You can get the type of the current result set with $sth− {syb_result_type}. This returns a numerical value
as defined in $SYBASE/include/cspublic.h:

#define CS_ROW_RESULT (CS_INT)4040
#define CS_CURSOR_RESULT (CS_INT)4041
#define CS_PARAM_RESULT (CS_INT)4042
#define CS_STATUS_RESULT (CS_INT)4043
18−Oct−1998 Version 5.005_02 1417

DBD::Sybase Perl Programmers Reference Guide DBD::Sybase

 and is

durs to
eters,

rver into

binary

s they
e used

t

y

 locks to
#define CS_MSG_RESULT (CS_INT)4044
#define CS_COMPUTE_RESULT (CS_INT)4045

In particular, the return status of a stored procedure is returned as CS_STATUS_RESULT (4043),
normally the last result set that is returned in a stored proc execution.

This should be compatible with other DBI drivers.

Sybase Specific Attributes
There are a number of handle attributes that are specific to this driver. These attributes all start with syb_ so
as to not clash with any normal DBI attributes.

Database Handle Attributes
The following Sybase specific attributes can be set at the Database handle level:

syb_show_sql
If set then the current statement is included in the string returned by $dbh− errstr.

syb_show_eed
If set, then extended error information is included in the string returned by $dbh− errstr. Extended
error information include the index causing a duplicate insert to fail, for example.

Statement Handle Attributes
The following read−only attributes are available at the statement level:

syb_more_results
See the discussion on handling multiple result sets above.

syb_result_type
Returns the numeric result type of the current result set. Useful when executing stored proce
determine what type of information is currently fetchable (normal select rows, output param
status results,\ etc...).

IMAGE and TEXT datatypes
DBD::Sybase uses the standard OpenClient conversion routines to convert data retrieved from the se
either string or numeric format.

The conversion routines convert IMAGE datatypes to a hexadecimal string. If you need the
representation you can use something like

 $binary = pack("H*", $hex_string);

to do the conversion. Note that TEXT columns are not treated this way and will be returned exactly a
were stored. Internally Sybase makes no distinction between TEXT and IMAGE columns − both can b
to store either text or binary data.

Transactions and Transact−SQL
When $h− {AutoCommit} is off (ie) the DBD::Sybase driver will send a BEGIN TRAN before the first
$dbh− prepare(), and after each call to $dbh− commit() or $dbh− rollback(). This works fine, but will cause
any SQL that contains any CREATE TABLE statements to fail. These CREATE TABLE statements can be
burried in a stored procedure somewhere (for example, sp_helprotect creates two templ tables when i
is run).

If you absolutely want to have manual commits (ie have AutoCommit set to 0) and be able to run an
arbitrary SQL, then you can use sp_dboption to set the ddl in tran option to TRUE. However, the
Sybase documentation warns that this can cause the system to seriouslys slow down as this causes
be set on certain system tables, and these locks will be held for the duration of the transaction.
1418 Version 5.005_02 18−Oct−1998

DBD::Sybase Perl Programmers Reference Guide DBD::Sybase

se calls

ds to your
d

rticular
 a

 a

e guide

is free
 that it
al of
Using ? Placeholders & bind parameters to $sth− execute
This version supports the use of ? placeholders in SQL statements. It does this by using what Syba
Dynamic SQL. The ? placeholders allow you to write something like:

$sth = $dbh−>prepare("select * from employee where empno = ?");

 # Retrieve rows from employee where empno == 1024:
$sth−>execute(1024);
while($data = $sth−>fetch) {
 print "@$data\n";
}

 # Now get rows where empno = 2000:

$sth−>execute(2000);
while($data = $sth−>fetch) {
 print "@$data\n";
}

When you use ? placeholders Sybase goes and creates a temporary stored procedure that correspon
SQL statement. You then pass variables to $sth− execute or $dbh− do, which get inserted in the query, an
any rows are returned.

For those of you who are used to Transact−SQL there are some limitations to using this feature: In pa
you can only pass a simple exec proc call, or a simple select statement (ie a statement that only returns
single result set). In addition, the ? placeholders can only appear in a WHERE clause, in the SET clause of
an UPDATE statement, or in the VALUES list of an INSERT statement. In particular you can‘t pass ? as
parameter to a stored procedure.

Please see the discussion on Dynamic SQL in the OpenClient C Programmer‘s Guide for details. Th
is available on−line at http://sybooks.sybase.com/dynaweb.

BUGS
Setting $dbh− {LongReadLen} has no effect. Use $dbh− do("set textsize xxxx") instead.

You can‘t set a particular database via the connect() call. Use $dbh− do("use $database") instead.

SEE ALSO
DBI Sybase OpenClient C manuals. Sybase Transact SQL manuals.

AUTHOR
DBD::Sybase by Michael Peppler

COPYRIGHT
The DBD::Sybase module is Copyright (c) 1997, 1998 Michael Peppler. The DBD::Sybase module
software; you can redistribute it and/or modify it under the same terms as Perl itself with the exception
cannot be placed on a CD−ROM or similar media for commercial distribution without the prior approv
the author.

ACKNOWLEDGEMENTS
Tim Bunce for DBI, obviously!

See also ACKNOWLEDGEMENTS.
18−Oct−1998 Version 5.005_02 1419

DBD::mysql Perl Programmers Reference Guide DBD::mysql

g on

plicitly
NAME
DBD::mSQL / DBD::mysql − mSQL and mysql drivers for the Perl5 Database Interface (DBI)

SYNOPSIS
 use DBI;

 $dbh = DBI−>connect("DBI:mSQL:$database:$hostname:$port",
undef, undef);

 or

 $dbh = DBI−>connect("DBI:mysql:$database:$hostname:$port",
$user, $password);

 @databases = DBD::mysql::dr−>func($hostname, ’_ListDBs’);
 @tables = $dbh−>func(’_ListTables’);

 $sth = $dbh−>prepare("LISTFIELDS $table");
 $sth−>execute;
 $sth−>finish;

 $sth = $dbh−>prepare("SELECT * FROM foo WHERE bla");
 $sth−>execute;
 $numRows = $sth−>rows;
 $numFields = $sth−>{’NUM_OF_FIELDS’};
 $sth−>finish;

 $rc = $drh−>func($database, ’_CreateDB’);
 $rc = $drh−>func($database, ’_DropDB’);

DESCRIPTION
<DBD::mysql and <DBD::mSQL are the Perl5 Database Interface drivers for the mysql, mSQL 1.x and
mSQL 2.x databases. The drivers are part of the mysql−modules and Msql−modules packages, respectively.

Class Methods

connect
 use DBI;

 $dbh = DBI−>connect("DBI:mSQL:$database", undef, undef);
 $dbh = DBI−>connect("DBI:mSQL:$database:$hostname", undef, undef);
 $dbh = DBI−>connect("DBI:mSQL:$database:$hostname:$port",

undef, undef);

 or

 use DBI;

 $dbh = DBI−>connect("DBI:mysql:$database", $user, $password);
 $dbh = DBI−>connect("DBI:mysql:$database:$hostname",

$user, $password);
 $dbh = DBI−>connect("DBI:mysql:$database:$hostname:$port",

$user, $password);

A database must always be specified.

The hostname, if not specified or specified as ‘’, will default to an mysql or mSQL daemon runnin
the local machine on the default port for the UNIX socket.

Should the mysql or mSQL daemon be running on a non−standard port number, you may ex
state the port number to connect to in the hostname argument, by concatenating the hostname and
port number together separated by a colon (:) character.
1420 Version 5.005_02 18−Oct−1998

DBD::mysql Perl Programmers Reference Guide DBD::mysql

ing on

t name

ith the
 that

lected

 mSQL
nect to

ese by
Private MetaData Methods

ListDBs
 @dbs = $dbh−>func("$hostname:$port", ’_ListDBs’);

Returns a list of all databases managed by the mysql daemon or mSQL daemon runn
$hostname, port $port. This method is rarely needed for databases running on localhost :
You should use the portable method

 @dbs = DBI−>data_sources("mysql");

 or

 @dbs = DBI−>data_sources("mSQL");

whenever possible. It is a design problem of this method, that there‘s no way of supplying a hos
or port number to data_sources , that‘s the only reason why we still support ListDBs . :−(

ListTables
 @tables = $dbh−>func(’_ListTables’);

Once connected to the desired database on the desired mysql or mSQL mSQL daemon w
DBI−connect() method, we may extract a list of the tables that have been created within
database.

ListTables returns an array containing the names of all the tables present within the se
database. If no tables have been created, an empty list is returned.

 @tables = $dbh−>func(’_ListTables’);
 foreach $table (@tables) {
 print "Table: $table\n";
 }

ListFields
Deprecated, see /COMPATIBILITY ALERT below.

ListSelectedFields
Deprecated, see /COMPATIBILITY ALERT below.

Database Manipulation

CreateDB
DropDB

 $rc = $drh−>func($database, ’_CreateDB’);
 $rc = $drh−>func($database, ’_DropDB’);

These two methods allow programmers to create and drop databases from DBI scripts. Since
disallows the creation and deletion of databases over the network, these methods explicitly con
the mSQL daemon running on the machine localhost and execute these operations there.

It should be noted that database deletion is not prompted for in any way. Nor is it undo−able from
DBI.

 Once you issue the dropDB() method, the database will be gone!

These methods should be used at your own risk.

STATEMENT HANDLES
The statement handles of DBD::mysql and DBD::mSQL support a number of attributes. You access th
using, for example,

 my $numFields = $sth−>{’NUM_OF_FIELDS’};
18−Oct−1998 Version 5.005_02 1421

DBD::mysql Perl Programmers Reference Guide DBD::mysql

ut tends

rray.

ames.

n

ill be

b. This

This is
Note, that most attributes are valid only after a successfull execute. An undef value will returned in that
case. The most important exception is the mysql_use_result attribute: This forces the driver to use
mysql_use_result rather than mysql_store_result. The former is faster and less memory consuming, b
to block other processes. (That‘s why mysql_store_result is the default.)

To set the mysql_use_result attribute, use either of the following:

 my $sth = $dbh−>prepare("QUERY", { "mysql_use_result" => 1});

or

 my $sth = $dbh−>prepare("QUERY");
 $sth−>{"mysql_use_result"} = 1;

Of course it doesn‘t make sense to set this attribute before calling the execute method.

Column dependent attributes, for example NAME, the column names, are returned as a reference to an a
The array indices are corresponding to the indices of the arrays returned by fetchrow and similar methods.
For example the following code will print a header of table names together with all rows:

 my $sth = $dbh−>prepare("SELECT * FROM $table");
 if (!$sth) {
 die "Error:" . $dbh−>errstr . "\n";
 }
 if (!$sth−>execute) {
 die "Error:" . $sth−>errstr . "\n";
 }
 my $names = $sth−>{’NAME’};
 my $numFields = $sth−>{’NUM_OF_FIELDS’};
 for (my $i = 0; $i < $numFields; $i++) {
 printf("%s%s", $$names[$i], $i ? "," : "");
 }
 print "\n";
 while (my $ref = $sth−>fetchrow_arrayref) {
 for (my $i = 0; $i < $numFields; $i++) {

 printf("%s%s", $$ref[$i], $i ? "," : "");
 }
 print "\n";
 }
x For portable applications you should restrict yourself to attributes with capitalized or mixed case n
Lower case attribute names are private to DBD::mSQL and DBD::mysql. The attribute list includes:

ChopBlanks
this attribute determines whether a fetchrow will chop preceding and trailing blanks off the colum
values. Chopping blanks does not have impact on the max_length attribute.

insertid
MySQL has the ability to choose unique key values automatically. If this happened, the new ID w
stored in this attribute. This attribute is not valid for DBD::mSQL.

is_blob
Reference to an array of boolean values; TRUE indicates, that the respective column is a blo
attribute is valid for MySQL only.

is_key
Reference to an array of boolean values; TRUE indicates, that the respective column is a key.
valid for MySQL only.
1422 Version 5.005_02 18−Oct−1998

DBD::mysql Perl Programmers Reference Guide DBD::mysql

umeric

ry key.

LL‘s.

t

g

ven for

pletely
 more

r
 use of
was in
is_num
Reference to an array of boolean values; TRUE indicates, that the respective column contains n
values.

is_pri_key
Reference to an array of boolean values; TRUE indicates, that the respective column is a prima
This is only valid for MySQL and mSQL 1.0.x: mSQL 2.x uses indices.

is_not_null
A reference to an array of boolean values; FALSE indicates that this column may contain NU
You should better use the NULLABLE attribute above which is a DBI standard.

length
max_length

A reference to an array of maximum column sizes. The max_length is the maximum physically presen
in the result table, length gives the theoretically possible maximum. max_length is valid for MySQL
only.

NAME
A reference to an array of column names.

NULLABLE
A reference to an array of boolean values; TRUE indicates that this column may contain NULL‘s.

NUM_OF_FIELDS
Number of fields returned by a SELECT or LISTFIELDS statement. You may use this for checkin
whether a statement returned a result: A zero value indicates a non−SELECT statement like INSERT,
DELETE or UPDATE.

table
A reference to an array of table names, useful in a JOIN result.

type A reference to an array of column types. It depends on the DBMS, which values are returned, e
identical types. mSQL will return types like &DBD::mSQL::INT_TYPE,
&DBD::msql::TEXT_TYPE etc., MySQL uses &DBD::mysql::FIELD_TYPE_SHORT,
&DBD::mysql::FIELD_TYPE_STRING etc.

COMPATIBILITY ALERT
As of version 0.70 DBD::mSQL has a new maintainer. Even more, the sources have been com
rewritten in August 1997, so it seemed apropriate to bump the version number: Incompatibilities are
than likely.

Recent changes:

New connect method
DBD::mSQL and DBD::mysql now use the new connect method as introduced with DBI 0.83 or so. Fo
compatibility reasons the old method still works, but the driver issues a warning when he detects
the old version. There‘s no workaround, you must update your sources. (Sorry, but the change
DBI, not in DBD::mysql and DBD::mSQL.)

_ListFields returning statement handle
As of Msql−modules 1.1805, the private functions

 $dbh−>func($table, "_ListFields");

and

 $sth−>func("_ListSelectedFields");
18−Oct−1998 Version 5.005_02 1423

DBD::mysql Perl Programmers Reference Guide DBD::mysql

cope.
citly
issue a

sically

rivate

es for

emove

tead of

er did
ct call

on this

QL has

PI and
ing to

ective

n a
no longer return a simple hash, but a statement handle. (_ListSelectedFields is a stub now which just
returns $self.) This should usually not be visible, when your statement handle gets out of s
However, if your database handle ($dbh in the above example) disconnects, either because you expli
disconnect or because he gets out of scope, and the statement handle is still active, DBI will
warning for active cursors being destroyed.

The simple workaround is to execute $sth−>finish or to ensure that $sth gets out of scope before
$dbh. Sorry, but it was obvious nonsense to support two different things for accessing the ba
same thing: A M(y)SQL result.

The drivers do not conform to the current DBI specification in some minor points. For example, the p
attributes is_num or is_blob have been written IS_NUM and IS_BLOB. For historical reasons we continue
supporting the capitalized names, although the DBI specification now reserves capitalized nam
standard names, mixed case for DBI and lower case for private attributes and methods.

We currently consider anything not conforming to the DBI as deprecated. It is quite possible that we r
support of these deprecated names and methods in the future. In particular these includes:

$sth−>func($table, ‘_ListSelectedFields’)
highly deprecated, all attributes are directly accessible via the statement handle. For example ins

 $ref = $sth−>func($table, ’_ListSelectedFields’)
 my @names = $ref−>{’NAME’}

you just do a

 my @names = @{$sth−>{’NAME’}};

Capitalized attribute names
Deprecated, should be replaced by the respective lower case names.

BUGS
The port part of the first argument to the connect call is implemented in an unsafe way. In fact it nev
more than set the environment variable MSQL_TCP_PORT during the connect call. If another conne
uses another port and the handles are used simultaneously, they will interfere. In a future versi
behaviour will hoefully change, depending on David and Monty. :−)

The func method call on a driver handle seems to be undocumented in the DBI manpage. DBD::mS
func methods on driverhandles, database handles, and statement handles. What gives?

Please speak up now (June 1997) if you encounter additional bugs. I‘m still learning about the DBI A
can neither judge the quality of the code presented here nor the DBI compliancy. But I‘m intend
resolve things quickly as I‘d really like to get rid of the multitude of implementations ASAP.

When running "make test", you will notice that some test scripts fail. This is due to bugs in the resp
databases, not in the DBI drivers:

Nulls
mSQL seems to have problems with NULL‘s: The following fails with mSQL 2.0.1 running o
Linux 2.0.30 machine:

 [joe@laptop Msql−modules−1.18]$ msql test
 Welcome to the miniSQL monitor. Type \h for help.
 mSQL > CREATE TABLE foo (id INTEGER, name CHAR(6))\g
 Query OK. 1 row(s) modified or retrieved.
 mSQL > INSERT INTO foo VALUES (NULL, ’joe’)\g
 Query OK. 1 row(s) modified or retrieved.
 mSQL > SELECT * FROM foo WHERE id = NULL\g
 Query OK. 0 row(s) modified or retrieved.
 +−−−−−−−−−−+−−−−−−+
1424 Version 5.005_02 18−Oct−1998

DBD::mysql Perl Programmers Reference Guide DBD::mysql

 with

r name
reas

 their
 perl

e this
es are
tices are
ng
ade to

current
 | id | name |
 +−−−−−−−−−−+−−−−−−+
 +−−−−−−−−−−+−−−−−−+
 mSQL >

Blanks
mysql has problems with Blanks on the right side of string fields: They get chopped of. (Tested
mysql 3.20.25 on a Linux 2.0.30 machine.)

 [joe@laptop Msql−modules−1.18]$ mysql test
 Welcome to the mysql monitor. Commands ends with ; or \g.
 Type ’help’ for help.
 mysql> CREATE TABLE foo (id INTEGER, bar CHAR(8));
 Query OK, 0 rows affected (0.10 sec)
 mysql> INSERT INTO foo VALUES (1, ’ a b c ’);
 Query OK, 1 rows affected (0.00 sec)
 mysql> SELECT * FROM foo;
 1 rows in set (0.19 sec)
 +−−−−−−+−−−−−−−−+
 | id | bar |
 +−−−−−−+−−−−−−−−+
 | 1 | a b c |
 +−−−−−−+−−−−−−−−+
 mysql> quit;
 [joe@laptop Msql−modules−1.18]$ mysqldump test foo

 [deleted]

 INSERT INTO foo VALUES (1,’ a b c’);

AUTHOR
DBD::mSQL has been primarily written by Alligator Descartes (descarte@hermetica.com), who has been
aided and abetted by Gary Shea, Andreas Koenig and Tim Bunce amongst others. Apologies if you
isn‘t listed, it probably is in the file called ‘Acknowledgments’. As of version 0.80 the maintainer is And
König. Version 2.00 is an almost complete rewrite by Jochen Wiedmann.

COPYRIGHT
This module is Copyright (c)1997 Jochen Wiedmann, with code portions Copyright (c)1994−1997
original authors. This module is released under the ‘Artistic’ license which you can find in the
distribution.

This document is Copyright (c)1997 Alligator Descartes. All rights reserved. Permission to distribut
document, in full or in part, via email, Usenet, ftp archives or http is granted providing that no charg
involved, reasonable attempt is made to use the most current version and all credits and copyright no
retained (the AUTHOR and COPYRIGHT sections). Requests for other distribution rights, includi
incorporation into commercial products, such as books, magazine articles or CD−ROMs should be m
Alligator Descartes <descarte@hermetica.com.

ADDITIONAL DBI INFORMATION
Additional information on the DBI project can be found on the World Wide Web at the following URL:

 http://www.hermetica.com/technologia/perl/DBI

where documentation, pointers to the mailing lists and mailing list archives and pointers to the most
versions of the modules can be used.

Information on the DBI interface itself can be gained by typing:

 perldoc DBI
18−Oct−1998 Version 5.005_02 1425

DBD::mysql Perl Programmers Reference Guide DBD::mysql
right now!
1426 Version 5.005_02 18−Oct−1998

DBD::mSQL Perl Programmers Reference Guide DBD::mSQL

g on

plicitly
NAME
DBD::mSQL / DBD::mysql − mSQL and mysql drivers for the Perl5 Database Interface (DBI)

SYNOPSIS
 use DBI;

 $dbh = DBI−>connect("DBI:mSQL:$database:$hostname:$port",
undef, undef);

 or

 $dbh = DBI−>connect("DBI:mysql:$database:$hostname:$port",
$user, $password);

 @databases = DBD::mysql::dr−>func($hostname, ’_ListDBs’);
 @tables = $dbh−>func(’_ListTables’);

 $sth = $dbh−>prepare("LISTFIELDS $table");
 $sth−>execute;
 $sth−>finish;

 $sth = $dbh−>prepare("SELECT * FROM foo WHERE bla");
 $sth−>execute;
 $numRows = $sth−>rows;
 $numFields = $sth−>{’NUM_OF_FIELDS’};
 $sth−>finish;

 $rc = $drh−>func($database, ’_CreateDB’);
 $rc = $drh−>func($database, ’_DropDB’);

DESCRIPTION
<DBD::mysql and <DBD::mSQL are the Perl5 Database Interface drivers for the mysql, mSQL 1.x and
mSQL 2.x databases. The drivers are part of the mysql−modules and Msql−modules packages, respectively.

Class Methods

connect
 use DBI;

 $dbh = DBI−>connect("DBI:mSQL:$database", undef, undef);
 $dbh = DBI−>connect("DBI:mSQL:$database:$hostname", undef, undef);
 $dbh = DBI−>connect("DBI:mSQL:$database:$hostname:$port",

undef, undef);

 or

 use DBI;

 $dbh = DBI−>connect("DBI:mysql:$database", $user, $password);
 $dbh = DBI−>connect("DBI:mysql:$database:$hostname",

$user, $password);
 $dbh = DBI−>connect("DBI:mysql:$database:$hostname:$port",

$user, $password);

A database must always be specified.

The hostname, if not specified or specified as ‘’, will default to an mysql or mSQL daemon runnin
the local machine on the default port for the UNIX socket.

Should the mysql or mSQL daemon be running on a non−standard port number, you may ex
state the port number to connect to in the hostname argument, by concatenating the hostname and
port number together separated by a colon (:) character.
18−Oct−1998 Version 5.005_02 1427

DBD::mSQL Perl Programmers Reference Guide DBD::mSQL

ing on

t name

ith the
 that

lected

 mSQL
nect to

ese by
Private MetaData Methods

ListDBs
 @dbs = $dbh−>func("$hostname:$port", ’_ListDBs’);

Returns a list of all databases managed by the mysql daemon or mSQL daemon runn
$hostname, port $port. This method is rarely needed for databases running on localhost :
You should use the portable method

 @dbs = DBI−>data_sources("mysql");

 or

 @dbs = DBI−>data_sources("mSQL");

whenever possible. It is a design problem of this method, that there‘s no way of supplying a hos
or port number to data_sources , that‘s the only reason why we still support ListDBs . :−(

ListTables
 @tables = $dbh−>func(’_ListTables’);

Once connected to the desired database on the desired mysql or mSQL mSQL daemon w
DBI−connect() method, we may extract a list of the tables that have been created within
database.

ListTables returns an array containing the names of all the tables present within the se
database. If no tables have been created, an empty list is returned.

 @tables = $dbh−>func(’_ListTables’);
 foreach $table (@tables) {
 print "Table: $table\n";
 }

ListFields
Deprecated, see /COMPATIBILITY ALERT below.

ListSelectedFields
Deprecated, see /COMPATIBILITY ALERT below.

Database Manipulation

CreateDB
DropDB

 $rc = $drh−>func($database, ’_CreateDB’);
 $rc = $drh−>func($database, ’_DropDB’);

These two methods allow programmers to create and drop databases from DBI scripts. Since
disallows the creation and deletion of databases over the network, these methods explicitly con
the mSQL daemon running on the machine localhost and execute these operations there.

It should be noted that database deletion is not prompted for in any way. Nor is it undo−able from
DBI.

 Once you issue the dropDB() method, the database will be gone!

These methods should be used at your own risk.

STATEMENT HANDLES
The statement handles of DBD::mysql and DBD::mSQL support a number of attributes. You access th
using, for example,

 my $numFields = $sth−>{’NUM_OF_FIELDS’};
1428 Version 5.005_02 18−Oct−1998

DBD::mSQL Perl Programmers Reference Guide DBD::mSQL

ut tends

rray.

ames.

n

ill be

b. This

This is
Note, that most attributes are valid only after a successfull execute. An undef value will returned in that
case. The most important exception is the mysql_use_result attribute: This forces the driver to use
mysql_use_result rather than mysql_store_result. The former is faster and less memory consuming, b
to block other processes. (That‘s why mysql_store_result is the default.)

To set the mysql_use_result attribute, use either of the following:

 my $sth = $dbh−>prepare("QUERY", { "mysql_use_result" => 1});

or

 my $sth = $dbh−>prepare("QUERY");
 $sth−>{"mysql_use_result"} = 1;

Of course it doesn‘t make sense to set this attribute before calling the execute method.

Column dependent attributes, for example NAME, the column names, are returned as a reference to an a
The array indices are corresponding to the indices of the arrays returned by fetchrow and similar methods.
For example the following code will print a header of table names together with all rows:

 my $sth = $dbh−>prepare("SELECT * FROM $table");
 if (!$sth) {
 die "Error:" . $dbh−>errstr . "\n";
 }
 if (!$sth−>execute) {
 die "Error:" . $sth−>errstr . "\n";
 }
 my $names = $sth−>{’NAME’};
 my $numFields = $sth−>{’NUM_OF_FIELDS’};
 for (my $i = 0; $i < $numFields; $i++) {
 printf("%s%s", $$names[$i], $i ? "," : "");
 }
 print "\n";
 while (my $ref = $sth−>fetchrow_arrayref) {
 for (my $i = 0; $i < $numFields; $i++) {

 printf("%s%s", $$ref[$i], $i ? "," : "");
 }
 print "\n";
 }
x For portable applications you should restrict yourself to attributes with capitalized or mixed case n
Lower case attribute names are private to DBD::mSQL and DBD::mysql. The attribute list includes:

ChopBlanks
this attribute determines whether a fetchrow will chop preceding and trailing blanks off the colum
values. Chopping blanks does not have impact on the max_length attribute.

insertid
MySQL has the ability to choose unique key values automatically. If this happened, the new ID w
stored in this attribute. This attribute is not valid for DBD::mSQL.

is_blob
Reference to an array of boolean values; TRUE indicates, that the respective column is a blo
attribute is valid for MySQL only.

is_key
Reference to an array of boolean values; TRUE indicates, that the respective column is a key.
valid for MySQL only.
18−Oct−1998 Version 5.005_02 1429

DBD::mSQL Perl Programmers Reference Guide DBD::mSQL

umeric

ry key.

LL‘s.

t

g

ven for

pletely
 more

r
 use of
was in
is_num
Reference to an array of boolean values; TRUE indicates, that the respective column contains n
values.

is_pri_key
Reference to an array of boolean values; TRUE indicates, that the respective column is a prima
This is only valid for MySQL and mSQL 1.0.x: mSQL 2.x uses indices.

is_not_null
A reference to an array of boolean values; FALSE indicates that this column may contain NU
You should better use the NULLABLE attribute above which is a DBI standard.

length
max_length

A reference to an array of maximum column sizes. The max_length is the maximum physically presen
in the result table, length gives the theoretically possible maximum. max_length is valid for MySQL
only.

NAME
A reference to an array of column names.

NULLABLE
A reference to an array of boolean values; TRUE indicates that this column may contain NULL‘s.

NUM_OF_FIELDS
Number of fields returned by a SELECT or LISTFIELDS statement. You may use this for checkin
whether a statement returned a result: A zero value indicates a non−SELECT statement like INSERT,
DELETE or UPDATE.

table
A reference to an array of table names, useful in a JOIN result.

type A reference to an array of column types. It depends on the DBMS, which values are returned, e
identical types. mSQL will return types like &DBD::mSQL::INT_TYPE,
&DBD::msql::TEXT_TYPE etc., MySQL uses &DBD::mysql::FIELD_TYPE_SHORT,
&DBD::mysql::FIELD_TYPE_STRING etc.

COMPATIBILITY ALERT
As of version 0.70 DBD::mSQL has a new maintainer. Even more, the sources have been com
rewritten in August 1997, so it seemed apropriate to bump the version number: Incompatibilities are
than likely.

Recent changes:

New connect method
DBD::mSQL and DBD::mysql now use the new connect method as introduced with DBI 0.83 or so. Fo
compatibility reasons the old method still works, but the driver issues a warning when he detects
the old version. There‘s no workaround, you must update your sources. (Sorry, but the change
DBI, not in DBD::mysql and DBD::mSQL.)

_ListFields returning statement handle
As of Msql−modules 1.1805, the private functions

 $dbh−>func($table, "_ListFields");

and

 $sth−>func("_ListSelectedFields");
1430 Version 5.005_02 18−Oct−1998

DBD::mSQL Perl Programmers Reference Guide DBD::mSQL

cope.
citly
issue a

sically

rivate

es for

emove

tead of

er did
ct call

on this

QL has

PI and
ing to

ective

n a
no longer return a simple hash, but a statement handle. (_ListSelectedFields is a stub now which just
returns $self.) This should usually not be visible, when your statement handle gets out of s
However, if your database handle ($dbh in the above example) disconnects, either because you expli
disconnect or because he gets out of scope, and the statement handle is still active, DBI will
warning for active cursors being destroyed.

The simple workaround is to execute $sth−>finish or to ensure that $sth gets out of scope before
$dbh. Sorry, but it was obvious nonsense to support two different things for accessing the ba
same thing: A M(y)SQL result.

The drivers do not conform to the current DBI specification in some minor points. For example, the p
attributes is_num or is_blob have been written IS_NUM and IS_BLOB. For historical reasons we continue
supporting the capitalized names, although the DBI specification now reserves capitalized nam
standard names, mixed case for DBI and lower case for private attributes and methods.

We currently consider anything not conforming to the DBI as deprecated. It is quite possible that we r
support of these deprecated names and methods in the future. In particular these includes:

$sth−>func($table, ‘_ListSelectedFields’)
highly deprecated, all attributes are directly accessible via the statement handle. For example ins

 $ref = $sth−>func($table, ’_ListSelectedFields’)
 my @names = $ref−>{’NAME’}

you just do a

 my @names = @{$sth−>{’NAME’}};

Capitalized attribute names
Deprecated, should be replaced by the respective lower case names.

BUGS
The port part of the first argument to the connect call is implemented in an unsafe way. In fact it nev
more than set the environment variable MSQL_TCP_PORT during the connect call. If another conne
uses another port and the handles are used simultaneously, they will interfere. In a future versi
behaviour will hoefully change, depending on David and Monty. :−)

The func method call on a driver handle seems to be undocumented in the DBI manpage. DBD::mS
func methods on driverhandles, database handles, and statement handles. What gives?

Please speak up now (June 1997) if you encounter additional bugs. I‘m still learning about the DBI A
can neither judge the quality of the code presented here nor the DBI compliancy. But I‘m intend
resolve things quickly as I‘d really like to get rid of the multitude of implementations ASAP.

When running "make test", you will notice that some test scripts fail. This is due to bugs in the resp
databases, not in the DBI drivers:

Nulls
mSQL seems to have problems with NULL‘s: The following fails with mSQL 2.0.1 running o
Linux 2.0.30 machine:

 [joe@laptop Msql−modules−1.18]$ msql test
 Welcome to the miniSQL monitor. Type \h for help.
 mSQL > CREATE TABLE foo (id INTEGER, name CHAR(6))\g
 Query OK. 1 row(s) modified or retrieved.
 mSQL > INSERT INTO foo VALUES (NULL, ’joe’)\g
 Query OK. 1 row(s) modified or retrieved.
 mSQL > SELECT * FROM foo WHERE id = NULL\g
 Query OK. 0 row(s) modified or retrieved.
 +−−−−−−−−−−+−−−−−−+
18−Oct−1998 Version 5.005_02 1431

DBD::mSQL Perl Programmers Reference Guide DBD::mSQL

 with

r name
reas

 their
 perl

e this
es are
tices are
ng
ade to

current
 | id | name |
 +−−−−−−−−−−+−−−−−−+
 +−−−−−−−−−−+−−−−−−+
 mSQL >

Blanks
mysql has problems with Blanks on the right side of string fields: They get chopped of. (Tested
mysql 3.20.25 on a Linux 2.0.30 machine.)

 [joe@laptop Msql−modules−1.18]$ mysql test
 Welcome to the mysql monitor. Commands ends with ; or \g.
 Type ’help’ for help.
 mysql> CREATE TABLE foo (id INTEGER, bar CHAR(8));
 Query OK, 0 rows affected (0.10 sec)
 mysql> INSERT INTO foo VALUES (1, ’ a b c ’);
 Query OK, 1 rows affected (0.00 sec)
 mysql> SELECT * FROM foo;
 1 rows in set (0.19 sec)
 +−−−−−−+−−−−−−−−+
 | id | bar |
 +−−−−−−+−−−−−−−−+
 | 1 | a b c |
 +−−−−−−+−−−−−−−−+
 mysql> quit;
 [joe@laptop Msql−modules−1.18]$ mysqldump test foo

 [deleted]

 INSERT INTO foo VALUES (1,’ a b c’);

AUTHOR
DBD::mSQL has been primarily written by Alligator Descartes (descarte@hermetica.com), who has been
aided and abetted by Gary Shea, Andreas Koenig and Tim Bunce amongst others. Apologies if you
isn‘t listed, it probably is in the file called ‘Acknowledgments’. As of version 0.80 the maintainer is And
König. Version 2.00 is an almost complete rewrite by Jochen Wiedmann.

COPYRIGHT
This module is Copyright (c)1997 Jochen Wiedmann, with code portions Copyright (c)1994−1997
original authors. This module is released under the ‘Artistic’ license which you can find in the
distribution.

This document is Copyright (c)1997 Alligator Descartes. All rights reserved. Permission to distribut
document, in full or in part, via email, Usenet, ftp archives or http is granted providing that no charg
involved, reasonable attempt is made to use the most current version and all credits and copyright no
retained (the AUTHOR and COPYRIGHT sections). Requests for other distribution rights, includi
incorporation into commercial products, such as books, magazine articles or CD−ROMs should be m
Alligator Descartes <descarte@hermetica.com.

ADDITIONAL DBI INFORMATION
Additional information on the DBI project can be found on the World Wide Web at the following URL:

 http://www.hermetica.com/technologia/perl/DBI

where documentation, pointers to the mailing lists and mailing list archives and pointers to the most
versions of the modules can be used.

Information on the DBI interface itself can be gained by typing:

 perldoc DBI
1432 Version 5.005_02 18−Oct−1998

DBD::mSQL Perl Programmers Reference Guide DBD::mSQL
right now!
18−Oct−1998 Version 5.005_02 1433

sybperl Perl Programmers Reference Guide sybperl

of

al or
 store

d

atch

the
NAME
sybperl − Sybase extensions to Perl

SYNOPSIS
 use Sybase::DBlib;
 use Sybase::CTlib;
 use Sybase::Sybperl;

DESCRIPTION
Sybperl implements three Sybase extension modules to perl (version 5.002 or higher). Sybase::DBlib adds a
subset of the Sybase DB−Library API. Sybase::CTlib adds a subset of the Sybase CT−Library (aka the
Client Library) API. Sybase::Sybperl is a backwards compatibility module (implemented on top
Sybase::DBlib) to enable scripts written for sybperl 1.0xx to run with Perl 5. Using both the Sybase::Sybperl
and Sybase::DBlib modules explicitly in a single script is not garanteed to work correctly.

The general usage format for both Sybase::DBlib and Sybase::CTlib is this:

 use Sybase::DBlib;

 # Allocate a new connection, usually refered to as a database handle
 $dbh = new Sybase::DBlib username, password;

 # Set an attribute for this dbh:
 $dbh−>{UseDateTime} = TRUE;

 # Call a method with this dbh:
 $dbh−>dbcmd(sql code);

The DBPROCESS or CS_CONNECTION that is opened with the call to new() is automatically closed
when the $dbh goes out of scope:

 sub run_a_query {
 my $dbh = new Sybase::CTlib $user, $passwd;
 my @dat = $dbh−>ct_sql("select * from sysusers");

 return @dat;
 }
 # The $dbh is automatically closed when we exit the subroutine.

Attributes
The Sybase::DBlib and Sybase::CTlib modules make a use of attributes that are either package glob
associated with a specific $dbh. These attributes control certain behavior aspects, and are also used to
status information.

Package global attributes can be set using the %Att hash table in either modules. The %Att variable is not
exported, so it must be fully qualified:

 $Sybase::DBlib::Att{UseDateTime} = TRUE;

NOTE: setting an attribute via the %Att variable does NOT change the status of currently allocate
database handles.

In this version, the available attributes for a $dbh are set when the $dbh is created. You can‘t add arbitrary
attributes during the life of the $dbh. This has been done to implement a stricter behavior and to c
attribute errors.

It is possible to add your own attributes to a $dbh at creation time. The Sybase::BCP module adds two
attributes to the normal Sybase::DBlib attribute set by passing an additional attribute variable to
Sybase::DBlib new() call:

 $d = new Sybase::DBlib $user,$passwd,
 $server,$appname, {Global => {}, Cols => {}};
1434 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

in

kage or

nguage

ybperl

, with a

ver and

ent

you
DateTime, Money and Numeric data behavior
As of version 2.04, the Sybase DATETIME and MONEY datatypes can be kept in their native formats
both the Sybase::DBlib and Sybase::CTlib modules. In addition, NUMERIC or DECIMAL values can also
be kept in their native formats when using the Sybase::CTlib module. This behavior is normally turned off
by default, because there is a performance penalty associated with it. It is turned on by using pac
database handle specific attributes.

Please see the discussion on Special handling of DATETIME, MONEY & NUMERIC/DECIMAL values
below for details.

Compatibility with Sybase Open Client documentation.
In general, I have tried to make the calls in this package behave the same way as their C la
equivalents. In certain cases the parameters are different, and certain calls (dblogin() for example) don‘t
do the same thing in C as in Perl. This has been done to make the life of the Perl programmer easier.

You should if possible have the Sybase Open Client documentation available when writing S
programs.

Sybase::DBlib
A generic perl script using Sybase::DBlib would look like this:

 use Sybase::DBlib;

 $dbh = new Sybase::DBlib ’sa’, $pwd, $server, ’test_app’;
 $dbh−>dbcmd("select * from sysprocesses\n");
 $dbh−>dbsqlexec;
 $dbh−>dbresults;
 while(@data = $dbh−>dbnextrow)
 {
 do something with @data
 }

The API calls that have been implemented use the same calling sequence as their C equivalents
couple of exceptions, detailed below.

Please see also Common Sybase::DBlib and Sybase::CTlib routines below.

List of API calls

Standard Routines:

$dbh = new Sybase::DBlib [$user [, $server [, $appname [, {additional attributes}]]]]
$dbh = Sybase::DBlib−dblogin([$user [, $pwd [, $server [, $appname, [{additional attributes}]

]]]]) Initiates a connection to a Sybase dataserver, using the supplied user, password, ser
application name information. Uses the default values (see DBSETLUSER(), DBSETLPWD(),
etc. in the Sybase DB−library documentation) if the parameters are ommitted.

Both forms of the call are identical.

This call can be used multiple times if connecting to multiple servers with differ
username/password combinations is required, for example.

The additional attributes parameter allows you to define application specific attributes that
wish to associate with the $dbh.

$dbh = Sybase::DBlib−dbopen([$server [, $appname, [{attributes}]]])
Open an additional connection, using the current LOGINREC information.

$status = $dbh− dbuse($database)
Executes "use database $database" for the connection $dbh.
18−Oct−1998 Version 5.005_02 1435

sybperl Perl Programmers Reference Guide sybperl

ee the

Should

er is
e

 with

 a

rupt

 you

n the
$status = $dbh− dbcmd($sql_cmd)
Appends the string $sql_cmd to the current command buffer of this connection.

$status = $dbh− dbsqlexec
Sends the content of the current command buffer to the dataserver for execution. S
DB−library documentation for a discussion of return values.

$status = $dbh− dbresults
Retrieves result information from the dataserver after having executed dbsqlexec() .

$status = $dbh− dbsqlsend
Send the command batch to the server, but do not wait for the server to return any results.
be followed by calls to dbpoll() and dbsqlok() . See the Sybase docs for further details.

$status = $dbh− dbsqlok
Wait for results from the server and verify the correctness of the instructions the serv
responding to. Mainly for use with dbmoretext() in Sybase::DBlib. See also the Sybas
documentation for details.

($dbproc, $reason) = Sybase::DBlib::dbpoll($millisecs)
Poll the server to see if any connection has results pending. Used in conjunction
dbsqlsend() and dbsqlok() to perform asynchronous queries. dbpoll() will wait up to
$millisecs milliseconds and poll any open DBPROCESS for results. If it finds
DBPROCESS that is ready it returns it, along with the reason why it‘s ready. If dbpoll()
times out, or if an interupt occurs $dbproc will be undefined, and $reason will be either
DBTIMEOUT or DBINTERUPT. If $millisecs is 0 then dbpoll() returns immediately. If
$millisecs is −1 then it will not return until either results are pending or a system inte
has occured. Please see the Sybase documentation for further details.

Here is an example of using dbsqlsend() , dbpoll() and dbsqlok() :

 $dbh−>dbcmd("exec big_hairy_query_proc");
 $dbh−>dbsqlsend;
 # here you can go do something else...
 # now − find out if some results are waiting
 ($dbh2, $reason) = Sybase::DBlib::dbpoll(100);
 if($dbh2) { # yes! − there’s data on the pipe
 $dbh2−>dbsqlok;
 while($dbh2−>dbresults != NO_MORE_RESULTS) {
 while(@dat = $dbh2−>dbnextrow) {

 }
 }
 }

$status = $dbh− dbcancel
Cancels the current command batch.

$status = $dbh− dbcanquery
Cancels the current query within the currently executing command batch.

$dbh− dbfreebuf
Free the command buffer (required only in special cases − if you don‘t know what this is
probably don‘t need it :−)

$dbh− dbclose
Force the closing of a connection. Note that connections are automatically closed whe
$dbh goes out of scope.
1436 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

 first

tch.

.

e called
ns of

fter all

. If
n

rray,
$dbh− DBDEAD
Returns TRUE if the DBPROCESS has been marked DEAD by DBlibrary.

$status = $dbh− DBCURCMD
Returns the number of the currently executing command in the command batch. The
command is number 1.

$status = $dbh− DBMORECMDS
Returns TRUE if there are additional commands to be executed in the current command ba

$status = $dbh− DBCMDROW
Returns SUCCEED if the current command can return rows.

$status = $dbh− DBROWS
Returns SUCCEED if the current command did return rows

$status = $dbh− DBCOUNT
Returns the number of rows that the current command affected.

$row_num = $dbh− DBCURROW
Returns the number (counting from 1) of the currently retrieved row in the current result set

$spid = $dbh− dbspid
Returns the SPID (server process ID) of the current connection to the Sybase server.

$status = $dbh− dbhasretstat
Did the last executed stored procedure return a status value? dbhasretstats must only b
after dbresults returns NO_MORE_RESULTS, ie after all the selet, insert, update operatio
he sored procedure have been processed.

$status = $dbh− dbretstatus
Retrieve the return status of a stored procedure. As with dbhasretstat, call this function a
the result sets of the stored procedure have been processed.

$status = $dbh− dbnumcols
How many columns are in the current result set.

$status = $dbh− dbcoltype($colid)
What is the column type of column $colid in the current result set.

$status = $dbh− dbcollen($colid)
What is the length (in bytes) of column $colid in the current result set.

$string = $dbh− dbcolname($colid)
What is the name of column $colid in the current result set.

@dat = $dbh− dbnextrow([$doAssoc [, $wantRef]])
Retrieve one row. dbnextrow() returns an array of scalars, one for each column value
$doAssoc is non−0, then dbnextrow() returns a hash (aka associative array) with colum
name/value pairs. This relieves the programmer from having to call dbbind() or dbdata() .

If $wantRef is non−0, then dbnextrow() returns a reference to a hash or an array. This
reference points to a static array (or hash) so if you wish to store the returned rows in an a
you must copy the array/hash:

 while($d = $dbh−>dbnextrow(0, 1)) {
 push(@rows, [@$d]);
 }
18−Oct−1998 Version 5.005_02 1437

sybperl Perl Programmers Reference Guide sybperl

S

r
.eg.

, so

f the
The return value of the C version of dbnextrow() can be accessed via the Perl DBPROCES
attribute field, as in:

 @arr = $dbh−>dbnextrow; # read results
 if($dbh−>{DBstatus} != REG_ROW) {
 take some appropriate action...
 }

When the results row is a COMPUTE row, the ComputeID field of the DBPROCESS is set:

 @arr = $dbh−>dbnextrow; # read results
 if($dbh−>{ComputeID} != 0) { # it’s a ’compute by’ row
 take some appropriate action...
 }

dbnextrow() can also return a hash keyed on the column name:

 $dbh−>dbcmd("select Name=name, Id = id from test_table");
 $dbh−>dbsqlexec; $dbh−>dbresults;

 while(%arr = $dbh−>dbnextrow(1)) {
 print "$arr{Name} : $arr{Id}\n";
 }

@dat = $dbh− dbretdata[$doAssoc])
Retrieve the value of the parameters marked as ‘OUTPUT’ in a stored procedure. If $doAssoc
is non−0, then retrieve the data as an associative array with parameter name/value pairs.

$string = $dbh− dbstrcpy
Retrieve the contents of the command buffer.

$ret = $dbh− dbsetopt($opt [, $c_val [, $i_val]])
Sets option $opt with optional character parameter $c_val and optional integer paramete
$i_val. $opt is one of the option values defined in the Sybase DBlibrary manual (f
DBSHOWPLAN, DBTEXTSIZE). For example, to set SHOWPLAN on, you would use

 $dbh−>dbsetopt(DBSHOWPLAN);

See also dbclropt() and dbisopt() below.

$ret = $dbh− dbclropt($opt [, $c_val])
Clears the option $opt, previously set using dbsetopt() .

$ret = $dbh− dbisopt($opt [, $c_val])
Returns TRUE if the option $opt is set.

$string = $dbh− dbsafestr($string [,$quote_char])
Convert $string to a ‘safer’ version by inserting single or double quotes where appropriate
that it can be passed to the dataserver without syntax errors.

The second argument to dbsafestr() (normally DBSINGLE , DBDOUBLE or DBBOTH)
has been replaced with a literal ’ or " (meaning DBSINGLE or DBDOUBLE , respectively).
Omitting this argument means DBBOTH .

$packet_size = $dbh− dbgetpacket
Returns the TDS packet size currently in use for this $dbh.

TEXT/IMAGE Routines

$status = $dbh− dbwritetext($colname, $dbh_2, $colnum, $text [, $log])
Insert or update data in a TEXT or IMAGE column. The usage is a bit different from that o
C version:
1438 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

y.

y.
The calling sequence is a little different from the C version, and logging is off by default:

$dbh_2 and $colnum are the DBPROCESS and column number of a currently active quer
Example:

 $dbh_2−>dbcmd(’select the_text, t_index from text_table where t_index = 5’
 $dbh_2−>dbsqlexec; $dbh_2−>dbresults;
 @data = $dbh_2−>dbnextrow;

 $d−>dbwritetext ("text_table.the_text", $dbh_2, 1,
"This is text which was added with Sybperl", TRUE);

$status = $dbh− dbpreptext($colname, $dbh_2, $colnum, $size [, $log])
Prepare to insert or update text with dbmoretext() .

The calling sequence is a little different from the C version, and logging is off by default:

$dbh_2 and $colnum are the DBPROCESS and column number of a currently active quer
Example:

 $dbh_2−>dbcmd(’select the_text, t_index from text_table where t_index = 5’
 $dbh_2−>dbsqlexec; $dbh_2−>dbresults;
 @data = $dbh_2−>dbnextrow;

 $size = length($data1) + length($data2);
 $d−>dbpreptext ("text_table.the_text", $dbh_2, 1, $size, TRUE);
 $dbh−>dbsqlok;
 $dbh−>dbresults;
 $dbh−>dbmoretext(length($data1), $data1);
 $dbh−>dbmoretext(length($data2), $data2);

 $dbh−>dbsqlok;
 $dbh−>dbresults;

$status = $dbh− dbmoretext($size, $data)
Sends a chunk of TEXT/IMAGE data to the server. See the example above.

$status = $dbh− dbreadtext($buf, $size)
Read a TEXT/IMAGE data item in $size chunks.

Example:

 $dbh−>dbcmd("select data from text_test where id=1");
 $dbh−>dbsqlexec;
 while($dbh−>dbresults != NO_MORE_RESULTS) {
 my $bytes;
 my $buf = ’’;
 while(($bytes = $dbh−>dbreadtext($buf, 512)) != NO_MORE_ROWS) {

 if($bytes == −1) {
 die "Error!";

 } elsif ($bytes == 0) {
 print "End of row\n";
 } else {
 print "$buf";
 }
 }
 }
18−Oct−1998 Version 5.005_02 1439

sybperl Perl Programmers Reference Guide sybperl

ants

ome
is call
ated,

r each

makes
BCP Routines:
See also the Sybase::BCP module.

BCP_SETL($state)
This is an exported routine (ie it can be called without a $dbh handle) which sets the BCP IN
flag to TRUE/FALSE.

It is necessary to call BCP_SETL(TRUE) before opening the connection with which one w
to run a BCP IN operation.

$state = bcp_getl
Retrieve the current BCP flag status.

$status = $dbh− bcp_init($table, $hfile, $errfile, $direction)
Initialize BCP library. $direction can be DB_OUT or DB_IN

$status = $dbh− bcp_meminit($numcols)
This is a utility function that does not exist in the normal BCP API. It‘s use is to initialize s
internal variables before starting a BCP operation from program variables into a table. Th
avoids setting up translation information for each of the columns of the table being upd
obviating the use of the bcp_colfmt call.

See EXAMPLES, below.

$status = $dbh− bcp_sendrow(LIST)
$status = $dbh− bcp_sendrow(ARRAY_REF)

Sends the data in LIST to the server. The LIST is assumed to contain one element fo
column being updated. To send a NULL value set the appropriate element to the Perl undef
value.

In the second form you pass an array reference instead of passing the LIST, which
processing a little bit faster on wide tables.

$rows = $dbh− bcp_batch
Commit rows to the database. You usually use it like this:

 while(<IN>) {
 chop;

 @data = split(/\|/);
 $d−>bcp_sendrow(\@data); # Pass the array reference

 # Commit data every 100 rows.
 if((++$count % 100) == 0) {

 $d−>bcp_batch;
 }
}

$status = $dbh− bcp_done
$status = $dbh− bcp_control($field, $value)
$status = $dbh− bcp_columns($colcount)
$status = $dbh− bcp_colfmt($host_col, $host_type, $host_prefixlen, $host_collen,

$host_term, $host_termlen, $table_col [, $precision, $scale])
If you have DBlibrary for System 10 or higher, then you can pass the additional $precision
and $scale parameters, and have sybperl call bcp_colfmt_ps() instead of
bcp_colfmt() .

$status = $dbh− bcp_collen($varlen, $table_column)
1440 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

:

return

o

$status = $dbh− bcp_exec
$status = $dbh− bcp_readfmt($filename)
$status = $dbh− bcp_writefmt($filename)

Please see the DB−library documentation for these calls.

DBMONEY Routines:

NOTE: In this version it is possible to avoid calling the routines below and still get DBMONEY
calculations done with the correct precision. See the Sybase::DBlib::Money discussion below.

($status, $sum) = $dbh− dbmny4add($m1, $m2)
$status = $dbh− dbmny4cmp($m1, $m2)
($status, $quotient) = $dbh− dbmny4divide($m1, $m2)
($status, $dest) = $dbh− dbmny4minus($source)
($status, $product) = $dbh− dbmny4mul($m1, $m2)
($status, $difference) = $dbh− dbmny4sub($m1, $m2)
($status, $ret) = $dbh− dbmny4zero
($status, $sum) = $dbh− dbmnyadd($m1, $m2)
$status = $dbh− dbmnycmp($m1, $m2)
($status, $ret) = $dbh− dbmnydec($m1)
($status, $quotient) = $dbh− dbmnydivide($m1, $m2)
($status, $ret, $remainder) = $dbh− dbmnydown($m1, $divisor)
($status, $ret) = $dbh− dbmnyinc($m1)
($status, $ret, $remain) = $dbh− dbmnyinit($m1, $trim)
($status, $ret) = $dbh− dbmnymaxneg
($status, $ret) = $dbh− dbmnymaxpos
($status, $dest) = $dbh− dbmnyminus($source)
($status, $product) = $dbh− dbmnymul($m1, $m2)
($status, $m1, $digits, $remain) = $dbh− dbmnyndigit($m1)
($status, $ret) = $dbh− dbmnyscale($m1, $multiplier, $addend)
($status, $difference) = $dbh− dbmnysub($m1, $m2)
($status, $ret) = $dbh− dbmnyzero

All of these routines correspond to their DB−library counterpart, with the following exception

The routines which in the C version take pointers to arguments (in order to return values)
these values in an array instead:

 status = dbmnyadd(dbproc, m1, m2, &result) becomes
 ($status, $result) = $dbproc−>dbmnyadd($m1, $m2)

RPC Routines:

NOTE: Check out eg/rpc−example.pl for an example on how to use these calls.

$dbh− dbrpcinit($rpcname, $option)
Initialize an RPC call to the remote procedure $rpcname. See the DB−library manual for valid
values for $option.

$dbh− dbrpcparam($parname, $status, $type, $maxlen, $datalen, $value)
Add a parameter to an RPC call initiated with dbrpcinit() . Please see the DB−library
manual page for details & values for the parameters.

NOTE: All floating point types (MONEY, FLOAT, REAL, DECIMAL, etc.) are converted t
FLOAT before being sent to the RPC.

$dbh− dbrpcsend
Execute an RPC initiated with dbrpcinit() .

NOTE: This call executes both dbrpcsend() and dbsqlok() . You can call
$dbh− dbresults direcly after calling $dbh− dbrpcsend.
18−Oct−1998 Version 5.005_02 1441

sybperl Perl Programmers Reference Guide sybperl

 Sybase

und in
r (or

ory

r an

iring
dbrpwset($srvname, $pwd)
Set the password for connecting to a remote server.

dbrpwclr Clear all remote server passwords.

Registered procedure execution:

$status = $dbh− dbreginit($proc_name)
$status = $dbh− dbreglist
$status = $dbh− dbreglist($parname, $type, $datalen, $value)
$status = $dbh− dbregexec($opt)

These routines are used to execute an OpenServer registered procedure. Please the
DBlibrary manual for a description of what these routnines do, and how to call them.

Two Phase Commit Routines:

$dbh = Sybase::DBlib−open_commit($user, $pwd, $server, $appname)
$id = $dbh− start_xact($app_name, $xact_name, $site_count)
$status = $dbh− stat_xact($id)
$status = $dbh− scan_xact($id)
$status = $dbh− commit_xact($id)
$status = $dbh− abort_xact($id)
$dbh− close_commit
$string = Sybase::DBlib::build_xact_string($xact_name, $service_name, $id)
$status = $dbh− remove_xact($id, $site_count)

Please see the Sybase documentation for this.

NOTE: These routines have not been thouroughly tested!

Exported Routines:

$old_handler = dberrhandle($err_handle)
$old_handler = dbmsghandle($msg_handle)

Register an error (or message) handler for DB−library to use. Handler examples can be fo
sybutil.pl in the Sybperl distribution. Returns a reference to the previously defined handle
undef if none were defined). Passing undef as the argument clears the handler.

dbsetifile($filename)
Set the name of the ‘interfaces’ file. This file is normally found by DB−library in the direct
pointed to by the $SYBASE environment variable.

dbrecftos($filename)
Start recording all SQL sent to the server in file $filename.

dbversion
Returns a string identifying the version of DBlibrary that this copy of Sybperl was built with.

DBSETLCHARSET($charset)
DBSETLNATLANG($language)
DBSETLPACKET($packet_size)
$time = DBGETTIME
$time = dbsettime($seconds)
$time = dbsetlogintime($seconds)

These utility routines are probably very seldom used. See the DB−library manual fo
explanation of their use.

dbexit Tell DB−library that we‘re done. Once this call has been made, no further activity requ
DB−library can be performed in the current program.
1442 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

r life as

a LIST
e to an

ack is

ss the
e

that
 the

L
sql

 be
Utility Routines:

These routines are not part of the DB−library API, but have been added because they can make ou
programers easier, and exploit certain strenghts of Perl.

$ret|@ret = $dbh− sql($cmd [, \&rowcallback [, $flag]])
Runs the sql command and returns the result as a reference to an array of the rows. In
context, return the array itself (instead of a reference to the array). Each row is a referenc
array of scalars.

If you provide a second parameter it is taken as a procedure to call for each row. The callb
called with the values of the row as parameters.

If you provide a third parameter, this is used in the call to dbnextrow() to retrieve associative
arrays rather than ‘normal’ arrays for each row, and store them in the returned array. To pa
third parameter without passing the &rowcallback value you should pass the special valu
undef as second parameter:

@rows = $dbh−>sql("select * from sysusers", undef, TRUE);
foreach $row_ref (@rows) {
 if($$row_ref{’uid’} == 10) {

 }
}

See also eg/sql.pl for an example.

Contributed by Gisle Aas.

NOTE: This routine loads all the data into memory. It should not be run with a query
returns a large number of rows. To avoid the risk of overflowing memory, you can limit
number of rows that the query returns by setting the ‘MaxRows’ field of the $dbh attribute
field:

$dbh−>{’MaxRows’} = 100;

This value is not set by default.

@ret = $dbh− nsql($sql [, "ARRAY" | "HASH"]);
An enhanced version of the sql routine, nsql, is also available. The arguments are an SQ
command to be executed, and the $type of the data to be returned. The array returned by n
is one of the following:

 Array of Hash References (if type eq HASH)
 Array of Array References (if type eq ARRAY)
 Simple Array (if type eq ARRAY, and a single column is queried
 Boolean True/False value (if type ne ARRAY or HASH)

Optionally, instead of the words "HASH" or "ARRAY" a reference of the same type can
passed as well. This is, both of the following are equivalent:

 $dbh−>nsql("select col1,col2 from table","HASH");
 $dbh−>nsql("select col1,col2 from table",{});

For example, the following code will return an array of hash references:

 @ret = $dbh−>nsql("select col1,col2 from table","HASH");
 foreach $ret (@ret) {
 print "col1 = ", $ret−>{’col1’}, ", col2 = ", $ret−>{’col2’}, "\n";
 }

The following code will return an array of array references:
18−Oct−1998 Version 5.005_02 1443

sybperl Perl Programmers Reference Guide sybperl

 one

 the

 routines
ell.

 the

se the
have

nection
ection
 @ret = $dbh−>nsql("select col1,col2 from table","ARRAY");
 foreach $ret (@ret) {
 print "col1 = ", $ret−>[0], ", col2 = ", $ret−>[1], "\n";
 }

The following code will return a simple array, since the select statement queries for only
column in the table:

 @ret = $dbh−>nsql("select col1 from table","ARRAY");
 foreach $ret (@ret) {
 print "col1 = $ret\n";
 }

Success of failure of an nsql() call cannot necessarily be judged based on the value of
return code, as an empty array may be a perfectly valid result for certain sql code.

The nsql() routine will maintain the success or failure state in a variable $DB_ERROR,
accessed by the method of the same name, and a pair of Sybase message/error handler
are also provided which will use $DB_ERROR for the Sybase messages and errors as w
However, these must be installed by the client application:

 dbmsghandle("Sybase::DBlib::nsql_message_handler");
 dberrhandle("Sybase::DBlib::nsql_error_handler");

Success of failure of an nsql() call cannot necessarily be judged based on the value of
return code, as an emtpy array may be a perfectly valid result for certain sql code.

The following code is the proper method for handling errors with use of nsql.

 @ret = $dbh−>nsql("select stuff from table where stuff = ’nothing’","ARRA
 if ($dbh−>DB_ERROR()) {
 # error handling code goes here, perhaps:
 die "Unable to get stuff from table:" . $dbh−>DB_ERROR() . "\n";
 }

For compatibility with older release, the error variable $DB_ERROR is still exported, however,
direct use of this variable makes it difficult to pass the Sybase::DBlib object around and u
nsql() method for queries, since the subroutine using the object will not necessarily
$DB_ERROR in its namespace. The method will always be available.

NOTE: This routine was contributed by W. Phillip Moore <wpm@ms.com.

Constants:

Most of the #defines from sybdb.h can be accessed as Sybase::DBlib::NAME (eg
Sybase::DBlib::STDEXIT) Additional constants are:

$Sybase::DBlib::Version
The Sybperl version. Can be interpreted as a string or as a number.

DBLIBVS The version of DBlibrary that sybperl was built against.

Attributes:
The behaviour of certain aspects of the Sybase::CTlib module can be controled via global or con
specific attributes. The global attributes are stored in the %Sybase::DBlib::Att variable, and the conn
specific attributes are stored in the $dbh. To set a global attribute, you would code

 $Sybase::CTlib::Att{’AttributeName’} = value;

and to set a connection specific attribute you would code

 $dbh−>{"AttributeName’} = value;
1444 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

 inside

LL".

al

al

the
NOTE!!! Global attribute setting changes do not affect existing connections, and changing an attribute
a ct_fetch() does not change the behaviour of the data retrieval during that ct_fetch() loop.

The following attributes are currently defined:

dbNullIsUndef
If set, NULL results are returned as the Perl ‘undef’ value, otherwise as the string "NU
Default: set.

dbKeepNumeric
If set, numeric results are not converted to strings before returning the data to Perl. Default: set.

dbBin0x If set, BINARY results are preceeded by ‘0x’ in the result. Default: unset.

useDateTime
Turn the special handling of DATETIME values on. Default: unset. See the section on speci
datatype handling below.

useMoney
Turn the special handling of MONEY values on. Default: unset. See the section on speci
datatype handling below.

Status Variables
These status variables are set by Sybase::DBlib internal routines, and can be accessed using
$dbh− {‘variable‘} syntax.

DBstatus The return status of the last call to dbnextrow.

ComputeID
The compute id of the current returned row. Is 0 if no compute by clause is currently being
processed.

Examples

BCP from program variables
See also Sybase::BCP for a symplified bulk copy API.

 &BCP_SETL(TRUE);
 $dbh = new Sybase::DBlib $User, $Password;
 $dbh−>bcp_init("test.dbo.t2", ’’, ’’, DB_IN);
 $dbh−>bcp_meminit(3); # we wish to copy three columns into

 # the ’t2’ table
 while(<>)
 {

chop;
@dat = split(’ ’, $_);
$dbh−>bcp_sendrow(@dat);

 }
 $ret = $dbh−>bcp_done;

Using the sql() routine
 $dbh = new Sybase::DBlib;
 $ret = $dbh−>sql("select * from sysprocesses");
 foreach (@$ret) # Loop through each row
 {
 @row = @$_;
 # do something with the data row...
 }
18−Oct−1998 Version 5.005_02 1445

sybperl Perl Programmers Reference Guide sybperl

l
r.
 $ret = $dbh−>sql("select * from sysusers", sub { print "@_"; });
 # This will select all the info from sysusers, and print it

Getting SHOWPLAN and STATISTICS information within a script
You can get SHOWPLAN and STATISTICS information when you run a sybperl script. To do so,
you must first turn on the respective options, using dbsetopt() , and then you need a specia
message handler that will filter the SHOWPLAN and/or STATISTICS messages sent from the serve

The following message handler differentiates the SHOWPLAN or STATICSTICS messages from
other messages:

 # Message number 3612−3615 are statistics time / statistics io
 # message. Showplan messages are numbered 6201−6225.
 # (I hope I haven’t forgotten any...)
 @sh_msgs = (3612 .. 3615, 6201 .. 6225);
 @showplan_msg{@sh_msgs} = (1) x scalar(@sh_msgs);

 sub showplan_handler {
my ($db, $message, $state, $severity, $text,
 $server, $procedure, $line) = @_;

 # Don’t display ’informational’ messages:
if ($severity > 10) {
 print STDERR ("Sybase message ", $message, ",
 Severity ", $severity, ", state ", $state);
 print STDERR ("\nServer ‘", $server, "’") if defined ($server);
 print STDERR ("\nProcedure ‘", $procedure, "’")

 if defined ($procedure);
 print STDERR ("\nLine ", $line) if defined ($line);
 print STDERR ("\n ", $text, "\n\n");

 }
 elsif($showplan_msg{$message}) {

This is a HOWPLAN or STATISTICS message, so print it out:
 print STDERR ($text, "\n");

 }
 elsif ($message == 0) {

 print STDERR ($text, "\n");
 }

 0;
 }

This could then be used like this:

 use Sybase::DBlib;
 dbmsghandle(\&showplan_handler);

 $dbh = new Sybase::DBlib ’mpeppler’, $password, ’TROLL’;

 $dbh−>dbsetopt(DBSHOWPLAN);
 $dbh−>dbsetopt(DBSTAT, "IO");
 $dbh−>dbsetopt(DBSTAT, "TIME");

 $dbh−>dbcmd("select * from xrate where date = ’951001’");
 $dbh−>dbsqlexec;
 while($dbh−>dbresults != NO_MORE_RESULTS) {

while(@dat = $dbh−>dbnextrow) {
 print "@dat\n";

 }
1446 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

x). It‘s

 small

for the

le that

ou
l

.
 }

Et voila!

BUGS
The 2PC calls have not been well tested.

Sybase::Sybperl
The Sybase::Sybperl package is designed for backwards compatibility with sybperl 1.0xx (for Perl 4.
main purpose is to allow sybperl 1.0xx scripts to work unchanged with Perl 5 & sybperl 2. Using this API for
new scripts is not recomended, unless portability with older versions of sybperl is essential.

The sybperl 1.0xx man page is included in this package in pod/sybperl−1.0xx.man

Sybase::Sybperl is layered on top of the Sybase::DBlib package, and could therefore suffer a
performance penalty.

Sybase::CTlib
The CT−library module has been written in colaboration with Sybase.

DESCRIPTION

$dbh = new Sybase::CTlib $user [, $passwd [, $server [, $appname[, {attributes}]
$dbh = Sybase::CTlib−ct_connect($user [, $passwd [, $server [,$appname, [{attributes}]]]])

Establishes a connection to the database engine. Initializes and allocates resources
connection, and registers the user name, password, target server and application name.

The attributes hash reference can be used to add private attributes to the connection hand
you can later use, and can also be used to set certain connection properties.

To set the connection properties you pass a special hash in the attributes parameter:

$dbh = new Sybase::CTlib ’user’, ’pwd’, ’SYBASE’, undef,
 { CON_PROPS => { CS_HOSTNAME => ’kiruna’,

 CS_PACKETSIZE => 1024,
 CS_SEC_CHALLENGE => CS_TRUE }

 };

The following connection properties are currently recognized:

CS_HOSTNAME
CS_ANSI_BINDS
CS_CHARSETCNV
CS_PACKETSIZE
CS_SEC_APPDEFINED
CS_SEC_CHALLENGE
CS_SEC_ENCRYPTION
CS_SEC_NEGOTIATE

See the Sybase documentation on how and when to use these connection properties.

$status = $dbh− ct_execute($sql)
Send the SQL commands $sql to the server. Multiple commands are allowed. However, y
must call ct_results() until it returns CS_END_RESULTS or CS_FAIL, or cal
ct_cancel() before submitting a new set of SQL commands to the server.

Return values: CS_SUCCEED, CS_FAIL or CS_CANCELED (the operation was canceled)

NOTE: ct_execute() is equivalent to calling ct_command() followed by ct_send() .
18−Oct−1998 Version 5.005_02 1447

sybperl Perl Programmers Reference Guide sybperl

Client

one:"
rned if

,
on

S,

ement,

ent of
re set:

ary
$status = $dbh− ct_command(type, buffer, len, option)
Append a command to the current SQL command buffer. Please check the Open
documentation for exact usage.

NOTE: You should only need to call ct_command()/ct_send() directly if you want to do
RPCs or cursor operations. For straight queries you should use ct_execute() or ct_sql()
instead.

$status = $dbh− ct_send
Send the current command buffer to the server for execution.

NOTE: You only need to call ct_send() directly if you‘ve used ct_command() to set up
your SQL query.

$status = $dbh− ct_results($res_type)
This routine returns a results type to indicate the status of returned data. "Command D
result type is returned if one result set has been processed. "Row result" token is retu
regular rows are returned. This output is stored in $res_type.

The commonly used values for $res_type are CS_ROW_RESULT, CS_CMD_DONE
CS_CMD_SUCCEED, CS_COMPUTE_RESULT, CS_CMD_FAIL. The full list of values is
page 3−203 OpenClient reference manual.

See also the description of ct_fetchable() below.

The $status value takes the following values: CS_SUCCEED, CS_END_RESULT
CS_FAIL, CS_CANCELED.

@names = $dbh− ct_col_names
Retrieve the column names of the current query. If the current query is not a select stat
then an empty array is returned.

@types = $dbh− ct_col_types([$doAssoc])
Retrieve the column types of the currently executing query. If $doAssoc is non−0, then a hash
(aka associative array) is returned with column names/column type pairs.

@data = $dbh− ct_describe([$doAssoc])
Retrieves the description of each of the output columns of the current result set. Each elem
the returned array is a reference to a hash that describes the column. The following fields a
NAME , TYPE, MAXLENGTH , SCALE, PRECISION, STATUS.

You could use it like this:

 $dbh−>ct_execute("select name, uid from sysusers");
 while(($rc = $dbh−>ct_results($restype)) == CS_SUCCEED) {
 next unless $dbh−>ct_fetchable($restype);

@desc = $dbh−>ct_describe;
print "$desc[0]−>{NAME}\n"; # prints ’name’
print "$desc[0]−>{MAXLENGTH}\n"; # prints 30

....
 }

The STATUS field is a bitmask which can be tested for the following values:
CS_CANBENULL, CS_HIDDEN, CS_IDENTITY, CS_KEY, CS_VERSION_KEY,
CS_TIMESTAMP and CS_UPDATEABLE. See table 3−46 of the Open Client Client Libr
Reference Manual for a description of each of these values.
1448 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

ue

ray (or

 the

cified

ds on
A,

n

l

eters to
or and
ch is
’ and
@data = $dbh− ct_fetch([$doAssoc [, $wantRef]])
Retrieve one row of data. If $doAssoc is non−0, a hash is returned with column name/val
pairs.

If $wantRef is non−0, then a reference to an array (or hash) is returned. This reference points
to a static array (or hash), so to store the returned rows in an array you must copy the ar
hash):

 while($d = $dbh−>ct_fetch(1, 1)) {
 push(@rows, {%$d});
 }

An empty array is returned if there is no data to fetch.

$dbh− ct_cancel($type)
Issue an attention signal to the server about the current transaction. If $type ==
CS_CANCEL_ALL, then cancels the current command immediately. If $type ==
CS_CANCEL_ATTN, then discard all results when next time the application reads from
server.

$old_cb = ct_callback($type, $cb_func)
Install a callback routine. Valid callback types are CS_CLIENTMSG_CB and
CS_SERVERMSG_CB. Returns a reference to the previously installed callback of the spe
type, or undef if no callback of that type exists. Passing undef as $cb_func unsets the callback
for that type.

$res_info = $dbh− ct_res_info($info_type)
Retrieves information on the current result set. The type of information returned depen
$info_type. Currently supported values are: CS_NUM_COMPUTES, CS_NUMDAT
CS_NUMORDERCOLS, CS_ROW_COUNT.

($status, $param) = $dbh− ct_option($action, $option, $param, $type)
This routine will set, retrieve or clear the values of server query−processing options.

Values for $action: CS_SET, CS_GET, CS_CLEAR

Values for $option: see p.3−170 of the OpenClient reference manual

Values for $param: When setting an option, $param can be a integer or a string. Whe
retrieving an option, $param is set and returned. When clearing an option, $param is ignored.

Value for $type: CS_INT_TYPE if $param is of integer type, CS_CHAR_TYPE if $param
is a string

$ret = $dbh− ct_cursor($type, $name, $text, $option)
Initiate a cursor command. Usage is similar to the CTlibrary ct_cursor() call, except that
when in C you would pass NULL as the value for $name or $text you pass the special Per
value undef instead.

See eg/ct_cursor.pl for an example.

$ret = $dbh− ct_param(\%datafmt)
Define a command parameter. The %datafmt hash is used to pass the appropriate param
the call. The following fields are defined: name (parameter name), datatype, status, indicat
value). These fields correspond to the equivalent fields in the CS_DATAFMT structure whi
used in the CTlibrary ct_param call, and includes the two additional parameters ‘value
‘indicator’.

The hash should be used like this:
18−Oct−1998 Version 5.005_02 1449

sybperl Perl Programmers Reference Guide sybperl

ee

 on

 to

ual for
 %param = (name => ’@acc’, datatype => CS_CHAR_TYPE,
 status => CS_INPUTVALUE, value => ’CIS 98941’,

 indicator => CS_UNUSED);

 $dbh−>ct_param(\%param);

Note that ct_param() converts all parameter types to either CS_CHAR_TYPE,
CS_FLOAT_TYPE, CS_DATETIME_TYPE, CS_MONEY_TYPE or CS_INT_TYPE.

See eg/ct_param.pl for an example.

$dbh2 = $dbh− ct_cmd_alloc
Allocate a new CS_COMMAND structure. The new $dbh2 shares the CS_CONNECTION with
the original $dbh, so this is really only usefull for interleaving cursor operations (s
ct_cursor() above, and the section on cursors in Chapter 2 of the Open Client
Client−Library/C Reference manual.

The two handles also share attributes, so setting $dbh− {UseDataTime} (for example) will also
set $dbh2− {UseDateTime}.

$rc = $dbh− ct_cmd_realloc
Drops the current CS_COMMAND structure, and reallocs a new one. Returns CS_SUCCEED
successfull completion.

$ret = ct_config($action, $property, $value, $type)
Calls ct_config() to change some basic parameter, like the interfaces file location.

$action can be CS_SET or CS_GET.

$property is one of the properties that is settable via ct_config() (see your OpenClient
man page on ct_config() for a complete list).

$value is the input value if $action is CS_GET, and the output value if $action is
CS_GET.

$type is the data type of the property that is being set or retrieved. It defaults
CS_CHAR_TYPE, but should be set to CS_INT_TYPE if an integer value (such CS_NETIO
is being set or retrieved).

$ret is the return status of the ct_config() call.

Example:

$ret = ct_config(CS_SET, CS_IFILE, "/home/mpeppler/foo", CS_CHAR_TYPE
print "$ret\n";

$ret = ct_config(CS_GET, CS_IFILE, $out, CS_CHAR_TYPE);
print "$ret − $out\n"; #prints 1 − /home/mpeppler/foo

$ret = cs_dt_info($action, $type, $item, $buf)
cs_dt_info() allows you to set the default conversion modes for DATETIME values, and
lets you query the locale database for names for dateparts.

To set the default conversion you call cs_dt_info() with a $type parameter of
CS_DT_CONVFMT, and pass the conversion style you want as a string:

cs_dt_info(CS_SET, CS_DT_CONVFMT, CS_UNUSED, "CS_DATES_LONG");

See Table 2−26 in the Open Client and Open Server Common Libraries Reference Man
details of other formats that are available.

You can query a datepart name by doing something like:

cs_dt_info(CS_GET, CS_MONTH, 3, $buf);
1450 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

er

row is a
o each

ray

ack is

ch as:

come

o

print "$buf\n"; # Prints ’April’ in the default locale

Again see the entry for cs_dt_info() in Chapter 2 of the Open Client and Open Serv
Common Libraries Reference Manual for details.

$ret|@ret = $dbh− ct_sql($cmd [, \&rowcallback [, $doAssoc]])
Runs the sql command and returns the result as a reference to an array of the rows. Each
reference to an array of scalars. In a LIST context, ct_sql returns an array of references t
row.

If the $doAssoc parameter is CS_TRUE, then each row is a reference to an associative ar
(keyed on the column names) rather than a normal array (see ct_fetch() , above).

If you provide a second parameter it is taken as a procedure to call for each row. The callb
called with the values of the row as parameters.

This routine is very usefull to send SQL commands to the server that do not return rows, su

 $dbh−>ct_sql("use BugTrack");

Examples can be found in eg/ct_sql.pl.

NOTE: This routine loads all the data into memory. Memory consumption can therefore be
quite important for a query that returns a large number of rows, unless the MaxRows attribute
has been set.

Two additional attributes are set after calling ct_sql() : ROW_COUNT holds the number of
rows affected by the command, and RC holds the return code of the last call t
ct_execute() .

$ret = $dbh− ct_fetchable($restype)
Returns TRUE if the current result set has fetchable rows. Use like this:

 $dbh−>ct_execute("select * from sysprocesses");
 while($dbh−>ct_results($restype) == CS_SUCCEED) {
 next if(!$dbh−>ct_fetchable($restype));

while(@dat = $dbh−>ct_fetch) {
 print "@dat\n";
}

 }

EXAMPLES
 #!/usr/local/bin/perl

 use Sybase::CTlib;

 ct_callback(CS_CLIENTMSG_CB, \&msg_cb);
 ct_callback(CS_SERVERMSG_CB, "srv_cb");
 $uid = ’mpeppler’; $pwd = ’my−secret−password’; $srv = ’TROLL’;

 $X = Sybase::CTlib−>ct_connect($uid, $pwd, $srv);

 $X−>ct_execute("select * from sysusers");

 while(($rc = $X−>ct_results($restype)) == CS_SUCCEED) {
next if($restype == CS_CMD_DONE || $restype == CS_CMD_FAIL ||
 $restype == CS_CMD_SUCCEED);
if(@names = $X−>ct_col_names()) {
 print "@names\n";
}
if(@types = $X−>ct_col_types()) {
18−Oct−1998 Version 5.005_02 1451

sybperl Perl Programmers Reference Guide sybperl

nection
ection

 inside
 print "@types\n";
}
while(@dat = $X−>ct_fetch) {
 print "@dat\n";
}

 }

 print "End of Results Sets\n" if($rc == CS_END_RESULTS);
 print "Error!\n" if($rc == CS_FAIL);

 sub msg_cb {
 my($layer, $origin, $severity, $number, $msg, $osmsg, $dbh) = @_;

printf STDERR "\nOpen Client Message: (In msg_cb)\n";
printf STDERR "Message number: LAYER = (%ld) ORIGIN = (%ld) ",

 $layer, $origin;
printf STDERR "SEVERITY = (%ld) NUMBER = (%ld)\n",
 $severity, $number;
printf STDERR "Message String: %s\n", $msg;
if (defined($osmsg)) {
 printf STDERR "Operating System Error: %s\n", $osmsg;
}
CS_SUCCEED;

 }

 sub srv_cb {
 my($dbh, $number, $severity, $state, $line, $server,

 $proc, $msg) = @_;

 # If $dbh is defined, then you can set or check attributes
 # in the callback, which can be tested in the main body
 # of the code.

printf STDERR "\nServer message: (In srv_cb)\n";
printf STDERR "Message number: %ld, Severity %ld, ",
 $number, $severity;

 printf STDERR "State %ld, Line %ld\n", $state, $line;

if (defined($server)) {
 printf STDERR "Server ’%s’\n", $server;
}

if (defined($proc)) {
 printf STDERR " Procedure ’%s’\n", $proc;
}

printf STDERR "Message String: %s\n", $msg; CS_SUCCEED;
 }

ATTRIBUTES
The behaviour of certain aspects of the Sybase::CTlib module can be controled via global or con
specific attributes. The global attributes are stored in the %Sybase::CTlib::Att variable, and the conn
specific attributes are stored in the $dbh. To set a global attribute, you would code

 $Sybase::CTlib::Att{’AttributeName’} = value;

and to set a connection specific attribute you would code

 $dbh−>{"AttributeName’} = value;

NOTE!!! Global attribute setting changes do not affect existing connections, and changing an attribute
1452 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

ing

h the
a ct_fetch() does not change the behaviour of the data retrieval during that ct_fetch() loop.

The following attributes are currently defined:

UseDateTime
If TRUE, then keep DATETIME data retrieved via ct_fetch() in native format instead of
converting the data to a character string. Default: FALSE.

UseMoney
If TRUE, keep MONEY data retrieved via ct_fetch() in native format instead of converting
the data to double precision floating point. Default: FALSE.

UseNumeric
If TRUE, keep NUMERIC or DECIMAL data retrieved via ct_fetch() in native format,
instead of converting to double precision floating point. Default: FALSE.

MaxRows
If non−0, limit the number of data rows that can be retrieve via ct_sql() . Default: 0.

Common Sybase::DBlib and Sybase::CTlib routines

$module_name::debug($bitmask)
Turns the debugging trace on or off. The $module_name should be one of Sybase::DBlib or
Sybase::CTlib. The value of $bitmask determines which features are going to be traced. The follow
trace bits are currently recognized:

 TRACE_CREATE
Trace all CTlib and/or DBlib object creations.

 TRACE_DESTROY
Trace all calls to DESTROY.

 TRACE_SQL
Traces all SQL language commands − (ie calls to dbcmd() , ct_execute() or ct_command() .)

 TRACE_RESULTS
Traces calls to dbresults()/ct_results() .

 TRACE_FETCH
Traces calls to dbnextrow()/ct_fetch() , and traces the values that are pushed on the stack.

 TRACE_CUSROR
Trace calls to ct_cursor() (not available in Sybase::DBlib).

 TRACE_PARAMS
Trace calls to ct_param() (not implemented in Sybase::DBlib).

 TRACE_OVERLOAD
Trace all overloaded operations involving DateTime, Money or Numeric datatypes.

Two special trace flags are TRACE_NONE, which turns off debug tracing, and TRACE_ALL which (you
guessed it!) turns everything on.

The traces are pretty obscure, but they can be useful when trying to find out what is really going on inside
the program.

For the TRACE_* flags to be available in your scripts, you must load the Sybase::??lib module wit
following syntax:

 use Sybase::CTlib qw(:DEFAULT /TRACE/);
18−Oct−1998 Version 5.005_02 1453

sybperl Perl Programmers Reference Guide sybperl

e and

hat

, and in

g
ored as

::CTlib:

 are
This tells the autoloading mechanism to import all the default symbols, plus all the trace symbols.

Special handling of DATETIME, MONEY & NUMERIC/DECIMAL values
NOTE: This feature is turned off by default for performance reasons. You can turn it on per datatyp
dbh, or via the module attribute hash (%Sybase::DBlib::Att and %Sybase::CTlib::Att).

The Sybase::CTlib and Sybase::DBlib modules include special features to handle DATETIME , MONEY ,
and NUMERIC/DECIMAL (CTlib only) values in their native formats correctly. What this means is t
when you retrieve a date using ct_fetch() or dbnextrow() it is not converted to a string, but kept in
the internal format used by the Sybase libraries. You can then manipulate this date as you see fit
particular ‘crack’ the date into it‘s components.

The same is true for MONEY (and for CTlib NUMERIC values), which otherwise are converted to floatin
point values, and hence are subject to loss of precision in certain situations. Here they are st
MONEY values, and by using operator overloading we can give you intuitive access to the
cs_calc()/dbmnyxxx() routines.

This feature has been implemented by creating new classes in both Sybase::DBlib and Sybase
Sybase::DBlib::DateTime, Sybase::DBlib::Money, Sybase::CTlib::DateTime, Sybase::CTlib::Money
and Sybase::CTlib::Numeric (hereafter referred to as DateTime, Money and Numeric). All the examples
below use the CTlib module. The syntax is identical for the DBlib module, except that the Numeric class
does not exist.

To create data items of these types you call:

 $dbh = new Sybase::CTlib user, password;
 ... # code deleted
 # Create a new DateTime object, and initialize to Jan 1, 1995:
 $date = $dbh−>newdate(’Jan 1 1995’);

 # Create a new Money object
 $mny = $dbh−>newmoney; # Default value is 0

 # Create a new Numeric object
 $num = $dbh−>newnumeric(11.111);

The DateTime class defines the following methods:

$date− str
Convert to string (calls cs_convert()/dbconvert()).

@arr = $date− crack
‘Crack’ the date into its components.

$date− cmp($date2)
Compare $date with $date2.

$date2 = $date− calc($days, $msecs)
Add or substract $days and $msecs from $date, and returns the new date.

($days, $msecs) = $date− diff($date2)
Compute the difference, in $days and $msecs between $date and $date2.

$val = $date− info($datepart)
Calls cs_dt_info to return the string representation for a datepart. Valid dateparts
CS_MONTH, CS_SHORTMONTH and CS_DAYNAME.

NOTE: Not implemented in DBlib.
1454 Version 5.005_02 18−Oct−1998

sybperl Perl Programmers Reference Guide sybperl

et.

In
$time = $date− mktime
$time = $date− timelocal
$time = $date− timegm

Converts a Sybase DATETIME value to a Unix time_t value. The mktime and timelocal
methods assumes the date is stored in local time, timegm assumes GMT. The mktime method
uses the POSIX module (note that unavailability of the POSIX module is not a fatal error.)

Both the str and the cmp methods will be called transparently when they are needed, so that

 print "$date"

will print the date string correctly, and

 $date1 cmp $date2

will do a comparison of the two dates, not the two strings.

crack executes cs_dt_crack()/dbdatecrack() on the date value, and returns the following list:

 ($year, $month, $month_day, $year_day, $week_day, $hour,
$minute, $second, $millisecond, $time_zone) = $date−>crack;

Compare this with the value returned by the standard Perl function localtime() :

 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 localtime(time);

In addition, the values returned for the week_day can change depending on the locale that has been s

Please see the discussion on cs_dt_crack() or dbdatecrack() in the Open Client / Open Server
Common Libraries Reference Manual, chap. 2.

The Money and Numeric classes define these methods

$mny−str Convert to string (calls cs_convert()/dbconvert()).

$mny−num
Convert to a floating point number (calls cs_convert()/dbconvert()).

$mny−cmp($mny2)
Compare two Money or Numeric values.

$mny−set($number)
Set the value of $mny to $number.

$mny−calc($mny2, $op)
Perform the calculation specified by $op on $mny and $mny2. $op is one of ‘+‘, ‘−‘, ‘*’ or
‘/’.

As with the DateTime class, the str and cmp methods will be called automatically for you when required.
addition, you can perform normal arithmetic on Money or Numeric datatypes without calling the calc
method explicitly.

CAVEAT! You must call the set method to assign a value to a Money/Numeric data item. If you use

 $mny = 4.05

then $mny will loose its special Money or Numeric behavior and become a normal Perl data item.

When a new Numeric data item is created, the SCALE and PRECISION values are determined by the
initialization. If the data item is created as part of a SELECT statement, then the SCALE and PRECISION
values will be those of the retrieved item. If the item is created via the newnumeric method (either explicitly
or implicitly) the SCALE and PRECISION are deduced from the initializing value. For example, $num =
$dbh− newnumeric(11.111) will produce an item with a SCALE of 3 and a PRECISION of 5. This is totally
18−Oct−1998 Version 5.005_02 1455

sybperl Perl Programmers Reference Guide sybperl
transparent to the user.

ACKNOWLEDGEMENTS
Larry Wall − for Perl :−)

Tim Bunce & Andreas Koenig − for all the work on MakeMaker

AUTHORS
Michael Peppler <mpeppler@mbay.net>

Dave Bowen & Amy Lin for help with Sybase::CTlib.

Jeffrey Wong for the Sybase::DBlib DBMONEY routines.

Numerous folks have contributed ideas and bug fixes for which they have my undying thanks :−)

The sybperl mailing list <sybperl−l@trln.lib.unc.edu> is the best place to ask questions.
1456 Version 5.005_02 18−Oct−1998

Table of Contents Perl Programmers Reference Guide Table of Contents

4

TABLE OF CONTENTS

Installing Perl 3
INSTALL 3

The Perl FAQ (Frequently Asked Questions) 2
perlfaq 24
perlfaq1 26
perlfaq2 30
perlfaq3 37
perlfaq4 45
perlfaq5 64
perlfaq6 79
perlfaq7 88
perlfaq8 100
perlfaq9 114

The Core Perl Manual 122
perl 122
perl5004delta 127
perldata 147
perlsyn 155
perlop 164
perlre 187
perlrun 200
perlfunc 209
perlvar 269
perlsub 280
perlmod 296
perlref 302
perldsc 311
perllol 324
perlobj 329
perltie 336
perlbot 349
perldebug 357
perldiag 378
perlform 418
perlipc 423
perlsec 444
perltrap 449
perlstyle 468
perlxs 471
perlxstut 490
perlguts 500
perlcall 543
perlembed 569
perlpod 584
perlbook 588
perlapio 589
perldelta 593
perllocale 605
perlmodinstall 618
perlmodlib 623
18−Oct−1998 Version 5.005_02 1457

Table of Contents Perl Programmers Reference Guide Table of Contents
perlport 635
perltoot 653
perlhist 678

Core Modules 687
AnyDBM_File 687
AutoLoader 688
AutoSplit 691
The Perl Compiler 693

B 693
O 699
Asmdata 700
Bblock 701
Bytecode 702
C 704
CC 706
Debug 709
Deparse 710
Disassembler 712
Lint 713
Showlex 715
Stackobj 716
Terse 717
Xref 718

Benchmark 719
CGI Modules 722

CGI 722
Apache 758
Carp 759
Cookie 762
Fast 765
Push 767
Switch 770

The CPAN Module 771
CPAN 771
FirstTime 778
Nox 779

Carp 780
Struct 781
Config 785
Cwd 840
Dumper 841
SelfStubber 847
DirHandle 848
DynaLoader 849
English 854
Env 855
Errno 856
Exporter 857
ExtUtils Modules 860

Command 860
Embed 861
Install 864
1458 Version 5.005_02 18−Oct−1998

Table of Contents Perl Programmers Reference Guide Table of Contents
Installed 865
Liblist 867
MM_OS2 870
MM_Unix 871
MM_VMS 877
MM_Win32 881
MakeMaker 883
Manifest 897
Mkbootstrap 899
Mksymlists 900
Packlist 902
testlib 904
xsubpp 905

Fatal 906
Fcntl 907
File Modules 908

Basename 908
CheckTree 910
Compare 911
Copy 912
DosGlob 914
Find 916
Path 918
stat 919

File::Spec Modules 920
Spec 920
Mac 921
OS2 923
Unix 924
VMS 925
Win32 926

FileCache 927
FileHandle 928
FindBin 931
Getopt Modules 932

Long 932
Std 939

Collate 940
IO Modules 941

IO 941
File 942
Handle 944
Pipe 947
Seekable 949
Select 950
Socket 952

IPC Modules 955
Msg 955
Open2 957
Open3 958
Semaphore 959
SysV 961
18−Oct−1998 Version 5.005_02 1459

Table of Contents Perl Programmers Reference Guide Table of Contents
Math Modules 962
BigFloat 962
BigInt 963
Complex 965
Trig 971

NDBM_File 975
Net Modules 976

Ping 976
hostent 978
netent 980
protoent 982
servent 983

ODBM_File 984
Opcode 985
POSIX 992
SDBM_File 1009
Safe 1010
Dict 1014
SelectSaver 1015
SelfLoader 1016
Shell 1019
Socket 1020
Symbol 1023
Sys Modules 1024

Hostname 1024
Syslog 1025

Term Modules 1027
Cap 1027
Complete 1029
ReadLine 1030

Test Module 1032
Test 1032
Harness 1034

Text Modules 1036
Abbrev 1036
ParseWords 1037
Soundex 1039
Tabs 1040
Wrap 1041

Tie Modules 1042
Array 1042
Handle 1044
Hash 1045
RefHash 1047
Scalar 1048
SubstrHash 1049

Time Modules 1050
Local 1050
gmtime 1051
localtime 1052
tm 1053

UNIVERSAL 1054
1460 Version 5.005_02 18−Oct−1998

Table of Contents Perl Programmers Reference Guide Table of Contents
User Modules 1055
grent 1055
pwent 1056

autouse 1057
blib 1058
constant 1059
diagnostics 1061
fields 1064
integer 1065
less 1066
lib 1067
locale 1068
overload 1069
re 1083
sigtrap 1084
strict 1086
subs 1087
vars 1088

POD Translators 1089
pod2man 1089
pod2html 1092

Porting Information 1094
patching 1094
pumpkin 1098

Perl Utilities 1115
c2ph 1115
h2ph 1118
h2xs 1120
perlbug 1123
perlcc 1126
perldoc 1129
pl2pm 1131
pstruct 1132
splain 1135
a2p 1138

Documentation files for various platforms 1140
Win32 Docs 1140

README 1140
perlglob 1148
pl2bat 1149
runperl 1151

Amiga Docs 1152
README 1152

VMS Docs 1155
perlvms 1155
Filespec 1165
XSSymSet 1167
vmsish 1169
DCLsym 1170
Stdio 1172

DOS README 1175
README 1175
18−Oct−1998 Version 5.005_02 1461

Table of Contents Perl Programmers Reference Guide Table of Contents

8

OS/2 Docs 1179
README 1179
ExtAttr 1196
PrfDB 1197
Process 1199
REXX 1202

Plan9 Docs 1205
perlplan9 1205

Other Core distributed files 1207
bytecode 1207
configpm 1208
installhtml 1211
makeaperl 1213
minimod 1214
README 1215

Popular Modules (Win32, libwww, DBD, Sybase) 121
libwww (V5.40_01) Modules 1218

lwpcook 1218
RobotUA 1222
MediaTypes 1224
MemberMixin 1226
Simple 1227
Debug 1229
UserAgent 1230
Util 1234
Daemon 1236
Status 1239
Message 1241
Cookies 1243
Headers 1246
Common 1250
Request 1253
Response 1254
Negotiate 1256
Date 1259
LWP 1261
RobotRules 1262
AnyDBM_File 1264
Listing 1265
LWP 1266

Win32 (V0.13) Modules 1273
ChangeNotify 1273
Event 1275
File 1276
FileSecurity 1277
Install 1280
IPC 1281
Mutex 1283
NetAdmin 1284
NetResource 1287
Const 1290
Enum 1292
1462 Version 5.005_02 18−Oct−1998

Table of Contents Perl Programmers Reference Guide Table of Contents
NLS 1293
OLE 1300
Variant 1309
PerfLib 1312
Process 1315
Semaphore 1317
Service 1318
TieRegistry 1319

The DBD (V1.02) Module 1342
DBI 1342
W32ODBC 1373
Shell 1374
FAQ 1377
ProxyServer 1388
Format 1392
DBD 1394
Proxy 1414
Sybase 1416
mysql 1420
mSQL 1427

The Sybperl (V2.09_05) Module 1434
sybperl 1434

Table of Contents 1457
18−Oct−1998 Version 5.005_02 1463

	Installing Perl
	INSTALL
	NAME
	SYNOPSIS
	DESCRIPTION
	WARNING: This version is not binary compatible with Perl 5.004.
	Space Requirements
	Start with a Fresh Distribution
	Run Configure
	GNU-style configure
	Extensions
	Including locally-installed libraries
	Examples
	gdbm in /usr/local
	gdbm in /usr/you

	Installation Directories
	Changing the installation directory
	Creating an installable tar archive
	Site-wide Policy settings
	Configure-time Options
	Threads
	Selecting File IO mechanisms
	1.
	2.

	Building a shared libperl.so Perl library
	Malloc Issues
	Malloc Performance Flags
	-DNO_FANCY_MALLOC
	-DPLAIN_MALLOC

	Building a debugging perl
	Other Compiler Flags
	What if it doesn`t work?
	Running Configure Interactively
	Hint files
	** WHOA THERE!!! ***
	Changing Compilers
	Propagating your changes to config.sh
	config.over
	config.h
	cflags
	No sh
	Porting information

	make depend
	make
	hints
	extensions
	locale
	malloc duplicates
	varargs
	util.c
	Solaris and SunOS dynamic loading
	ld.so.1: ./perl: fatal: relocation error:
	LD_LIBRARY_PATH
	dlopen: stub interception failed
	nm extraction
	umask not found
	vsprintf
	do_aspawn
	__inet_* errors
	Optimizer
	CRIPPLED_CC
	Missing functions
	toke.c
	Missing dbmclose
	Note (probably harmless): No library found for -lsomething
	sh: ar: not found
	db-recno failure on tests 51, 53 and 55
	Bad arg length for semctl, is XX, should be ZZZ
	lib/ipc_sysv........semget: No space left on device
	Miscellaneous

	make test
	What if make test doesn`t work?
	locale
	Out of memory

	make install
	Installing perl under different names
	Installed files

	Coexistence with earlier versions of perl5
	Maintaining completely separate versions
	Upgrading from 5.004 to 5.005

	Coexistence with perl4
	cd /usr/include; h2ph *.h sys/*.h
	installhtml ‘help
	cd pod �&&� make tex �&&� (process the latex files)
	Reporting Problems
	DOCUMENTATION
	AUTHOR
	REDISTRIBUTION
	LAST MODIFIED

	The Perl FAQ (Frequently Asked Questions)
	perlfaq
	NAME
	DESCRIPTION
	perlfaq: Structural overview of the FAQ.
	perlfaq1: General Questions About Perl
	perlfaq2: Obtaining and Learning about Perl
	perlfaq3: Programming Tools
	perlfaq4: Data Manipulation
	perlfaq5: Files and Formats
	perlfaq6: Regexps
	perlfaq7: General Perl Language Issues
	perlfaq8: System Interaction
	perlfaq9: Networking
	Where to get this document
	How to contribute to this document
	What will happen if you mail your Perl programming problems to the authors

	Credits
	Author and Copyright Information
	Bundled Distributions
	Disclaimer

	Changes
	22/June/98
	24/April/97
	23/April/97
	25/March/97
	18/March/97
	17/March/97 Version
	Initial Release: 11/March/97

	perlfaq1
	NAME
	DESCRIPTION
	What is Perl?
	Who supports Perl? Who develops it? Why is it free?
	Which version of Perl should I use?
	What are perl4 and perl5?
	How stable is Perl?
	Is Perl difficult to learn?
	How does Perl compare with other languages like Java, Python, REXX, Scheme, or Tcl?
	Can I do [task] in Perl?
	When shouldn`t I program in Perl?
	What`s the difference between "perl" and "Perl"?
	Is it a Perl program or a Perl script?
	What is a JAPH?
	Where can I get a list of Larry Wall witticisms?
	How can I convince my sysadmin/supervisor/employees to use version (5/5.005/Perl instead of some other language)?

	AUTHOR AND COPYRIGHT

	perlfaq2
	NAME
	DESCRIPTION
	What machines support Perl? Where do I get it?
	How can I get a binary version of Perl?
	I don`t have a C compiler on my system. How can I compile perl?
	I copied the Perl binary from one machine to another, but scripts don`t work.
	I grabbed the sources and tried to compile but gdbm/dynamic loading/malloc/linking/... failed. How do I make it work?
	What modules and extensions are available for Perl? What is CPAN? What does CPAN/src/... mean?
	Is there an ISO or ANSI certified version of Perl?
	Where can I get information on Perl?
	What are the Perl newsgroups on USENET? Where do I post questions?
	Where should I post source code?
	Perl Books
	References
	Tutorials
	Task-Oriented
	Special Topics

	Perl in Magazines
	Perl on the Net: FTP and WWW Access
	What mailing lists are there for perl?
	MacPerl
	Perl5-Porters
	NTPerl
	Perl-Packrats

	Archives of comp.lang.perl.misc
	Where can I buy a commercial version of Perl?
	Where do I send bug reports?
	What is perl.com? perl.org? The Perl Institute?
	How do I learn about object-oriented Perl programming?

	AUTHOR AND COPYRIGHT

	perlfaq3
	NAME
	DESCRIPTION
	How do I do (anything)?
	How can I use Perl interactively?
	Is there a Perl shell?
	How do I debug my Perl programs?
	How do I profile my Perl programs?
	How do I cross-reference my Perl programs?
	Is there a pretty-printer (formatter) for Perl?
	Is there a ctags for Perl?
	Where can I get Perl macros for vi?
	Where can I get perl-mode for emacs?
	How can I use curses with Perl?
	How can I use X or Tk with Perl?
	How can I generate simple menus without using CGI or Tk?
	What is undump?
	How can I make my Perl program run faster?
	How can I make my Perl program take less memory?
	Is it unsafe to return a pointer to local data?
	How can I free an array or hash so my program shrinks?
	How can I make my CGI script more efficient?
	How can I hide the source for my Perl program?
	How can I compile my Perl program into byte code or C?
	How can I get �#!perl� to work on [MS-DOS,NT,...]?
	Can I write useful perl programs on the command line?
	Why don`t perl one-liners work on my DOS/Mac/VMS system?
	Where can I learn about CGI or Web programming in Perl?
	Where can I learn about object-oriented Perl programming?
	Where can I learn about linking C with Perl? [h2xs, xsubpp]
	I`ve read perlembed, perlguts, etc., but I can`t embed perl in
	When I tried to run my script, I got this message. What does it
	What`s MakeMaker?

	AUTHOR AND COPYRIGHT

	perlfaq4
	NAME
	DESCRIPTION
	Data: Numbers
	Why am I getting long decimals (eg, 19.9499999999999) instead of the numbers I should be getting (eg, 19.95)?
	Why isn`t my octal data interpreted correctly?
	Does perl have a round function? What about �ceil()� and �floor()�? Trig functions?
	How do I convert bits into ints?
	How do I multiply matrices?
	How do I perform an operation on a series of integers?
	How can I output Roman numerals?
	Why aren`t my random numbers random?

	Data: Dates
	How do I find the week-of-the-year/day-of-the-year?
	How can I compare two dates and find the difference?
	How can I take a string and turn it into epoch seconds?
	How can I find the Julian Day?
	Does Perl have a year 2000 problem? Is Perl Y2K compliant?

	Data: Strings
	How do I validate input?
	How do I unescape a string?
	How do I remove consecutive pairs of characters?
	How do I expand function calls in a string?
	How do I find matching/nesting anything?
	How do I reverse a string?
	How do I expand tabs in a string?
	How do I reformat a paragraph?
	How can I access/change the first N letters of a string?
	How do I change the Nth occurrence of something?
	How can I count the number of occurrences of a substring within a string?
	How do I capitalize all the words on one line?
	How can I split a [character] delimited string except when inside
	How do I strip blank space from the beginning/end of a string?
	How do I extract selected columns from a string?
	How do I find the soundex value of a string?
	How can I expand variables in text strings?
	What`s wrong with always quoting "�$vars"?�
	Why don`t my <<HERE documents work?
	1. There must be no space after the << part.
	2. There (probably) should be a semicolon at the end.
	3. You can`t (easily) have any space in front of the tag.

	Data: Arrays
	What is the difference between �$array[1]� and @array[1]?
	How can I extract just the unique elements of an array?
	a) If @in is sorted, and you want @out to be sorted:
	b) If you don`t know whether @in is sorted:
	c) Like (b), but @in contains only small integers:
	d) A way to do (b) without any loops or greps:
	e) Like (d), but @in contains only small positive integers:

	How can I tell whether a list or array contains a certain element?
	How do I compute the difference of two arrays? How do I compute the intersection of two arrays?
	How do I find the first array element for which a condition is true?
	How do I handle linked lists?
	How do I handle circular lists?
	How do I shuffle an array randomly?
	How do I process/modify each element of an array?
	How do I select a random element from an array?
	How do I permute N elements of a list?
	How do I sort an array by (anything)?
	How do I manipulate arrays of bits?
	Why does �defined()� return true on empty arrays and hashes?

	Data: Hashes (Associative Arrays)
	How do I process an entire hash?
	What happens if I add or remove keys from a hash while iterating over it?
	How do I look up a hash element by value?
	How can I know how many entries are in a hash?
	How do I sort a hash (optionally by value instead of key)?
	How can I always keep my hash sorted?
	What`s the difference between "delete" and "undef" with hashes?
	Why don`t my tied hashes make the defined/exists distinction?
	How do I reset an �each()� operation part-way through?
	How can I get the unique keys from two hashes?
	How can I store a multidimensional array in a DBM file?
	How can I make my hash remember the order I put elements into it?
	Why does passing a subroutine an undefined element in a hash create it?
	How can I make the Perl equivalent of a C structure/C++ class/hash or array of hashes or arrays?
	How can I use a reference as a hash key?

	Data: Misc
	How do I handle binary data correctly?
	How do I determine whether a scalar is a number/whole/integer/float?
	How do I keep persistent data across program calls?
	How do I print out or copy a recursive data structure?
	How do I define methods for every class/object?
	How do I verify a credit card checksum?

	AUTHOR AND COPYRIGHT

	perlfaq5
	NAME
	DESCRIPTION
	How do I flush/unbuffer an output filehandle? Why must I do this?
	
	How do I count the number of lines in a file?
	How do I make a temporary file name?
	How can I manipulate fixed-record-length files?
	
	How can I use a filehandle indirectly?
	How can I set up a footer format to be used with �write()�?
	How can I �write()� into a string?
	How can I output my numbers with commas added?
	How can I translate tildes (~) in a filename?
	How come when I open a file read-write it wipes it out?
	Why do I sometimes get an "Argument list too long" when I use <*�?
	Is there a leak/bug in �glob()�?
	How can I open a file with a leading ">" or trailing blanks?
	How can I reliably rename a file?
	How can I lock a file?
	1
	2
	3

	What can`t I just open(FH, "�file.lock")?
	I still don`t get locking. I just want to increment the number in the file. How can I do this?
	How do I randomly update a binary file?
	How do I get a file`s timestamp in perl?
	How do I set a file`s timestamp in perl?
	How do I print to more than one file at once?
	How can I read in a file by paragraphs?
	How can I read a single character from a file? From the keyboard?
	How can I tell if there`s a character waiting on a filehandle?
	How do I do a �tail -f� in perl?
	How do I �dup()� a filehandle in Perl?
	How do I close a file descriptor by number?
	Why can`t I use "C:\temp\foo" in DOS paths? What doesn`t `C:\temp\foo.exe` work?
	Why doesn`t glob("*.*") get all the files?
	Why does Perl let me delete read-only files? Why does �-i� clobber protected files? Isn`t this a bug in Perl?
	How do I select a random line from a file?

	AUTHOR AND COPYRIGHT

	perlfaq6
	NAME
	DESCRIPTION
	How can I hope to use regular expressions without creating illegible and unmaintainable code?
	Comments Outside the Regexp
	Comments Inside the Regexp
	Different Delimiters

	I`m having trouble matching over more than one line. What`s wrong?
	How can I pull out lines between two patterns that are themselves on different lines?
	I put a regular expression into �$/� but it didn`t work. What`s wrong?
	How do I substitute case insensitively on the LHS, but preserving case on the RHS?
	How can I make �\w� match national character sets?
	How can I match a locale-smart version of �/[a-zA-Z]/�?
	How can I quote a variable to use in a regexp?
	What is �/o� really for?
	How do I use a regular expression to strip C style comments from a file?
	Can I use Perl regular expressions to match balanced text?
	What does it mean that regexps are greedy? How can I get around it?
	How do I process each word on each line?
	How can I print out a word-frequency or line-frequency summary?
	How can I do approximate matching?
	How do I efficiently match many regular expressions at once?
	Why don`t word-boundary searches with �\b� work for me?
	Why does using �$&,� �$`,� or �$'� slow my program down?
	What good is �\G� in a regular expression?
	Are Perl regexps DFAs or NFAs? Are they POSIX compliant?
	What`s wrong with using grep or map in a void context?
	How can I match strings with multibyte characters?

	AUTHOR AND COPYRIGHT

	perlfaq7
	NAME
	DESCRIPTION
	Can I get a BNF/yacc/RE for the Perl language?
	What are all these �$@%*� punctuation signs, and how do I know when to use them?
	Do I always/never have to quote my strings or use semicolons and commas?
	How do I skip some return values?
	How do I temporarily block warnings?
	What`s an extension?
	Why do Perl operators have different precedence than C operators?
	How do I declare/create a structure?
	How do I create a module?
	How do I create a class?
	How can I tell if a variable is tainted?
	What`s a closure?
	What is variable suicide and how can I prevent it?
	How can I pass/return a {Function, FileHandle, Array, Hash, Method, Regexp}?
	Passing Variables and Functions
	Passing Filehandles
	Passing Regexps
	Passing Methods

	How do I create a static variable?
	What`s the difference between dynamic and lexical (static) scoping? Between �local()� and �my()�?
	How can I access a dynamic variable while a similarly named lexical is in scope?
	What`s the difference between deep and shallow binding?
	Why doesn`t "my(�$foo)� = <FILE�;" work right?
	How do I redefine a builtin function, operator, or method?
	What`s the difference between calling a function as �&foo� and �foo()�?
	How do I create a switch or case statement?
	How can I catch accesses to undefined variables/functions/methods?
	Why can`t a method included in this same file be found?
	How can I find out my current package?
	How can I comment out a large block of perl code?

	AUTHOR AND COPYRIGHT

	perlfaq8
	NAME
	DESCRIPTION
	How do I find out which operating system I`m running under?
	How come �exec()� doesn`t return?
	How do I do fancy stuff with the keyboard/screen/mouse?
	Keyboard
	Screen
	Mouse

	How do I print something out in color?
	How do I read just one key without waiting for a return key?
	How do I check whether input is ready on the keyboard?
	How do I clear the screen?
	How do I get the screen size?
	How do I ask the user for a password?
	How do I read and write the serial port?
	lockfiles
	open mode
	end of line
	flushing output
	non-blocking input

	How do I decode encrypted password files?
	How do I start a process in the background?
	STDIN, STDOUT, and STDERR are shared
	Signals
	Zombies

	How do I trap control characters/signals?
	How do I modify the shadow password file on a Unix system?
	How do I set the time and date?
	How can I �sleep()� or �alarm()� for under a second?
	How can I measure time under a second?
	How can I do an �atexit()� or �setjmp()/longjmp()�? (Exception handling)
	Why doesn`t my sockets program work under System V (Solaris)? What does the error message "Protocol not supported" mean?
	How can I call my system`s unique C functions from Perl?
	Where do I get the include files to do �ioctl()� or �syscall()�?
	Why do setuid perl scripts complain about kernel problems?
	How can I open a pipe both to and from a command?
	Why can`t I get the output of a command with �system()�?
	How can I capture STDERR from an external command?
	Why doesn`t �open()� return an error when a pipe open fails?
	What`s wrong with using backticks in a void context?
	How can I call backticks without shell processing?
	Why can`t my script read from STDIN after I gave it EOF (^D on Unix, ^Z on MS-DOS)?
	1
	2
	3
	4

	How can I convert my shell script to perl?
	Can I use perl to run a telnet or ftp session?
	How can I write expect in Perl?
	Is there a way to hide perl`s command line from programs such as "ps"?
	
	Unix

	How do I close a process`s filehandle without waiting for it to complete?
	How do I fork a daemon process?
	How do I make my program run with sh and csh?
	How do I find out if I`m running interactively or not?
	How do I timeout a slow event?
	How do I set CPU limits?
	How do I avoid zombies on a Unix system?
	How do I use an SQL database?
	How do I make a �system()� exit on control-C?
	How do I open a file without blocking?
	How do I install a CPAN module?
	1
	2
	3
	4
	5

	What`s the difference between require and use?
	How do I keep my own module/library directory?
	How do I add the directory my program lives in to the module/library search path?
	How do I add a directory to my include path at runtime?

	AUTHOR AND COPYRIGHT

	perlfaq9
	NAME
	DESCRIPTION
	My CGI script runs from the command line but not the browser. (500 Server Error)
	How can I get better error messages from a CGI program?
	How do I remove HTML from a string?
	How do I extract URLs?
	How do I download a file from the user`s machine? How do I open a file on another machine?
	How do I make a pop-up menu in HTML?
	How do I fetch an HTML file?
	How do I automate an HTML form submission?
	How do I decode or create those %-encodings on the web?
	How do I redirect to another page?
	How do I put a password on my web pages?
	How do I edit my .htpasswd and .htgroup files with Perl?
	How do I make sure users can`t enter values into a form that cause my CGI script to do bad things?
	How do I parse a mail header?
	How do I decode a CGI form?
	How do I check a valid mail address?
	How do I decode a MIME/BASE64 string?
	How do I return the user`s mail address?
	How do I send mail?
	How do I read mail?
	How do I find out my hostname/domainname/IP address?
	How do I fetch a news article or the active newsgroups?
	How do I fetch/put an FTP file?
	How can I do RPC in Perl?

	AUTHOR AND COPYRIGHT

	The Core Perl Manual
	perl
	NAME
	SYNOPSIS
	DESCRIPTION
	Many usability enhancements
	Simplified grammar
	Lexical scoping
	Arbitrarily nested data structures
	Modularity and reusability
	Object-oriented programming
	Embeddable and Extensible
	POSIX compliant
	Package constructors and destructors
	Multiple simultaneous DBM implementations
	Subroutine definitions may now be autoloaded
	Regular expression enhancements
	Innumerable Unbundled Modules
	Compilability

	ENVIRONMENT
	AUTHOR
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS
	NOTES

	perl5004delta
	NAME
	DESCRIPTION
	Supported Environments
	Core Changes
	List assignment to %ENV works
	"Can`t locate Foo.pm in @INC" error now lists @INC
	Compilation option: Binary compatibility with 5.003
	 $PERL5OPT� environment variable
	Limitations on �-M�, �-m�, and �-T� options
	More precise warnings
	Deprecated: Inherited �AUTOLOAD� for non-methods
	Previously deprecated %OVERLOAD is no longer usable
	Subroutine arguments created only when they`re modified
	Group vector changeable with ��$)��
	Fixed parsing of �$$<digit�,� �&$<digit�,� etc.
	Fixed localization of �$<digit�,� �$&,� etc.
	No resetting of �$.� on implicit close
	 wantarray� may return undef
	 eval EXPR� determines value of EXPR in scalar context
	Changes to tainting checks
	No glob() or <*
	No spawning if tainted $CDPATH, $ENV, $BASH_ENV
	No spawning if tainted $TERM doesn`t look like a terminal name

	New Opcode module and revised Safe module
	Embedding improvements
	Internal change: FileHandle class based on IO::* classes
	Internal change: PerlIO abstraction interface
	New and changed syntax
	$coderef-(PARAMS)

	New and changed builtin constants
	__PACKAGE__

	New and changed builtin variables
	$^E
	$^H
	$^M

	New and changed builtin functions
	delete on slices
	flock
	printf and sprintf
	keys as an lvalue
	my() in Control Structures
	pack() and unpack()
	sysseek()
	use VERSION
	use Module VERSION LIST
	prototype(FUNCTION)
	srand
	$_ as Default
	m//gc does not reset search position on failure
	m//x ignores whitespace before ?*+{}
	nested sub{} closures work now
	formats work right on changing lexicals

	New builtin methods
	isa(CLASS)
	can(METHOD)
	VERSION([NEED])

	TIEHANDLE now supported
	TIEHANDLE classname, LIST
	PRINT this, LIST
	PRINTF this, LIST
	READ this LIST
	READLINE this
	GETC this
	DESTROY this

	Malloc enhancements
	-DPERL_EMERGENCY_SBRK
	-DPACK_MALLOC
	-DTWO_POT_OPTIMIZE

	Miscellaneous efficiency enhancements

	Support for More Operating Systems
	Win32
	Plan 9
	QNX
	AmigaOS

	Pragmata
	use autouse MODULE = qw(sub1 sub2 sub3)
	use blib
	use blib `dir'
	use constant NAME = VALUE
	use locale
	use ops
	use vmsish

	Modules
	Required Updates
	Installation directories
	Module information summary
	Fcntl
	IO
	Math::Complex
	Math::Trig
	DB_File
	Net::Ping
	Object-oriented overrides for builtin operators

	Utility Changes
	pod2html
	Sends converted HTML to standard output

	xsubpp
	void XSUBs now default to returning nothing

	C Language API Changes
	gv_fetchmethod and perl_call_sv
	perl_eval_pv
	Extended API for manipulating hashes

	Documentation Changes
	perldelta
	perlfaq
	perllocale
	perltoot
	perlapio
	perlmodlib
	perldebug
	perlsec

	New Diagnostics
	"my" variable %s masks earlier declaration in same scope
	%s argument is not a HASH element or slice
	Allocation too large: %lx
	Allocation too large
	Applying %s to %s will act on scalar(%s)
	Attempt to free nonexistent shared string
	Attempt to use reference as lvalue in substr
	Bareword "%s" refers to nonexistent package
	Can`t redefine active sort subroutine %s
	Can`t use bareword ("%s") as %s ref while "strict refs" in use
	Cannot resolve method `%s' overloading `%s' in package `%s'
	Constant subroutine %s redefined
	Constant subroutine %s undefined
	Copy method did not return a reference
	Died
	Exiting pseudo-block via %s
	Identifier too long
	Illegal character %s (carriage return)
	Illegal switch in PERL5OPT: %s
	Integer overflow in hex number
	Integer overflow in octal number
	internal error: glob failed
	Invalid conversion in %s: "%s"
	Invalid type in pack: `%s'
	Invalid type in unpack: `%s'
	Name "%s::%s" used only once: possible typo
	Null picture in formline
	Offset outside string
	Out of memory!
	Out of memory during request for %s
	panic: frexp
	Possible attempt to put comments in qw() list
	Possible attempt to separate words with commas
	Scalar value @%s{%s} better written as $%s{%s}
	Stub found while resolving method `%s' overloading `%s' in package `%s'
	Too late for "-T" option
	untie attempted while %d inner references still exist
	Unrecognized character %s
	Unsupported function fork
	Use of "$$<digit" to mean "${$}<digit" is deprecated
	Value of %s can be "0"; test with defined()
	Variable "%s" may be unavailable
	Variable "%s" will not stay shared
	Warning: something`s wrong
	Ill-formed logical name |%s| in prime_env_iter
	Got an error from DosAllocMem
	Malformed PERLLIB_PREFIX
	PERL_SH_DIR too long
	Process terminated by SIG%s

	BUGS
	SEE ALSO
	HISTORY

	perldata
	NAME
	DESCRIPTION
	Variable names
	Context
	Scalar values
	Scalar value constructors
	List value constructors
	Typeglobs and Filehandles

	perlsyn
	NAME
	DESCRIPTION
	Declarations
	Simple statements
	Compound statements
	Loop Control
	For Loops
	Foreach Loops
	Basic BLOCKs and Switch Statements
	Goto
	PODs: Embedded Documentation
	Plain Old Comments (Not!)

	perlop
	NAME
	SYNOPSIS
	DESCRIPTION
	Terms and List Operators (Leftward)
	The Arrow Operator
	Auto-increment and Auto-decrement
	Exponentiation
	Symbolic Unary Operators
	Binding Operators
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Named Unary Operators
	Relational Operators
	Equality Operators
	Bitwise And
	Bitwise Or and Exclusive Or
	C-style Logical And
	C-style Logical Or
	Range Operators
	Conditional Operator
	Assignment Operators
	Comma Operator
	List Operators (Rightward)
	Logical Not
	Logical And
	Logical or and Exclusive Or
	C Operators Missing From Perl
	unary &
	unary *
	(TYPE)

	Quote and Quote-like Operators
	Regexp Quote-Like Operators
	?PATTERN?
	m/PATTERN/cgimosx
	/PATTERN/cgimosx
	q/STRING/
	`STRING'
	qq/STRING/
	"STRING"
	qr/STRING/imosx
	qx/STRING/
	`STRING`
	qw/STRING/
	s/PATTERN/REPLACEMENT/egimosx
	tr/SEARCHLIST/REPLACEMENTLIST/cds
	y/SEARCHLIST/REPLACEMENTLIST/cds

	Gory details of parsing quoted constructs
	Finding the end
	Removal of backslashes before delimiters
	Interpolation
	<<`EOF', m`', s`'', tr///, y///
	`', q//
	"", ``, qq//, qx//, <file*glob>
	?RE?, /RE/, m/RE/, s/RE/foo/,
	Interpolation of regular expressions
	Optimization of regular expressions

	I/O Operators
	Constant Folding
	Bitwise String Operators
	Integer Arithmetic
	Floating-point Arithmetic
	Bigger Numbers

	perlre
	NAME
	DESCRIPTION
	i
	m
	s
	x
	Regular Expressions
	(?#text)
	(?:pattern)
	(?imsx-imsx:pattern)
	(?=pattern)
	(?!pattern)
	(?<=pattern)
	(?<!pattern)
	(?{ code })
	(?>pattern)
	(?(condition)yes-pattern|no-pattern)
	(?(condition)yes-pattern)
	(?imsx-imsx)

	Backtracking
	Version 8 Regular Expressions
	WARNING on \1 vs �$1�
	Repeated patterns matching zero-length substring
	Creating custom RE engines
	SEE ALSO

	perlrun
	NAME
	SYNOPSIS
	DESCRIPTION
	1.
	2.
	3.
	#! and quoting on non-Unix systems
	OS/2
	MS-DOS
	Win95/NT
	Macintosh

	Location of Perl
	Switches
	-0[digits]
	-a
	-c
	-d
	-d:foo
	-Dletters
	-Dnumber
	-e commandline
	-Fpattern
	-h
	-i[extension]
	-Idirectory
	-l[octnum]
	-m[-]module
	-M[-]module
	-M[-]`module ...'
	-[mM][-]module=arg[,arg]...
	-n
	-p
	-P
	-s
	-S
	-T
	-u
	-U
	-v
	-V
	-V:name
	-w
	-x directory

	ENVIRONMENT
	HOME
	LOGDIR
	PATH
	PERL5LIB
	PERL5OPT
	PERLLIB
	PERL5DB
	PERL5SHELL (specific to WIN32 port)
	PERL_DEBUG_MSTATS
	PERL_DESTRUCT_LEVEL

	perlfunc
	NAME
	DESCRIPTION
	Perl Functions by Category
	Functions for SCALARs or strings
	Regular expressions and pattern matching
	Numeric functions
	Functions for real @ARRAYs
	Functions for list data
	Functions for real %HASHes
	Input and output functions
	Functions for fixed length data or records
	Functions for filehandles, files, or directories
	Keywords related to the control flow of your perl program
	Keywords related to scoping
	Miscellaneous functions
	Functions for processes and process groups
	Keywords related to perl modules
	Keywords related to classes and object-orientedness
	Low-level socket functions
	System V interprocess communication functions
	Fetching user and group info
	Fetching network info
	Time-related functions
	Functions new in perl5
	Functions obsoleted in perl5

	Alphabetical Listing of Perl Functions
	-X FILEHANDLE
	-X EXPR
	-X
	abs VALUE
	abs
	accept NEWSOCKET,GENERICSOCKET
	alarm SECONDS
	alarm
	atan2 Y,X
	bind SOCKET,NAME
	binmode FILEHANDLE
	bless REF,CLASSNAME
	bless REF
	caller EXPR
	caller
	chdir EXPR
	chmod LIST
	chomp VARIABLE
	chomp LIST
	chomp
	chop VARIABLE
	chop LIST
	chop
	chown LIST
	chr NUMBER
	chr
	chroot FILENAME
	chroot
	close FILEHANDLE
	close
	closedir DIRHANDLE
	connect SOCKET,NAME
	continue BLOCK
	cos EXPR
	crypt PLAINTEXT,SALT
	dbmclose HASH
	dbmopen HASH,DBNAME,MODE
	defined EXPR
	defined
	delete EXPR
	die LIST
	do BLOCK
	do SUBROUTINE(LIST)
	do EXPR
	dump LABEL
	each HASH
	eof FILEHANDLE
	eof ()
	eof
	eval EXPR
	eval BLOCK
	exec LIST
	exec PROGRAM LIST
	exists EXPR
	exit EXPR
	exp EXPR
	exp
	fcntl FILEHANDLE,FUNCTION,SCALAR
	fileno FILEHANDLE
	flock FILEHANDLE,OPERATION
	fork
	format
	formline PICTURE,LIST
	getc FILEHANDLE
	getc
	getlogin
	getpeername SOCKET
	getpgrp PID
	getppid
	getpriority WHICH,WHO
	getpwnam NAME
	getgrnam NAME
	gethostbyname NAME
	getnetbyname NAME
	getprotobyname NAME
	getpwuid UID
	getgrgid GID
	getservbyname NAME,PROTO
	gethostbyaddr ADDR,ADDRTYPE
	getnetbyaddr ADDR,ADDRTYPE
	getprotobynumber NUMBER
	getservbyport PORT,PROTO
	getpwent
	getgrent
	gethostent
	getnetent
	getprotoent
	getservent
	setpwent
	setgrent
	sethostent STAYOPEN
	setnetent STAYOPEN
	setprotoent STAYOPEN
	setservent STAYOPEN
	endpwent
	endgrent
	endhostent
	endnetent
	endprotoent
	endservent
	getsockname SOCKET
	getsockopt SOCKET,LEVEL,OPTNAME
	glob EXPR
	glob
	gmtime EXPR
	goto LABEL
	goto EXPR
	goto &NAME
	grep BLOCK LIST
	grep EXPR,LIST
	hex EXPR
	hex
	import
	index STR,SUBSTR,POSITION
	index STR,SUBSTR
	int EXPR
	int
	ioctl FILEHANDLE,FUNCTION,SCALAR
	join EXPR,LIST
	keys HASH
	kill LIST
	last LABEL
	last
	lc EXPR
	lc
	lcfirst EXPR
	lcfirst
	length EXPR
	length
	link OLDFILE,NEWFILE
	listen SOCKET,QUEUESIZE
	local EXPR
	localtime EXPR
	log EXPR
	log
	lstat FILEHANDLE
	lstat EXPR
	lstat
	m//
	map BLOCK LIST
	map EXPR,LIST
	mkdir FILENAME,MODE
	msgctl ID,CMD,ARG
	msgget KEY,FLAGS
	msgsnd ID,MSG,FLAGS
	msgrcv ID,VAR,SIZE,TYPE,FLAGS
	my EXPR
	next LABEL
	next
	no Module LIST
	oct EXPR
	oct
	open FILEHANDLE,EXPR
	open FILEHANDLE
	opendir DIRHANDLE,EXPR
	ord EXPR
	ord
	pack TEMPLATE,LIST
	package
	package NAMESPACE
	pipe READHANDLE,WRITEHANDLE
	pop ARRAY
	pop
	pos SCALAR
	pos
	print FILEHANDLE LIST
	print LIST
	print
	printf FILEHANDLE FORMAT, LIST
	printf FORMAT, LIST
	prototype FUNCTION
	push ARRAY,LIST
	q/STRING/
	qq/STRING/
	qr/STRING/
	qx/STRING/
	qw/STRING/
	quotemeta EXPR
	quotemeta
	rand EXPR
	rand
	read FILEHANDLE,SCALAR,LENGTH,OFFSET
	read FILEHANDLE,SCALAR,LENGTH
	readdir DIRHANDLE
	readline EXPR
	readlink EXPR
	readlink
	readpipe EXPR
	recv SOCKET,SCALAR,LEN,FLAGS
	redo LABEL
	redo
	ref EXPR
	ref
	rename OLDNAME,NEWNAME
	require EXPR
	require
	reset EXPR
	reset
	return EXPR
	return
	reverse LIST
	rewinddir DIRHANDLE
	rindex STR,SUBSTR,POSITION
	rindex STR,SUBSTR
	rmdir FILENAME
	rmdir
	s///
	scalar EXPR
	seek FILEHANDLE,POSITION,WHENCE
	seekdir DIRHANDLE,POS
	select FILEHANDLE
	select
	select RBITS,WBITS,EBITS,TIMEOUT
	semctl ID,SEMNUM,CMD,ARG
	semget KEY,NSEMS,FLAGS
	semop KEY,OPSTRING
	send SOCKET,MSG,FLAGS,TO
	send SOCKET,MSG,FLAGS
	setpgrp PID,PGRP
	setpriority WHICH,WHO,PRIORITY
	setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
	shift ARRAY
	shift
	shmctl ID,CMD,ARG
	shmget KEY,SIZE,FLAGS
	shmread ID,VAR,POS,SIZE
	shmwrite ID,STRING,POS,SIZE
	shutdown SOCKET,HOW
	sin EXPR
	sin
	sleep EXPR
	sleep
	socket SOCKET,DOMAIN,TYPE,PROTOCOL
	socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
	sort SUBNAME LIST
	sort BLOCK LIST
	sort LIST
	splice ARRAY,OFFSET,LENGTH,LIST
	splice ARRAY,OFFSET,LENGTH
	splice ARRAY,OFFSET
	split /PATTERN/,EXPR,LIMIT
	split /PATTERN/,EXPR
	split /PATTERN/
	split
	sprintf FORMAT, LIST
	sqrt EXPR
	sqrt
	srand EXPR
	srand
	stat FILEHANDLE
	stat EXPR
	stat
	study SCALAR
	study
	sub BLOCK
	sub NAME
	sub NAME BLOCK
	substr EXPR,OFFSET,LEN,REPLACEMENT
	substr EXPR,OFFSET,LEN
	substr EXPR,OFFSET
	symlink OLDFILE,NEWFILE
	syscall LIST
	sysopen FILEHANDLE,FILENAME,MODE
	sysopen FILEHANDLE,FILENAME,MODE,PERMS
	sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
	sysread FILEHANDLE,SCALAR,LENGTH
	sysseek FILEHANDLE,POSITION,WHENCE
	system LIST
	system PROGRAM LIST
	syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
	syswrite FILEHANDLE,SCALAR,LENGTH
	tell FILEHANDLE
	tell
	telldir DIRHANDLE
	tie VARIABLE,CLASSNAME,LIST
	tied VARIABLE
	time
	times
	tr///
	truncate FILEHANDLE,LENGTH
	truncate EXPR,LENGTH
	uc EXPR
	uc
	ucfirst EXPR
	ucfirst
	umask EXPR
	umask
	undef EXPR
	undef
	unlink LIST
	unlink
	unpack TEMPLATE,EXPR
	untie VARIABLE
	unshift ARRAY,LIST
	use Module LIST
	use Module
	use Module VERSION LIST
	use VERSION
	utime LIST
	values HASH
	vec EXPR,OFFSET,BITS
	wait
	waitpid PID,FLAGS
	wantarray
	warn LIST
	write FILEHANDLE
	write EXPR
	write
	y///

	perlvar
	NAME
	DESCRIPTION
	Predefined Names
	$ARG
	$_
	$<digits>
	$MATCH
	$&
	$PREMATCH
	$`
	$POSTMATCH
	$'
	$LAST_PAREN_MATCH
	$+
	$MULTILINE_MATCHING
	$*
	input_line_number HANDLE EXPR
	$INPUT_LINE_NUMBER
	$NR
	$.
	input_record_separator HANDLE EXPR
	$INPUT_RECORD_SEPARATOR
	$RS
	$/
	autoflush HANDLE EXPR
	$OUTPUT_AUTOFLUSH
	$|
	output_field_separator HANDLE EXPR
	$OUTPUT_FIELD_SEPARATOR
	$OFS
	$,
	output_record_separator HANDLE EXPR
	$OUTPUT_RECORD_SEPARATOR
	$ORS
	$\
	$LIST_SEPARATOR
	$"
	$SUBSCRIPT_SEPARATOR
	$SUBSEP
	$;
	$OFMT
	$#
	format_page_number HANDLE EXPR
	$FORMAT_PAGE_NUMBER
	$%
	format_lines_per_page HANDLE EXPR
	$FORMAT_LINES_PER_PAGE
	$=
	format_lines_left HANDLE EXPR
	$FORMAT_LINES_LEFT
	$-
	format_name HANDLE EXPR
	$FORMAT_NAME
	$~
	format_top_name HANDLE EXPR
	$FORMAT_TOP_NAME
	$^
	format_line_break_characters HANDLE EXPR
	$FORMAT_LINE_BREAK_CHARACTERS
	$:
	format_formfeed HANDLE EXPR
	$FORMAT_FORMFEED
	$^L
	$ACCUMULATOR
	$^A
	$CHILD_ERROR
	$?
	$OS_ERROR
	$ERRNO
	$!
	$EXTENDED_OS_ERROR
	$^E
	$EVAL_ERROR
	$@
	$PROCESS_ID
	$PID
	$$
	$REAL_USER_ID
	$UID
	$<
	$EFFECTIVE_USER_ID
	$EUID
	$
	$REAL_GROUP_ID
	$GID
	$(
	$EFFECTIVE_GROUP_ID
	$EGID
	$)
	$PROGRAM_NAME
	$0
	$[
	$PERL_VERSION
	$]
	$DEBUGGING
	$^D
	$SYSTEM_FD_MAX
	$^F
	$^H
	$INPLACE_EDIT
	$^I
	$^M
	$OSNAME
	$^O
	$PERLDB
	$^P
	0x01
	0x02
	0x04
	0x08
	0x10
	0x20
	$^R
	$^S
	$BASETIME
	$^T
	$WARNING
	$^W
	$EXECUTABLE_NAME
	$^X
	$ARGV
	@ARGV
	@INC
	@_
	%INC
	%ENV $ENV{expr}
	%SIG $SIG{expr}

	Error Indicators

	perlsub
	NAME
	SYNOPSIS
	DESCRIPTION
	Private Variables via ��my()��
	Peristent Private Variables
	Temporary Values via �local()�
	Passing Symbol Table Entries (typeglobs)
	When to Still Use �local()�
	1. You need to give a global variable a temporary value, especially $_.
	2. You need to create a local file or directory handle or a local function.
	3. You want to temporarily change just one element of an array or hash.

	Pass by Reference
	Prototypes
	Constant Functions
	Overriding Builtin Functions
	Autoloading

	SEE ALSO

	perlmod
	NAME
	DESCRIPTION
	Packages
	Symbol Tables
	Package Constructors and Destructors
	Perl Classes
	Perl Modules

	SEE ALSO

	perlref
	NAME
	DESCRIPTION
	Making References
	1.
	2.
	3.
	4.
	5.
	6.
	7.

	Using References
	1.
	2.
	3.
	4.

	Symbolic references
	Not-so-symbolic references
	Pseudo-hashes: Using an array as a hash
	Function Templates

	WARNING
	SEE ALSO

	perldsc
	NAME
	DESCRIPTION
	arrays of arrays
	hashes of arrays
	arrays of hashes
	hashes of hashes
	more elaborate constructs

	REFERENCES
	COMMON MISTAKES
	CAVEAT ON PRECEDENCE
	WHY YOU SHOULD ALWAYS �use strict�
	DEBUGGING
	CODE EXAMPLES
	LISTS OF LISTS
	Declaration of a LIST OF LISTS
	Generation of a LIST OF LISTS
	Access and Printing of a LIST OF LISTS

	HASHES OF LISTS
	Declaration of a HASH OF LISTS
	Generation of a HASH OF LISTS
	Access and Printing of a HASH OF LISTS

	LISTS OF HASHES
	Declaration of a LIST OF HASHES
	Generation of a LIST OF HASHES
	Access and Printing of a LIST OF HASHES

	HASHES OF HASHES
	Declaration of a HASH OF HASHES
	Generation of a HASH OF HASHES
	Access and Printing of a HASH OF HASHES

	MORE ELABORATE RECORDS
	Declaration of MORE ELABORATE RECORDS
	Declaration of a HASH OF COMPLEX RECORDS
	Generation of a HASH OF COMPLEX RECORDS

	Database Ties
	SEE ALSO
	AUTHOR

	perllol
	NAME
	DESCRIPTION
	Declaration and Access of Lists of Lists
	Growing Your Own
	Access and Printing
	Slices
	SEE ALSO
	AUTHOR

	perlobj
	NAME
	DESCRIPTION
	1.
	2.
	3.
	An Object is Simply a Reference
	A Class is Simply a Package
	A Method is Simply a Subroutine
	Method Invocation
	Default UNIVERSAL methods
	isa(CLASS)
	can(METHOD)
	VERSION([NEED])

	Destructors
	WARNING
	Summary
	Two-Phased Garbage Collection

	SEE ALSO

	perltie
	NAME
	SYNOPSIS
	DESCRIPTION
	Tying Scalars
	TIESCALAR classname, LIST
	FETCH this
	STORE this, value
	DESTROY this

	Tying Arrays
	TIEARRAY classname, LIST
	FETCH this, index
	STORE this, index, value
	DESTROY this

	Tying Hashes
	USER
	HOME
	CLOBBER
	LIST
	TIEHASH classname, LIST
	FETCH this, key
	STORE this, key, value
	DELETE this, key
	CLEAR this
	EXISTS this, key
	FIRSTKEY this
	NEXTKEY this, lastkey
	DESTROY this

	Tying FileHandles
	TIEHANDLE classname, LIST
	WRITE this, LIST
	PRINT this, LIST
	PRINTF this, LIST
	READ this, LIST
	READLINE this
	GETC this
	CLOSE this
	DESTROY this

	The �untie� Gotcha

	SEE ALSO
	BUGS
	AUTHOR

	perlbot
	NAME
	DESCRIPTION
	OO SCALING TIPS
	1
	2
	3
	4
	5
	6
	7
	8
	9

	INSTANCE VARIABLES
	SCALAR INSTANCE VARIABLES
	INSTANCE VARIABLE INHERITANCE
	OBJECT RELATIONSHIPS
	OVERRIDING SUPERCLASS METHODS
	USING RELATIONSHIP WITH SDBM
	THINKING OF CODE REUSE
	CLASS CONTEXT AND THE OBJECT
	INHERITING A CONSTRUCTOR
	DELEGATION

	perldebug
	NAME
	DESCRIPTION
	The Perl Debugger
	Debugger Commands
	h [command]
	p expr
	x expr
	V [pkg [vars]]
	X [vars]
	T
	s [expr]
	n [expr]
	<CR>
	c [line|sub]
	l
	l min+incr
	l min-max
	l line
	l subname
	-
	w [line]
	.
	f filename
	/pattern/
	?pattern?
	L
	S [[!]pattern]
	t
	t expr
	b [line] [condition]
	b subname [condition]
	b postpone subname [condition]
	b load filename
	b compile subname
	d [line]
	D
	a [line] command
	A
	W [expr]
	W
	O [opt[=val]] [opt"val"] [opt?]...
	recallCommand, ShellBang
	pager
	tkRunning
	signalLevel, warnLevel, dieLevel
	AutoTrace
	LineInfo
	inhibit_exit
	PrintRet
	ornaments
	frame
	maxTraceLen
	arrayDepth, hashDepth
	compactDump, veryCompact
	globPrint
	DumpDBFiles
	DumpPackages
	DumpReused
	quote, HighBit, undefPrint
	UsageOnly
	TTY
	noTTY
	ReadLine
	NonStop
	< [command]
	<< command
	> command
	>> command
	{ [command]
	{{ command
	! number
	! -number
	! pattern
	!! cmd
	H -number
	q or ^D
	R
	|dbcmd
	||dbcmd
	= [alias value]
	command
	m expr
	m package

	Debugger input/output
	Prompt
	Multiline commands
	Stack backtrace
	Listing
	Frame listing
	1
	2
	4
	6
	14
	30

	Debugging compile-time statements
	Debugger Customization
	Readline Support
	Editor Support for Debugging
	The Perl Profiler
	Debugger support in perl
	Debugger Internals
	Other resources
	BUGS

	Debugging Perl memory usage
	Using ��$ENV{PERL_DEBUG_MSTATS}��
	buckets SMALLEST(APPROX)..GREATEST(APPROX)
	Free/Used
	Total sbrk(): SBRKed/SBRKs:CONTINUOUS
	pad: 0
	heads: 2192
	chain: 0
	tail: 6144

	Example of using �-DL� switch
	717
	002
	054
	602
	702
	704

	 -DL� details
	!!!
	!!
	!

	Limitations of �-DL� statistic

	Debugging regular expressions
	Compile-time output
	anchored STRING at POS
	floating STRING at POS1..POS2
	matching floating/anchored
	minlen
	stclass TYPE
	noscan
	isall
	GPOS
	plus
	implicit
	with eval
	anchored(TYPE)

	Types of nodes
	Run-time output

	perldiag
	NAME
	DESCRIPTION
	"my" variable %s can`t be in a package
	"my" variable %s masks earlier declaration in same scope
	"no" not allowed in expression
	"use" not allowed in expression
	% may only be used in unpack
	%s (...) interpreted as function
	%s argument is not a HASH element
	%s argument is not a HASH element or slice
	%s did not return a true value
	%s found where operator expected
	%s had compilation errors
	%s has too many errors
	%s matches null string many times
	%s never introduced
	%s syntax OK
	%s: Command not found
	%s: Expression syntax
	%s: Undefined variable
	%s: not found
	(Missing semicolon on previous line?)
	-P not allowed for setuid/setgid script
	-T and -B not implemented on filehandles
	-p destination: %s
	500 Server error
	?+* follows nothing in regexp
	@ outside of string
	accept() on closed fd
	Allocation too large: %lx
	Applying %s to %s will act on scalar(%s)
	Arg too short for msgsnd
	Ambiguous use of %s resolved as %s
	Ambiguous call resolved as CORE::%s(), qualify as such or use &
	Args must match #! line
	Argument "%s" isn`t numeric%s
	Array @%s missing the @ in argument %d of %s()
	assertion botched: %s
	Assertion failed: file "%s"
	Assignment to both a list and a scalar
	Attempt to free non-arena SV: 0x%lx
	Attempt to free nonexistent shared string
	Attempt to free temp prematurely
	Attempt to free unreferenced glob pointers
	Attempt to free unreferenced scalar
	Attempt to pack pointer to temporary value
	Attempt to use reference as lvalue in substr
	Bad arg length for %s, is %d, should be %d
	Bad filehandle: %s
	Bad free() ignored
	Bad hash
	Bad index while coercing array into hash
	Bad name after %s::
	Bad symbol for array
	Bad symbol for filehandle
	Bad symbol for hash
	Badly placed ()`s
	Bareword "%s" not allowed while "strict subs" in use
	Bareword "%s" refers to nonexistent package
	BEGIN failed‘compilation aborted
	BEGIN not safe after errors‘compilation aborted
	bind() on closed fd
	Bizarre copy of %s in %s
	Callback called exit
	Can`t "goto" outside a block
	Can`t "goto" into the middle of a foreach loop
	Can`t "last" outside a block
	Can`t "next" outside a block
	Can`t "redo" outside a block
	Can`t bless non-reference value
	Can`t break at that line
	Can`t call method "%s" in empty package "%s"
	Can`t call method "%s" on unblessed reference
	Can`t call method "%s" without a package or object reference
	Can`t call method "%s" on an undefined value
	Can`t chdir to %s
	Can`t coerce %s to integer in %s
	Can`t coerce %s to number in %s
	Can`t coerce %s to string in %s
	Can`t coerce array into hash
	Can`t create pipe mailbox
	Can`t declare %s in my
	Can`t do inplace edit on %s: %s
	Can`t do inplace edit without backup
	Can`t do inplace edit: %s > 14 characters
	Can`t do inplace edit: %s is not a regular file
	Can`t do setegid!
	Can`t do seteuid!
	Can`t do setuid
	Can`t do waitpid with flags
	Can`t do {n,m} with n > m
	Can`t emulate -%s on #! line
	Can`t exec "%s": %s
	Can`t exec %s
	Can`t execute %s
	Can`t find %s on PATH, '.' not in PATH
	Can`t find %s on PATH
	Can`t find label %s
	Can`t find string terminator %s anywhere before EOF
	Can`t fork
	Can`t get filespec - stale stat buffer?
	Can`t get pipe mailbox device name
	Can`t get SYSGEN parameter value for MAXBUF
	Can`t goto subroutine outside a subroutine
	Can`t goto subroutine from an eval-string
	Can`t localize through a reference
	Can`t localize lexical variable %s
	Can`t localize pseudo-hash element
	Can`t locate auto/%s.al in @INC
	Can`t locate %s in @INC
	Can`t locate object method "%s" via package "%s"
	Can`t locate package %s for @%s::ISA
	Can`t make list assignment to \%ENV on this system
	Can`t modify %s in %s
	Can`t modify nonexistent substring
	Can`t msgrcv to read-only var
	Can`t open %s: %s
	Can`t open bidirectional pipe
	Can`t open error file %s as stderr
	Can`t open input file %s as stdin
	Can`t open output file %s as stdout
	Can`t open output pipe (name: %s)
	Can`t open perl script "%s": %s
	Can`t redefine active sort subroutine %s
	Can`t rename %s to %s: %s, skipping file
	Can`t reopen input pipe (name: %s) in binary mode
	Can`t reswap uid and euid
	Can`t return outside a subroutine
	Can`t stat script "%s"
	Can`t swap uid and euid
	Can`t take log of %g
	Can`t take sqrt of %g
	Can`t undef active subroutine
	Can`t unshift
	Can`t upgrade that kind of scalar
	Can`t upgrade to undef
	Can`t use %%! because Errno.pm is not available
	Can`t use "my %s" in sort comparison
	Can`t use %s for loop variable
	Can`t use %s ref as %s ref
	Can`t use \1 to mean $1 in expression
	Can`t use bareword ("%s") as %s ref while \"strict refs\" in use
	Can`t use string ("%s") as %s ref while "strict refs" in use
	Can`t use an undefined value as %s reference
	Can`t use global %s in "my"
	Can`t use subscript on %s
	Can`t x= to read-only value
	Cannot find an opnumber for "%s"
	Cannot resolve method `%s' overloading `%s' in package `%s'
	Character class syntax [. .] is reserved for future extensions
	Character class syntax [: :] is reserved for future extensions
	Character class syntax [= =] is reserved for future extensions
	chmod: mode argument is missing initial 0
	Close on unopened file <%s>
	Compilation failed in require
	Complex regular subexpression recursion limit (%d) exceeded
	connect() on closed fd
	Constant subroutine %s redefined
	Constant subroutine %s undefined
	Copy method did not return a reference
	Corrupt malloc ptr 0x%lx at 0x%lx
	corrupted regexp pointers
	corrupted regexp program
	Deep recursion on subroutine "%s"
	Delimiter for here document is too long
	Did you mean &%s instead?
	Did you mean $ or @ instead of %?
	Died
	Do you need to predeclare %s?
	Don`t know how to handle magic of type `%s'
	do_study: out of memory
	Duplicate free() ignored
	elseif should be elsif
	END failed‘cleanup aborted
	Error converting file specification %s
	%s: Eval-group in insecure regular expression
	%s: Eval-group not allowed, use re `eval'
	%s: Eval-group not allowed at run time
	Excessively long < operator
	Execution of %s aborted due to compilation errors
	Exiting eval via %s
	Exiting pseudo-block via %s
	Exiting subroutine via %s
	Exiting substitution via %s
	Explicit blessing to `' (assuming package main)
	Fatal VMS error at %s, line %d
	fcntl is not implemented
	Filehandle %s never opened
	Filehandle %s opened for only input
	Filehandle opened for only input
	Final $ should be \$ or $name
	Final @ should be \@ or @name
	Format %s redefined
	Format not terminated
	Found = in conditional, should be ==
	gdbm store returned %d, errno %d, key "%s"
	gethostent not implemented
	get{sock,peer}name() on closed fd
	getpwnam returned invalid UIC %#o for user "%s"
	Glob not terminated
	Global symbol "%s" requires explicit package name
	goto must have label
	Had to create %s unexpectedly
	Hash %%s missing the % in argument %d of %s()
	Identifier too long
	Ill-formed logical name |%s| in prime_env_iter
	Illegal character %s (carriage return)
	Illegal division by zero
	Illegal modulus zero
	Illegal octal digit
	Illegal octal digit ignored
	Illegal hex digit ignored
	Illegal switch in PERL5OPT: %s
	In string, @%s now must be written as \@%s
	Insecure dependency in %s
	Insecure directory in %s
	Insecure $ENV{%s} while running %s
	Integer overflow in hex number
	Integer overflow in octal number
	Internal inconsistency in tracking vforks
	internal disaster in regexp
	internal error: glob failed
	internal urp in regexp at /%s/
	invalid [] range in regexp
	Invalid conversion in %s: "%s"
	Invalid type in pack: `%s'
	Invalid type in unpack: `%s'
	ioctl is not implemented
	junk on end of regexp
	Label not found for "last %s"
	Label not found for "next %s"
	Label not found for "redo %s"
	listen() on closed fd
	Method for operation %s not found in package %s during blessing
	Might be a runaway multi-line %s string starting on line %d
	Misplaced _ in number
	Missing $ on loop variable
	Missing comma after first argument to %s function
	Missing operator before %s?
	Missing right bracket
	Modification of a read-only value attempted
	Modification of non-creatable array value attempted, subscript %d
	Modification of non-creatable hash value attempted, subscript "%s"
	Module name must be constant
	msg%s not implemented
	Multidimensional syntax %s not supported
	Name "%s::%s" used only once: possible typo
	Negative length
	nested *?+ in regexp
	No #! line
	No %s allowed while running setuid
	No -e allowed in setuid scripts
	No comma allowed after %s
	No command into which to pipe on command line
	No DB::DB routine defined
	No dbm on this machine
	No DBsub routine
	No error file after 2> or 2>> on command line
	No input file after < on command line
	No output file after > on command line
	No output file after > or >> on command line
	No Perl script found in input
	No setregid available
	No setreuid available
	No space allowed after -I
	No such array field
	No such field "%s" in variable %s of type %s
	No such pipe open
	No such signal: SIG%s
	Not a CODE reference
	Not a format reference
	Not a GLOB reference
	Not a HASH reference
	Not a perl script
	Not a SCALAR reference
	Not a subroutine reference
	Not a subroutine reference in overload table
	Not an ARRAY reference
	Not enough arguments for %s
	Not enough format arguments
	Null filename used
	Null picture in formline
	NULL OP IN RUN
	Null realloc
	NULL regexp argument
	NULL regexp parameter
	Number too long
	Odd number of elements in hash assignment
	Offset outside string
	oops: oopsAV
	oops: oopsHV
	Operation `%s`: no method found, %s
	Operator or semicolon missing before %s
	Out of memory for yacc stack
	Out of memory during request for %s
	Out of memory during "large" request for %s
	Out of memory during ridiculously large request
	page overflow
	panic: ck_grep
	panic: ck_split
	panic: corrupt saved stack index
	panic: die %s
	panic: do_match
	panic: do_split
	panic: do_subst
	panic: do_trans
	panic: frexp
	panic: goto
	panic: INTERPCASEMOD
	panic: INTERPCONCAT
	panic: last
	panic: leave_scope clearsv
	panic: leave_scope inconsistency
	panic: malloc
	panic: mapstart
	panic: null array
	panic: pad_alloc
	panic: pad_free curpad
	panic: pad_free po
	panic: pad_reset curpad
	panic: pad_sv po
	panic: pad_swipe curpad
	panic: pad_swipe po
	panic: pp_iter
	panic: realloc
	panic: restartop
	panic: return
	panic: scan_num
	panic: sv_insert
	panic: top_env
	panic: yylex
	Parentheses missing around "%s" list
	Perl %3.3f required‘this is only version %s, stopped
	Permission denied
	pid %d not a child
	POSIX getpgrp can`t take an argument
	Possible attempt to put comments in qw() list
	Possible attempt to separate words with commas
	Possible memory corruption: %s overflowed 3rd argument
	Precedence problem: open %s should be open(%s)
	print on closed filehandle %s
	printf on closed filehandle %s
	Probable precedence problem on %s
	Prototype mismatch: %s vs %s
	Range iterator outside integer range
	Read on closed filehandle <%s>
	Reallocation too large: %lx
	Recompile perl with -DDEBUGGING to use -D switch
	Recursive inheritance detected in package `%s'
	Recursive inheritance detected while looking for method `%s' in package `%s'
	Reference found where even-sized list expected
	Reference miscount in sv_replace()
	regexp *+ operand could be empty
	regexp memory corruption
	regexp out of space
	regexp too big
	Reversed %s= operator
	Runaway format
	Scalar value @%s[%s] better written as $%s[%s]
	Scalar value @%s{%s} better written as $%s{%s}
	Script is not setuid/setgid in suidperl
	Search pattern not terminated
	%sseek() on unopened file
	select not implemented
	sem%s not implemented
	semi-panic: attempt to dup freed string
	Semicolon seems to be missing
	Send on closed socket
	Sequence (? incomplete
	Sequence (?#... not terminated
	Sequence (?%s...) not implemented
	Sequence (?%s...) not recognized
	Server error
	setegid() not implemented
	seteuid() not implemented
	setrgid() not implemented
	setruid() not implemented
	Setuid/gid script is writable by world
	shm%s not implemented
	shutdown() on closed fd
	SIG%s handler "%s" not defined
	sort is now a reserved word
	Sort subroutine didn`t return a numeric value
	Sort subroutine didn`t return single value
	Split loop
	Stat on unopened file <%s>
	Statement unlikely to be reached
	Stub found while resolving method `%s' overloading `%s' in package `%s'
	Subroutine %s redefined
	Substitution loop
	Substitution pattern not terminated
	Substitution replacement not terminated
	substr outside of string
	suidperl is no longer needed since %s
	syntax error
	syntax error at line %d: `%s' unexpected
	System V %s is not implemented on this machine
	Syswrite on closed filehandle
	Target of goto is too deeply nested
	tell() on unopened file
	Test on unopened file <%s>
	That use of $[is unsupported
	The %s function is unimplemented
	The crypt() function is unimplemented due to excessive paranoia
	The stat preceding -l _ wasn`t an lstat
	times not implemented
	Too few args to syscall
	Too late for "-T" option
	Too late for "-%s" option
	Too many (`s
	Too many)`s
	Too many args to syscall
	Too many arguments for %s
	trailing \ in regexp
	Transliteration pattern not terminated
	Transliteration replacement not terminated
	truncate not implemented
	Type of arg %d to %s must be %s (not %s)
	umask: argument is missing initial 0
	umask not implemented
	Unable to create sub named "%s"
	Unbalanced context: %d more PUSHes than POPs
	Unbalanced saves: %d more saves than restores
	Unbalanced scopes: %d more ENTERs than LEAVEs
	Unbalanced tmps: %d more allocs than frees
	Undefined format "%s" called
	Undefined sort subroutine "%s" called
	Undefined subroutine &%s called
	Undefined subroutine called
	Undefined subroutine in sort
	Undefined top format "%s" called
	Undefined value assigned to typeglob
	unexec of %s into %s failed!
	Unknown BYTEORDER
	unmatched () in regexp
	Unmatched right bracket
	unmatched [] in regexp
	Unquoted string "%s" may clash with future reserved word
	Unrecognized character %s
	Unrecognized signal name "%s"
	Unrecognized switch: -%s (-h will show valid options)
	Unsuccessful %s on filename containing newline
	Unsupported directory function "%s" called
	Unsupported function fork
	Unsupported function %s
	Unsupported socket function "%s" called
	Unterminated <> operator
	Use of "$$<digit" to mean "${$}<digit" is deprecated
	Use of $# is deprecated
	Use of $* is deprecated
	Use of %s in printf format not supported
	Use of bare << to mean <<"" is deprecated
	Use of implicit split to @_ is deprecated
	Use of inherited AUTOLOAD for non-method %s() is deprecated
	Use of reserved word "%s" is deprecated
	Use of %s is deprecated
	Use of uninitialized value
	Useless use of "re" pragma
	Useless use of %s in void context
	untie attempted while %d inner references still exist
	Value of %s can be "0"; test with defined()
	Variable "%s" is not imported%s
	Variable "%s" may be unavailable
	Variable "%s" will not stay shared
	Variable syntax
	perl: warning: Setting locale failed.
	Warning: something`s wrong
	Warning: unable to close filehandle %s properly
	Warning: Use of "%s" without parentheses is ambiguous
	Write on closed filehandle
	X outside of string
	x outside of string
	Xsub "%s" called in sort
	Xsub called in sort
	You can`t use -l on a filehandle
	YOU HAVEN`T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!
	You need to quote "%s"
	[gs]etsockopt() on closed fd
	\1 better written as $1
	`|' and `<' may not both be specified on command line
	`|' and `>' may not both be specified on command line
	Got an error from DosAllocMem
	Malformed PERLLIB_PREFIX
	PERL_SH_DIR too long
	Process terminated by SIG%s

	perlform
	NAME
	DESCRIPTION
	1.
	2.
	3.
	Format Variables

	NOTES
	Footers
	Accessing Formatting Internals

	WARNINGS

	perlipc
	NAME
	DESCRIPTION
	Signals
	Named Pipes
	WARNING

	Using �open()� for IPC
	Filehandles
	Background Processes
	Complete Dissociation of Child from Parent
	Safe Pipe Opens
	Bidirectional Communication with Another Process
	Bidirectional Communication with Yourself

	Sockets: Client/Server Communication
	Internet Line Terminators
	Internet TCP Clients and Servers
	Unix-Domain TCP Clients and Servers

	TCP Clients with IO::Socket
	A Simple Client
	Proto
	PeerAddr
	PeerPort

	A Webget Client
	Interactive Client with IO::Socket

	TCP Servers with IO::Socket
	Proto
	LocalPort
	Listen
	Reuse

	UDP: Message Passing
	SysV IPC
	NOTES
	BUGS
	AUTHOR
	SEE ALSO

	perlsec
	NAME
	DESCRIPTION
	Laundering and Detecting Tainted Data
	Switches On the "#!" Line
	Cleaning Up Your Path
	Security Bugs
	Protecting Your Programs

	SEE ALSO

	perltrap
	NAME
	DESCRIPTION
	Awk Traps
	C Traps
	Sed Traps
	Shell Traps
	Perl Traps
	Perl4 to Perl5 Traps
	Discontinuance, Deprecation, and BugFix traps
	Parsing Traps
	Numerical Traps
	General data type traps
	Context Traps - scalar, list contexts
	Precedence Traps
	General Regular Expression Traps using s///, etc.
	Subroutine, Signal, Sorting Traps
	OS Traps
	DBM Traps
	Unclassified Traps

	Discontinuance, Deprecation, and BugFix traps
	Discontinuance
	Deprecation
	BugFix
	Discontinuance
	Discontinuance
	Discontinuance
	BugFix
	Discontinuance
	Discontinuance
	BugFix
	Discontinuance
	Discontinuance
	Deprecation
	Discontinuance

	Parsing Traps
	Parsing
	Parsing
	Parsing
	Parsing

	Numerical Traps
	Numerical
	Numerical
	Numerical

	General data type traps
	(Arrays)
	(Arrays)
	(Hashes)
	(Globs)
	(Globs)
	(Scalar String)
	(Constants)
	(Scalars)
	(Variable Suicide)

	Context Traps - scalar, list contexts
	(list context)
	(scalar context)
	(scalar context)
	(list, builtin)

	Precedence Traps
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence

	General Regular Expression Traps using s///, etc.
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression

	Subroutine, Signal, Sorting Traps
	(Signals)
	(Sort Subroutine)
	warn() won`t let you specify a filehandle.

	OS Traps
	(SysV)
	(SysV)

	Interpolation Traps
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation

	DBM Traps
	DBM
	DBM

	Unclassified Traps
	require/do trap using returned value
	split on empty string with LIMIT specified

	perlstyle
	NAME
	DESCRIPTION

	perlxs
	NAME
	DESCRIPTION
	Introduction
	On The Road
	The Anatomy of an XSUB
	The Argument Stack
	The RETVAL Variable
	The MODULE Keyword
	The PACKAGE Keyword
	The PREFIX Keyword
	The OUTPUT: Keyword
	The CODE: Keyword
	The INIT: Keyword
	The NO_INIT Keyword
	Initializing Function Parameters
	Default Parameter Values
	The PREINIT: Keyword
	The SCOPE: Keyword
	The INPUT: Keyword
	Variable-length Parameter Lists
	The C_ARGS: Keyword
	The PPCODE: Keyword
	Returning Undef And Empty Lists
	The REQUIRE: Keyword
	The CLEANUP: Keyword
	The BOOT: Keyword
	The VERSIONCHECK: Keyword
	The PROTOTYPES: Keyword
	The PROTOTYPE: Keyword
	The ALIAS: Keyword
	The INTERFACE: Keyword
	The INTERFACE_MACRO: Keyword
	The INCLUDE: Keyword
	The CASE: Keyword
	The �&� Unary Operator
	Inserting Comments and C Preprocessor Directives
	Using XS With C++
	Interface Strategy
	Perl Objects And C Structures
	The Typemap

	EXAMPLES
	XS VERSION
	AUTHOR

	perlxstut
	NAME
	DESCRIPTION
	VERSION CAVEAT
	DYNAMIC VERSUS STATIC
	EXAMPLE 1
	EXAMPLE 2
	WHAT HAS GONE ON?
	WRITING GOOD TEST SCRIPTS
	EXAMPLE 3
	WHAT`S NEW HERE?
	INPUT AND OUTPUT PARAMETERS
	THE XSUBPP COMPILER
	THE TYPEMAP FILE
	WARNING
	EXAMPLE 4
	WHAT HAS HAPPENED HERE?
	SPECIFYING ARGUMENTS TO XSUBPP
	THE ARGUMENT STACK
	EXTENDING YOUR EXTENSION
	DOCUMENTING YOUR EXTENSION
	INSTALLING YOUR EXTENSION
	SEE ALSO
	Author
	Last Changed

	perlguts
	NAME
	DESCRIPTION
	Variables
	Datatypes
	What is an "IV"?
	Working with SVs
	What`s Really Stored in an SV?
	Working with AVs
	Working with HVs
	Hash API Extensions
	References
	Blessed References and Class Objects
	Creating New Variables
	Reference Counts and Mortality
	Stashes and Globs
	Double-Typed SVs
	Magic Variables
	Assigning Magic
	Magic Virtual Tables
	Finding Magic
	Understanding the Magic of Tied Hashes and Arrays
	Localizing changes
	SAVEINT(int i)
	SAVEIV(IV i)
	SAVEI32(I32 i)
	SAVELONG(long i)
	SAVESPTR(s)
	SAVEPPTR(p)
	SAVEFREESV(SV *sv)
	SAVEFREEOP(OP *op)
	SAVEFREEPV(p)
	SAVECLEARSV(SV *sv)
	SAVEDELETE(HV *hv, char *key, I32 length)
	SAVEDESTRUCTOR(f,p)
	SAVESTACK_POS()
	SV* save_scalar(GV *gv)
	AV* save_ary(GV *gv)
	HV* save_hash(GV *gv)
	void save_item(SV *item)
	void save_list(SV **sarg, I32 maxsarg)
	SV* save_svref(SV **sptr)
	void save_aptr(AV **aptr)
	void save_hptr(HV **hptr)

	Subroutines
	XSUBs and the Argument Stack
	Calling Perl Routines from within C Programs
	Memory Allocation
	PerlIO
	Putting a C value on Perl stack
	Scratchpads
	Scratchpads and recursion

	Compiled code
	Code tree
	Examining the tree
	Compile pass 1: check routines
	Compile pass 1a: constant folding
	Compile pass 2: context propagation
	Compile pass 3: peephole optimization

	API LISTING
	av_clear
	av_extend
	av_fetch
	AvFILL
	av_len
	av_make
	av_pop
	av_push
	av_shift
	av_store
	av_undef
	av_unshift
	CLASS
	Copy
	croak
	CvSTASH
	PL_DBsingle
	PL_DBsub
	PL_DBtrace
	dMARK
	dORIGMARK
	PL_dowarn
	dSP
	dXSARGS
	dXSI32
	do_binmode
	ENTER
	EXTEND
	fbm_compile
	fbm_instr
	FREETMPS
	G_ARRAY
	G_DISCARD
	G_EVAL
	GIMME
	GIMME_V
	G_NOARGS
	G_SCALAR
	gv_fetchmeth
	gv_fetchmethod
	gv_fetchmethod_autoload
	G_VOID
	gv_stashpv
	gv_stashsv
	GvSV
	HEf_SVKEY
	HeHASH
	HeKEY
	HeKLEN
	HePV
	HeSVKEY
	HeSVKEY_force
	HeSVKEY_set
	HeVAL
	hv_clear
	hv_delayfree_ent
	hv_delete
	hv_delete_ent
	hv_exists
	hv_exists_ent
	hv_fetch
	hv_fetch_ent
	hv_free_ent
	hv_iterinit
	hv_iterkey
	hv_iterkeysv
	hv_iternext
	hv_iternextsv
	hv_iterval
	hv_magic
	HvNAME
	hv_store
	hv_store_ent
	hv_undef
	isALNUM
	isALPHA
	isDIGIT
	isLOWER
	isSPACE
	isUPPER
	items
	ix
	LEAVE
	looks_like_number
	MARK
	mg_clear
	mg_copy
	mg_find
	mg_free
	mg_get
	mg_len
	mg_magical
	mg_set
	Move
	PL_na
	New
	newAV
	Newc
	newCONSTSUB
	newHV
	newRV_inc
	newRV_noinc
	NEWSV
	newSViv
	newSVnv
	newSVpv
	newSVpvf
	newSVpvn
	newSVrv
	newSVsv
	newXS
	newXSproto
	Newz
	Nullav
	Nullch
	Nullcv
	Nullhv
	Nullsv
	ORIGMARK
	perl_alloc
	perl_call_argv
	perl_call_method
	perl_call_pv
	perl_call_sv
	perl_construct
	perl_destruct
	perl_eval_sv
	perl_eval_pv
	perl_free
	perl_get_av
	perl_get_cv
	perl_get_hv
	perl_get_sv
	perl_parse
	perl_require_pv
	perl_run
	POPi
	POPl
	POPp
	POPn
	POPs
	PUSHMARK
	PUSHi
	PUSHn
	PUSHp
	PUSHs
	PUSHu
	PUTBACK
	Renew
	Renewc
	RETVAL
	safefree
	safemalloc
	saferealloc
	savepv
	savepvn
	SAVETMPS
	SP
	SPAGAIN
	ST
	strEQ
	strGE
	strGT
	strLE
	strLT
	strNE
	strnEQ
	strnNE
	sv_2mortal
	sv_bless
	sv_catpv
	sv_catpv_mg
	sv_catpvn
	sv_catpvn_mg
	sv_catpvf
	sv_catpvf_mg
	sv_catsv
	sv_catsv_mg
	sv_chop
	sv_cmp
	SvCUR
	SvCUR_set
	sv_dec
	sv_derived_from
	sv_derived_from
	SvEND
	sv_eq
	SvGETMAGIC
	SvGROW
	sv_grow
	sv_inc
	sv_insert
	SvIOK
	SvIOK_off
	SvIOK_on
	SvIOK_only
	SvIOKp
	sv_isa
	sv_isobject
	SvIV
	SvIVX
	SvLEN
	sv_len
	sv_magic
	sv_mortalcopy
	sv_newmortal
	SvNIOK
	SvNIOK_off
	SvNIOKp
	PL_sv_no
	SvNOK
	SvNOK_off
	SvNOK_on
	SvNOK_only
	SvNOKp
	SvNV
	SvNVX
	SvOK
	SvOOK
	SvPOK
	SvPOK_off
	SvPOK_on
	SvPOK_only
	SvPOKp
	SvPV
	SvPV_force
	SvPVX
	SvREFCNT
	SvREFCNT_dec
	SvREFCNT_inc
	SvROK
	SvROK_off
	SvROK_on
	SvRV
	SvSETMAGIC
	sv_setiv
	sv_setiv_mg
	sv_setnv
	sv_setnv_mg
	sv_setpv
	sv_setpv_mg
	sv_setpviv
	sv_setpviv_mg
	sv_setpvn
	sv_setpvn_mg
	sv_setpvf
	sv_setpvf_mg
	sv_setref_iv
	sv_setref_nv
	sv_setref_pv
	sv_setref_pvn
	SvSetSV
	SvSetSV_nosteal
	sv_setsv
	sv_setsv_mg
	sv_setuv
	sv_setuv_mg
	SvSTASH
	SvTAINT
	SvTAINTED
	SvTAINTED_off
	SvTAINTED_on
	SVt_IV
	SVt_PV
	SVt_PVAV
	SVt_PVCV
	SVt_PVHV
	SVt_PVMG
	SVt_NV
	SvTRUE
	SvTYPE
	svtype
	PL_sv_undef
	sv_unref
	SvUPGRADE
	sv_upgrade
	sv_usepvn
	sv_usepvn_mg
	sv_vcatpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
	sv_vsetpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
	SvUV
	SvUVX
	PL_sv_yes
	THIS
	toLOWER
	toUPPER
	warn
	XPUSHi
	XPUSHn
	XPUSHp
	XPUSHs
	XPUSHu
	XS
	XSRETURN
	XSRETURN_EMPTY
	XSRETURN_IV
	XSRETURN_NO
	XSRETURN_NV
	XSRETURN_PV
	XSRETURN_UNDEF
	XSRETURN_YES
	XST_mIV
	XST_mNV
	XST_mNO
	XST_mPV
	XST_mUNDEF
	XST_mYES
	XS_VERSION
	XS_VERSION_BOOTCHECK
	Zero

	AUTHORS

	perlcall
	NAME
	DESCRIPTION
	An Error Handler
	An Event Driven Program

	THE PERL_CALL FUNCTIONS
	perl_call_sv
	perl_call_pv
	perl_call_method
	perl_call_argv

	FLAG VALUES
	G_VOID
	1.
	2.

	G_SCALAR
	1.
	2.

	G_ARRAY
	1.
	2.

	G_DISCARD
	G_NOARGS
	G_EVAL
	G_KEEPERR
	Determining the Context

	KNOWN PROBLEMS
	1.
	2.

	EXAMPLES
	No Parameters, Nothing returned
	1.
	2.
	3.
	4.
	5.

	Passing Parameters
	1.
	2.
	3.
	4.
	5.
	6.
	7.

	Returning a Scalar
	1.
	2.
	3.
	4.
	5.

	Returning a list of values
	1.
	2.

	Returning a list in a scalar context
	Returning Data from Perl via the parameter list
	Using G_EVAL
	1.
	2.
	3.

	Using G_KEEPERR
	Using perl_call_sv
	Using perl_call_argv
	Using perl_call_method
	Using GIMME_V
	Using Perl to dispose of temporaries
	Strategies for storing Callback Context Information
	1. Ignore the problem - Allow only 1 callback
	2. Create a sequence of callbacks - hard wired limit
	3. Use a parameter to map to the Perl callback

	Alternate Stack Manipulation
	1.
	2.
	3.

	Creating and calling an anonymous subroutine in C

	SEE ALSO
	AUTHOR
	DATE

	perlembed
	NAME
	DESCRIPTION
	PREAMBLE
	Use C from Perl?
	Use a Unix program from Perl?
	Use Perl from Perl?
	Use C from C?
	Use Perl from C?

	ROADMAP
	Compiling your C program
	Adding a Perl interpreter to your C program
	Calling a Perl subroutine from your C program
	Evaluating a Perl statement from your C program
	Performing Perl pattern matches and substitutions from your C program
	Fiddling with the Perl stack from your C program
	Maintaining a persistent interpreter
	Maintaining multiple interpreter instances
	Using Perl modules, which themselves use C libraries, from your C program

	Embedding Perl under Win32
	MORAL
	AUTHOR
	COPYRIGHT

	perlpod
	NAME
	DESCRIPTION
	Verbatim Paragraph
	Command Paragraph
	=pod
	=cut
	=head1
	=head2
	=over
	=back
	=item
	=for
	=begin
	=end

	Ordinary Block of Text
	The Intent
	Embedding Pods in Perl Modules
	Common Pod Pitfalls

	SEE ALSO
	AUTHOR

	perlbook
	NAME
	DESCRIPTION

	perlapio
	NAME
	SYNOPSIS
	DESCRIPTION
	PerlIO *
	PerlIO_stdin(), PerlIO_stdout(), PerlIO_stderr()
	PerlIO_open(path, mode), PerlIO_fdopen(fd,mode)
	PerlIO_printf(f,fmt,...), PerlIO_vprintf(f,fmt,a)
	PerlIO_stdoutf(fmt,...)
	PerlIO_read(f,buf,count), PerlIO_write(f,buf,count)
	PerlIO_close(f)
	PerlIO_puts(f,s), PerlIO_putc(f,c)
	PerlIO_ungetc(f,c)
	PerlIO_getc(f)
	PerlIO_eof(f)
	PerlIO_error(f)
	PerlIO_fileno(f)
	PerlIO_clearerr(f)
	PerlIO_flush(f)
	PerlIO_tell(f)
	PerlIO_seek(f,o,w)
	PerlIO_getpos(f,p), PerlIO_setpos(f,p)
	PerlIO_rewind(f)
	PerlIO_tmpfile()
	Co-existence with stdio
	PerlIO_importFILE(f,flags)
	PerlIO_exportFILE(f,flags)
	PerlIO_findFILE(f)
	PerlIO_releaseFILE(p,f)
	PerlIO_setlinebuf(f)
	PerlIO_has_cntptr(f)
	PerlIO_get_ptr(f)
	PerlIO_get_cnt(f)
	PerlIO_canset_cnt(f)
	PerlIO_fast_gets(f)
	PerlIO_set_ptrcnt(f,p,c)
	PerlIO_set_cnt(f,c)
	PerlIO_has_base(f)
	PerlIO_get_base(f)
	PerlIO_get_bufsiz(f)

	perldelta
	NAME
	DESCRIPTION
	About the new versioning system
	Incompatible Changes
	WARNING: This version is not binary compatible with Perl 5.004.
	Default installation structure has changed
	Perl Source Compatibility
	C Source Compatibility
	Core sources now require ANSI C compiler
	All Perl global variables must now be referenced with an explicit prefix
	Enabling threads has source compatibility issues

	Binary Compatibility
	Security fixes may affect compatibility
	Relaxed new mandatory warnings introduced in 5.004
	Licensing

	Core Changes
	Threads
	Compiler
	Regular Expressions
	Many new and improved optimizations
	Many bug fixes
	New regular expression constructs
	New operator for precompiled regular expressions
	Other improvements
	Incompatible changes

	Improved �malloc()�
	Quicksort is internally implemented
	Reliable signals
	Reliable stack pointers
	More generous treatment of carriage returns
	Memory leaks
	Better support for multiple interpreters
	Behavior of �local()� on array and hash elements is now well-defined
	 %!� is transparently tied to the ��Errno� module
	Pseudo-hashes are supported
	 EXPR foreach EXPR� is supported
	Keywords can be globally overridden
	 $^E�� is meaningful on Win32
	 foreach (1..1000000)� optimized
	 Foo::� can be used as implicitly quoted package name
	 exists �$Foo::{Bar::}�� tests existence of a package
	Better locale support
	Experimental support for 64-bit platforms
	 prototype()� returns useful results on builtins
	Extended support for exception handling
	Re-blessing in �DESTROY()� supported for chaining �DESTROY()� methods
	All �printf� format conversions are handled internally
	New �INIT� keyword
	New �lock� keyword
	New �qr//� operator
	 our� is now a reserved word
	Tied arrays are now fully supported
	Tied handles support is better
	4th argument to substr
	Negative LENGTH argument to splice
	Magic lvalues are now more magical
	<> now reads in records

	Supported Platforms
	New Platforms
	Changes in existing support

	Modules and Pragmata
	New Modules
	B
	Data::Dumper
	Errno
	File::Spec
	ExtUtils::Installed
	ExtUtils::Packlist
	Fatal
	IPC::SysV
	Test
	Tie::Array
	Tie::Handle
	Thread
	attrs
	fields
	re

	Changes in existing modules
	CGI
	POSIX
	DB_File
	MakeMaker
	CPAN
	Cwd
	Benchmark

	Utility Changes
	Documentation Changes
	New Diagnostics
	Ambiguous call resolved as CORE::%s(), qualify as such or use &
	Bad index while coercing array into hash
	Bareword "%s" refers to nonexistent package
	Can`t call method "%s" on an undefined value
	Can`t coerce array into hash
	Can`t goto subroutine from an eval-string
	Can`t localize pseudo-hash element
	Can`t use %%! because Errno.pm is not available
	Cannot find an opnumber for "%s"
	Character class syntax [. .] is reserved for future extensions
	Character class syntax [: :] is reserved for future extensions
	Character class syntax [= =] is reserved for future extensions
	%s: Eval-group in insecure regular expression
	%s: Eval-group not allowed, use re `eval'
	%s: Eval-group not allowed at run time
	Explicit blessing to `' (assuming package main)
	Illegal hex digit ignored
	No such array field
	No such field "%s" in variable %s of type %s
	Out of memory during ridiculously large request
	Range iterator outside integer range
	Recursive inheritance detected while looking for method `%s' in package `%s'
	Reference found where even-sized list expected
	Undefined value assigned to typeglob
	Use of reserved word "%s" is deprecated
	perl: warning: Setting locale failed.

	Obsolete Diagnostics
	Can`t mktemp()
	Can`t write to temp file for -e: %s
	Cannot open temporary file

	BUGS
	SEE ALSO
	HISTORY

	perllocale
	NAME
	DESCRIPTION
	PREPARING TO USE LOCALES
	USING LOCALES
	The use locale pragma
	The setlocale function
	Finding locales
	LOCALE PROBLEMS
	Temporarily fixing locale problems
	Permanently fixing locale problems
	Permanently fixing your locale configuration
	Permanently fixing system locale configuration
	The localeconv function

	LOCALE CATEGORIES
	Category LC_COLLATE: Collation
	Category LC_CTYPE: Character Types
	Category LC_NUMERIC: Numeric Formatting
	Category LC_MONETARY: Formatting of monetary amounts
	LC_TIME
	Other categories

	SECURITY
	Comparison operators (lt, le, ge, gt and cmp):
	Case-mapping interpolation (with \l, \L, \u or \U)
	Matching operator (m//):
	Substitution operator (s///):
	In-memory formatting function (sprintf()):
	Output formatting functions (printf() and write()):
	Case-mapping functions (lc(), lcfirst(), uc(), ucfirst()):
	POSIX locale-dependent functions (localeconv(), strcoll(),
	POSIX character class tests (isalnum(), isalpha(), isdigit(),

	ENVIRONMENT
	PERL_BADLANG
	LC_ALL
	LC_CTYPE
	LC_COLLATE
	LC_MONETARY
	LC_NUMERIC
	LC_TIME
	LANG

	NOTES
	Backward compatibility
	I18N:Collate obsolete
	Sort speed and memory use impacts
	 write()� and LC_NUMERIC
	Freely available locale definitions
	I18n and l10n
	An imperfect standard

	BUGS
	Broken systems

	SEE ALSO
	HISTORY

	perlmodinstall
	NAME
	DESCRIPTION
	PREAMBLE
	DECOMPRESS the file
	UNPACK the file into a directory
	BUILD the module (sometimes unnecessary)
	INSTALL the module.

	HEY
	AUTHOR
	COPYRIGHT

	perlmodlib
	NAME
	DESCRIPTION
	THE PERL MODULE LIBRARY
	Pragmatic Modules
	use autouse MODULE = qw(sub1 sub2 sub3)
	blib
	diagnostics
	integer
	less
	lib
	locale
	ops
	overload
	re
	sigtrap
	strict
	subs
	vmsish
	vars

	Standard Modules
	AnyDBM_File
	AutoLoader
	AutoSplit
	Benchmark
	CPAN
	CPAN::FirstTime
	CPAN::Nox
	Carp
	Class::Struct
	Config
	Cwd
	DB_File
	Devel::SelfStubber
	DirHandle
	DynaLoader
	English
	Env
	Exporter
	ExtUtils::Embed
	ExtUtils::Install
	ExtUtils::Liblist
	ExtUtils::MM_OS2
	ExtUtils::MM_Unix
	ExtUtils::MM_VMS
	ExtUtils::MakeMaker
	ExtUtils::Manifest
	ExtUtils::Mkbootstrap
	ExtUtils::Mksymlists
	ExtUtils::testlib
	Fatal
	Fcntl
	File::Basename
	File::CheckTree
	File::Compare
	File::Copy
	File::Find
	File::Path
	File::stat
	FileCache
	FileHandle
	FindBin
	GDBM_File
	Getopt::Long
	Getopt::Std
	I18N::Collate
	IO
	IO::File
	IO::Handle
	IO::Pipe
	IO::Seekable
	IO::Select
	IO::Socket
	IPC::Open2
	IPC::Open3
	Math::BigFloat
	Math::BigInt
	Math::Complex
	Math::Trig
	NDBM_File
	Net::Ping
	Net::hostent
	Net::netent
	Net::protoent
	Net::servent
	Opcode
	Pod::Text
	POSIX
	SDBM_File
	Safe
	Search::Dict
	SelectSaver
	SelfLoader
	Shell
	Socket
	Symbol
	Sys::Hostname
	Sys::Syslog
	Term::Cap
	Term::Complete
	Term::ReadLine
	Test::Harness
	Text::Abbrev
	Text::ParseWords
	Text::Soundex
	Text::Tabs
	Text::Wrap
	Tie::Hash
	Tie::RefHash
	Tie::Scalar
	Tie::SubstrHash
	Time::Local
	Time::gmtime
	Time::localtime
	Time::tm
	UNIVERSAL
	User::grent
	User::pwent

	Extension Modules

	CPAN
	Modules: Creation, Use, and Abuse
	Guidelines for Module Creation
	Do similar modules already exist in some form?
	Try to design the new module to be easy to extend and reuse.
	Some simple style guidelines
	Select what to export.
	Select a name for the module.
	Have you got it right?
	README and other Additional Files.
	Adding a Copyright Notice.
	Give the module a version/issue/release number.
	How to release and distribute a module.
	Take care when changing a released module.

	Guidelines for Converting Perl 4 Library Scripts into Modules
	There is no requirement to convert anything.
	Consider the implications.
	Make the most of the opportunity.
	The pl2pm utility will get you started.

	Guidelines for Reusing Application Code
	Complete applications rarely belong in the Perl Module Library.
	Many applications contain some Perl code that could be reused.
	Break-out the reusable code into one or more separate module files.
	Take the opportunity to reconsider and redesign the interfaces.
	In some cases the `application' can then be reduced to a small

	NOTE

	perlport
	NAME
	DESCRIPTION
	Not all Perl programs have to be portable
	The vast majority of Perl is portable

	ISSUES
	Newlines
	Numbers endianness and Width
	Files
	System Interaction
	Interprocess Communication (IPC)
	External Subroutines (XS)
	Standard Modules
	Time and Date
	Character sets and character encoding
	Internationalisation
	System Resources
	Security
	Style

	CPAN Testers
	Mailing list: cpan-testers@perl.org
	Testing results: http://www.connect.net/gbarr/cpan-test/

	PLATFORMS
	Unix
	DOS and Derivatives
	The djgpp environment for DOS, http://www.delorie.com/djgpp/
	The EMX environment for DOS, OS/2, etc. emx@iaehv.nl,
	Build instructions for Win32, perlwin32.
	The ActiveState Pages, http://www.activestate.com/

	Mac€OS
	The MacPerl Pages, http://www.ptf.com/macperl/.
	The MacPerl mailing list, mac-perl-request@iis.ee.ethz.ch.

	VMS
	perlvms.pod
	vmsperl list, vmsperl-request@newman.upenn.edu
	vmsperl on the web, http://www.sidhe.org/vmsperl/index.html

	EBCDIC Platforms
	perl-mvs list
	AS/400 Perl information at http://as400.rochester.ibm.com/

	Acorn RISC OS
	perl list

	Other perls
	Atari, Guido Flohr`s page http://stud.uni-sb.de/~gufl0000/
	HP 300 MPE/iX http://www.cccd.edu/~markb/perlix.html
	Novell Netware

	FUNCTION IMPLEMENTATIONS
	Alphabetical Listing of Perl Functions
	-X FILEHANDLE
	-X EXPR
	-X
	binmode FILEHANDLE
	chmod LIST
	chown LIST
	chroot FILENAME
	chroot
	crypt PLAINTEXT,SALT
	dbmclose HASH
	dbmopen HASH,DBNAME,MODE
	dump LABEL
	exec LIST
	fcntl FILEHANDLE,FUNCTION,SCALAR
	flock FILEHANDLE,OPERATION
	fork
	getlogin
	getpgrp PID
	getppid
	getpriority WHICH,WHO
	getpwnam NAME
	getgrnam NAME
	getnetbyname NAME
	getpwuid UID
	getgrgid GID
	getnetbyaddr ADDR,ADDRTYPE
	getprotobynumber NUMBER
	getservbyport PORT,PROTO
	getpwent
	getgrent
	gethostent
	getnetent
	getprotoent
	getservent
	setpwent
	setgrent
	sethostent STAYOPEN
	setnetent STAYOPEN
	setprotoent STAYOPEN
	setservent STAYOPEN
	endpwent
	endgrent
	endhostent
	endnetent
	endprotoent
	endservent
	getsockopt SOCKET,LEVEL,OPTNAME
	glob EXPR
	glob
	ioctl FILEHANDLE,FUNCTION,SCALAR
	kill LIST
	link OLDFILE,NEWFILE
	lstat FILEHANDLE
	lstat EXPR
	lstat
	msgctl ID,CMD,ARG
	msgget KEY,FLAGS
	msgsnd ID,MSG,FLAGS
	msgrcv ID,VAR,SIZE,TYPE,FLAGS
	open FILEHANDLE,EXPR
	open FILEHANDLE
	pipe READHANDLE,WRITEHANDLE
	readlink EXPR
	readlink
	select RBITS,WBITS,EBITS,TIMEOUT
	semctl ID,SEMNUM,CMD,ARG
	semget KEY,NSEMS,FLAGS
	semop KEY,OPSTRING
	setpgrp PID,PGRP
	setpriority WHICH,WHO,PRIORITY
	setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
	shmctl ID,CMD,ARG
	shmget KEY,SIZE,FLAGS
	shmread ID,VAR,POS,SIZE
	shmwrite ID,STRING,POS,SIZE
	socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
	stat FILEHANDLE
	stat EXPR
	stat
	symlink OLDFILE,NEWFILE
	syscall LIST
	sysopen FILEHANDLE,FILENAME,MODE,PERMS
	system LIST
	times
	truncate FILEHANDLE,LENGTH
	truncate EXPR,LENGTH
	umask EXPR
	umask
	utime LIST
	wait
	waitpid PID,FLAGS

	CHANGES
	1.33, 06 August 1998
	1.32, 05 August 1998
	1.30, 03 August 1998
	1.23, 10 July 1998

	AUTHORS / CONTRIBUTORS
	VERSION

	perltoot
	NAME
	DESCRIPTION
	Creating a Class
	Object Representation
	Class Interface
	Constructors and Instance Methods
	Planning for the Future: Better Constructors
	Destructors
	Other Object Methods

	Class Data
	Accessing Class Data
	Debugging Methods
	Class Destructors
	Documenting the Interface

	Aggregation
	Inheritance
	Overridden Methods
	Multiple Inheritance
	UNIVERSAL: The Root of All Objects

	Alternate Object Representations
	Arrays as Objects
	Closures as Objects

	AUTOLOAD: Proxy Methods
	Autoloaded Data Methods
	Inherited Autoloaded Data Methods

	Metaclassical Tools
	Class::Struct
	Data Members as Variables
	NOTES
	Object Terminology

	SEE ALSO
	AUTHOR AND COPYRIGHT
	COPYRIGHT
	Acknowledgments

	perlhist
	NAME
	DESCRIPTION
	INTRODUCTION
	THE KEEPERS OF THE PUMPKIN
	PUMPKIN?

	THE RECORDS
	SELECTED RELEASE SIZES
	SELECTED PATCH SIZES

	THE KEEPERS OF THE RECORDS

	Core Modules
	AnyDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION
	DBM Comparisons
	[0]
	[1]
	[2]
	[3]

	SEE ALSO

	AutoLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	Subroutine Stubs
	Using �AutoLoader�`s AUTOLOAD Subroutine
	Overriding �AutoLoader�`s AUTOLOAD Subroutine
	Package Lexicals
	 AutoLoader� vs. �SelfLoader�

	CAVEATS
	SEE ALSO

	AutoSplit
	NAME
	SYNOPSIS
	DESCRIPTION
	$keep
	$check
	$modtime
	Multiple packages

	DIAGNOSTICS

	The Perl Compiler
	B
	NAME
	SYNOPSIS
	DESCRIPTION
	OVERVIEW OF CLASSES
	SV-RELATED CLASSES
	B::SV METHODS
	REFCNT
	FLAGS

	B::IV METHODS
	IV
	IVX
	needs64bits
	packiv

	B::NV METHODS
	NV
	NVX

	B::RV METHODS
	RV

	B::PV METHODS
	PV

	B::PVMG METHODS
	MAGIC
	SvSTASH

	B::MAGIC METHODS
	MOREMAGIC
	PRIVATE
	TYPE
	FLAGS
	OBJ
	PTR

	B::PVLV METHODS
	TARGOFF
	TARGLEN
	TYPE
	TARG

	B::BM METHODS
	USEFUL
	PREVIOUS
	RARE
	TABLE

	B::GV METHODS
	NAME
	STASH
	SV
	IO
	FORM
	AV
	HV
	EGV
	CV
	CVGEN
	LINE
	FILEGV
	GvREFCNT
	FLAGS

	B::IO METHODS
	LINES
	PAGE
	PAGE_LEN
	LINES_LEFT
	TOP_NAME
	TOP_GV
	FMT_NAME
	FMT_GV
	BOTTOM_NAME
	BOTTOM_GV
	SUBPROCESS
	IoTYPE
	IoFLAGS

	B::AV METHODS
	FILL
	MAX
	OFF
	ARRAY
	AvFLAGS

	B::CV METHODS
	STASH
	START
	ROOT
	GV
	FILEGV
	DEPTH
	PADLIST
	OUTSIDE
	XSUB
	XSUBANY

	B::HV METHODS
	FILL
	MAX
	KEYS
	RITER
	NAME
	PMROOT
	ARRAY

	OP-RELATED CLASSES
	B::OP METHODS
	next
	sibling
	ppaddr
	desc
	targ
	type
	seq
	flags
	private

	B::UNOP METHOD
	first

	B::BINOP METHOD
	last

	B::LOGOP METHOD
	other

	B::CONDOP METHODS
	true
	false

	B::LISTOP METHOD
	children

	B::PMOP METHODS
	pmreplroot
	pmreplstart
	pmnext
	pmregexp
	pmflags
	pmpermflags
	precomp

	B::SVOP METHOD
	sv

	B::GVOP METHOD
	gv

	B::PVOP METHOD
	pv

	B::LOOP METHODS
	redoop
	nextop
	lastop

	B::COP METHODS
	label
	stash
	filegv
	cop_seq
	arybase
	line

	FUNCTIONS EXPORTED BY �B�
	main_cv
	main_root
	main_start
	comppadlist
	sv_undef
	sv_yes
	sv_no
	walkoptree(OP, METHOD)
	walkoptree_debug(DEBUG)
	walksymtable(SYMREF, METHOD, RECURSE)
	svref_2object(SV)
	ppname(OPNUM)
	hash(STR)
	cast_I32(I)
	minus_c
	cstring(STR)
	class(OBJ)
	threadsv_names
	byteload_fh(FILEHANDLE)

	AUTHOR

	O
	NAME
	SYNOPSIS
	DESCRIPTION
	CONVENTIONS
	IMPLEMENTATION
	AUTHOR

	Asmdata
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Bblock
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Bytecode
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-ofilename
	
	-f
	-fcompress-nullops
	-fomit-sequence-numbers
	-fbypass-nullops
	-fstrip-syntax-tree
	-On
	-D
	-Do
	-Db
	-Da
	-DC
	-S
	-m

	EXAMPLES
	BUGS
	AUTHOR

	C
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-ofilename
	-v
	
	-uPackname
	-D
	-Do
	-Dc
	-DA
	-DC
	-DM
	-f
	-fcog
	-fno-cog
	-On

	EXAMPLES
	BUGS
	AUTHOR

	CC
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-ofilename
	-v
	
	-uPackname
	-mModulename
	-D
	-Dr
	-DO
	-Ds
	-Dp
	-Dq
	-Dl
	-Dt
	-f
	-ffreetmps-each-bblock
	-ffreetmps-each-loop
	-fomit-taint
	-On

	EXAMPLES
	BUGS
	DIFFERENCES
	Loops
	Context of ".."
	Arithmetic
	Deprecated features

	AUTHOR

	Debug
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Deparse
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-p
	-uPACKAGE
	-l
	-sLETTERS
	C

	BUGS
	AUTHOR

	Disassembler
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Lint
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND LINT CHECKS
	context
	implicit-read and implicit-write
	dollar-underscore
	private-names
	undefined-subs
	regexp-variables
	all
	none

	NON LINT-CHECK OPTIONS
	-u Package

	BUGS
	AUTHOR

	Showlex
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Stackobj
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Terse
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Xref
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-oFILENAME
	-r
	-D[tO]

	BUGS
	AUTHOR

	Benchmark
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	new
	debug

	Standard Exports
	timeit(COUNT, CODE)
	timethis (COUNT, CODE, [TITLE, [STYLE]])
	timethese (COUNT, CODEHASHREF, [STYLE])
	timediff (T1, T2)
	timestr (TIMEDIFF, [STYLE, [FORMAT]])

	Optional Exports
	clearcache (COUNT)
	clearallcache ()
	disablecache ()
	enablecache ()

	NOTES
	INHERITANCE
	CAVEATS
	AUTHORS
	MODIFICATION HISTORY

	CGI Modules
	CGI
	NAME
	SYNOPSIS
	ABSTRACT
	DESCRIPTION
	PROGRAMMING STYLE
	CALLING CGI.PM ROUTINES
	1. Use another name for the argument, if one is available. For
	2. Change the capitalization, e.g. -Values
	3. Put quotes around the argument name, e.g. `-values'

	CREATING A NEW QUERY OBJECT (OBJECT-ORIENTED STYLE):
	CREATING A NEW QUERY OBJECT FROM AN INPUT FILE
	FETCHING A LIST OF KEYWORDS FROM THE QUERY:
	FETCHING THE NAMES OF ALL THE PARAMETERS PASSED TO YOUR SCRIPT:
	FETCHING THE VALUE OR VALUES OF A SINGLE NAMED PARAMETER:
	SETTING THE VALUE(S) OF A NAMED PARAMETER:
	APPENDING ADDITIONAL VALUES TO A NAMED PARAMETER:
	IMPORTING ALL PARAMETERS INTO A NAMESPACE:
	DELETING A PARAMETER COMPLETELY:
	DELETING ALL PARAMETERS:
	DIRECT ACCESS TO THE PARAMETER LIST:
	SAVING THE STATE OF THE SCRIPT TO A FILE:
	USING THE FUNCTION-ORIENTED INTERFACE
	:cgi
	:form
	:html2
	:html3
	:netscape
	:html
	:standard
	:all

	PRAGMAS
	-any
	-compile
	-nph
	-autoload
	-no_debug
	-private_tempfiles

	GENERATING DYNAMIC DOCUMENTS
	CREATING A STANDARD HTTP HEADER:
	GENERATING A REDIRECTION HEADER
	CREATING THE HTML DOCUMENT HEADER
	Parameters:
	1.
	2.
	3.
	4, 5, 6...

	ENDING THE HTML DOCUMENT:
	CREATING A SELF-REFERENCING URL THAT PRESERVES STATE INFORMATION:
	OBTAINING THE SCRIPT`S URL
	-absolute
	-relative
	-full
	-path (-path_info)
	-query (-query_string)

	CREATING STANDARD HTML ELEMENTS:
	PROVIDING ARGUMENTS TO HTML SHORTCUTS
	THE DISTRIBUTIVE PROPERTY OF HTML SHORTCUTS
	HTML SHORTCUTS AND LIST INTERPOLATION
	NON-STANDARD HTML SHORTCUTS

	CREATING FILL-OUT FORMS:
	CREATING AN ISINDEX TAG
	STARTING AND ENDING A FORM
	application/x-www-form-urlencoded
	multipart/form-data

	CREATING A TEXT FIELD
	Parameters
	1.
	2.
	3.
	4.

	CREATING A BIG TEXT FIELD
	CREATING A PASSWORD FIELD
	CREATING A FILE UPLOAD FIELD
	Parameters
	1.
	2.
	3.
	4.

	CREATING A POPUP MENU
	1.
	2.
	3.
	4.

	CREATING A SCROLLING LIST
	Parameters:
	1.
	2.
	3.
	4.
	5.

	CREATING A GROUP OF RELATED CHECKBOXES
	Parameters:
	1.
	2.
	3.
	4.
	5.

	CREATING A STANDALONE CHECKBOX
	Parameters:
	1.
	2.
	3.
	4.

	CREATING A RADIO BUTTON GROUP
	Parameters:
	1.
	2.
	3.
	4.
	5.
	6.

	CREATING A SUBMIT BUTTON
	Parameters:
	1.
	2.

	CREATING A RESET BUTTON
	CREATING A DEFAULT BUTTON
	CREATING A HIDDEN FIELD
	Parameters:
	1.
	2.

	CREATING A CLICKABLE IMAGE BUTTON
	Parameters:
	1.
	2.
	3.

	CREATING A JAVASCRIPT ACTION BUTTON

	NETSCAPE COOKIES
	1. an expiration time
	2. a domain
	3. a path
	4. a "secure" flag
	-name
	-value
	-path
	-domain
	-expires
	-secure

	WORKING WITH NETSCAPE FRAMES
	1. Create a <Frameset document
	2. Specify the destination for the document in the HTTP header
	3. Specify the destination for the document in the <FORM tag

	LIMITED SUPPORT FOR CASCADING STYLE SHEETS
	DEBUGGING
	DUMPING OUT ALL THE NAME/VALUE PAIRS

	FETCHING ENVIRONMENT VARIABLES
	accept()
	raw_cookie()
	user_agent()
	path_info()
	path_translated()
	remote_host()
	script_name()
	referer()
	auth_type ()
	server_name ()
	virtual_host ()
	server_software ()
	remote_user ()
	user_name ()
	request_method()

	USING NPH SCRIPTS
	In the use statement
	By calling the nph() method:
	By using -nph parameters in the header() and redirect() statements:

	Server Push
	multipart_init()
	multipart_start()
	multipart_end()

	Avoiding Denial of Service Attacks
	$CGI::POST_MAX
	$CGI::DISABLE_UPLOADS
	1. On a script-by-script basis
	2. Globally for all scripts

	COMPATIBILITY WITH CGI-LIB.PL
	AUTHOR INFORMATION
	CREDITS
	Matt Heffron (heffron@falstaff.css.beckman.com)
	James Taylor (james.taylor@srs.gov)
	Scott Anguish <sanguish@digifix.com
	Mike Jewell (mlj3u@virginia.edu)
	Timothy Shimmin (tes@kbs.citri.edu.au)
	Joergen Haegg (jh@axis.se)
	Laurent Delfosse (delfosse@csgrad1.cs.wvu.edu)
	Richard Resnick (applepi1@aol.com)
	Craig Bishop (csb@barwonwater.vic.gov.au)
	Tony Curtis (tc@vcpc.univie.ac.at)
	Tim Bunce (Tim.Bunce@ig.co.uk)
	Tom Christiansen (tchrist@convex.com)
	Andreas Koenig (k@franz.ww.TU-Berlin.DE)
	Tim MacKenzie (Tim.MacKenzie@fulcrum.com.au)
	Kevin B. Hendricks (kbhend@dogwood.tyler.wm.edu)
	Stephen Dahmen (joyfire@inxpress.net)
	Ed Jordan (ed@fidalgo.net)
	David Alan Pisoni (david@cnation.com)
	Doug MacEachern (dougm@opengroup.org)
	Robin Houston (robin@oneworld.org)
	...and many many more...

	A COMPLETE EXAMPLE OF A SIMPLE FORM-BASED SCRIPT
	BUGS
	SEE ALSO

	Apache
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE 1
	NOTE 2
	SEE ALSO
	AUTHOR

	Carp
	NAME
	SYNOPSIS
	DESCRIPTION
	REDIRECTING ERROR MESSAGES
	MAKING PERL ERRORS APPEAR IN THE BROWSER WINDOW
	Changing the default message

	CHANGE LOG
	AUTHORS
	SEE ALSO

	Cookie
	NAME
	SYNOPSIS
	DESCRIPTION
	USING CGI::Cookie
	1. expiration date
	2. domain
	3. path
	4. secure flag
	Creating New Cookies
	Sending the Cookie to the Browser
	Recovering Previous Cookies
	Manipulating Cookies
	name()
	value()
	domain()
	path()
	expires()

	AUTHOR INFORMATION
	BUGS
	SEE ALSO

	Fast
	NAME
	SYNOPSIS
	DESCRIPTION
	OTHER PIECES OF THE PUZZLE
	WRITING FASTCGI PERL SCRIPTS
	INSTALLING FASTCGI SCRIPTS
	USING FASTCGI SCRIPTS AS CGI SCRIPTS
	CAVEATS
	AUTHOR INFORMATION
	BUGS
	SEE ALSO

	Push
	NAME
	SYNOPSIS
	DESCRIPTION
	USING CGI::Push
	-next_page
	-last_page
	-type
	-delay
	-cookie, -target, -expires
	Heterogeneous Pages
	Changing the Page Delay on the Fly

	INSTALLING CGI::Push SCRIPTS
	CAVEATS
	AUTHOR INFORMATION
	BUGS
	SEE ALSO

	Switch
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	AUTHOR

	The CPAN Module
	CPAN
	NAME
	SYNOPSIS
	DESCRIPTION
	Interactive Mode
	Searching for authors, bundles, distribution files and modules
	make, test, install, clean modules or distributions
	readme, look module or distribution
	Signals

	CPAN::Shell
	autobundle
	recompile
	The four �CPAN::*� Classes: Author, Bundle, Module, Distribution
	Programmers interface
	expand($type,@things)
	Programming Examples

	Methods in the four
	Cache Manager
	Bundles
	Prerequisites
	Finding packages and VERSION
	Debugging
	Floppy, Zip, and all that Jazz

	CONFIGURATION
	o conf <scalar option>
	o conf <scalar option> <value>
	o conf <list option>
	o conf <list option> [shift|pop]
	o conf <list option> [unshift|push|splice] <list>
	CD-ROM support

	SECURITY
	EXPORT
	BUGS
	AUTHOR
	SEE ALSO

	FirstTime
	NAME
	SYNOPSIS
	DESCRIPTION

	Nox
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	Carp
	NAME
	SYNOPSIS
	DESCRIPTION
	Forcing a Stack Trace

	Struct
	NAME
	SYNOPSIS
	DESCRIPTION
	The ��struct()�� function
	Element Types and Accessor Methods
	Scalar (`$' or `*$')
	Array (`@' or `*@')
	Hash (`%' or `*%')
	Class (`Class_Name' or `*Class_Name')

	EXAMPLES
	Example 1
	Example 2

	Author and Modification History

	Config
	NAME
	SYNOPSIS
	DESCRIPTION
	myconfig()
	config_sh()
	config_vars(@names)

	EXAMPLE
	WARNING
	GLOSSARY
	M
	Mcc

	_
	_a
	_exe
	_o

	a
	afs
	alignbytes
	ansi2knr
	aphostname
	apiversion
	ar
	archlib
	archlibexp
	archname
	archobjs
	awk

	b
	baserev
	bash
	bin
	binexp
	bison
	byacc
	byteorder

	c
	c
	castflags
	cat
	cc
	cccdlflags
	ccdlflags
	ccflags
	cf_by
	cf_email
	cf_time
	chgrp
	chmod
	chown
	clocktype
	comm
	compress
	contains
	cp
	cpio
	cpp
	cpp_stuff
	cppflags
	cpplast
	cppminus
	cpprun
	cppstdin
	cryptlib
	csh

	d
	d_Gconvert
	d_access
	d_alarm
	d_archlib
	d_attribut
	d_bcmp
	d_bcopy
	d_bsd
	d_bsdgetpgrp
	d_bsdsetpgrp
	d_bzero
	d_casti32
	d_castneg
	d_charvspr
	d_chown
	d_chroot
	d_chsize
	d_closedir
	d_const
	d_crypt
	d_csh
	d_cuserid
	d_dbl_dig
	d_difftime
	d_dirnamlen
	d_dlerror
	d_dlopen
	d_dlsymun
	d_dosuid
	d_dup2
	d_endgrent
	d_endhent
	d_endnent
	d_endpent
	d_endpwent
	d_endsent
	d_eofnblk
	d_eunice
	d_fchmod
	d_fchown
	d_fcntl
	d_fd_macros
	d_fd_set
	d_fds_bits
	d_fgetpos
	d_flexfnam
	d_flock
	d_fork
	d_fpathconf
	d_fsetpos
	d_ftime
	d_getgrent
	d_getgrps
	d_gethbyaddr
	d_gethbyname
	d_gethent
	d_gethname
	d_gethostprotos
	d_getlogin
	d_getnbyaddr
	d_getnbyname
	d_getnent
	d_getnetprotos
	d_getpbyname
	d_getpbynumber
	d_getpent
	d_getpgid
	d_getpgrp2
	d_getpgrp
	d_getppid
	d_getprior
	d_getprotoprotos
	d_getpwent
	d_getsbyname
	d_getsbyport
	d_getsent
	d_getservprotos
	d_gettimeod
	d_gnulibc
	d_grpasswd
	d_htonl
	d_index
	d_inetaton
	d_isascii
	d_killpg
	d_lchown
	d_link
	d_locconv
	d_lockf
	d_longdbl
	d_longlong
	d_lstat
	d_mblen
	d_mbstowcs
	d_mbtowc
	d_memcmp
	d_memcpy
	d_memmove
	d_memset
	d_mkdir
	d_mkfifo
	d_mktime
	d_msg
	d_msgctl
	d_msgget
	d_msgrcv
	d_msgsnd
	d_mymalloc
	d_nice
	d_oldpthreads
	d_oldsock
	d_open3
	d_pathconf
	d_pause
	d_phostname
	d_pipe
	d_poll
	d_portable
	d_pthread_yield
	d_pthreads_created_joinable
	d_pwage
	d_pwchange
	d_pwclass
	d_pwcomment
	d_pwexpire
	d_pwgecos
	d_pwpasswd
	d_pwquota
	d_readdir
	d_readlink
	d_rename
	d_rewinddir
	d_rmdir
	d_safebcpy
	d_safemcpy
	d_sanemcmp
	d_sched_yield
	d_seekdir
	d_select
	d_sem
	d_semctl
	d_semctl_semid_ds
	d_semctl_semun
	d_semget
	d_semop
	d_setegid
	d_seteuid
	d_setgrent
	d_setgrps
	d_sethent
	d_setlinebuf
	d_setlocale
	d_setnent
	d_setpent
	d_setpgid
	d_setpgrp2
	d_setpgrp
	d_setprior
	d_setpwent
	d_setregid
	d_setresgid
	d_setresuid
	d_setreuid
	d_setrgid
	d_setruid
	d_setsent
	d_setsid
	d_setvbuf
	d_sfio
	d_shm
	d_shmat
	d_shmatprototype
	d_shmctl
	d_shmdt
	d_shmget
	d_sigaction
	d_sigsetjmp
	d_socket
	d_sockpair
	d_statblks
	d_stdio_cnt_lval
	d_stdio_ptr_lval
	d_stdiobase
	d_stdstdio
	d_strchr
	d_strcoll
	d_strctcpy
	d_strerrm
	d_strerror
	d_strtod
	d_strtol
	d_strtoul
	d_strxfrm
	d_suidsafe
	d_symlink
	d_syscall
	d_sysconf
	d_sysernlst
	d_syserrlst
	d_system
	d_tcgetpgrp
	d_tcsetpgrp
	d_telldir
	d_time
	d_times
	d_truncate
	d_tzname
	d_umask
	d_uname
	d_union_semun
	d_vfork
	d_void_closedir
	d_voidsig
	d_voidtty
	d_volatile
	d_vprintf
	d_wait4
	d_waitpid
	d_wcstombs
	d_wctomb
	d_xenix
	date
	db_hashtype
	db_prefixtype
	direntrytype
	dlext
	dlsrc
	doublesize
	dynamic_ext

	e
	eagain
	ebcdic
	echo
	egrep
	emacs
	eunicefix
	exe_ext
	expr
	extensions

	f
	find
	firstmakefile
	flex
	fpostype
	freetype
	full_csh
	full_sed

	g
	gccversion
	gidtype
	grep
	groupcat
	groupstype
	gzip

	h
	h_fcntl
	h_sysfile
	hint
	hostcat
	huge

	i
	i_arpainet
	i_bsdioctl
	i_db
	i_dbm
	i_dirent
	i_dld
	i_dlfcn
	i_fcntl
	i_float
	i_gdbm
	i_grp
	i_limits
	i_locale
	i_malloc
	i_math
	i_memory
	i_ndbm
	i_netdb
	i_neterrno
	i_niin
	i_pwd
	i_rpcsvcdbm
	i_sfio
	i_sgtty
	i_stdarg
	i_stddef
	i_stdlib
	i_string
	i_sysdir
	i_sysfile
	i_sysfilio
	i_sysin
	i_sysioctl
	i_sysndir
	i_sysparam
	i_sysresrc
	i_sysselct
	i_syssockio
	i_sysstat
	i_systime
	i_systimek
	i_systimes
	i_systypes
	i_sysun
	i_syswait
	i_termio
	i_termios
	i_time
	i_unistd
	i_utime
	i_values
	i_varargs
	i_varhdr
	i_vfork
	incpath
	inews
	installarchlib
	installbin
	installman1dir
	installman3dir
	installprivlib
	installscript
	installsitearch
	installsitelib
	intsize

	k
	known_extensions
	ksh

	l
	large
	ld
	lddlflags
	ldflags
	less
	lib_ext
	libc
	libperl
	libpth
	libs
	libswanted
	line
	lint
	lkflags
	ln
	lns
	locincpth
	loclibpth
	longdblsize
	longlongsize
	longsize
	lp
	lpr
	ls
	lseektype

	m
	mail
	mailx
	make
	make_set_make
	mallocobj
	mallocsrc
	malloctype
	man1dir
	man1direxp
	man1ext
	man3dir
	man3direxp
	man3ext
	medium
	mips_type
	mkdir
	models
	modetype
	more
	mv
	myarchname
	mydomain
	myhostname
	myuname

	n
	n
	netdb_hlen_type
	netdb_host_type
	netdb_name_type
	netdb_net_type
	nm
	nm_opt
	nm_so_opt
	nonxs_ext
	nroff

	o
	o_nonblock
	obj_ext
	optimize
	orderlib
	osname
	osvers

	p
	package
	pager
	passcat
	patchlevel
	path_sep
	perl
	perladmin
	perlpath
	pg
	phostname
	pidtype
	plibpth
	pmake
	pr
	prefix
	prefixexp
	privlib
	privlibexp
	prototype
	ptrsize

	r
	randbits
	ranlib
	rd_nodata
	rm
	rmail
	runnm

	s
	scriptdir
	scriptdirexp
	sed
	selecttype
	sendmail
	sh
	shar
	sharpbang
	shmattype
	shortsize
	shrpenv
	shsharp
	sig_name
	sig_name_init
	sig_num
	signal_t
	sitearch
	sitearchexp
	sitelib
	sitelibexp
	sizetype
	sleep
	smail
	small
	so
	sockethdr
	socketlib
	sort
	spackage
	spitshell
	split
	src
	ssizetype
	startperl
	startsh
	static_ext
	stdchar
	stdio_base
	stdio_bufsiz
	stdio_cnt
	stdio_filbuf
	stdio_ptr
	strings
	submit
	subversion
	sysman

	t
	tail
	tar
	tbl
	tee
	test
	timeincl
	timetype
	touch
	tr
	trnl
	troff

	u
	uidtype
	uname
	uniq
	usedl
	usemymalloc
	usenm
	useopcode
	useperlio
	useposix
	usesfio
	useshrplib
	usethreads
	usevfork
	usrinc
	uuname

	v
	version
	vi
	voidflags

	z
	zcat
	zip

	NOTE

	Cwd
	NAME
	SYNOPSIS
	DESCRIPTION

	Dumper
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	PACKAGE-new(ARRAYREF [, ARRAYREF])
	$OBJ-Dump or PACKAGE-Dump(ARRAYREF [, ARRAYREF])
	$OBJ-Dumpxs or PACKAGE-Dumpxs(ARRAYREF [, ARRAYREF])
	$OBJ-Seen([HASHREF])
	$OBJ-Values([ARRAYREF])
	$OBJ-Names([ARRAYREF])
	$OBJ-Reset

	Functions
	Dumper(LIST)
	DumperX(LIST)

	Configuration Variables or Methods
	$Data::Dumper::Indent or $OBJ-Indent([NEWVAL])
	$Data::Dumper::Purity or $OBJ-Purity([NEWVAL])
	$Data::Dumper::Pad or $OBJ-Pad([NEWVAL])
	$Data::Dumper::Varname or $OBJ-Varname([NEWVAL])
	$Data::Dumper::Useqq or $OBJ-Useqq([NEWVAL])
	$Data::Dumper::Terse or $OBJ-Terse([NEWVAL])
	$Data::Dumper::Freezer or $OBJ-Freezer([NEWVAL])
	$Data::Dumper::Toaster or $OBJ-Toaster([NEWVAL])
	$Data::Dumper::Deepcopy or $OBJ-Deepcopy([NEWVAL])
	$Data::Dumper::Quotekeys or $OBJ-Quotekeys([NEWVAL])
	$Data::Dumper::Bless or $OBJ-Bless([NEWVAL])

	Exports
	Dumper

	EXAMPLES
	BUGS
	AUTHOR
	VERSION
	SEE ALSO

	SelfStubber
	NAME
	SYNOPSIS
	DESCRIPTION

	DirHandle
	NAME
	SYNOPSIS
	DESCRIPTION

	DynaLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	@dl_library_path
	@dl_resolve_using
	@dl_require_symbols
	@dl_librefs
	@dl_modules
	dl_error()
	$dl_debug
	dl_findfile()
	dl_expandspec()
	dl_load_file()
	dl_loadflags()
	dl_find_symbol()
	dl_find_symbol_anywhere()
	dl_undef_symbols()
	dl_install_xsub()
	bootstrap()

	AUTHOR

	English
	NAME
	SYNOPSIS
	DESCRIPTION

	Env
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Errno
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	COPYRIGHT

	Exporter
	NAME
	SYNOPSIS
	DESCRIPTION
	Selecting What To Export
	Specialised Import Lists
	Exporting without using Export`s import method
	Module Version Checking
	Managing Unknown Symbols
	Tag Handling Utility Functions

	ExtUtils Modules
	Command
	NAME
	SYNOPSIS
	DESCRIPTION
	cat
	eqtime src dst
	rm_f files....
	rm_f files....
	touch files ...
	mv source... destination
	cp source... destination
	chmod mode files...
	mkpath directory...
	test_f file

	BUGS
	SEE ALSO
	AUTHOR

	Embed
	NAME
	SYNOPSIS
	DESCRIPTION
	@EXPORT
	FUNCTIONS
	xsinit()
	Examples
	ldopts()
	Examples
	perl_inc()
	ccflags(), ccdlflags()
	ccopts()
	xsi_header()
	xsi_protos(@modules)
	xsi_body(@modules)

	EXAMPLES
	SEE ALSO
	AUTHOR

	Install
	NAME
	SYNOPSIS
	DESCRIPTION

	Installed
	NAME
	SYNOPSIS
	DESCRIPTION
	USAGE
	FUNCTIONS
	new()
	modules()
	files()
	directories()
	directory_tree()
	validate()
	packlist()
	version()

	EXAMPLE
	AUTHOR

	Liblist
	NAME
	SYNOPSIS
	DESCRIPTION
	For static extensions
	For dynamic extensions
	For dynamic extensions
	EXTRALIBS
	LDLOADLIBS and LD_RUN_PATH
	BSLOADLIBS

	PORTABILITY
	VMS implementation
	Win32 implementation

	SEE ALSO

	MM_OS2
	NAME
	SYNOPSIS
	DESCRIPTION

	MM_Unix
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	Preloaded methods
	canonpath
	catdir
	catfile
	curdir
	rootdir
	updir

	SelfLoaded methods
	c_o (o)
	cflags (o)
	clean (o)
	const_cccmd (o)
	const_config (o)
	const_loadlibs (o)
	constants (o)
	depend (o)
	dir_target (o)
	dist (o)
	dist_basics (o)
	dist_ci (o)
	dist_core (o)
	dist_dir (o)
	dist_test (o)
	dlsyms (o)
	dynamic (o)
	dynamic_bs (o)
	dynamic_lib (o)
	exescan
	extliblist
	file_name_is_absolute
	find_perl

	Methods to actually produce chunks of text for the Makefile
	fixin
	force (o)
	guess_name
	has_link_code
	init_dirscan
	init_main
	init_others
	install (o)
	installbin (o)
	libscan (o)
	linkext (o)
	lsdir
	macro (o)
	makeaperl (o)
	makefile (o)
	manifypods (o)
	maybe_command
	maybe_command_in_dirs
	needs_linking (o)
	nicetext
	parse_version
	parse_abstract
	pasthru (o)
	path
	perl_script
	perldepend (o)
	ppd
	perm_rw (o)
	perm_rwx (o)
	pm_to_blib
	post_constants (o)
	post_initialize (o)
	postamble (o)
	prefixify
	processPL (o)
	realclean (o)
	replace_manpage_separator
	static (o)
	static_lib (o)
	staticmake (o)
	subdir_x (o)
	subdirs (o)
	test (o)
	test_via_harness (o)
	test_via_script (o)
	tool_autosplit (o)
	tools_other (o)
	tool_xsubpp (o)
	top_targets (o)
	writedoc
	xs_c (o)
	xs_o (o)
	perl_archive
	export_list

	SEE ALSO

	MM_VMS
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods always loaded
	eliminate_macros
	fixpath
	catdir
	catfile
	wraplist
	curdir (override)
	rootdir (override)
	updir (override)

	SelfLoaded methods
	guess_name (override)
	find_perl (override)
	path (override)
	maybe_command (override)
	maybe_command_in_dirs (override)
	perl_script (override)
	file_name_is_absolute (override)
	replace_manpage_separator
	init_others (override)
	constants (override)
	cflags (override)
	const_cccmd (override)
	pm_to_blib (override)
	tool_autosplit (override)
	tool_sxubpp (override)
	xsubpp_version (override)
	tools_other (override)
	dist (override)
	c_o (override)
	xs_c (override)
	xs_o (override)
	top_targets (override)
	dlsyms (override)
	dynamic_lib (override)
	dynamic_bs (override)
	static_lib (override)
	manifypods (override)
	processPL (override)
	installbin (override)
	subdir_x (override)
	clean (override)
	realclean (override)
	dist_basics (override)
	dist_core (override)
	dist_dir (override)
	dist_test (override)
	install (override)
	perldepend (override)
	makefile (override)
	test (override)
	test_via_harness (override)
	test_via_script (override)
	makeaperl (override)
	nicetext (override)

	MM_Win32
	NAME
	SYNOPSIS
	DESCRIPTION
	catfile
	constants (o)
	static_lib (o)
	dynamic_bs (o)
	dynamic_lib (o)
	canonpath
	perl_script
	pm_to_blib
	test_via_harness (o)
	tool_autosplit (override)
	tools_other (o)
	xs_o (o)
	top_targets (o)
	manifypods (o)
	dist_ci (o)
	dist_core (o)
	pasthru (o)

	MakeMaker
	NAME
	SYNOPSIS
	DESCRIPTION
	How To Write A Makefile.PL
	Default Makefile Behaviour
	make test
	make testdb
	make install
	PREFIX and LIB attribute
	AFS users
	Static Linking of a new Perl Binary
	Determination of Perl Library and Installation Locations
	Which architecture dependent directory?
	Using Attributes and Parameters
	C
	CCFLAGS
	CONFIG
	CONFIGURE
	DEFINE
	DIR
	DISTNAME
	DL_FUNCS
	DL_VARS
	EXCLUDE_EXT
	EXE_FILES
	NO_VC
	FIRST_MAKEFILE
	FULLPERL
	H
	IMPORTS
	INC
	INCLUDE_EXT
	INSTALLARCHLIB
	INSTALLBIN
	INSTALLDIRS
	INSTALLMAN1DIR
	INSTALLMAN3DIR
	INSTALLPRIVLIB
	INSTALLSCRIPT
	INSTALLSITELIB
	INSTALLSITEARCH
	INST_ARCHLIB
	INST_BIN
	INST_EXE
	INST_LIB
	INST_MAN1DIR
	INST_MAN3DIR
	INST_SCRIPT
	LDFROM
	LIBPERL_A
	LIB
	LIBS
	LINKTYPE
	MAKEAPERL
	MAKEFILE
	MAN1PODS
	MAN3PODS
	MAP_TARGET
	MYEXTLIB
	NAME
	NEEDS_LINKING
	NOECHO
	NORECURS
	OBJECT
	OPTIMIZE
	PERL
	PERLMAINCC
	PERL_ARCHLIB
	PERL_LIB
	PERL_SRC
	PERM_RW
	PERM_RWX
	PL_FILES
	PM
	PMLIBDIRS
	PREFIX
	PREREQ_PM
	SKIP
	TYPEMAPS
	VERSION
	VERSION_FROM
	XS
	XSOPT
	XSPROTOARG
	XS_VERSION

	Additional lowercase attributes
	clean
	depend
	dist
	dynamic_lib
	installpm
	linkext
	macro
	realclean
	tool_autosplit

	Overriding MakeMaker Methods
	Hintsfile support
	Distribution Support
	make distcheck
	make skipcheck
	make distclean
	make manifest
	make distdir
	make disttest
	make tardist
	make dist
	make uutardist
	make shdist
	make zipdist
	make ci

	Disabling an extension

	SEE ALSO
	AUTHORS

	Manifest
	NAME
	SYNOPSIS
	DESCRIPTION
	MANIFEST.SKIP
	EXPORT_OK
	GLOBAL VARIABLES
	DIAGNOSTICS
	Not in MANIFEST: file
	No such file: file
	MANIFEST: $!
	Added to MANIFEST: file

	SEE ALSO
	AUTHOR

	Mkbootstrap
	NAME
	SYNOPSIS
	DESCRIPTION

	Mksymlists
	NAME
	SYNOPSIS
	DESCRIPTION
	NAME
	DL_FUNCS
	DL_VARS
	FILE
	FUNCLIST
	DLBASE

	AUTHOR
	REVISION

	Packlist
	NAME
	SYNOPSIS
	DESCRIPTION
	USAGE
	FUNCTIONS
	new()
	read()
	write()
	validate()
	packlist_file()

	EXAMPLE
	AUTHOR

	testlib
	NAME
	SYNOPSIS
	DESCRIPTION

	xsubpp
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-C++
	-except
	-typemap typemap
	-v
	-prototypes
	-noversioncheck
	-nolinenumbers
	-object_capi

	ENVIRONMENT
	AUTHOR
	MODIFICATION HISTORY
	SEE ALSO

	Fatal
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Fcntl
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	EXPORTED SYMBOLS

	File Modules
	Basename
	NAME
	SYNOPSIS
	DESCRIPTION
	fileparse_set_fstype
	fileparse

	EXAMPLES
	basename
	dirname

	CheckTree
	NAME
	SYNOPSIS
	DESCRIPTION

	Compare
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN
	AUTHOR

	Copy
	NAME
	SYNOPSIS
	DESCRIPTION
	Special behavior if �syscopy� is defined (VMS and OS/2)
	rmscopy($from,$to[,$date_flag])

	RETURN
	AUTHOR

	DosGlob
	NAME
	SYNOPSIS
	DESCRIPTION
	EXPORTS (by request only)
	BUGS
	AUTHOR
	HISTORY
	SEE ALSO

	Find
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	Path
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHORS
	REVISION

	stat
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	AUTHOR

	File::Spec Modules
	Spec
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	AUTHORS

	Mac
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	canonpath
	catdir
	catfile
	curdir
	rootdir
	updir
	file_name_is_absolute
	path

	SEE ALSO

	OS2
	NAME
	SYNOPSIS
	DESCRIPTION

	Unix
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	canonpath
	catdir
	catfile
	curdir
	rootdir
	updir
	no_upwards
	file_name_is_absolute
	path
	join
	nativename

	SEE ALSO

	VMS
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods always loaded
	catdir
	catfile
	curdir (override)
	rootdir (override)
	updir (override)
	path (override)
	file_name_is_absolute (override)

	Win32
	NAME
	SYNOPSIS
	DESCRIPTION
	catfile
	canonpath

	FileCache
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	FileHandle
	NAME
	SYNOPSIS
	DESCRIPTION
	$fh-print
	$fh-printf
	$fh-getline
	$fh-getlines

	SEE ALSO

	FindBin
	NAME
	SYNOPSIS
	DESCRIPTION
	EXPORTABLE VARIABLES
	KNOWN BUGS
	AUTHORS
	COPYRIGHT
	REVISION

	Getopt Modules
	Long
	NAME
	SYNOPSIS
	DESCRIPTION
	!
	+
	=s
	:s
	=i
	:i
	=f
	:f
	Linkage specification
	Aliases and abbreviations
	Non-option call-back routine
	Option starters
	Return values and Errors

	COMPATIBILITY
	EXAMPLES
	CONFIGURATION OPTIONS
	default
	auto_abbrev
	getopt_compat
	require_order
	permute
	bundling (default: reset)
	bundling_override (default: reset)
	ignore_case (default: set)
	ignore_case_always (default: reset)
	pass_through (default: reset)
	prefix
	prefix_pattern
	debug (default: reset)

	OTHER USEFUL VARIABLES
	$Getopt::Long::VERSION
	$Getopt::Long::error

	AUTHOR
	COPYRIGHT AND DISCLAIMER

	Std
	NAME
	SYNOPSIS
	DESCRIPTION

	Collate
	NAME
	SYNOPSIS
	DESCRIPTION

	IO Modules
	IO
	NAME
	SYNOPSIS
	DESCRIPTION

	File
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([ARGS])
	new_tmpfile

	METHODS
	open(FILENAME [,MODE [,PERMS]])

	SEE ALSO
	HISTORY

	Handle
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ()
	new_from_fd (FD, MODE)

	METHODS
	$fh-fdopen (FD, MODE)
	$fh-opened
	$fh-getline
	$fh-getlines
	$fh-ungetc (ORD)
	$fh-write (BUF, LEN [, OFFSET }\])
	$fh-flush
	$fh-error
	$fh-clearerr
	$fh-untaint

	NOTE
	SEE ALSO
	BUGS
	HISTORY

	Pipe
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRCUTOR
	new ([READER, WRITER])

	METHODS
	reader ([ARGS])
	writer ([ARGS])
	handles ()

	SEE ALSO
	AUTHOR
	COPYRIGHT

	Seekable
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	HISTORY

	Select
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([HANDLES])

	METHODS
	add (HANDLES)
	remove (HANDLES)
	exists (HANDLE)
	handles
	can_read ([TIMEOUT])
	can_write ([TIMEOUT])
	has_error ([TIMEOUT])
	count ()
	bits()
	bits()
	select (READ, WRITE, ERROR [, TIMEOUT])

	EXAMPLE
	AUTHOR
	COPYRIGHT

	Socket
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([ARGS])

	METHODS
	accept([PKG])
	timeout([VAL])
	sockopt(OPT [, VAL])
	sockdomain
	socktype
	protocol

	SUB-CLASSES
	IO::Socket::INET
	METHODS
	sockaddr ()
	sockport ()
	sockhost ()
	peeraddr ()
	peerport ()
	peerhost ()

	IO::Socket::UNIX
	METHODS
	hostpath()
	peerpath()

	SEE ALSO
	AUTHOR
	COPYRIGHT

	IPC Modules
	Msg
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	new (KEY , FLAGS)
	id
	rcv (BUF, LEN [, TYPE [, FLAGS]])
	remove
	set (STAT)
	set (NAME = VALUE [, NAME = VALUE ...])
	snd (TYPE, MSG [, FLAGS])
	stat

	SEE ALSO
	AUTHOR
	COPYRIGHT

	Open2
	NAME
	SYNOPSIS
	DESCRIPTION
	WARNING
	SEE ALSO

	Open3
	NAME
	SYNOPSIS
	DESCRIPTION
	WARNING

	Semaphore
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	new (KEY , NSEMS , FLAGS)
	getall
	getncnt (SEM)
	getpid (SEM)
	getval (SEM)
	getzcnt (SEM)
	id
	op (OPLIST)
	remove
	set (STAT)
	set (NAME = VALUE [, NAME = VALUE ...])
	setall (VALUES)
	setval (N , VALUE)
	stat

	SEE ALSO
	AUTHOR
	COPYRIGHT

	SysV
	NAME
	SYNOPSIS
	DESCRIPTION
	ftok(PATH, ID)

	SEE ALSO
	AUTHORS
	COPYRIGHT

	Math Modules
	BigFloat
	NAME
	SYNOPSIS
	DESCRIPTION
	number format
	Error returns `NaN'
	Division is computed to

	BUGS
	AUTHOR

	BigInt
	NAME
	SYNOPSIS
	DESCRIPTION
	Canonical notation
	Input
	Output

	EXAMPLES
	Autocreating constants
	BUGS
	AUTHOR

	Complex
	NAME
	SYNOPSIS
	DESCRIPTION
	OPERATIONS
	CREATION
	STRINGIFICATION
	USAGE
	ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
	ERRORS DUE TO INDIGESTIBLE ARGUMENTS
	BUGS
	AUTHORS

	Trig
	NAME
	SYNOPSIS
	DESCRIPTION
	TRIGONOMETRIC FUNCTIONS
	tan
	ERRORS DUE TO DIVISION BY ZERO
	SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS

	PLANE ANGLE CONVERSIONS
	RADIAL COORDINATE CONVERSIONS
	COORDINATE SYSTEMS
	3-D ANGLE CONVERSIONS
	cartesian_to_cylindrical
	cartesian_to_spherical
	cylindrical_to_cartesian
	cylindrical_to_spherical
	spherical_to_cartesian
	spherical_to_cylindrical

	GREAT CIRCLE DISTANCES
	EXAMPLES
	BUGS
	AUTHORS

	NDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Net Modules
	Ping
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions
	Net::Ping-new([$proto [, $def_timeout [, $bytes]]]);
	$p-ping($host [, $timeout]);
	$p-close();
	pingecho($host [, $timeout]);

	WARNING
	NOTES

	hostent
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	NOTE
	AUTHOR

	netent
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	NOTE
	AUTHOR

	protoent
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	AUTHOR

	servent
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	NOTE
	AUTHOR

	ODBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Opcode
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	WARNING
	Operator Names and Operator Lists
	an operator name (opname)
	an operator tag name (optag)
	a negated opname or optag
	an operator set (opset)

	Opcode Functions
	opcodes
	opset (OP, ...)
	opset_to_ops (OPSET)
	opset_to_hex (OPSET)
	full_opset
	empty_opset
	invert_opset (OPSET)
	verify_opset (OPSET, ...)
	define_optag (OPTAG, OPSET)
	opmask_add (OPSET)
	opmask
	opdesc (OP, ...)
	opdump (PAT)

	Manipulating Opsets
	TO DO (maybe)
	Predefined Opcode Tags
	:base_core
	:base_mem
	:base_loop
	:base_io
	:base_orig
	:base_math
	:base_thread
	:default
	:filesys_read
	:sys_db
	:browse
	:filesys_open
	:filesys_write
	:subprocess
	:ownprocess
	:others
	:still_to_be_decided
	:dangerous

	SEE ALSO
	AUTHORS

	POSIX
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	CAVEATS
	FUNCTIONS
	_exit
	abort
	abs
	access
	acos
	alarm
	asctime
	asin
	assert
	atan
	atan2
	atexit
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	chdir
	chmod
	chown
	clearerr
	clock
	close
	closedir
	cos
	cosh
	creat
	ctermid
	ctime
	cuserid
	difftime
	div
	dup
	dup2
	errno
	execl
	execle
	execlp
	execv
	execve
	execvp
	exit
	exp
	fabs
	fclose
	fcntl
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fileno
	floor
	fmod
	fopen
	fork
	fpathconf
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	ftell
	fwrite
	getc
	getchar
	getcwd
	getegid
	getenv
	geteuid
	getgid
	getgrgid
	getgrnam
	getgroups
	getlogin
	getpgrp
	getpid
	getppid
	getpwnam
	getpwuid
	gets
	getuid
	gmtime
	isalnum
	isalpha
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	kill
	labs
	ldexp
	ldiv
	link
	localeconv
	localtime
	log
	log10
	longjmp
	lseek
	malloc
	mblen
	mbstowcs
	mbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mkdir
	mkfifo
	mktime
	modf
	nice
	offsetof
	open
	opendir
	pathconf
	pause
	perror
	pipe
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	rand
	read
	readdir
	realloc
	remove
	rename
	rewind
	rewinddir
	rmdir
	scanf
	setgid
	setjmp
	setlocale
	setpgid
	setsid
	setuid
	sigaction
	siglongjmp
	sigpending
	sigprocmask
	sigsetjmp
	sigsuspend
	sin
	sinh
	sleep
	sprintf
	sqrt
	srand
	sscanf
	stat
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	stroul
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	sysconf
	system
	tan
	tanh
	tcdrain
	tcflow
	tcflush
	tcgetpgrp
	tcsendbreak
	tcsetpgrp
	time
	times
	tmpfile
	tmpnam
	tolower
	toupper
	ttyname
	tzname
	tzset
	umask
	uname
	ungetc
	unlink
	utime
	vfprintf
	vprintf
	vsprintf
	wait
	waitpid
	wcstombs
	wctomb
	write

	CLASSES
	POSIX::SigAction
	new

	POSIX::SigSet
	new
	addset
	delset
	emptyset
	fillset
	ismember

	POSIX::Termios
	new
	getattr
	getcc
	getcflag
	getiflag
	getispeed
	getlflag
	getoflag
	getospeed
	setattr
	setcc
	setcflag
	setiflag
	setispeed
	setlflag
	setoflag
	setospeed
	Baud rate values
	Terminal interface values
	c_cc field values
	c_cflag field values
	c_iflag field values
	c_lflag field values
	c_oflag field values

	PATHNAME CONSTANTS
	Constants

	POSIX CONSTANTS
	Constants

	SYSTEM CONFIGURATION
	Constants

	ERRNO
	Constants

	FCNTL
	Constants

	FLOAT
	Constants

	LIMITS
	Constants

	LOCALE
	Constants

	MATH
	Constants

	SIGNAL
	Constants

	STAT
	Constants
	Macros

	STDLIB
	Constants

	STDIO
	Constants

	TIME
	Constants

	UNISTD
	Constants

	WAIT
	Constants
	Macros

	CREATION

	SDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Safe
	NAME
	SYNOPSIS
	DESCRIPTION
	a new namespace
	an operator mask

	WARNING
	RECENT CHANGES
	Methods in class Safe
	permit (OP, ...)
	permit_only (OP, ...)
	deny (OP, ...)
	deny_only (OP, ...)
	trap (OP, ...)
	untrap (OP, ...)
	share (NAME, ...)
	share_from (PACKAGE, ARRAYREF)
	varglob (VARNAME)
	reval (STRING)
	rdo (FILENAME)
	root (NAMESPACE)
	mask (MASK)

	Some Safety Issues
	Memory
	CPU
	Snooping
	Signals
	State Changes

	AUTHOR

	Dict
	NAME
	SYNOPSIS
	DESCRIPTION

	SelectSaver
	NAME
	SYNOPSIS
	DESCRIPTION

	SelfLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	The __DATA__ token
	SelfLoader autoloading
	Autoloading and package lexicals
	SelfLoader and AutoLoader
	__DATA__, __END__, and the FOOBAR::DATA filehandle.
	Classes and inherited methods.

	Multiple packages and fully qualified subroutine names

	Shell
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Socket
	NAME
	SYNOPSIS
	DESCRIPTION
	inet_aton HOSTNAME
	inet_ntoa IP_ADDRESS
	INADDR_ANY
	INADDR_BROADCAST
	INADDR_LOOPBACK
	INADDR_NONE
	sockaddr_in PORT, ADDRESS
	sockaddr_in SOCKADDR_IN
	pack_sockaddr_in PORT, IP_ADDRESS
	unpack_sockaddr_in SOCKADDR_IN
	sockaddr_un PATHNAME
	sockaddr_un SOCKADDR_UN
	pack_sockaddr_un PATH
	unpack_sockaddr_un SOCKADDR_UN

	Symbol
	NAME
	SYNOPSIS
	DESCRIPTION

	Sys Modules
	Hostname
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Syslog
	NAME
	SYNOPSIS
	DESCRIPTION
	openlog $ident, $logopt, $facility
	syslog $priority, $format, @args
	setlogmask $mask_priority
	setlogsock $sock_type (added in 5.004_02)
	closelog

	EXAMPLES
	DEPENDENCIES
	SEE ALSO
	AUTHOR

	Term Modules
	Cap
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	Complete
	NAME
	SYNOPSIS
	DESCRIPTION
	<tab>
	^D
	^U
	, <bs>

	DIAGNOSTICS
	BUGS
	AUTHOR

	ReadLine
	NAME
	SYNOPSIS
	DESCRIPTION
	Minimal set of supported functions
	ReadLine
	new
	readline
	addhistory
	IN, $OUT
	MinLine
	findConsole
	Attribs
	Features

	Additional supported functions
	tkRunning
	ornaments
	newTTY

	EXPORTS
	ENVIRONMENT

	Test Module
	Test
	NAME
	SYNOPSIS
	DESCRIPTION
	TEST TYPES
	NORMAL TESTS
	SKIPPED TESTS
	TODO TESTS

	ONFAIL
	SEE ALSO
	AUTHOR

	Harness
	NAME
	SYNOPSIS
	DESCRIPTION
	The test script output

	EXPORT
	DIAGNOSTICS
	All tests successful.\nFiles=%d, Tests=%d, %s
	FAILED tests %s\n\tFailed %d/%d tests, %.2f%% okay.
	Test returned status %d (wstat %d)
	Failed 1 test, %.2f%% okay. %s
	Failed %d/%d tests, %.2f%% okay. %s

	ENVIRONMENT
	SEE ALSO
	AUTHORS
	BUGS

	Text Modules
	Abbrev
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE

	ParseWords
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	1
	2
	3
	4
	5

	AUTHORS

	Soundex
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	LIMITATIONS
	AUTHOR

	Tabs
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	AUTHOR

	Wrap
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	BUGS
	AUTHOR

	Tie Modules
	Array
	NAME
	SYNOPSIS
	DESCRIPTION
	TIEARRAY classname, LIST
	STORE this, index, value
	FETCH this, index
	FETCHSIZE this
	STORESIZE this, count
	EXTEND this, count
	CLEAR this
	DESTROY this
	PUSH this, LIST
	POP this
	SHIFT this
	UNSHIFT this, LIST
	SPLICE this, offset, length, LIST

	CAVEATS
	AUTHOR

	Handle
	NAME
	SYNOPSIS
	DESCRIPTION
	TIEHANDLE classname, LIST
	WRITE this, scalar, length, offset
	PRINT this, LIST
	PRINTF this, format, LIST
	READ this, scalar, length, offset
	READLINE this
	GETC this
	DESTROY this

	MORE INFORMATION

	Hash
	NAME
	SYNOPSIS
	DESCRIPTION
	TIEHASH classname, LIST
	STORE this, key, value
	FETCH this, key
	FIRSTKEY this
	NEXTKEY this, lastkey
	EXISTS this, key
	DELETE this, key
	CLEAR this

	CAVEATS
	MORE INFORMATION

	RefHash
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	AUTHOR
	VERSION
	SEE ALSO

	Scalar
	NAME
	SYNOPSIS
	DESCRIPTION
	TIESCALAR classname, LIST
	FETCH this
	STORE this, value
	DESTROY this

	MORE INFORMATION

	SubstrHash
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS

	Time Modules
	Local
	NAME
	SYNOPSIS
	DESCRIPTION

	gmtime
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	AUTHOR

	localtime
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	AUTHOR

	tm
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	UNIVERSAL
	NAME
	SYNOPSIS
	DESCRIPTION
	isa (TYPE)
	can (METHOD)
	VERSION ([REQUIRE])
	UNIVERSAL::isa (VAL, TYPE)
	UNIVERSAL::can (VAL, METHOD)

	User Modules
	grent
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	AUTHOR

	pwent
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	AUTHOR

	autouse
	NAME
	SYNOPSIS
	DESCRIPTION
	WARNING
	AUTHOR
	SEE ALSO

	blib
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	AUTHOR

	constant
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTES
	TECHNICAL NOTE
	BUGS
	AUTHOR
	COPYRIGHT

	diagnostics
	NAME
	SYNOPSIS
	DESCRIPTION
	The �diagnostics� Pragma
	The �splain� Program

	EXAMPLES
	INTERNALS
	BUGS
	AUTHOR

	fields
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	integer
	NAME
	SYNOPSIS
	DESCRIPTION

	less
	NAME
	SYNOPSIS
	DESCRIPTION

	lib
	NAME
	SYNOPSIS
	DESCRIPTION
	ADDING DIRECTORIES TO @INC
	DELETING DIRECTORIES FROM @INC
	RESTORING ORIGINAL @INC

	SEE ALSO
	AUTHOR

	locale
	NAME
	SYNOPSIS
	DESCRIPTION

	overload
	NAME
	SYNOPSIS
	CAVEAT SCRIPTOR
	DESCRIPTION
	Declaration of overloaded functions
	Calling Conventions for Binary Operations
	FALSE
	TRUE
	undef

	Calling Conventions for Unary Operations
	Calling Conventions for Mutators
	++ and ‘
	x= and other assignment versions

	Overloadable Operations
	Arithmetic operations
	Comparison operations
	Bit operations
	Increment and decrement
	Transcendental functions
	Boolean, string and numeric conversion
	Special

	Inheritance and overloading
	Strings as values of use overload directive
	Overloading of an operation is inherited by derived classes

	SPECIAL SYMBOLS FOR �use overload�
	Last Resort
	Fallback
	undef
	TRUE
	defined, but FALSE

	Copy Constructor
	Example

	MAGIC AUTOGENERATION
	Assignment forms of arithmetic operations
	Conversion operations
	Increment and decrement
	abs($a)
	Unary minus
	Negation
	Concatenation
	Comparison operations
	Copy operator

	Losing overloading
	Run-time Overloading
	Public functions
	overload::StrVal(arg)
	overload::Overloaded(arg)
	overload::Method(obj,op)

	Overloading constants
	integer
	float
	binary
	q
	qr

	IMPLEMENTATION
	Metaphor clash
	Cookbook
	Two-face scalars
	Symbolic calculator
	 Really� symbolic calculator

	AUTHOR
	DIAGNOSTICS
	BUGS

	re
	NAME
	SYNOPSIS
	DESCRIPTION

	sigtrap
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SIGNAL HANDLERS
	stack-trace
	die
	handler your-handler

	SIGNAL LISTS
	normal-signals
	error-signals
	old-interface-signals

	OTHER
	untrapped
	any
	signal
	number

	EXAMPLES

	strict
	NAME
	SYNOPSIS
	DESCRIPTION
	strict refs
	strict vars
	strict subs

	subs
	NAME
	SYNOPSIS
	DESCRIPTION

	vars
	NAME
	SYNOPSIS
	DESCRIPTION

	POD Translators
	pod2man
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	center
	date
	fixed
	official
	release
	section
	lax

	Anatomy of a Proper Man Page
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	RETURN VALUE
	ERRORS
	EXAMPLES
	ENVIRONMENT
	FILES
	SEE ALSO
	NOTES
	CAVEATS
	DIAGNOSTICS
	BUGS
	RESTRICTIONS
	AUTHOR
	HISTORY

	EXAMPLES
	DIAGNOSTICS
	bad option in paragraph %d of %s: ``%s`' should be [%s]<%s
	can`t open %s: %s
	Improper man page - no dash in NAME header in paragraph %d of %s
	Invalid man page - no NAME line in %s
	roff font should be 1 or 2 chars, not `%s' (F)
	%s is missing required section: %s
	Unknown escape: %s in %s
	Unmatched =back
	Unrecognized pod directive: %s

	NOTES
	RESTRICTIONS
	BUGS
	AUTHORS

	pod2html
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	help
	htmlroot
	infile
	outfile
	podroot
	podpath
	libpods
	netscape
	nonetscape
	index
	noindex
	recurse
	norecurse
	title
	verbose

	AUTHOR
	BUGS
	SEE ALSO
	COPYRIGHT

	Porting Information
	patching
	Name
	Where to get this document
	How to contribute to this document

	Description
	Why this document exists
	Common problems

	Proper Patch Guidelines
	How to prepare your patch
	Creating your patch
	diff
	Directories
	Filenames

	What to include in your patch
	Description of problem
	Direction for application
	If you have a code patch
	Comments, Comments, Comments
	Style
	Testsuite
	Test your patch

	An example patch creation
	Submitting your patch
	Mailers
	Subject lines for patches
	Where to send your patch

	Applying a patch
	General notes on applying patches
	patch -p
	Cut and paste
	Hand editing patches

	Final notes

	Last Modified
	Author and Copyright Information

	pumpkin
	NAME
	SYNOPSIS
	DESCRIPTION
	Where Do I Get Perl Sources and Related Material?
	Perl5-porters mailing list

	How are Perl Releases Numbered?
	Subversions
	Maintenance and Development Subversions
	Why such a complicated scheme?
	Why is it called the patch pumpkin?

	Philosophical Issues in Patching Perl
	Solve problems as generally as possible
	Seek consensus on major changes
	Keep the documentation up-to-date
	Avoid machine-specific #ifdef`s
	Allow for lots of testing
	Test popular applications and modules.
	Automate generation of derivative files

	How to Make a Distribution
	Announce your intentions
	refresh pod/perltoc.pod
	run installhtml to check the validity of the pod files
	update patchlevel.h
	run metaconfig
	MANIFEST
	Check permissions
	Run Configure
	Update Porting/config.sh and Porting/config_H
	make run_byacc
	make regen_headers
	global.sym, interp.sym and perlio.sym
	Binary compatibility
	Changes
	Todo
	OS/2-specific updates
	VMS-specific updates
	Making the new distribution
	Making a new patch
	Testing your patch
	More testing

	Common Gotcha`s
	#elif
	Probably Prefer POSIX
	Think positively
	Providing Missing Functions ‘ Problem
	Providing missing functions ‘ some ideas
	All the world`s a VAX

	Miscellaneous Topics
	Autoconf
	Compatibility with Perl4
	Metaconfig worked for me
	Configure can be interactive
	GPL
	Modularity

	@INC search order
	Why isn`t there a directory to override Perl`s library?
	APPLLIB
	Shared libperl.so location
	1.
	2.
	3.

	Upload Your Work to CPAN
	Help Save the World
	Todo
	Good ideas waiting for round tuits
	installprefix
	Configure -Dsrc=/blah/blah
	Hint file fixes
	Hint file information
	Catch GNU Libc "Stub" functions

	Probably good ideas waiting for round tuits
	GNU configure ‘options
	make clean
	Try gcc if cc fails
	bypassing safe*alloc wrappers

	Vague possibilities
	MacPerl
	gconvert replacement
	Improve makedepend
	GNU Makefile standard targets
	File locking

	AUTHORS
	LAST MODIFIED

	Perl Utilities
	c2ph
	NAME
	SYNOPSIS
	OPTIONS

	DESCRIPTION

	h2ph
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-d destination_dir
	-r
	-a
	-l
	-h
	-D

	ENVIRONMENT
	FILES
	AUTHOR
	SEE ALSO
	DIAGNOSTICS
	BUGS

	h2xs
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-A
	-F
	-O
	-P
	-X
	-c
	-d
	-f
	-h
	-n module_name
	-p prefix
	-s sub1,sub2
	-v version
	-x

	EXAMPLES
	ENVIRONMENT
	AUTHOR
	SEE ALSO
	DIAGNOSTICS

	perlbug
	NAME
	SYNOPSIS
	DESCRIPTION
	What version of perl you are running?
	Are you running the latest released version of perl?
	Are you sure what you have is a bug?
	Do you have a proper test case?
	Can you describe the bug in plain English?
	Can you fix the bug yourself?
	Can you use perlbug to submit the report?

	OPTIONS
	-a
	-b
	-C
	-c
	-d
	-e
	-f
	-F
	-h
	-ok
	-okay
	-nok
	-nokay
	-r
	-S
	-s
	-t
	-v

	AUTHORS
	SEE ALSO
	BUGS

	perlcc
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-L < library_directories
	-I < include_directories
	-C < c_code_name
	-o < executable_name
	-e < perl_line_to_execute
	-regex <rename_regex
	-verbose <verbose_level
	-log <logname
	-argv <arguments
	-sav
	-gen
	-run
	-prog
	-mod

	ENVIRONMENT
	FILES
	BUGS

	perldoc
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-h help
	-v verbose
	-t text output
	-u unformatted
	-m module
	-l file name only
	-F file names
	-f perlfunc
	-q perlfaq
	-X use an index if present
	PageName|ModuleName|ProgramName

	ENVIRONMENT
	AUTHOR

	pl2pm
	NAME
	SYNOPSIS
	DESCRIPTION
	LIMITATIONS
	AUTHOR

	pstruct
	NAME
	SYNOPSIS
	OPTIONS

	DESCRIPTION

	splain
	NAME
	SYNOPSIS
	DESCRIPTION
	The �diagnostics� Pragma
	The �splain� Program

	EXAMPLES
	INTERNALS
	BUGS
	AUTHOR

	a2p
	NAME
	SYNOPSIS
	DESCRIPTION
	Options
	-D<number>
	-F<character>
	-n<fieldlist>
	-<number>
	-o

	"Considerations"

	ENVIRONMENT
	AUTHOR
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS

	Documentation files for various platforms
	Win32 Docs
	README
	NAME

	SYNOPSIS

	DESCRIPTION

	Setting Up

	Command Shell
	Borland C++
	Microsoft Visual C++
	Mingw32 with EGCS or GCC

	Building

	Testing

	Installation

	Usage Hints

	Environment Variables
	File Globbing
	Using perl from the command line
	Building Extensions
	Command-line Wildcard Expansion
	Win32 Specific Extensions
	Running Perl Scripts
	1
	2
	3
	Miscellaneous Things

	BUGS AND CAVEATS

	AUTHORS

	SEE ALSO

	HISTORY

	perlglob
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR
	SEE ALSO

	pl2bat
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-n ntargs
	-o otherargs
	-a argstring
	-s stripsuffix
	-w
	-u
	-h

	EXAMPLES
	BUGS
	SEE ALSO

	runperl
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	SEE ALSO

	Amiga Docs
	README
	NAME
	SYNOPSIS
	DESCRIPTION
	Prerequisites
	Unix emulation for AmigaOS: ixemul.library
	Version of Amiga OS

	Starting Perl programs under AmigaOS
	Shortcomings of Perl under AmigaOS
	fork()
	some features of the UNIX filesystem regarding link count and file dates
	inplace operation (the -i switch) without backup file
	umask() works, but the correct permissions are only set when the file is

	INSTALLATION
	Accessing documentation
	Manpages
	 HTML�
	 GNU� �info� files
	 LaTeX� docs

	BUILD
	Prerequisites
	Getting the perl source
	Making
	Testing
	Installing the built perl

	AUTHOR
	SEE ALSO

	VMS Docs
	perlvms
	NAME
	DESCRIPTION
	Installation
	Organization of Perl Images
	Core Images
	Perl Extensions
	Installing static extensions
	Installing dynamic extensions

	File specifications
	Syntax
	Wildcard expansion
	Pipes

	PERL5LIB and PERLLIB
	Command line
	I/O redirection and backgrounding
	Command line switches
	-i
	-S
	-u

	Perl functions
	File tests
	backticks
	binmode FILEHANDLE
	crypt PLAINTEXT, USER
	dump
	exec LIST
	fork
	getpwent
	getpwnam
	getpwuid
	gmtime
	kill
	qx//
	select (system call)
	stat EXPR
	system LIST
	time
	times
	unlink LIST
	utime LIST
	waitpid PID,FLAGS

	Perl variables
	%ENV
	$!
	$^E
	$?
	$^S
	$|

	Standard modules with VMS-specific differences
	SDBM_File

	Revision date
	AUTHOR

	Filespec
	NAME
	SYNOPSIS
	DESCRIPTION
	rmsexpand
	vmsify
	unixify
	pathify
	fileify
	vmspath
	unixpath
	candelete

	REVISION

	XSSymSet
	NAME
	SYNOPSIS
	DESCRIPTION
	new([$maxlen[,$silent]])
	addsym($name[,$maxlen[,$silent]])
	trimsym($name[,$maxlen[,$silent]])
	delsym($name)
	get_orig($trimmed)
	get_trimmed($name)
	all_orig()
	all_trimmed()

	AUTHOR
	REVISION

	vmsish
	NAME
	SYNOPSIS
	DESCRIPTION
	vmsish status
	vmsish exit
	vmsish time

	DCLsym
	NAME
	SYNOPSIS
	DESCRIPTION
	Tied hash interface
	Object interface
	new
	getsym
	setsym
	delsym
	clearcache

	AUTHOR
	VERSION
	BUGS

	Stdio
	NAME
	SYNOPSIS
	DESCRIPTION
	flush
	getname
	remove
	rewind
	setdef
	sync
	tmpnam
	vmsopen
	vmssysopen
	waitfh
	writeof

	REVISION

	DOS README
	README
	NAME

	SYNOPSIS

	DESCRIPTION

	Prerequisites

	DJGPP
	Pthreads

	Shortcomings of Perl under DOS

	Building

	Testing

	Installation

	Threaded perl under dos-djgpp

	AUTHOR

	SEE ALSO

	OS/2 Docs
	README
	NAME
	SYNOPSIS
	DESCRIPTION
	Target
	Other OSes
	Prerequisites
	EMX
	RSX
	HPFS
	pdksh

	Starting Perl programs under OS/2 (and DOS and...)
	Starting OS/2 (and DOS) programs under Perl
	1
	2
	3
	4
	5
	6
	7

	Frequently asked questions
	I cannot run external programs
	I cannot embed perl into my program, or use �perl.dll� from my
	Is your program EMX-compiled with -Zmt -Zcrtdll?
	Did you use ExtUtils::Embed?

	 ``� and pipe-�open� do not work under DOS.
	Cannot start �find.exe "pattern" file�

	INSTALLATION
	Automatic binary installation
	PERL_BADLANG
	PERL_BADFREE
	Config.pm

	Manual binary installation
	Perl VIO and PM executables (dynamically linked)
	Perl_ VIO executable (statically linked)
	Executables for Perl utilities
	Main Perl library
	Additional Perl modules
	Tools to compile Perl modules
	Manpages for Perl and utilities
	Manpages for Perl modules
	Source for Perl documentation
	Perl manual in .INF format
	Pdksh

	 Warning�

	Accessing documentation
	OS/2 �.INF� file
	Plain text
	Manpages
	HTML
	GNU �info� files
	 .PDF� files
	 LaTeX� docs

	BUILD
	Prerequisites
	Getting perl source
	Application of the patches
	Hand-editing
	Making
	Testing
	A lot of bad free
	Process terminated by SIGTERM/SIGINT
	op/fs.t
	18
	25
	lib/io_pipe.t
	lib/io_sock.t
	op/stat.t
	4
	lib/io_udp.t

	Installing the built perl
	 a.out�-style build

	Build FAQ
	Some �/� became �\� in pdksh.
	 `errno'� - unresolved external
	Problems with tr or sed
	Some problem (forget which ;-)
	Library ... not found
	Segfault in make

	Specific (mis)features of OS/2 port
	 setpriority�, �getpriority�
	 system()��
	 extproc� on the first line
	Additional modules:
	Prebuilt methods:
	File::Copy::syscopy
	DynaLoader::mod2fname
	Cwd::current_drive()
	Cwd::sys_chdir(name)
	Cwd::change_drive(name)
	Cwd::sys_is_absolute(name)
	Cwd::sys_is_rooted(name)
	Cwd::sys_is_relative(name)
	Cwd::sys_cwd(name)
	Cwd::sys_abspath(name, dir)
	Cwd::extLibpath([type])
	Cwd::extLibpath_set(path [, type])

	Misfeatures
	Modifications
	popen
	tmpnam
	tmpfile
	ctermid
	stat
	flock

	Perl flavors
	 perl.exe�
	 perl_.exe�
	 perl__.exe�
	 perl___.exe�
	Why strange names?
	Why dynamic linking?
	Why chimera build?
	explicit fork()
	open FH, "|-"
	open FH, "-|"

	ENVIRONMENT
	 PERLLIB_PREFIX�
	 PERL_BADLANG�
	 PERL_BADFREE�
	 PERL_SH_DIR�
	 USE_PERL_FLOCK�
	 TMP� or �TEMP�

	Evolution
	Priorities
	DLL name mangling
	Threading
	Calls to external programs
	Memory allocation
	Threads
	COND_WAIT
	os2.c

	AUTHOR
	SEE ALSO

	ExtAttr
	NAME
	SYNOPSIS
	DESCRIPTION
	High-level interface: �tie�
	Low-level interface

	AUTHOR
	SEE ALSO

	PrfDB
	NAME
	SYNOPSIS
	DESCRIPTION
	High level access
	Low-level access
	Open(file)
	Close(hndl)
	Get(hndl, appname, key)
	GetLength(hndl, appname, key)
	Set(hndl, appname, key, value [, length])
	System(val)
	Profiles()
	SetUser(file)

	Integer handles
	new(package, file)
	new_from_int(package, int_hndl [, filename])

	Exports

	AUTHOR
	SEE ALSO

	Process
	NAME
	SYNOPSIS
	DESCRIPTION
	Access to process properties
	file_type(file)
	T_NOTSPEC (0)
	T_NOTWINDOWCOMPAT (1)
	T_WINDOWCOMPAT (2)
	T_WINDOWAPI (3)
	T_BOUND (8)
	T_DLL (0x10)
	T_DOS (0x20)
	T_PHYSDRV (0x40)
	T_VIRTDRV (0x80)
	T_PROTDLL (0x100)
	T_32BIT (0x4000)
	process_entry()
	set_title(newtitle)
	get_title()

	AUTHOR
	SEE ALSO

	REXX
	NAME
	NOTE

	SYNOPSIS
	DESCRIPTION
	Load REXX DLL
	Define function prefix:
	Example
	Define queue:
	Call external REXX function:

	Accessing REXX-runtime
	Bind scalar variable to REXX variable:
	Bind array variable to REXX stem variable:
	Bind hash array variable to REXX stem variable:
	Erase individual REXX variables (bound or not):
	Erase REXX variables with given stem (bound or not):

	NOTES
	AUTHOR

	Plan9 Docs
	perlplan9
	NAME
	DESCRIPTION
	Invoking Perl
	What`s in Plan 9 Perl
	What`s not in Plan 9 Perl
	Perl5 Functions not currently supported
	Signals

	BUGS
	Revision date
	AUTHOR

	Other Core distributed files
	bytecode
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	configpm
	NAME
	SYNOPSIS
	DESCRIPTION
	myconfig()
	config_sh()
	config_vars(@names)

	EXAMPLE
	WARNING
	GLOSSARY
	 $c�

	NOTE

	installhtml
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	 help help
	 podroot POD search path base directory
	 podpath POD search path
	 recurse recurse on subdirectories
	 htmldir HTML destination directory
	 htmlroot URL base directory
	 splithead POD files to split on =head directive
	 splititem POD files to split on =item directive
	 splitpod Directory containing the splitpod program
	 libpods library PODs for L<> links
	 verbose verbose output

	EXAMPLE
	AUTHOR
	TODO

	makeaperl
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHORS
	STATUS

	minimod
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	README
	NAME
	DESCRIPTION
	Hint file tricks
	Printing critical messages
	Propagating variables to config.sh
	1
	2
	3

	Call-backs
	Warning
	Compiler-related flags
	Threading-related flags
	Future status

	Popular Modules (Win32, libwww, DBD, Sybase)
	libwww (V5.40_01) Modules
	lwpcook
	NAME
	DESCRIPTION
	GET
	HEAD
	POST
	PROXIES
	ACCESS TO PROTECTED DOCUMENTS
	MIRRORING
	LARGE DOCUMENTS
	COPYRIGHT

	RobotUA
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	$ua = LWP::RobotUA-new($agent_name, $from, [$rules])
	$ua-delay([$minutes])
	$ua-use_sleep([$boolean])
	$ua-rules([$rules])
	$ua-no_visits($netloc)
	$ua-host_wait($netloc)
	$ua-as_string

	SEE ALSO
	COPYRIGHT

	MediaTypes
	NAME
	SYNOPSIS
	DESCRIPTION
	guess_media_type($filename_or_url, [$header_to_modify])
	media_suffix($type,...)
	add_type($type, @exts)
	add_encoding($type, @ext)
	read_media_types(@files)

	COPYRIGHT

	MemberMixin
	NAME
	SYNOPSIS
	DESCRIPTION
	_elem($elem [, $val])

	Simple
	NAME
	SYNOPSIS
	DESCRIPTION
	get($url)
	head($url)
	getprint($url)
	getstore($url, $file)
	mirror($url, $file)
	is_success($rc)
	is_error($rc)

	SEE ALSO

	Debug
	NAME
	SYNOPSIS
	DESCRIPTION
	level(...)
	trace($msg)
	debug($msg)
	conns($msg)

	UserAgent
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	$ua = new LWP::UserAgent;
	$ua-simple_request($request, [$arg [, $size]])
	$ua-request($request, $arg [, $size])
	$ua-redirect_ok
	$ua-credentials($netloc, $realm, $uname, $pass)
	$ua-get_basic_credentials($realm, $uri, [$proxy])
	$ua-agent([$product_id])
	$ua-from([$email_address])
	$ua-timeout([$secs])
	$ua-cookie_jar([$cookies])
	$ua-parse_head([$boolean])
	$ua-max_size([$bytes])
	$ua-clone;
	$ua-is_protocol_supported($scheme)
	$ua-mirror($url, $file)
	$ua-proxy(...)
	$ua-env_proxy()
	$ua-no_proxy($domain,...)

	SEE ALSO
	COPYRIGHT

	Util
	NAME
	SYNOPSIS
	DESCRIPTION
	split_header_words(@header_values)
	join_header_words(@arrays)

	COPYRIGHT

	Daemon
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	$d = new HTTP::Daemon
	$c = $d-accept([$pkg])
	$d-url
	$d-product_tokens
	$c-get_request([$headers_only])
	$c-read_buffer([$new_value])
	$c-reason
	$c-proto_ge($proto)
	$c-antique_client
	$c-force_last_request
	$c-send_status_line([$code, [$mess, [$proto]]])
	$c-send_crlf
	$c-send_basic_header([$code, [$mess, [$proto]]])
	$c-send_response([$res])
	$c-send_redirect($loc, [$code, [$entity_body]])
	$c-send_error([$code, [$error_message]])
	$c-send_file_response($filename)
	$c-send_file($fd);
	$c-daemon

	SEE ALSO
	COPYRIGHT

	Status
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTANTS
	FUNCTIONS
	status_message($code)
	is_info($code)
	is_success($code)
	is_redirect($code)
	is_error($code)
	is_client_error($code)
	is_server_error($code)

	BUGS

	Message
	NAME
	SYNOPSIS
	DESCRIPTION
	$mess = new HTTP::Message;
	$mess-clone()
	$mess-protocol([$proto])
	$mess-content([$content])
	$mess-add_content($data)
	$mess-content_ref
	$mess-headers;
	$mess-headers_as_string([$endl])

	COPYRIGHT

	Cookies
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	$cookie_jar = HTTP::Cookies-new;
	$cookie_jar-add_cookie_header($request);
	$cookie_jar-extract_cookies($response);
	$cookie_jar-set_cookie($version, $key, $val, $path, $domain, $port, $path_spec, $secure, $maxage, $discard, \%rest)
	$cookie_jar-save([$file]);
	$cookie_jar-load([$file]);
	$cookie_jar-revert;
	$cookie_jar-clear([$domain, [$path, [$key]]]);
	$cookie_jar-scan(\&callback);
	$cookie_jar-as_string([$skip_discard]);

	SUB CLASSES
	COPYRIGHT

	Headers
	NAME
	SYNOPSIS
	DESCRIPTION
	$h = new HTTP::Headers
	$h-header($field [= $value],...)
	$h-scan(\&doit)
	$h-as_string([$endl])
	$h-push_header($field, $val)
	$h-remove_header($field,...)
	$h-clone

	CONVENIENCE METHODS
	$h-date
	$h-expires
	$h-if_modified_since
	$h-if_unmodified_since
	$h-last_modified
	$h-content_type
	$h-content_encoding
	$h-content_length
	$h-content_language
	$h-title
	$h-user_agent
	$h-server
	$h-from
	$h-referer
	$h-www_authenticate
	$h-proxy_authenticate
	$h-authorization
	$h-proxy_authorization
	$h-authorization_basic
	$h-proxy_authorization_basic

	COPYRIGHT

	Common
	NAME
	SYNOPSIS
	DESCRIPTION
	GET $url, Header = Value,...
	HEAD $url, [Header = Value,...]
	PUT $url, [Header = Value,...]
	POST $url, [$form_ref], [Header = Value,...]

	SEE ALSO
	COPYRIGHT

	Request
	NAME
	SYNOPSIS
	DESCRIPTION
	$r = HTTP::Request-new($method, $uri, [$header, [$content]])
	$r-method([$val])
	$r-uri([$val])
	$r-as_string()

	SEE ALSO
	COPYRIGHT

	Response
	NAME
	SYNOPSIS
	DESCRIPTION
	$r = HTTP::Response-new($rc, [$msg, [$header, [$content]]])
	$r-code([$code])
	$r-message([$message])
	$r-request([$request])
	$r-previous([$previousResponse])
	$r-status_line
	$r-base
	1.
	2.
	3.
	$r-as_string
	$r-is_info
	$r-is_success
	$r-is_redirect
	$r-is_error
	$r-error_as_HTML()
	$r-current_age
	$r-freshness_lifetime
	$r-is_fresh
	$r-fresh_until

	COPYRIGHT

	Negotiate
	NAME
	SYNOPSIS
	DESCRIPTION
	VARIANTS
	identifier
	qs
	content-type
	content-encoding
	content-charset
	content-language
	content-length

	ACCEPT HEADERS
	Accept
	Accept-Charset
	Accept-Encoding
	Accept-Language

	COPYRIGHT
	AUTHOR

	Date
	NAME
	SYNOPSIS
	DESCRIPTION
	time2str([$time])
	str2time($str [, $zone])

	BUGS
	COPYRIGHT

	LWP
	NAME
	SYNOPSIS
	CONTENTS
	DESCRIPTION
	AUTHOR

	RobotRules
	NAME
	SYNOPSIS
	DESCRIPTION
	$rules = new WWW::RobotRules `MOMspider/1.0'
	$rules-parse($url, $content, $fresh_until)
	$rules-allowed($url)
	$rules-agent([$name])

	ROBOTS.TXT
	User-Agent
	Disallow

	ROBOTS.TXT EXAMPLES
	SEE ALSO

	AnyDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	AUTHORS

	Listing
	NAME
	SYNOPSIS
	DESCRIPTION
	CREDITS

	LWP
	NAME
	SYNOPSIS
	DESCRIPTION
	HTTP STYLE COMMUNICATION
	The Request Object
	The Response Object
	is_success()
	is_error()

	The User Agent
	An Example

	NETWORK SUPPORT
	HTTP Requests
	HTTPS Requests
	FTP Requests
	News Requests
	Gopher Request
	File Request
	Mailto Request

	OVERVIEW OF CLASSES AND PACKAGES
	MORE DOCUMENTATION
	BUGS
	ACKNOWLEDGEMENTS
	COPYRIGHT
	AVAILABILITY

	Win32 (V0.13) Modules
	ChangeNotify
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$notify = Win32::ChangeNotify-new($path, $subtree, $filter)
	$notify-close
	$notify-reset
	$notify-wait

	Deprecated Functions and Methods
	FindFirst($Obj,$PathName,$WatchSubTree,$Filter)
	$obj-FindNext()
	$obj-Close()

	AUTHOR

	Event
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$event = Win32::Event-new([$manual, [$initial, [$name]]])
	$event = Win32::Event-open($name)
	$event-pulse
	$event-reset
	$event-set
	$event-wait([$timeout])

	AUTHOR

	File
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions
	NOTE
	GetAttributes(filename, returnedAttributes)
	SetAttributes(filename, newAttributes)

	Constants
	ARCHIVE
	COMPRESSED
	DIRECTORY
	HIDDEN
	NORMAL
	OFFLINE
	READONLY
	SYSTEM
	TEMPORARY

	FileSecurity
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTANTS
	FUNCTIONS
	NOTE:
	constant($name, $set)
	Get($filename, \%permisshash)
	Set($filename, \%permisshash)
	EnumerateRights($mask, \@rightslist)
	MakeMask(qw(DELETE READ_CONTROL))

	%permisshash

	EXAMPLE1
	EXAMPLE2
	COMMON MASKS FROM CACLS AND WINFILE
	READ
	CHANGE
	ADD �&� READ
	FULL

	RESOURCES
	VERSION
	REVISION NOTES
	1.03 ALPHA 1998.01.11
	1.02 ALPHA 1997.12.14
	1.01 ALPHA 1997.04.25
	0.67 ALPHA 1997.07.07
	0.66 ALPHA 1997.03.13
	0.65 ALPHA 1997.02.25
	0.60 ALPHA 1996.07.31
	0.51 ALPHA 1996.07.20
	0.50 ALPHA 1996.07.29

	KNOWN ISSUES / BUGS
	1
	2

	Install
	NAME
	SYNOPSIS
	DESCRIPTION

	IPC
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$obj-wait([$timeout])

	Functions
	wait_any(@objects, [$timeout])
	wait_all(@objects, [$timeout])

	Deprecated Functions and Methods
	INFINITE
	WaitForMultipleObjects(\@objects, $wait_all, $timeout)
	$obj-Wait($timeout)

	AUTHOR

	Mutex
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$mutex = Win32::Mutex-new([$initial, [$name]])
	$mutex = Win32::Mutex-open($name)
	$mutex-release
	$mutex-wait([$timeout])

	Deprecated Functions and Methods
	Create($MutObj,$Initial,$Name)
	Open($MutObj,$Name)
	$MutObj-Release()

	AUTHOR

	NetAdmin
	NAME
	SYNOPSIS
	DESCRIPTION
	FUNCTIONS
	NOTE
	GetDomainController(server, domain, returnedName)
	GetAnyDomainController(server, domain, returnedName)
	UserCreate(server, userName, password, passwordAge, privilege, homeDir, comment, flags, scriptPath)
	UserDelete(server, user)
	UserGetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment, flags, scriptPath)
	UserSetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment, flags, scriptPath)
	UserChangePassword(domainname, username, oldpassword, newpassword)
	UsersExist(server, userName)
	GetUsers(server, filter, userRef)
	GroupCreate(server, group, comment)
	GroupDelete(server, group)
	GroupGetAttributes(server, groupName, comment)
	GroupSetAttributes(server, groupName, comment)
	GroupAddUsers(server, groupName, users)
	GroupDeleteUsers(server, groupName, users)
	GroupIsMember(server, groupName, user)
	GroupGetMembers(server, groupName, userArrayRef)
	LocalGroupCreate(server, group, comment)
	LocalGroupDelete(server, group)
	LocalGroupGetAttributes(server, groupName, comment)
	LocalGroupSetAttributes(server, groupName, comment)
	LocalGroupIsMember(server, groupName, user)
	LocalGroupGetMembers(server, groupName, userArrayRef)
	LocalGroupGetMembersWithDomain(server, groupName, userRef)
	LocalGroupAddUsers(server, groupName, users)
	LocalGroupDeleteUsers(server, groupName, users)
	GetServers(server, domain, flags, serverRef)
	GetTransports(server, transportRef)
	LoggedOnUsers(server, userRef)
	GetAliasFromRID(server, RID, returnedName)
	GetUserGroupFromRID(server, RID, returnedName)
	GetServerDisks(server, arrayRef)

	NetResource
	NAME
	SYNOPSIS
	DESCRIPTION
	DATA TYPES
	%NETRESOURCE
	%SHARE_INFO

	FUNCTIONS
	NOTE
	GetSharedResources(\@Resources,dwType)
	AddConnection(\%NETRESOURCE,$Password,$UserName,$Connection)
	CancelConnection($Name,$Connection,$Force)
	WNetGetLastError($ErrorCode,$Description,$Name)
	GetError($ErrorCode)
	GetUNCName($UNCName, $LocalPath);

	NOTE
	NetShareAdd(\%SHARE,$parm_err,$servername = NULL)
	NetShareCheck($device,$type,$servername = NULL)
	NetShareDel($netname, $servername = NULL)
	NetShareGetInfo($netname, \%SHARE,$servername=NULL)
	NetShareSetInfo($netname,\%SHARE,$parm_err,$servername=NULL)
	AUTHOR

	Const
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions/Methods
	use Win32::OLE::Const
	Win32::OLE::Const-Load

	EXAMPLES
	AUTHORS/COPYRIGHT

	Enum
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions/Methods
	Win32::OLE::Enum-new($object)
	$Enum-All()
	$Enum-Clone()
	$Enum-Next([$count])
	$Enum-Reset()
	$Enum-Skip([$count])

	AUTHORS/COPYRIGHT

	NLS
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions
	CompareString(LCID,FLAGS,STR1,STR2)
	LCMapString(LCID,FLAGS,STR)
	GetLocaleInfo(LCID,LCTYPE)
	GetStringType(LCID,TYPE,STR)
	GetSystemDefaultLangID()
	GetSystemDefaultLCID()
	GetUserDefaultLangID()
	GetUserDefaultLCID()
	MAKELANGID(LANG,SUBLANG)
	PRIMARYLANGID(LANGID)
	SUBLANGID(LANGID)
	MAKELCID(LANGID)
	LANGIDFROMLCID(LCID)

	Locale Types
	LOCALE_ILANGUAGE
	LOCALE_SLANGUAGE
	LOCALE_SENGLANGUAGE
	LOCALE_SABBREVLANGNAME
	LOCALE_SNATIVELANGNAME
	LOCALE_ICOUNTRY
	LOCALE_SCOUNTRY
	LOCALE_SENGCOUNTRY
	LOCALE_SABBREVCTRYNAME
	LOCALE_SNATIVECTRYNAME
	LOCALE_IDEFAULTLANGUAGE
	LOCALE_IDEFAULTCOUNTRY
	LOCALE_IDEFAULTANSICODEPAGE
	LOCALE_IDEFAULTCODEPAGE
	LOCALE_SLIST
	LOCALE_IMEASURE
	LOCALE_SDECIMAL
	LOCALE_STHOUSAND
	LOCALE_SGROUPING
	LOCALE_IDIGITS
	LOCALE_ILZERO
	LOCALE_SNATIVEDIGITS
	LOCALE_INEGNUMBER
	LOCALE_SCURRENCY
	LOCALE_SINTLSYMBOL
	LOCALE_SMONDECIMALSEP
	LOCALE_SMONTHOUSANDSEP
	LOCALE_SMONGROUPING
	LOCALE_ICURRDIGITS
	LOCALE_IINTLCURRDIGITS
	LOCALE_ICURRENCY
	LOCALE_INEGCURR
	LOCALE_ICALENDARTYPE
	LOCALE_IOPTIONALCALENDAR
	LOCALE_SDATE
	LOCALE_STIME
	LOCALE_STIMEFORMAT
	LOCALE_SSHORTDATE
	LOCALE_SLONGDATE
	LOCALE_IDATE
	LOCALE_ILDATE
	LOCALE_ITIME
	LOCALE_ITIMEMARKPOSN
	LOCALE_ICENTURY
	LOCALE_ITLZERO
	LOCALE_IDAYLZERO
	LOCALE_IMONLZERO
	LOCALE_S1159
	LOCALE_S2359
	LOCALE_IFIRSTWEEKOFYEAR
	LOCALE_IFIRSTDAYOFWEEK
	LOCALE_SDAYNAME1 .. LOCALE_SDAYNAME7
	LOCALE_SABBREVDAYNAME1 .. LOCALE_SABBREVDAYNAME7
	LOCALE_SMONTHNAME1 .. LOCALE_SMONTHNAME12
	LOCALE_SMONTHNAME13
	LOCALE_SABBREVMONTHNAME1 .. LOCALE_SABBREVMONTHNAME12
	LOCALE_SABBREVMONTHNAME13
	LOCALE_SPOSITIVESIGN
	LOCALE_SNEGATIVESIGN
	LOCALE_IPOSSIGNPOSN
	LOCALE_INEGSIGNPOSN
	LOCALE_IPOSSYMPRECEDES
	LOCALE_IPOSSEPBYSPACE
	LOCALE_INEGSYMPRECEDES
	LOCALE_INEGSEPBYSPACE

	AUTHORS/COPYRIGHT

	OLE
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	Win32::OLE-new(PROGID [, DESTRUCTOR])
	Win32::OLE-GetActiveObject(CLASS)
	Win32::OLE-GetObject(MONIKER)
	Win32::OLE-Initialize(COINIT)
	OBJECT-Invoke(METHOD,ARGS)
	Win32::OLE-LastError()
	Win32::OLE-QueryObjectType(OBJECT)
	OBJECT-SetProperty(NAME,ARGS,VALUE)
	Win32::OLE-SpinMessageLoop
	Win32::OLE-Uninitialize

	Functions
	in(COLLECTION)
	valof(OBJECT)
	with(OBJECT, PROPERTYNAME = VALUE, ...)

	Overloading
	Class Variables
	$Win32::OLE::CP
	$Win32::OLE::LCID
	$Win32::OLE::Warn

	EXAMPLES
	NOTES
	Hints for Microsoft Office automation
	Documentation
	Class, Method and Property names
	Moniker (GetObject support)
	Enumeration of collection objects
	Localization
	SaveAs method in Word 97 doesn`t work
	Randomly failing method calls

	Incompatibilities
	1
	2
	3
	4
	5

	Bugs and Limitations
	1
	2

	SEE ALSO
	AUTHORS
	COPYRIGHT
	VERSION

	Variant
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	new(TYPE, DATA)
	As(TYPE)
	ChangeType(TYPE)
	LastError()
	Type()
	Unicode()
	Value()

	Functions
	Variant(TYPE, DATA)

	Overloading
	Class Variables
	Constants
	Variants
	Variants by reference

	AUTHORS/COPYRIGHT

	PerfLib
	NAME
	SYNOPSIS
	DESCRIPTION
	FUNCTIONS
	NOTE
	Win32::PerfLib::GetCounterNames($server,$hashref)
	Win32::PerfLib::GetCounterHelp($server,$hashref)
	$perflib = Win32::PerfLib-new ($server)
	$perflib-GetObjectList($objectid,$hashref)
	$perflib-Close($hashref)
	Win32::PerfLib::GetCounterType(countertype)

	Datastructures
	Level 1
	Level 2
	Level 3
	Level 4
	Level 5
	Level 6
	Level 7

	AUTHOR
	SEE ALSO

	Process
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	Win32::Process::Create($obj,$appname,$cmdline,$iflags,$cflags,$curdir)
	$ProcessObj-Suspend()
	$ProcessObj-Resume()
	$ProcessObj-Kill($ExitCode)
	$ProcessObj-GetPriorityClass($class)
	$ProcessObj-SetPriorityClass($class)
	$ProcessObj-GetProcessAffinitymask($processAffinityMask, $systemAffinitymask)
	$ProcessObj-SetProcessAffinitymask($processAffinityMask)
	$ProcessObj-GetExitCode($ExitCode)
	$ProcessObj-Wait($Timeout)

	Semaphore
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$semaphore = Win32::Semaphore-new($initial, $maximum, [$name])
	$semaphore = Win32::Semaphore-open($name)
	$semaphore-release([$increment, [$previous]])
	$semaphore-wait([$timeout])

	Deprecated Functions and Methods
	Win32::Semaphore::Create($SemObject,$Initial,$Max,$Name)
	Win32::Semaphore::Open($SemObject, $Name)
	$SemObj-Release($Count,$LastVal)

	AUTHOR

	Service
	NAME
	SYNOPSIS
	DESCRIPTION
	FUNCTIONS
	NOTE:
	StartService(hostName, serviceName)
	StopService(hostName, serviceName)
	GetStatus(hostName, serviceName, status)
	PauseService(hostName, serviceName)
	ResumeService(hostName, serviceName)
	GetServices(hostName, hashref)

	TieRegistry
	NAME
	SYNOPSIS
	EXAMPLES
	DESCRIPTION
	The Registry
	REG_SZ
	REG_EXPAND_SZ
	REG_BINARY
	REG_MULTI_SZ
	REG_DWORD

	Tied Hashes Documentation
	"Classes" for HKEY_CLASSES_ROOT
	"CUser" for HKEY_CURRENT_USER
	"LMachine" for HKEY_LOCAL_MACHINE
	"Users" for HKEY_USERS
	"PerfData" for HKEY_PERFORMANCE_DATA
	"CConfig" for HKEY_CURRENT_CONFIG
	"DynData" for HKEY_DYN_DATA
	SubKeys
	Values
	Remote machines
	Hash key string starts with the delimiter
	Exact match with direct subkey name followed by delimiter
	Hash key string contains two delimiters in a row
	Hash key string ends with a delimiter
	Hash key string contains a delimiter
	Hash key string contains no delimiters
	Canonical value fetch
	Changing your delimiter
	Using intermediate keys
	Chaining in a single statement
	Even less efficient example of chaining
	What the above really does
	Getting all of the tips
	Adding a new tip
	Deleting our new tip
	Adding a new tip differently
	Deleting differently
	Deleting a key
	Technical notes on deleting
	Undeleting a key
	Not deleting a key
	Not deleting again

	Objects Documentation
	new
	Open
	$subKey= $key-Open($sSubKey, $rhOptions)
	Clone
	$copy= $key-Clone
	Connect
	$remoteKey= $Registry-Connect($sMachineName, $sKeyPath, $rhOptions)
	ObjectRef
	$object_ref= $obj_or_hash_ref-ObjectRef
	Flush($bFlush)
	GetValue
	$ValueData= $key-GetValue($sValueName)
	($ValueData,$ValueType)= $key-GetValue($sValueName)
	REG_SZ and REG_EXPAND_SZ
	REG_MULTI_SZ
	REG_DWORD
	ValueNames
	@names= $key-ValueNames
	SubKeyNames
	@key_names= $key-SubKeyNames
	SubKeyClasses
	@classes= $key-SubKeyClasses
	SubKeyTimes
	@times= $key-SubKeyTimes
	MemberNames
	@members= $key-MemberNames
	Information
	%info= $key-Information
	@items= $key-Information(@itemNames);
	LastWrite
	CntSubKeys
	CntValues
	SecurityLen
	MaxValDataLen
	MaxSubKeyLen
	MaxSubClassLen
	MaxValNameLen
	Delimiter
	$oldDelim= $key-Delimiter
	$oldDelim= $key-Delimiter($newDelim)
	Handle
	$handle= $key-Handle
	Path
	$path= $key-Path
	Machine
	$computerName= $key-Machine
	Access
	OS_Delimiter
	Roots
	Tie
	$key-Tie(\%hash);
	TiedRef
	$TiedHashRef= $hash_or_obj_ref-TiedRef
	ArrayValues
	$oldBool= $key-ArrayValues
	$oldBool= $key-ArrayValues($newBool)
	TieValues
	$oldBool= TieValues
	$oldBool= TieValues($newBool)
	FastDelete
	$oldBool= $key-FastDelete
	$oldBool= $key-FastDelete($newBool)
	SplitMultis
	$oldBool= $key-SplitMultis
	$oldBool= $key-SplitMultis($newBool)
	DWordsToHex
	$oldBool= $key-DWordsToHex
	$oldBool= $key-DWordsToHex($newBool)
	FixSzNulls
	$oldBool= $key-FixSzNulls
	$oldBool= $key-FixSzNulls($newBool)
	DualTypes
	$oldBool= $key-DualTypes
	$oldBool= $key-DualTypes($newBool)
	DualBinVals
	$oldBool= $key-DualBinVals
	$oldBool= $key-DualBinVals($newBool)
	GetOptions
	@oldOpts= $key-GetOptions(@optionNames)
	SetOptions
	@oldOpts= $key-SetOptions(optNames=$optValue,...)
	SetValue
	$okay= $key-SetValue($ValueName, $ValueData);
	$okay= $key-SetValue($ValueName, $ValueData, $ValueType);
	REG_SZ or REG_EXPAND_SZ
	REG_MULTI_SZ
	REG_DWORD
	REG_BINARY
	CreateKey
	$newKey= $key-CreateKey($subKey);
	$newKey= $key-CreateKey($subKey, { Option=OptVal,... });
	Delimiter
	Access
	Class
	Disposition
	Security
	Volatile
	Backup
	Options
	StoreKey
	$newKey= $key-StoreKey($subKey, \%Contents);
	Load
	$newKey= $key-Load($file)
	$newKey= $key-Load($file, $newSubKey)
	$newKey= $key-Load($file, $newSubKey, { Option=OptVal... })
	$newKey= $key-Load($file, { Option=OptVal... })
	UnLoad
	$okay= $key-UnLoad
	AllowSave
	$okay= AllowSave($bool)
	AllowLoad
	$okay= AllowLoad($bool)

	SUMMARY
	Objects Summary
	Tied Hashes Summary
	Tie::Registry

	AUTHOR
	SEE ALSO
	BUGS

	The DBD (V1.02) Module
	DBI
	NAME
	SYNOPSIS
	NOTE
	RECENT CHANGES
	DBI 1.00 - 14th August 1998
	DBI 0.96 - 10th August 1998
	DBI 0.92 - 4th February 1998

	DESCRIPTION
	Architecture of a DBI Application
	Notation and Conventions
	General Interface Rules �&� Caveats
	Naming Conventions and Name Space
	Data Query Methods
	Placeholders and Bind Values
	SQL - A Query Language

	THE DBI CLASS
	DBI Class Methods
	connect
	available_drivers
	data_sources
	trace

	DBI Utility Functions
	neat
	neat_list
	looks_like_number

	DBI Dynamic Attributes
	$DBI::err
	$DBI::errstr
	$DBI::state
	$DBI::rows

	METHODS COMMON TO ALL HANDLES
	err
	errstr
	state
	trace
	trace_msg
	func

	ATTRIBUTES COMMON TO ALL HANDLES
	Warn (boolean, inherited)
	Active (boolean, read-only)
	Kids (integer, read-only)
	ActiveKids (integer, read-only)
	CachedKids (hash ref)
	CompatMode (boolean, inherited)
	InactiveDestroy (boolean)
	PrintError (boolean, inherited)
	RaiseError (boolean, inherited)
	ChopBlanks (boolean, inherited)
	LongReadLen (unsigned integer, inherited)
	LongTruncOk (boolean, inherited)
	private_*

	DBI DATABASE HANDLE OBJECTS
	Database Handle Methods
	selectrow_array
	selectall_arrayref
	prepare
	prepare_cached
	do
	commit
	rollback
	disconnect
	ping
	table_info *NEW*
	tables *NEW*
	type_info_all *NEW*
	type_info *NEW*
	TYPE_NAME (string)
	DATA_TYPE (integer)
	PRECISION (integer)
	LITERAL_PREFIX (string)
	LITERAL_SUFFIX (string)
	CREATE_PARAMS (string)
	NULLABLE (integer)
	CASE_SENSITIVE (boolean)
	SEARCHABLE (integer)
	UNSIGNED_ATTRIBUTE (boolean)
	MONEY (boolean)
	AUTO_INCREMENT (boolean)
	LOCAL_TYPE_NAME (string)
	MINIMUM_SCALE (integer)
	MAXIMUM_SCALE (integer)
	quote

	Database Handle Attributes
	AutoCommit (boolean)
	Name (string)
	RowCacheSize (integer) *NEW*

	DBI STATEMENT HANDLE OBJECTS
	Statement Handle Methods
	bind_param
	bind_param_inout
	execute
	fetchrow_arrayref
	fetchrow_array
	fetchrow_hashref
	fetchall_arrayref
	finish
	rows
	bind_col
	bind_columns
	dump_results

	Statement Handle Attributes
	NUM_OF_FIELDS (integer, read-only)
	NUM_OF_PARAMS (integer, read-only)
	NAME (array-ref, read-only)
	TYPE (array-ref, read-only) *NEW*
	PRECISION (array-ref, read-only) *NEW*
	SCALE (array-ref, read-only) *NEW*
	NULLABLE (array-ref, read-only)
	CursorName (string, read-only)
	Statement (string, read-only) *NEW*
	RowsInCache (integer, read-only) *NEW*

	FURTHER INFORMATION
	Transactions
	Handling BLOB / LONG / Memo Fields
	Simple Examples
	Threads and Thread Safety
	Signal Handling and Canceling Operations

	DEBUGGING
	WARNING AND ERROR MESSAGES
	Fatal Errors
	Can`t call method "prepare" without a package or object reference
	Can`t call method "execute" without a package or object reference
	Database handle destroyed without explicit disconnect
	DBI/DBD internal version mismatch
	DBD driver has not implemented the AutoCommit attribute
	Can`t [sg]et %s-{%s}: unrecognised attribute
	panic: DBI active kids (%d) kids (%d)
	panic: DBI active kids (%d) < 0 or kids (%d)

	Warnings
	DBI Handle cleared whilst still holding %d cached kids!
	DBI Handle cleared whilst still active!
	DBI Handle has uncleared implementors data
	DBI Handle has %d uncleared child handles

	SEE ALSO
	Database Documentation
	Books and Journals
	Manual Pages
	Mailing List
	Assorted Related WWW Links
	FAQ

	AUTHORS
	COPYRIGHT
	ACKNOWLEDGEMENTS
	SUPPORT / WARRANTY
	OUTSTANDING ISSUES TO DO
	FREQUENTLY ASKED QUESTIONS
	How fast is the DBI?
	Why doesn`t my CGI script work right?
	How can I maintain a WWW connection to a database?
	A driver build fails because it can`t find DBIXS.h
	Has the DBI and DBD::Foo been ported to NT / Win32?
	What about ODBC?
	Does the DBI have a year 2000 problem?

	KNOWN DRIVER MODULES
	ODBC - DBD::ODBC
	Oracle - DBD::Oracle
	Ingres - DBD::Ingres
	mSQL - DBD::mSQL
	DB2 - DBD::DB2
	Empress - DBD::Empress
	Informix - DBD::Informix
	Solid - DBD::Solid
	Postgres - DBD::Pg
	Illustra - DBD::Illustra
	Fulcrum SearchServer - DBD::Fulcrum

	OTHER RELATED WORK AND PERL MODULES
	Apache::DBI by E.Mergl@bawue.de
	JDBC Server by Stuart `Zen' Bishop <zen@bf.rmit.edu.au
	Remote Proxy DBD support
	SQL Parser

	W32ODBC
	NAME
	SYNOPSIS
	DESCRIPTION

	Shell
	NAME
	SYNOPSIS
	DESCRIPTION
	TO DO
	COMMANDS
	help
	chistory
	clear
	commit
	connect
	current
	do
	drivers
	edit
	exit
	get
	go
	history
	option
	perl
	quit
	redo
	rhistory
	rollback
	table_info
	trace
	type_info

	AUTHORS and ACKNOWLEDGEMENTS
	COPYRIGHT

	FAQ
	NAME
	SYNOPSIS
	VERSION
	DESCRIPTION
	Basic Information �&� Information Sources
	1.1 What is DBI, DBperl, Oraperl and *perl?
	1.2. Where can I get it from?
	1.3. Where can I get more information?
	DBI Specification
	POD Documentation
	The DBI Specification
	Frequently Asked Questions
	Oraperl
	DBD::mSQL
	POD in general
	Rambles, Tidbits and Observations
	``DBI ‘ The perl5 Database Interface`'
	``DBperl`'
	``The Perl5 Database Interface`'
	README files
	Mailing Lists
	dbi-announce
	dbi-dev
	dbi-users
	Mailing List Archives
	US Mailing List Archives
	European Mailing List Archives

	Compilation Problems
	2.1. Compilation problems or "It fails the test!"
	Attempt to fix it yourself
	Email the author Do NOT whinge!
	Email the dbi-users Mailing List

	Platform and Driver Issues
	3.1 What`s the difference between ODBC and DBI?
	3.2 Is DBI supported under Windows 95 / NT platforms?
	3.3 Can I access Microsoft Access or SQL-Server databases with DBI?
	3.4 Is the a DBD for <�insert favourite database here��?
	3.5 What`s DBM? And why should I use DBI instead?
	3.6 When will mSQL-2 be supported?
	3.7 What database do you recommend me using?
	3.8 Is <�insert feature here�� supported in DBI?

	Programming Questions
	4.1 Is DBI any use for CGI programming?
	4.2 How do I get faster connection times with DBD::Oracle and CGI?
	4.3 How do I get persistent connections with DBI and CGI?
	4.4 ``My perl script runs from the command line, but fails under the �httpd�!`' Why?
	4.5 How do I get the number of rows returned from a select statement?
	5.1 Can I do multi-threading with DBI?
	5.2 How do I handle BLOB data with DBI?
	5.3 How can I invoke stored procedures with DBI?
	5.4 How can I get return values from stored procedures with DBI?
	5.5 How can I create or drop a database with DBI?
	5.6 How can I �commit� or �rollback� a statement with DBI?
	5.7 How are �NULL� values handled by DBI?
	5.8 What are these ��func()�� methods all about?

	Support and Training
	Commercial Support
	The Perl Clinic

	Training

	Other References
	AUTHOR
	COPYRIGHT

	ProxyServer
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	 configfile filename
	 debug
	 facility
	 help
	 ip ip-number
	 port port
	 pidfile filename
	 stderr
	 version

	CONFIGURATION FILE
	Syntax
	Accepting and refusing hosts
	Host based encryption
	User based authorization
	User based encryption
	Query restrictions

	AUTHOR
	SEE ALSO

	Format
	NAME
	SYNOPSIS
	DESCRIPTION
	new(@attr)
	new(\%attr)
	header($sth, $fh)
	row($ref)
	trailer

	AVAILABLE SUBCLASSES
	Ascii boxes

	AUTHOR AND COPYRIGHT
	SEE ALSO

	DBD
	NAME
	SYNOPSIS
	VERSION and VOLATILITY
	DESCRIPTION
	REGISTERING A NEW DRIVER
	Locating drivers
	DBI Mailing Lists
	Registering a new driver

	CREATING A NEW DRIVER USING PURE PERL
	Makefile.PL
	README file
	MANIFEST
	Driver.pm
	The header
	The driver constructor
	$class
	$attr1
	$attr2
	The database handle constructor
	Other driver handle methods
	The statement handle constructor
	Transaction handling
	The STORE and FETCH methods
	Other database handle methods
	The execute method
	Fetching data
	Statement attributes
	Other statement methods

	Tests

	CREATING A NEW DRIVER USING C/XS
	REQUIREMENTS ON A DRIVER
	CODE TO BE WRITTEN
	Driver.pm
	Driver.xs
	Driver.h
	dbdimp.h
	dbdimp.c
	Makefile.PL
	README
	MANIFEST
	Driver.pm
	The database handle constructor
	The statement handle constructor

	Driver.xs
	Driver.h
	Implementation header dbdimp.h
	Implementation source dbdimp.c
	Initialization
	do_error
	dbd_db_login
	dbd_db_commit
	dbd_db_rollback
	dbd_db_disconnect
	dbd_db_discon_all
	dbd_db_destroy
	dbd_db_STORE_attrib
	dbd_db_FETCH_attrib
	dbd_st_prepare
	dbd_st_execute
	dbd_st_fetch
	dbd_st_finish
	dbd_st_destroy
	dbd_st_STORE_attrib
	dbd_st_FETCH_attrib
	dbd_st_blob_read
	dbd_bind_ph

	Makefile.PL

	METHODS WHICH DO NOT NEED TO BE WRITTEN
	DBI-available_drivers()
	DBI-neat_list()
	DBI-neat()
	DBI-dump_results()
	DBI-func()
	$dbh-do()
	$h-errstr()
	$h-err()
	$h-state()
	$h-trace()
	$h-{ChopBlanks}
	$h-{RaiseError}
	$h-{PrintError}
	$sth-bind_col()
	$sth-bind_columns()
	$dbh-quote()
	$dbh-ping()

	WRITING AN EMULATION LAYER FOR AN OLD PERL INTERFACE
	Setting emulation perl variables

	OTHER MISCELLANEOUS INFORMATION
	The imp_xyz_t types
	D_imp_dbh(dbh)
	D_imp_sth(sth)
	D_imp_xxx(h)
	D_imp_sth_from_dbh

	Using DBIc_IMPSET_on
	Using �DBIc_is()�, �DBIc_on()� and �DBIc_off()�
	Using �DBIS-�get_fbav()�

	SUBCLASSING DBI DRIVERS
	Overwriting methods
	Attribute handling

	ACKNOWLEDGEMENTS
	AUTHORS

	Proxy
	NAME
	SYNOPSIS
	DESCRIPTION
	CONNECTING TO THE DATABASE
	hostname
	port
	dsn
	cipher
	key
	usercipher
	userkey
	debug
	proxy_cache_rows
	proxy_no_finish

	AUTHOR AND COPYRIGHT
	SEE ALSO

	Sybase
	NAME
	SYNOPSIS
	DESCRIPTION
	Connecting to Sybase
	The interfaces file
	Specifying the server name
	Specifying other connection specific parameters
	charset
	language
	packetSize
	interfaces
	loginTimeout

	Handling Multiple Result Sets
	Sybase Specific Attributes
	Database Handle Attributes
	syb_show_sql
	syb_show_eed

	Statement Handle Attributes
	syb_more_results
	syb_result_type

	IMAGE and TEXT datatypes
	Transactions and Transact-SQL
	Using ? Placeholders �&� bind parameters to �$sth-�execute�
	BUGS
	SEE ALSO
	AUTHOR
	COPYRIGHT
	ACKNOWLEDGEMENTS

	mysql
	NAME
	SYNOPSIS
	DESCRIPTION
	Class Methods
	connect

	Private MetaData Methods
	ListDBs
	ListTables
	ListFields
	ListSelectedFields

	Database Manipulation
	CreateDB
	DropDB

	STATEMENT HANDLES
	ChopBlanks
	insertid
	is_blob
	is_key
	is_num
	is_pri_key
	is_not_null
	length
	max_length
	NAME
	NULLABLE
	NUM_OF_FIELDS
	table
	type

	COMPATIBILITY ALERT
	Recent changes:
	New connect method
	_ListFields returning statement handle
	$sth->func($table, `_ListSelectedFields')
	Capitalized attribute names

	BUGS
	Nulls
	Blanks

	AUTHOR
	COPYRIGHT
	ADDITIONAL DBI INFORMATION

	mSQL
	NAME
	SYNOPSIS
	DESCRIPTION
	Class Methods
	connect

	Private MetaData Methods
	ListDBs
	ListTables
	ListFields
	ListSelectedFields

	Database Manipulation
	CreateDB
	DropDB

	STATEMENT HANDLES
	ChopBlanks
	insertid
	is_blob
	is_key
	is_num
	is_pri_key
	is_not_null
	length
	max_length
	NAME
	NULLABLE
	NUM_OF_FIELDS
	table
	type

	COMPATIBILITY ALERT
	Recent changes:
	New connect method
	_ListFields returning statement handle
	$sth->func($table, `_ListSelectedFields')
	Capitalized attribute names

	BUGS
	Nulls
	Blanks

	AUTHOR
	COPYRIGHT
	ADDITIONAL DBI INFORMATION

	The Sybperl (V2.09_05) Module
	sybperl
	NAME
	SYNOPSIS
	DESCRIPTION
	Attributes
	DateTime, Money and Numeric data behavior
	Compatibility with Sybase Open Client documentation.

	Sybase::DBlib
	$dbh = new Sybase::DBlib [$user [, $server [, $appname [, {additional attributes}]]]]
	$dbh = Sybase::DBlib-dblogin([$user [, $pwd [, $server [, $appname, [{additional attributes}]]]]])
	$dbh = Sybase::DBlib-dbopen([$server [, $appname, [{attributes}]]])
	$status = $dbh-dbuse($database)
	$status = $dbh-dbcmd($sql_cmd)
	$status = $dbh-dbsqlexec
	$status = $dbh-dbresults
	$status = $dbh-dbsqlsend
	$status = $dbh-dbsqlok
	($dbproc, $reason) = Sybase::DBlib::dbpoll($millisecs)
	$status = $dbh-dbcancel
	$status = $dbh-dbcanquery
	$dbh-dbfreebuf
	$dbh-dbclose
	$dbh-DBDEAD
	$status = $dbh-DBCURCMD
	$status = $dbh-DBMORECMDS
	$status = $dbh-DBCMDROW
	$status = $dbh-DBROWS
	$status = $dbh-DBCOUNT
	$row_num = $dbh-DBCURROW
	$spid = $dbh-dbspid
	$status = $dbh-dbhasretstat
	$status = $dbh-dbretstatus
	$status = $dbh-dbnumcols
	$status = $dbh-dbcoltype($colid)
	$status = $dbh-dbcollen($colid)
	$string = $dbh-dbcolname($colid)
	@dat = $dbh-dbnextrow([$doAssoc [, $wantRef]])
	@dat = $dbh-dbretdata[$doAssoc])
	$string = $dbh-dbstrcpy
	$ret = $dbh-dbsetopt($opt [, $c_val [, $i_val]])
	$ret = $dbh-dbclropt($opt [, $c_val])
	$ret = $dbh-dbisopt($opt [, $c_val])
	$string = $dbh-dbsafestr($string [,$quote_char])
	$packet_size = $dbh-dbgetpacket
	TEXT/IMAGE Routines
	$status = $dbh-dbwritetext($colname, $dbh_2, $colnum, $text [, $log])
	$status = $dbh-dbpreptext($colname, $dbh_2, $colnum, $size [, $log])
	$status = $dbh-dbmoretext($size, $data)
	$status = $dbh-dbreadtext($buf, $size)

	BCP Routines:
	BCP_SETL($state)
	$state = bcp_getl
	$status = $dbh-bcp_init($table, $hfile, $errfile, $direction)
	$status = $dbh-bcp_meminit($numcols)
	$status = $dbh-bcp_sendrow(LIST)
	$status = $dbh-bcp_sendrow(ARRAY_REF)
	$rows = $dbh-bcp_batch
	$status = $dbh-bcp_done
	$status = $dbh-bcp_control($field, $value)
	$status = $dbh-bcp_columns($colcount)
	
	$status = $dbh-bcp_collen($varlen, $table_column)
	$status = $dbh-bcp_exec
	$status = $dbh-bcp_readfmt($filename)
	$status = $dbh-bcp_writefmt($filename)
	($status, $sum) = $dbh-dbmny4add($m1, $m2)
	$status = $dbh-dbmny4cmp($m1, $m2)
	($status, $quotient) = $dbh-dbmny4divide($m1, $m2)
	($status, $dest) = $dbh-dbmny4minus($source)
	($status, $product) = $dbh-dbmny4mul($m1, $m2)
	($status, $difference) = $dbh-dbmny4sub($m1, $m2)
	($status, $ret) = $dbh-dbmny4zero
	($status, $sum) = $dbh-dbmnyadd($m1, $m2)
	$status = $dbh-dbmnycmp($m1, $m2)
	($status, $ret) = $dbh-dbmnydec($m1)
	($status, $quotient) = $dbh-dbmnydivide($m1, $m2)
	($status, $ret, $remainder) = $dbh-dbmnydown($m1, $divisor)
	($status, $ret) = $dbh-dbmnyinc($m1)
	($status, $ret, $remain) = $dbh-dbmnyinit($m1, $trim)
	($status, $ret) = $dbh-dbmnymaxneg
	($status, $ret) = $dbh-dbmnymaxpos
	($status, $dest) = $dbh-dbmnyminus($source)
	($status, $product) = $dbh-dbmnymul($m1, $m2)
	($status, $m1, $digits, $remain) = $dbh-dbmnyndigit($m1)
	($status, $ret) = $dbh-dbmnyscale($m1, $multiplier, $addend)
	($status, $difference) = $dbh-dbmnysub($m1, $m2)
	($status, $ret) = $dbh-dbmnyzero
	$dbh-dbrpcinit($rpcname, $option)
	$dbh-dbrpcparam($parname, $status, $type, $maxlen, $datalen, $value)
	$dbh-dbrpcsend
	dbrpwset($srvname, $pwd)
	dbrpwclr
	$status = $dbh-dbreginit($proc_name)
	$status = $dbh-dbreglist
	$status = $dbh-dbreglist($parname, $type, $datalen, $value)
	$status = $dbh-dbregexec($opt)
	$dbh = Sybase::DBlib-open_commit($user, $pwd, $server, $appname)
	$id = $dbh-start_xact($app_name, $xact_name, $site_count)
	$status = $dbh-stat_xact($id)
	$status = $dbh-scan_xact($id)
	$status = $dbh-commit_xact($id)
	$status = $dbh-abort_xact($id)
	$dbh-close_commit
	$string = Sybase::DBlib::build_xact_string($xact_name, $service_name, $id)
	$status = $dbh-remove_xact($id, $site_count)
	$old_handler = dberrhandle($err_handle)
	$old_handler = dbmsghandle($msg_handle)
	dbsetifile($filename)
	dbrecftos($filename)
	dbversion
	DBSETLCHARSET($charset)
	DBSETLNATLANG($language)
	DBSETLPACKET($packet_size)
	$time = DBGETTIME
	$time = dbsettime($seconds)
	$time = dbsetlogintime($seconds)
	dbexit
	$ret|@ret = $dbh-sql($cmd [, \&rowcallback [, $flag]])
	@ret = $dbh-nsql($sql [, "ARRAY" | "HASH"]);
	$Sybase::DBlib::Version
	DBLIBVS

	Attributes:
	dbNullIsUndef
	dbKeepNumeric
	dbBin0x
	useDateTime
	useMoney

	Status Variables
	DBstatus
	ComputeID

	Examples
	BCP from program variables
	Using the sql() routine
	Getting SHOWPLAN and STATISTICS information within a script

	BUGS

	Sybase::Sybperl
	Sybase::CTlib
	DESCRIPTION
	$dbh = new Sybase::CTlib $user [, $passwd [, $server [, $appname[, {attributes}]
	$dbh = Sybase::CTlib-ct_connect($user [, $passwd [, $server [,$appname, [{attributes}]]]])
	CS_HOSTNAME
	CS_ANSI_BINDS
	CS_CHARSETCNV
	CS_PACKETSIZE
	CS_SEC_APPDEFINED
	CS_SEC_CHALLENGE
	CS_SEC_ENCRYPTION
	CS_SEC_NEGOTIATE
	$status = $dbh-ct_execute($sql)
	$status = $dbh-ct_command(type, buffer, len, option)
	$status = $dbh-ct_send
	$status = $dbh-ct_results($res_type)
	@names = $dbh-ct_col_names
	@types = $dbh-ct_col_types([$doAssoc])
	@data = $dbh-ct_describe([$doAssoc])
	@data = $dbh-ct_fetch([$doAssoc [, $wantRef]])
	$dbh-ct_cancel($type)
	$old_cb = ct_callback($type, $cb_func)
	$res_info = $dbh-ct_res_info($info_type)
	($status, $param) = $dbh-ct_option($action, $option, $param, $type)
	$ret = $dbh-ct_cursor($type, $name, $text, $option)
	$ret = $dbh-ct_param(\%datafmt)
	$dbh2 = $dbh-ct_cmd_alloc
	$rc = $dbh-ct_cmd_realloc
	$ret = ct_config($action, $property, $value, $type)
	$ret = cs_dt_info($action, $type, $item, $buf)
	$ret|@ret = $dbh-ct_sql($cmd [, \&rowcallback [, $doAssoc]])
	$ret = $dbh-ct_fetchable($restype)

	EXAMPLES
	ATTRIBUTES
	UseDateTime
	UseMoney
	UseNumeric
	MaxRows

	Common Sybase::DBlib and Sybase::CTlib routines
	$module_name::debug($bitmask)
	TRACE_CREATE
	TRACE_DESTROY
	TRACE_SQL
	TRACE_RESULTS
	TRACE_FETCH
	TRACE_CUSROR
	TRACE_PARAMS
	TRACE_OVERLOAD

	Special handling of DATETIME, MONEY �&� NUMERIC/DECIMAL values
	$date-str
	@arr = $date-crack
	$date-cmp($date2)
	$date2 = $date-calc($days, $msecs)
	($days, $msecs) = $date-diff($date2)
	$val = $date-info($datepart)
	$time = $date-mktime
	$time = $date-timelocal
	$time = $date-timegm
	$mny-str
	$mny-num
	$mny-cmp($mny2)
	$mny-set($number)
	$mny-calc($mny2, $op)

	ACKNOWLEDGEMENTS
	AUTHORS

	Table of Contents

